

Statistica Sinica Preprint No: SS-2023-0310
Title Bayesian Optimization with Pareto-Principled Training

for Economical Hyperparameter Optimization
Manuscript ID SS-2023-0310

URL http://www.stat.sinica.edu.tw/statistica/
DOI 10.5705/ss.202023.0310

Complete List of Authors Yang Yang,
Ke Deng and
Yu Zhu

Corresponding Authors Ke Deng
E-mails kdeng@tsinghua.edu.cn

Notice: Accepted author version.

Statistica Sinica

Bayesian Optimization with Pareto-Principled Training for

Economical Hyperparameter Optimization

Yang Yang1, Ke Deng2 and Yu Zhu3

1Nankai University, 2Tsinghua University and 3Purdue University

Abstract: The specification of hyperparameters plays a critical role in determining the practical per-

formance of a machine learning method. Hyperparameter Optimization (HPO), i.e., the searching for

optimal specification of hyperparameters, however, often faces critical computational challenges due to

the vast searching space and the high computational cost on model training under a given hyperparameter

specification. In this paper, we propose BOPT-HPO, a systematic approach for efficient HPO by lever-

aging Bayesian optimization with Pareto-principled training, based on the observation that the training

procedure of a machine learning method under a given hyperparameter specification often follows the

Pareto principle (the 80/20 rule) that about 80% of the total improvement in the objective function is

achieved in 20% of the training time. By introducing two levels of training corresponding to the Pareto

principle, i.e., the eighty-percent training (ET) and the complete training (CT), and establishing a joint

surrogate model for CT runs and ET runs, BOPT-HPO reduces the computational cost of HPO signifi-

cantly under the framework of Bayesian optimization with multi-fidelity measurements. A wide range of

experimental studies confirm that the proposed approach achieves economical HPO for various machine

learning models, including support vector machines, feed-forward neural networks, and convolutional

neural networks.

Corresponding authors: Ke Deng, Department of Statistics and Data Science, Tsinghua University, Beijing
100084, China. E-mail: kdeng@tsinghua.edu.cn. Yu Zhu, Department of Statistics, Purdue University, West
Lafayette, IN 47907, USA. E-mail: yuzhu@purdue.edu.

Statistica Sinica: Newly accepted Paper

Key words and phrases: Automated artificial intelligence; Black-box function optimization; Computer

experiments; Multi-fidelity modelling; Truncated Gaussian process.

1. Introduction

Machine Learning (ML) models, such as Support Vector Machines (SVMs) and Deep Neural

Networks (DNNs), have become a driving force for modern data-science technologies, leading

to applications not only in artificial intelligence, such as computer vision (Krizhevsky et al.,

2012) and natural language processing (Goldberg, 2017), but also in intelligent manufacturing,

such as material design (Batra et al., 2021) and 3D printing (Zhu et al., 2021).

In addition to the usual model parameters, a ML model typically involves hyperparameters

that define the model’s structure (e.g., the number of hidden layers of a DNN model) or control

the learning process (e.g., learning rate). Let M denote a ML model with d hyperparameters.

A setting of the d hyperparameters is referred to as a hyperparameter configuration. The collec-

tion of all possible hyperparameter configurations is called the hyperparameter configuration

space and denoted as X ⊆ Rd. Given a hyperparameter configuration x ∈ X , a setting of the

usual model parameters is denoted as ψx ∈ Rdx , where dx stands for the dimensionality of ψx.

Let Ψx denote the collection or space of all possible settings of the model parameters.

The performance measurement (e.g., the validation loss) of M, which is denoted as y in

this article, depends on both its hyperparameter configuration x and its model parameter

setting ψx under x, and can be expressed as y(x,ψx). Under a particular hyperparameter

specification x, we search the model parameter space Ψx for the optimal parameter setting

2

Statistica Sinica: Newly accepted Paper

ψ∗
x = argminψx∈Ψx y(x,ψx), leading to y(x) = y(x,ψ∗

x), which is the best performance mea-

surement of M under hyperparameter specification x. Apparently, y(x) plays a key role in

evaluating the effectiveness of x and serves as the objective function to guide HyperParameter

Optimization (HPO), which is aimed to search X for the best hyperparameter configuration

denoted as x∗, that is, to find x∗ = argminx∈X y(x).

Because the functional form of y(x) is typically unknown, HPO is essentially a black-

box function optimization problem, which faces critical challenges in most ML tasks. First,

the extra high dimensionality of the model parameter setting ψx makes it computationally

expensive to find the optimal setting ψ∗
x for each given x ∈ X , which further makes the

evaluation of y(x) a costly operation. Second, the complexity (e.g., size and dimensionality) of

the hyperparameter configuration space X poses further difficulties in searching for the optimal

configuration x∗ in practice. Due to these challenges in HPO, practitioners were forced to either

rely on the brute-force searching approach (Hinton, 2012; LeCun et al., 2012), which is feasible

only for simple models, or use heuristic approaches (Bergstra et al., 2011; Li et al., 2018),

which are unstable and sub-optimal.

There exists an urgent demand of developing a systematic approach to perform efficient

and automatic HPO for general ML models and tasks. In this article, we meet the demand by

making efforts on two primary directions for improving the efficiency of HPO: finding ways to

reduce the computational cost for function evaluation of y(x), and designing smart searching

strategies to improve the efficiency to explore the vast configuration space X . Integrating

these efforts under the framework of Bayesian optimization, we come up with a highly efficient

3

Statistica Sinica: Newly accepted Paper

method called Bayesian Optimization with Pareto-Principled Training for Hyperparameter

Optimization (BOPT-HPO) in a wide collection of ML methods, including support vector

machines, feed-forward neural networks, and convolutional neural networks.

To reduce the computational cost for evaluating y(x), we propose performing the evalu-

ation with two different levels of fidelity via Pareto-principled training. The key idea comes

from the observation that the training procedure of a ML method under a given hyperparam-

eter configuration often follows the Pareto principle (also known as the 80/20 rule, Sanders

(1987)): the fast-improving period, during which the objective function improves quickly over

time, brings 80% of the total improvement in the objective function in about 20% of the

total training time; whereas the slow-improving period, during which the objective function

improves at a much slower pace, consumes 80% of the training time to achieve the rest 20%

improvement. These facts suggest that we can actually perform two levels of training under

a given configuration x to mitigate the computational burden in HPO: the complete training

(CT) that keeps optimizing the model parameter ψx until a pre-given convergence criterion

is met, resulting in well optimized model parameters ψc
x and the corresponding accurate per-

formance measurement yc(x) = y(x,ψc
x); and, the eighty-percent training (ET) that is the

early-stopped version of CT immediately after the fast-improving period ends, resulting in

insufficiently optimized model parameters ψe
x and the corresponding approximate performance

measurement ye(x) = y(x,ψe
x). Figure 1 illustrates the idea of Pareto-principled training by

highlighting the endpoints of ET and CT in a typical training procedure of a ML method under

a given hyperparameter configuration. In practice, it is not necessary to strictly adhere the

4

Statistica Sinica: Newly accepted Paper

80/20 rule to claim the ET stage. Instead, we can identify the end point of ET by detecting

the elbow point of the loss curve as shown in Figure 1 via some stopping criteria (Prechelt,

2012).

Figure 1: A typical training procedure of a ML
method under a given hyperparameter configu-
ration containing an ET and a CT period.

Figure 2: The validation loss of ET runs and
CT runs against the kernel hyperparameter γ
in a support vector machine model.

To explore the vast configuration space X efficiently, we rely on Bayesian optimization

(BO), a classic framework for black-box function optimization, to design efficient exploration

strategies. Different from brute-force or heuristic searching, which explores the configuration

space X without clear guidance, BO explores X much more efficiently via sequential iterations

between a fitting stage, which approximates the unknown black-box response function y(x)

with a computationally convenient surrogate model based on the available observations, and

an exploration stage, which collects more observations under the guidance of the established

surrogate model, until a plausible solution is reached (Jones et al., 1998; Shahriari et al.,

2016). In the literature, BO-based HPO methods, such as TPE (Bergstra et al., 2011), SMAC

(Hutter et al., 2011), GP-BO (Snoek et al., 2012) and BOHB (Falkner et al., 2018), have

5

Statistica Sinica: Newly accepted Paper

demonstrated good potentials on improving HPO efficiency with various implementations of

the BO framework. In this work, we will further extend these efforts in a more general setting.

Apparently, for any configuration x ∈ X , ye(x) obtained from an ET run serves as a less ex-

pensive approximation of yc(x) from the corresponding CT run. The CT and ET runs in a HPO

problem result in performance measurements of two levels of fidelity: level-1 fidelity and level-2

fidelity, respectively, leading to a scenario that is very similar to Multi-Fidelity Optimization

(MFO) problem in both computer experiments and machine learning. If we consider the levels

of fidelity as different information sources, our work also aligns with Multi-Information Source

Optimization (MISO) in machine learning. In machine learning, researchers either utilize only

the highest fidelity measurements or information sources to build surrogate model with other

fidelity measurements completely ignored (Falkner et al., 2018), or model the multi-fidelity

measurements separately or implicitly via the Multi-outputs Gaussian Process (MGP) (Kan-

dasamy et al., 2016; Poloczek et al., 2017; Candelieri and Archetti, 2021). While in computer

experiments, relationships between successive fidelity measurements are often hierarchical and

modelled explicitly via some linkage functions (Kennedy and O’Hagan, 2000; Picheny et al.,

2013; Gramacy, 2020), indicating that a group of low-fidelity measurements can often be cal-

ibrated by a small number of judiciously chosen high-fidelity measurements. This suggests a

more computationally efficient strategy can be established for HPO by integrating observations

from both CT and ET runs.

The HPO problem with ET and CT runs contributes to a nested structure, which is a

commonly used design in computer experiments. However, our work has some unique features

6

Statistica Sinica: Newly accepted Paper

that usually do not appear in computer experiments. First, we have to finish an ET run first

before finishing a CT run, indicating that an ET run is a sub-process of the corresponding CT

run in terms of obtaining performance measurements. This naturally leading to a nested struc-

ture between the explored configuration sets at the two levels of fidelity, i.e., Xc ⊆ Xe, where

Xe and Xc stand for the explored configuration sets by ET and CT runs, respectively. Second,

the performance measurement (e.g., the validation loss) from a CT run is typically smaller

than the measurement from the corresponding ET run, leading to the constraint yc(x) ≤ ye(x)

for most x ∈ X . Third, the landscape of yc(x) can still be well characterized by the landscape

of ye(x), although ye(x) is a biased approximation of yc(x). Figure 2 visualizes the landscapes

of yc(x) and ye(x) under different specifications of the kernel hyperparameter γ in a support

vector machine, illustrating these features intuitively.

The existence of two different types of training runs, i.e., CT and ET runs, gives us more

flexibility, but also introduces more complexity, in response surface fitting and exploration.

Moreover, the nested structure between Xc and Xe and extra constraint between yc(x) and ye(x)

make it non-trivial to establish an appropriate BO approach for this complicated setting. This

study fills in these gaps with the BOPT-HPOmethod, which establishes a joint surrogate model

for CT and ET runs at the fitting stage with full consideration of the involved constraints, and

explores the vast hyperparameter space efficiently under the guidance of carefully designed

acquisition functions for both CT and ET runs at the exploration stage. A wide range of

experimental studies demonstrate the superiority of BOPT-HPO as an ideal solution to the

HPO problem for ML methods.

7

Statistica Sinica: Newly accepted Paper

The rest of the article is organized as follows. In Section 2, we briefly review the Bayesian

optimization. And then we propose a linkage model to systematically integrate the ET and

CT runs in Section 3. The BOPT-HPO method is further developed in Section 4. Section

5 illustrates the performances of the proposed method through experiments involving several

synthetic functions and a number of different machine learning algorithms. Finally, we conclude

the article with discussions in Section 6.

2. A Review for Black-Box Function Optimization via BO

In this section, we will briefly review the classic BO for black-box function optimization.

Tracing back to Kushner (1964), BO is a classic approach for black-box function optimization,

which fits and explores the unknown response surface in turn.

Given a group of observations O = {(xi, y(xi))}ti=1, where {xi}ti=1 is the set of pre-explored

configurations, BO approximates the unknown function y(x) with a surrogate model ŷ(x)

based on O in the fitting stage. A popular surrogate model for y(x) is the Gaussian process

(GP): y(x) ∼ GP
(
µ, σ2Rϕ(·, ·)

)
, where µ is a constant mean function, σ2 is the variance,

and the correlation function Rϕ(·, ·) is often specified to be the Gaussian kernel Rϕ(x,x
′) =∏d

m=1 exp{−ϕm(xm − x′
m)

2} with ϕ = (ϕ1, ..., ϕd) as the length-scale parameters (Rasmussen,

2004). Let θ̂ = (µ̂, σ̂2, ϕ̂) be the maximum likelihood estimates (MLE) of the GP parameters

θ = (µ, σ2,ϕ). Direct application of the Bayes rule leads to the result that the posterior

8

Statistica Sinica: Newly accepted Paper

distribution of y(x) given O and θ̂ is still a Gaussian distribution for any x ∈ X :

y(x) | O, θ̂ ∼ N
(
ŷ(x), ŝ2(x)

)
,

ŷ(x) = µ̂+ r̂T R̂−1(y − µ̂ · 1t), ŝ2(x) = σ̂2(1− r̂T R̂−1r̂), (2.1)

with R̂ = {Rϕ̂(xi,xj)}1≤i,j≤t being the estimated correlation matrix of y = (y(x1), . . . , y(xt))
T ,

r̂ the correlation vector between y(x) and y, and 1t the t-dimensional column vector whose

elements are all equal to 1. Apparently, the predictive distribution N
(
ŷ(x), ŝ2(x)

)
serves as a

convenient surrogate model of y(x) at the t-th iteration of the BO procedure.

In the exploration stage, BO searches the configuration space X for a new configuration

xt+1 to explore by maximizing the acquisition functions based on the surrogate model (2.1).

A variety of acquisition functions have been proposed, such as the Probability of Improvement

(PI) (Jones, 2001), Expected Improvement (EI) (Jones, 2001; Yang et al., 2021), and Upper

Confidence Bound (UCB) (Srinivas et al., 2010). Particularly, the UCB acquisition function

φ(x) = −ŷ(x) +
√
βt · ŝ(x), balancing exploration and exploitation, has been widely used

in practice, with βt suggested to be specified to 0.2d log(2t) (Kandasamy, 2018). Given the

acquisition function φ(x), BO seeks the next configuration xt+1 to explore by solving the

optimization problem: xt+1 = argmaxx∈X φ(x), and update the observation set O by O =

O∪{(xt+1, y(xt+1))} accordingly. The iteration stops till a plausible configuration to solve the

BO optimization problem is reached.

9

Statistica Sinica: Newly accepted Paper

3. Joint Surrogate Model for CT and ET Runs

Before presenting the BOPT-HPO method, we first briefly review the popularly used baseline

surrogate model for multi-fidelity responses in literature in Section 3.1. Following that, we

propose an improved surrogate model GP-TGP for CT and ET runs in Sections 3.2-3.4 to

consider the additional constraint between CT and ET runs, which is not encountered in classic

multi-fidelity computer experiments. This significantly improves the statistical efficiency of the

fitting stage of BOPT-HPO, and such an extension is one of the major contributions of this

study.

3.1 The Baseline Model

Treating yc(x) and ye(x) as two responses at configuration x with different levels of fidelity,

much effort has been made to model them jointly in the literature of computer experiments

(Qian et al., 2006; Huang et al., 2006; Kuya et al., 2011; Goh et al., 2013; Le Gratiet and

Cannamela, 2015). The earliest work in this area traced back to the auto-regressive model

proposed by Kennedy and O’Hagan (2000), which models the responses at the lower fidelity

level yk−1(x) and the higher fidelity level yk(x) as follows.

y1(x) = δ1(x),

yk(x) = ρk−1 · yk−1(x) + δk(x), k = 2, . . . , K,

δk(x) ∼ GP
(
µk, σ

2
kRϕk

(·, ·)
)
, k = 1, . . . , K,

(3.2)

10

Statistica Sinica: Newly accepted Paper

where K is the number of fidelity levels, {ρk}K−1
k=1 are unknown regression coefficients, and

{δk(x)}Kk=1 are K independent GPs. Picheny et al. (2013), Tuo et al. (2014) and Stroh et al.

(2022) further extended the discrete fidelity levels in (3.2) to continuous fidelity levels.

When only two fidelity levels of responses are considered, i.e., K = 2, the auto-regressive

model (3.2) degenerates to the Double-GP (DGP) model (Forrester et al., 2007) below.

yc(x) = ρ · ye(x) + δ(x),

ye(x) ∼ GP
(
µe, σ

2
eRϕe

(·, ·)
)
,

δ(x) ∼ GP
(
µδ, σ

2
δRϕδ

(·, ·)
)
,

(3.3)

where the unknown parameters (µe, σ
2
e ,ϕe) involved in ye(x) and (µδ, σ

2
δ ,ϕδ) involved in δ(x)

are the means, variances and parameters of the correlation functions, respectively. Qian and

Wu (2008) generalized the above DGP model by replacing the constant regression coefficient ρ

with a stochastic process ρ(x) modeled by an additional GP, and adding a randommeasurement

error to yc(x). In this study, we take the basic model in (3.3) as the baseline surrogate model.

3.2 The Improved Model

The baseline surrogate model in (3.3) and its extensions do not consider the additional con-

straint between yc(x) and ye(x). In this study, we fill in this gap by replacing the second GP

for the bias adjustment function δ(x) in the DGP model by a Truncated GP (TGP), resulting

11

Statistica Sinica: Newly accepted Paper

in a GP-TGP model defined below.

yc(x) = ρ · ye(x) + δ(x),

ye(x) ∼ GP
(
µe, σ

2
eRϕe

(·, ·)
)
,

δ(x) ∼ TGP
(
µδ, σ

2
δRϕδ

(·, ·); b1, b2
)
,

(3.4)

where b1 and b2 are pre-determined lower and upper bounds of the TGP satisfying b1 ≤ b2.

Please note that the specification of (b1, b2) is straightforward in most ML tasks. For example,

if ye(x) and yc(x) are classification errors of a ML algorithm for a classification task, we would

naturally have (b1, b2) = (−1, 0). Given (b1, b2), the regression coefficient ρ can be manually

specified or precisely estimated according to the GP-TGP model. If we are confident that

ye(x) and yc(x) are at the same scale a priori, we can simply specify ρ = 1. Otherwise, we

can treat ρ as a free parameter for a more flexible GP-TGP model. Mean functions µe and µδ

can be specified based on prior knowledge or in a data-driven fashion. In case that there are

insufficient prior knowledge and data available to specify a nuanced trend, we can use constant

mean functions for simplicity. Our experiments show that this simple strategy works well in

most cases.

3.3 Parameter Estimation of the Improved Model

Assume that m ET runs and n CT runs have been implemented at configuration sets Xe =

{xe
1, . . . ,x

e
m} and Xc = {xc

1, . . . ,x
c
n}, respectively, resulting in a group of approximate perfor-

mance measurements ye = (ye(x
e
1), . . . , ye(x

e
m))

T and a group of accurate performance mea-

12

Statistica Sinica: Newly accepted Paper

surements yc = (yc(x
c
1), . . . , yc(x

c
n))

T . Note that in most machine learning algorithms, an

accurate performance measurement is always reported after the corresponding approximate

performance measurement due to the iterative nature of the training process, so the two con-

figuration sets Xc and Xe are always nested in this study in terms of Xc ⊆ Xe.

For simplicity, denote the correlation matrices of ye and yc, i.e., Rϕe
and Rϕδ

, as Re

and Rδ, respectively. Based on the definition of TGP, the n-dimensional random vector δn =

(δ(xc
1), . . . , δ(x

c
n))

T follows a multivariate truncated normal (TN) distribution, that is, δn ∼

T N n(µδ1n, σ
2
δRδ; b11n, b21n), with Rδ being the n × n correlation matrix, b11n and b21n

being the lower and upper bounds of δn, respectively. Given the model parameters ψ =

(ρ, µe, µδ, σ
2
e , σ

2
δ ,ϕe,ϕδ) and the pre-specified constraints b1 and b2, the conditional distribution

of yc given (ye,ψ, b1, b2) is a multivariate truncated normal distribution: yc| ye,ψ, b1, b2 ∼

T N n(ρyec + µδ1n, σ2
δRδ; ρyec + b11n, ρyec + b21n), where yec = (ye(x

c
1), . . . , ye(x

c
n))

T . The

log-likelihood of ψ given (yc,ye) is

l(ψ) = log
(
p(yc| ye,ψ, b1, b2)p(ye| ψ, b1, b2)

)
∝ − 1

2σ2
δ

(yc − ρyec − µδ1n)
TR−1

δ (yc − ρyec − µδ1n)− ln{Zc(ρ;µδ, σ
2
δ ,ϕδ; b1, b2)}

−m

2
lnσ2

e −
1

2
ln |Re| −

1

2σ2
e

(ye − µe1m)
TR−1

e (ye − µe1m),

where

Zc(ρ;µδ, σ
2
δ ,ϕδ; b1, b2) =

∫
yc∈An

exp

{
−1

2
(yc − ρyec − µδ1n)

T (σ2
δRδ)

−1(yc − ρyec − µδ1n)

}
dyc,

and An = [ρye(x
c
1) + b1, ρye(x

c
1) + b2]× · · · × [ρye(x

c
n) + b1, ρye(x

c
n) + b2].

13

Statistica Sinica: Newly accepted Paper

The lemma below shows the MLEs of the parameters in the GP-TGP model can be ob-

tained by dividing the parameters into two parts.

Lemma 1. The maximization of l(ψ) is equivalent to solving the following two separable

optimization problems:

max
µe,σ2

e ,ϕe

{
− m

2
lnσ2

e −
1

2
ln |Re| −

1

2σ2
e

(ye − µe1m)
TR−1

e (ye − µe1m)
}
, (3.5)

max
ρ,µδ,σ

2
δ ,ϕδ

{
− 1

2σ2
δ

(yc − ρyec − µδ1n)
TR−1

δ (yc − ρyec − µδ1n)− ln{Zc(ρ;µδ, σ
2
δ ,ϕδ; b1, b2)}

}
.(3.6)

It is easy to check that (3.5) takes its maximum at µ̂e =
(
1T
mR

−1
e ye

)
/
(
1T
mR

−1
e 1m

)
and

σ̂2
e = (ye − µ̂e1m)

TR−1
e (ye − µ̂e1m)/m. Plugging µ̂e and σ̂2

e into (3.5), ϕe can be opti-

mized by numerical methods, such as Nelder–Mead (Marler and Arora, 2004). The inte-

gration Zc(ρ;µδ, σ
2
δ ,ϕδ; b1, b2) can be calculated via variable transformation to transform the

intertwined multiple integral to an iterated integral which can be approximated by the quasi-

randomized Monte Carol method (Genz, 1992). Finally, the maximizer of (3.6) can be obtained

by numerical methods. We obtain the MLE of ψ and denote it as ψ̂.

3.4 Response Prediction Based on the Improved Model

Next, we consider the prediction of ye(x) and yc(x) for any x ∈ X given ψ̂. Conditioning on

ye, ye(x) learns no more information from yc, resulting in the equivalence of (ye(x)| ye, ψ̂)

and (ye(x)| yc,ye, ψ̂, b1, b2) (Kennedy and O’Hagan, 2000). This intuition gives insights for

the prediction of ye(x) detailed in the following proposition.

14

Statistica Sinica: Newly accepted Paper

Proposition 1. The posterior distribution of ye(x) is the following normal distribution

ye(x)| yc,ye, ψ̂, b1, b2 ∼ N (ŷe(x), σ̂
2
e(x)). (3.7)

The above proposition demonstrates that the posterior mean ŷe(x) and variance σ̂2
e(x) of

ye(x) in (3.7) can be calculated according to (2.1). If x ∈ Xe \Xc, ye(x) is observed; if x /∈ Xe,

ye(x) can be imputed by ŷe(x). Thus, we only need to consider the prediction of yc(x) when

ye(x) is available due to the nested property Xc ⊆ Xe. The following theorem gives the main

result that the distribution of yc(x) conditioning on (yc,ye, ψ̂, b1, b2) is a truncated normal

distribution with the proofs detailed in Appendix S1.

Theorem 1. For any x ∈ Xe \ Xc,

yc(x)| yc,ye, ψ̂, b1, b2 ∼ T N
(
µ̂c(x), σ̂2

c (x); ρ̂ye(x) + b1, ρ̂ye(x) + b2
)
, (3.8)

whose mean and variance are given as follows

ŷc(x) = µ̂c(x) +
ϕ(α)− ϕ(β)

Z
σ̂c(x),

ŝ2c(x) = σ̂2
c (x)

[
1 +

αϕ(α)− βϕ(β)

Z
−
(ϕ(α)− ϕ(β)

Z

)2]
, (3.9)

where

µ̂c(x) = ρ̂ye(x) + µ̂δ + r̂Tδ R̂
−1
δ

(
yc − (ρ̂yec + µ̂δ1n)

)
, σ̂2

c (x) = σ̂2
δ

(
1− r̂Tδ R̂

−1
δ r̂δ

)
,

α =
ρ̂ye(x) + b1 − µ̂c(x)

σ̂c(x)
, β =

ρ̂ye(x) + b2 − µ̂c(x)

σ̂c(x)
, Z = Φ(β)− Φ(α),

R̂δ is the correlation matrix of δn whose (i, j) element is Rϕ̂δ
(xc

i − xc
j), r̂δ is the correlation

15

Statistica Sinica: Newly accepted Paper

vector between δ(x) and δn with estimated length-scale parameters ϕ̂δ, ϕ(·) and Φ(·) are the

density function and cumulative distribution function of the standard normal distribution.

Note that the only difference between the DGP model in (3.3) and the GP-TGP model in

(3.4) is that the bias function δ(x) is bounded in the GP-TGP model. By specifying b1 = −∞

and b2 = ∞, (3.4) is equivalent to (3.3). For the MLE stage, the term Zc(ρ;µδ, σ
2
δ ,ϕδ; b1, b2)

disappears in the log-likelihood of the DGP model, and we denote the MLE of ψ in DGP as

ψ̃, to distinguish it from ψ̂ in the GP-TGP model. For the inference stage, the distribution

of yc(x) conditioning on (yc,ye, ψ̂, b1, b2) for the DGP model in (3.3) simplifies to

yc(x)| yc,ye, ψ̃, b1, b2 ∼ N
(
µ̂c(x), σ̂2

c (x)). (3.10)

Figure 3: The comparison of GP approximation using three CT runs and GP-TGP approxi-
mation using three CT runs and six ET runs.

We present a toy example in Figure 3 for the illustration of the proposed GP-TGP model,

where ye(x) = (6x − 2)2 sin(12x − 4), yc(x) = ye(x) + 8x − 10, x ∈ [0, 1], b1 = −10, b2 = −2.

16

Statistica Sinica: Newly accepted Paper

In the plot, the solid lines in grey and black represent the true response curve of ye(x) and

yc(x), respectively. We generate three CT runs with Xc = {0, 0.73, 1} in black dots and six ET

runs with Xe = {0, 0.16, 0.6, 0.73, 0.86, 1} in grey upper triangles. The red dashed line denoted

by ŷGPTGP (x) represents the predictive curve of yc(x) using GP-TGP based on the three CT

runs and six ET runs, and the green dashed line denoted by ŷGP (x) represents the predictive

curve of yc(x) using GP based on the three CT runs. By incorporating the ET runs of ye(x),

ŷc(x) lies closer to yc(x) indicating that the GP-TGP prediction is more accurate than the GP

prediction in this example.

4. Efficient Exploration of the Hyperparameter Space

In this section, we first review existing exploration strategies for multi-fidelity computer exper-

iments in Section 4.1. Leveraging the established surrogate model as showed in (3.7) and (3.8),

we propose an efficient strategy to sequentially explore the hyperparameter space in Section

4.2. The new exploration strategy involves judiciously selecting the next configurations for

both CT and ET runs to investigate, which is another major contribution of this study.

4.1 The Baseline Exploration Strategies

In the literature of multi-fidelity computer experiments, there are two categories of exploration

strategies: strategies for approximation, whose goal is to find a good surrogate model to well

approximate the response surface with as few experimental resources as possible, and strate-

17

Statistica Sinica: Newly accepted Paper

gies for optimization, which emphasizes on finding the global optimum of the response surface

instead of outlining its global landscape. In cases where response surface approximation is of

interest, typically just high-fidelity experiments are considered along the sequential exploration

procedure, with a fixed number of low-fidelity experiments implemented in the initialization

only to provide a rough overview of the design space with low cost (Xiong et al., 2013; Ezzat

et al., 2018; Gahrooei et al., 2019). In cases where response surface optimization is empha-

sized, both low and high fidelity experiments are implemented along the sequential exploration

procedure via a carefully designed acquisition function that considers impact of locations and

cost of fidelity levels simultaneously, under the assumption that experimental costs of different

fidelity levels are fixed and precisely known (Huang et al., 2006; Picheny et al., 2013; He et al.,

2017).

In the HPO problem, response surface optimization is of our primary interest, and thus

both ET and CT runs should be considered along the exploration process. Huang et al.

(2006) proposed the augmented EI criterion by adding cost-relevant terms to the classic EI

function. Picheny et al. (2013) developed a quantile-based EQI criterion, which scores the

candidate location by giving a prespecified fidelity level. But the EQI method in Picheny et al.

(2013) pays more attention on dealing with response with noise, which is not suitable for the

deterministic computer experiments considered in this article. He et al. (2017) proposed the

EQIE criterion by adding a cost function to EQI to sequentially select the candidate location

and the fidelity level at the same time. However, directly applying the above exploration

strategies is inefficient in the HPO problem, because the computational costs for ET and

18

Statistica Sinica: Newly accepted Paper

CT runs are usually not fixed, but vary substantially across different specifications of the

hyperparameters, and the nested structure and correlation between ET and CT runs are not

properly considered in these studies.

4.2 The Proposed BOPT-HPO Algorithm

To fill in this gap, we propose a straightforward but effective exploration strategy for the HPO

problem with both CT and ET runs. In most HPO problems in ML, the trend of ET loss ye(x)

is consistent with the trend of CT loss yc(x) (see the example in Figure 2). In such case, if

a hyperparameter configuration x′ performs well in the ET stage with a small ET loss ye(x
′),

then it also performs well in the CT stage with a small CT loss yc(x
′). Such a phenomenon has

been confirmed by many studies (Kandasamy et al., 2016; Li et al., 2018; Falkner et al., 2018),

suggesting that the optimal locations of ye(x) and yc(x) often locate in the same local region.

Therefore, it is often effective in practice to guide the search for the optimal hyperparameters

taking advantage of level-2 fidelity data via the proposed two-stage procedure. Moreover, the

HPO problem in ML enjoys a unique feature: for any x, we always get the ET loss ye(x) first,

before we can get the CT loss yc(x). This is very different from the classic setting of multi-

fidelity computer experiments, where experiments at different fidelity levels are implemented

separately. Such a nested structure of ye(x) and yc(x) makes it practical to only consider

x ∈ Xe \Xc to implement a CT run, because even if we choose x /∈ Xe to implement a CT run,

we will still get ye(x) at the first place.

Instead of making decision based on a comprehensive acquisition function that considers

19

Statistica Sinica: Newly accepted Paper

both location and fidelity of the next configuration to explore simultaneously as in Huang et al.

(2006) and He et al. (2017), we simply consider the optimal locations of a group of ET and

CT runs in the configuration space X together, with one CT run after s ET runs, where s is a

pre-given integer depending on the computational budget. We should choose a moderate s for

the implementation of ET runs, otherwise, it is either too slow to find the potential candidates

with too few ET runs, or it is so expensive to waste resources on some invalid tries with too

many ET runs. Note that if the computation time of implementing a CT run is c times that

of implementing an ET run, then it is recommended to set the value of s to be less than c.

Otherwise, directly implementing a CT run is more worthwhile to obtain accurate information

than implementing s ET runs. To be specific, we define the acquisition function based on

the UCB criterion of an ET run φe(x) = −ŷe(x) +
√
βmŝe(x), or the UCB criterion of a CT

run φc(x) = −ŷc(x) +
√
βnŝc(x), where βm and βn can be specified as suggested by Srinivas

et al. (2010). Hyperparameter configuration of the next ET or CT run can be determined by

maximizing φe(x) or φc(x), respectively. In case that a new ET run is needed, we search the

whole configuration space X for the optimal candidate:

xe
m+1 = argmax

x∈X
φe(x). (4.11)

When a new CT run is needed, however, we only search Xe \ Xc for the optimal candidate:

xc
n+1 = argmax

x∈Xe\Xc

φc(x). (4.12)

Since all CT runs are implemented after ET runs in this strategy, Xc and Xe are naturally

20

Statistica Sinica: Newly accepted Paper

nested. Note that we need to record the detailed status of the ET runs that have not been eval-

uated in CT runs yet in the memory, to guarantee that we can easily start from an intermediate

status and move forward from an ET run to a CT run.

Integrating the fitting stage in Section 3 and the exploration stage in Section 4 into the

general BO framework, we come up with an intact BO algorithm as shown in Algorithm 1,

which is referred to as Bayesian Optimization with Pareto-Principled Training for Hyperpa-

rameter Optimization (BOPT-HPO). The BOPT-HPO contains two BO procedures, one for

ye(·) and another for yc(·). The inner for loop is a BO procedure to select s ET runs which

have potentials in improving the prediction model and current minimum, where the fitting

stage of ye(·) is implemented via (3.7), and the exploration stage is implemented via (4.11).

The outer while loop is another BO procedure to select one CT run parsimoniously which has

the most potential from the remaining set Xe \Xc, via the fitting stage using GP-TGP in (3.8)

or DGP in (3.10), and the exploration stage using (4.12).

In practice, we also need an initialization stage to start up the BO procedure. We rec-

ommend using the nested Latin hypercube design (NLHD) (Qian, 2009) to generate the initial

configurations (Xe,Xc) satisfying Xc ⊆ Xe, which can guarantee the space-filling properties for

both fidelity levels of initial configurations. There is no golden standard in setting the ini-

tial sample size for multi-fidelity experiments, which depends on the cost of running different

fidelity levels of experiments or other prior knowledge.

Under the BOPT-HPO framework, by specifying the model in the fitting stage as GP-TGP

in (3.4), an algorithm referred to as TGP-BOPT is obtained as our primary method for HPO.

21

Statistica Sinica: Newly accepted Paper

Algorithm 1 Pseudocode for BOPT-HPO

Initialization: Generate ET and CT configurations (Xe,Xc) satisfying Xc ⊆ Xe, n =

|Xc|,m = |Xe| = sn, and evaluate the corresponding validation errors (ye,yc).

while the stopping criterion is not met do

for j = 1, . . . , s do

Fit the prediction model of ye(.) based on ET data (Xe,ye).

Calculate xe
m+1 = argmaxx∈X φe(x).

Get the ET run ye(x
e
m+1), and set Xe = Xe ∪ {xe

m+1} and ye = ye ∪ {ye(xe
m+1)}.

end for

Fit the prediction model of yc(.) based on ET and CT data (Xe,ye,Xc,yc).

Choose the configuration with the largest φc value from Xe \ Xc as x
c
n+1.

Get the CT run yc(x
c
n+1), and set Xc = Xc ∪ {xc

n+1} and yc = yc ∪ {yc(xc
n+1)}.

end while

return x∗
c = argminx∈Xc

yc.

On the other hand, we can also replace the GP-TGP model by the traditional DGP model to

get an alternative baseline method referred to as DGP-BOPT under the BOPT-HPO frame-

work, for comparison purpose. Because DGP-BOPT does not consider the constraint between

a CT run and the corresponding ET run as in TGP-BOPT, we would expect performance

degradation from TGP-BOPT to DGP-BOPT. By analyzing the degree of the performance

degradation, we can gain more insights on the advantages of TGP-BOPT over other methods.

22

Statistica Sinica: Newly accepted Paper

5. Experiments

In this section, we evaluate the performances of the proposed BOPT-HPO algorithms (TGP-

BOPT and DGP-BOPT) via a series of optimization or HPO tasks. Six competing methods,

including five methods in the HPO literatures (Random Search (RS), TPE, SMAC, GP-BO

and BOHB), and one multi-fidelity optimization method in computer experiments (EQIE),

are used for comparison. In all of these ML tasks, we have found that the computation time

of implementing a CT run is 3-4 times that of implementing an ET run (see Figure 1 in

Appendix), so we fix s = 2 for the BOPT-HPO. The settings of b1 and b2, and the definitions

of ET runs and CT runs of the three ML tasks can be found in Appendix S2.

5.1 Optimizing Synthetic Black-Box Functions

Our first experiment is about finding the maximum or minimum of a synthetic black-box

function yc(x), which can be approximated by a cheaper function ye(x). The 2-dimensional

Currin exponential example, 4-dimensional Park example, and 10-dimensional Rosenbrock

example are considered (Xiong et al., 2013; Mainini et al., 2022). The definitions of the three

examples can be found in Appendix S2.1.

Unlike evaluating on machine learning models that is time-consuming, evaluating on syn-

thetic functions for ye(.) and yc(.) using the actual computational time as cost is not suit-

able. Similar to the cost settings for the synthetic functions in Huang et al. (2006) and Stroh

et al. (2022), we assume that the cost for evaluating one CT run is 1 cost unit, and the cost

23

Statistica Sinica: Newly accepted Paper

for evaluating one ET run is 1/5 cost unit. Denote the true optimal value of yc(x) as y∗c ,

where y∗c = maxx∈X yc(x) for maximization problem (Currin exponential and Park example)

or y∗c = minx∈X yc(x) for minimization problem (Rosenbrock example). For any black-box

function optimization method with Xc as the locations it has explored in the exploration space

X , let ŷ∗c denote the best value explored in Xc for one method. The Simple Regret (SR) de-

fined below serves as a natural performance measurement: SR= |y∗c − ŷ∗c |, where a smaller SR

demonstrates a better performance.

Competing methods RS, TPE, SMAC, GP-BO, BOHB and EQIE can also be directly

applied to solve these problems and used for comparison. We generated initial CT runs and

ET runs for BOPT-HPO algorithms using NLHD. For the 2-dimensional and 4-dimensional

case, we generated 5 CT runs and 10 ET runs at an initial budget of 5 + 10 × 1
5
= 7 cost

units. For the 10-dimensional case, we generated 30 CT runs and 60 ET runs at an initial

budget of 30 + 60× 1
5
= 42 cost units. For a fair comparison of those approaches, we reported

the corresponding SRs of other approaches starting from the initial budget as in BOPT-HPO

algorithms. Note that although the synthetic functions themselves are deterministic, stochastic

behaviors in initialization and optimization algorithms (e.g., using Monte Carlo strategies in

model parameter estimation, and sampling the configurations for the HPO approaches, such

as RS) may introduce randomness into the HPO procedure. To average out the impact of

randomness in performance evaluation, we replicated the experiments of each method for 10

times, and summarized the average performance for method comparison in Figure 4.

Figure 4 demonstrates how the average SR value changes with the cost under different

24

Statistica Sinica: Newly accepted Paper

methods in the three synthetic examples respectively, with the standard errors of the SR values

across 10 replicates highlighted by the shadow region as well. We find that TGP-BOPT and

DGP-BOPT perform similarly and outperform all the other methods significantly in all three

examples, achieving the smallest regret at almost every cost level. The performance gap among

GP-BO, EQIE and BOPT-HPO enlarges from the Currin exponential example in Figure 4(a)

to the Rosenbrock example in Figure 4(c) with the dimensionality of the problem increases

from 2 to 10. These results suggest that by jointly modeling the ET and CT evaluations,

BOPT-HPO can approximate yc(x) more precisely, and find the optimal configuration more

efficiently.

(a) Currin exponential (d = 2) (b) Park (d = 4) (c) Rosenbrock (d = 10)

Figure 4: The simple regret against the cost of function evaluations. All curves are produced
by averaging over 10 replications with the standard errors highlighted by the shadow region.
Log-transformation is applied to the simple regret of Rosenbrock for better visualization.

5.2 Support Vector Machines on MNIST

Next, we assess the performance of BOPT-HPO on a real HPO problem of a support vector

machine (SVM) for an image classification task on the MINST dataset consisting of 70,000

25

Statistica Sinica: Newly accepted Paper

black-and-white images of handwritten digits in 10 classes (60,000 images for training and

10,000 images for testing) (LeCun et al., 2010). As a supervised machine learning algorithm

for classification, SVM creates a hyperplane with the maximum distance between data points

of different classes in training data, so that new points in test data can be classified with more

confidence. The behavior of SVM is determined by two hyperparameters: the regularization

hyperparameter C, which adds a penalty for each mis-classified data point, and the kernel

hyperparameter γ, which controls the influence of similarity measurement of data points when

the non-linear radial basis function kernel is applied. The HPO problem in SVM aims to

optimize x = (C, γ) over the pre-specified configuration space X = [2−10, 210]× [2−10, 210].

Considering that directly searching the vast configuration space X for the next config-

uration is inefficient, we take the log-transformation on X , and optimize xlog = log x over

logX = [−10, 10] × [−10, 10] when applying HPO methods and back transform xlog to x in-

stead when applying the SVM. Given a hyperparameter configuration, SVM is trained on the

training set, and the classification error on the validation set (referred to as validation error)

is reported as the measurement over the running time (Snoek et al., 2012; Falkner et al., 2018).

For the MNIST data, we randomly sampled 40,000 images from the original training images

as the training set, and use the rest 20,000 images as the validation set, following the similar

splitting rule in Domhan et al. (2015). The other six methods RS, TPE, GP-BO, SMAC,

BOHB and EQIE, are applied to this experiment, and all the eight methods are allocated with

the same amount of computational resources for fair comparison.

Figure 5 shows the average validation error of the methods mentioned above with five repli-

26

Statistica Sinica: Newly accepted Paper

cated experiments. The markers with different colors on the x-axis indicate the initialization

time of different methods. The figure demonstrates that the model-based methods GP-BO,

SMAC, BOHB and BOPT-HPO reach almost the same comparative final performances and

perform much better than RS and TPE. Considering the time to reach the best performance,

there is not much difference between BOHB and TGP-BOPT, however, TGP-BOPT is faster

in reducing the validation error during the middle searching stage. Benefiting from the con-

straints of the GP-TGP model, TGP-BOPT reaches the best performance a bit earlier than

DGP-BOPT. As for the two GP-based approaches, TGP-BOPT is almost two times faster

than GP-BO for reaching the best performance.

Figure 5: The average results of different HPO methods for optimizing two hyperparameters
of SVM on MNIST with standard errors highlighted by the shadow region.

27

Statistica Sinica: Newly accepted Paper

5.3 Feed-Forward Neural Networks on MNIST

In this experiment, we explore the effectiveness of BOPT-HPO on a more complex machine

learning algorithm, a feed-forward neural network (FFNN), which consists of three main com-

ponents: an input layer, one or more hidden layers, and an output layer. We want to optimize

the hyperparameters of a FFNN, for the image classification task on MNIST. The size of the

training set and validation set is the same as in the previous experiment. We optimize six

hyperparameters which determines the architecture (number of layers, neurons per layer) and

the training process (batch size, initial learning rate, exponential decay factor for learning

rate, dropout rate) of a feed-forward neural network, following the settings in Section 5.2.2 of

Falkner et al. (2018). The ranges of those hyperparameters are shown in Table 1 in Appendix.

Different from the intuition in Section 5.2, the range of the learning rate is too small which

makes HPO methods hard to find the hyperparameter meeting the required accuracy, so we

take log-transformation on the learning rate when applying the HPO methods and then back

transform it when applying the FFNN. With the number of layers, number of neurons and

batch size being integer values, we treat the log-transformed spaces of the two hyperparameters

(number of neurons and batch size) as continuous when applying HPO methods, and then

round those values to the closest integers to implement the FFNN. Since the hyperparameter

‘number of layers’ in the neural network takes only three integer values from 1 to 3, we optimize

it directly in the original discrete space by exhaustive enumeration.

The results of the eight HPO methods with five replicated experiments are summarized

28

Statistica Sinica: Newly accepted Paper

in Figure 6. The model-based methods TPE, GP-BO, SMAC, BOHB, EQIE and BOPT-

HPO perform better than the model-free method RS. EQIE does not perform well in this

experiment, due to the fact that its performance is sensitive to the choice of the cost function

which is difficult to specify without prior knowledge. Benefiting from the joint modeling and

smart design strategies for the exploration and exploitation on ET and CT runs, BOPT-HPO

consistently outperforms other HPO methods and achieves a performance improvement of 5%

to 31%. The performances of TGP-BOPT and DGP-BOPT are comparable in this experiment.

Figure 6: A comparison of different HPO methods for the hyperparameter optimization of the
FFNN on MNIST with standard errors highlighted by the shadow region.

5.4 Convolutional Neural Network on CIFAR-10

For the last experiment, we consider a more difficult classification task on a more complex

database, CIFAR-10 (Krizhevsky et al., 2014), which consists of 60,000 colour images in 10

classes, with 6,000 images per class. We design a more expensive machine learning algorithm, a

29

Statistica Sinica: Newly accepted Paper

convolutional neural network (CNN), to better solve the classification task. The convolutional

layer is the core layer of a CNN architecture, aiming to extract features from local region to

decrease the spatial redundancy via some filters. In this experiment, we try to evaluate the

performance of the proposed BOPT-HPO using a CNN. We consider eight hyperparameters

(number of convolutional layers, number of filters per convolutional layer, number of fully-

connected neurons in the last hidden layer, batch size, initial learning rate, dropout rate,

optimizer, momentum) of the CNN model, with the ranges and log-transform strategy shown

in Table 2 in Appendix. We randomly select 70% of the images from the original training

images as the training set, and use the remaining images as the validation set to evaluate the

performance.

The average results in Figure 7 with five replicates shows that all model-based methods

substantially outperform RS, but TPE, GP-BO and EQIE are not so competitive as SMAC,

BOHB and BOPT-HPO in terms of the best validation error. TGP-BOPT achieves the best

validation error of 0.261, which performs slightly better than SMAC and BOHB with the best

validation error of 0.263. While BOPT-HPO outperforms SMAC and BOHB during the middle

optimization stages, which leads to an optimization efficiency improvement of 14% to 24%.

30

Statistica Sinica: Newly accepted Paper

Figure 7: The average results of different HPO strategies for optimizing the hyperparameters
of the CNN on CIFAR-10 with standard errors highlighted by the shadow region.

We have shown the superiority of the proposed BOPT-HPO (DGP-BOPT or TGP-BOPT)

algorithm over existing HPO methods in terms of overall running time in Figures 5-7. In

Appendix S2.4, we also provide a detailed analysis of the computational time required for ET

runs and CT runs in BOPT-HPO. Those findings further confirm the effectiveness of the two-

stage exploration strategy via using ET runs to guide the search of the optimal hyperparameter

configuration.

The results in Figures 4-7 demonstrate that both TGP-BOPT and DGP-BOPT achieve

similar optimal performances. This phenomenon is intuitively natural because with more and

more data collected along the BO process, the DGP model can implicitly learn constraints

from the data, even without explicitly setting constraints in the model. However, if we look

closely into the result curves in these figures, we will find that the result curves of TGP-BOPT

in general converge a bit faster than those of DGP-BOPT. To provide quantitative evidences

31

Statistica Sinica: Newly accepted Paper

to such a claim, we introduce the concept of the Area Under the Error-Cost Curve (EC-AUC)

to precisely evaluate the overall performance of an approach, with detailed results shown in

Table 4 of Appendix S2.5. A smaller EC-AUC indicates that the corresponding approach

converges quickly in general, and thus performs better. In most experiments except the SVM

case, TGP-BOPT has a smaller EC-AUC than DGP-BOPT. In the SVM case, although the

EC-AUC of TGP-BOPT is slightly larger than DGP-BOPT, TGP-BOPT reaches the optimal

performance faster. Our investigations indicate the advantage of modeling the constraint

explicitly in TGP-BOPT.

6. Conclusion

In this paper, we propose BOPT-HPO, a multi-fidelity Bayesian optimization method, to solve

the hyperparameter optimization problem, which has attracted great attentions in the machine

learning community. Modelling complete training runs and eighty-percent training runs jointly

via GP-TGP and selecting the configurations for future ET and CT runs with a sequential

design strategy under the framework of Bayesian optimization, BOPT-HPO explores the hy-

perparameter space efficiently with constraints between ET and CT runs properly considered.

Experiments on both synthetic and real examples show that BOPT-HPO outperforms state-

of-the-art HPO methods for various machine learning algorithms.

Although BOPT-HPO is only applied to solve HPO problem for several shallow neural

networks with only a few hyperparameters in this work, while it is in principle capable of dealing

with deeper neural networks with more hyperparameters. When the deep neural networks of

32

Statistica Sinica: Newly accepted Paper

interest involves too many hyperparameters, HPO becomes a very challenging task due to the

high dimensionality of the hyperparameter space. In such cases, using dimension reduction

techniques suggested by Binois and Wycoff (2021) can somehow alleviate this issue.

Moreover, the proposed framework can be further extended in several directions. For

instance, it is plausible to replace the truncated Gaussian process for the bias function δ(·)

by a log-Gaussian process to avoid the complication caused by the boundary effect of the

truncated Gaussian process. In addition, ET runs and CT runs are selected sequentially in

this work based on two independent acquisition functions, one for each fidelity level. A possibly

more efficient strategy, however, is to design an augmented acquisition function that considers

location, and computational costs of different fidelity levels together to guide the exploration

of hyperparameter space with multiple fidelity levels once at all. In fact, this could be achieved

by building a pair of new surrogate models for the running time of ET and CT runs, i.e., te(x)

and tc(x), respectively. But, this would need much more efforts that clearly go beyond the

scope of this work.

Supplementary Materials

Details about the proof of Theorem 1 and some experimental settings and results can be found

in the supplementary materials.

33

Statistica Sinica: Newly accepted Paper

Acknowledgements

Y.Y. acknowledges the financial support from the National Natural Science Foundation of

China (Grant No. 12401353). K.D. acknowledges the financial support from the National

Natural Science Foundation of China (Grant Nos. 11931001 and 2371269) and the National

Key Research and Development Program of China (Grant No. 2023YFF0614702). Y.Z. ac-

knowledges the summer support of Huzhou University.

References

Batra, R., L. Song, and R. Ramprasad (2021). Emerging materials intelligence ecosystems propelled by machine learning.

Nature Review Materials 6 (8), 655–678.

Bergstra, J., R. Bardenet, Y. Bengio, and B. Kégl (2011). Algorithms for hyperparameter optimization. Advances in

Neural Information Processing Systems 24, 2546–2554.

Binois, M. and N. Wycoff (2021). A survey on high-dimensional gaussian process modeling with application to bayesian

optimization. arXiv preprint arXiv:2111.05040 .

Candelieri, A. and F. Archetti (2021). Sparsifying to optimize over multiple information sources: an augmented gaussian

process based algorithm. Structural and Multidisciplinary Optimization 64, 239–255.

Domhan, T., J. T. Springenberg, and F. Hutter (2015). Speeding up automatic hyperparameter optimization of deep

neural networks by extrapolation of learning curves. In Twenty-fourth International Joint Conference on Artificial

Intelligence, pp. 3460–3468.

Ezzat, A. A., A. Pourhabib, and Y. Ding (2018). Sequential design for functional calibration of computer models.

34

Statistica Sinica: Newly accepted Paper

Technometrics 60 (3), 286–296.

Falkner, S., A. Klein, and F. Hutter (2018). BOHB: Robust and efficient hyperparameter optimization at scale. In

Proceedings of the 35th International Conference on Machine Learning, pp. 1437–1446. PMLR.

Forrester, A. I. J., A. Sóbester, and A. J. Keane (2007). Multi-fidelity optimization via surrogate modelling. Proceedings

of the Royal Society A: Mathematical, Physical and Engineering Sciences 463, 3251–3269.

Gahrooei, M. R., K. Paynabar, M. Pacella, and B. M. Colosimo (2019). An adaptive fused sampling approach of

high-accuracy data in the presence of low-accuracy data. IISE Transactions 55 (11), 1251–1264.

Genz, A. (1992). Numerical computation of multivariate normal probabilities. Journal of Computational and Graphical

Statistics 1 (2), 141–149.

Goh, J., D. Bingham, J. P. Holloway, M. J. Grosskopf, C. C. Kuranz, and E. Rutter (2013). Prediction and computer

model calibration using outputs from multifidelity simulators. Technometrics 55 (4), 501–512.

Goldberg, Y. (2017). Neural network methods for natural language processing. Synthesis Lectures on Human Language

Technologies 10, 1–309.

Gramacy, R. B. (2020). Surrogates: Gaussian process modeling, design, and optimization for the applied sciences. CRC

press.

He, X., R. Tuo, and C. F. J. Wu (2017). Optimization of multi-fidelity computer experiments via the EQIE criterion.

Technometrics 59 (1), 58–68.

Hinton, G. E. (2012). A practical guide to training restricted boltzmann machines. In Neural Networks: Tricks of the

Trade, pp. 599–619. Springer.

Huang, D., T. T. Allen, W. I. Notz, and R. A. Miller (2006). Sequential kriging optimization using multiple-fidelity

35

Statistica Sinica: Newly accepted Paper

evaluations. Structural and Multidisciplinary Optimization 32, 369–382.

Hutter, F., H. H. Hoos, and K. Leyton-Brown (2011). Sequential model-based optimization for general algorithm

configuration. In Learning and Intelligent Optimization, pp. 507–523. Springer.

Jones, D. R. (2001). A taxonomy of global optimization methods based on response surfaces. Journal of Global

Optimization 21 (4), 345–383.

Jones, D. R., M. Schonlau, and W. J. William (1998). Efficient global optimization of expensive black-box functions.

Journal of Global Optimization 13 (4), 455–492.

Kandasamy, K. (2018). Tuning hyperparameters without grad students: Scaling up bandit optimisation. Ph. D. thesis,

Carnegie Mellon University.

Kandasamy, K., G. Dasarathy, J. B. Oliva, J. Schneider, and B. Póczos (2016). Gaussian process bandit optimisation

with multi-fidelity evaluations. Advances in Neural Information Processing Systems 29 .

Kennedy, M. C. and A. O’Hagan (2000). Predicting the output from a complex computer code when fast approximations

are available. Biometrika 87 (1), 1–13.

Krizhevsky, A., V. Nair, and G. Hinton (2014). Cifar-10 and cifar-100 datasets. Retrieved from

https://www.cs.toronto.edu/ kriz/cifar.html .

Krizhevsky, A., I. Sutskever, and G. E. Hinton (2012). Imagenet classification with deep convolutcional neural networks.

Advances in Neural Information Processing Systems 25.

Kushner, H. J. (1964). A new method of locating the maximum point of an arbitrary multipeak curve in the presence

of noise. Journal of Basic Engineering 86, 97–106.

Kuya, Y., K. Takeda, X. Zhang, and A. I. J. Forrester (2011). Multifidelity surrogate modeling of experimental and

36

Statistica Sinica: Newly accepted Paper

computational aerodynamic data sets. AIAA Journal 49 (2), 289–298.

Le Gratiet, L. and C. Cannamela (2015). Cokriging-based sequential design strategies using fast ccross-validation

techniques for multi-fidelity computer codes. Technometrics 57, 418–427.

LeCun, Y., L. Bottou, G. Orr, and K. Müller (2012). Efficient backprop. In Neural Networks: Tricks of the Trade, pp.

9–48. Springer.

LeCun, Y., C. Cortes, and C. Burges (2010). Mnist handwritten digit database. Retrieved from

http://yann.lecun.com/exdb/mnist .

Li, L., K. Jamieson, G. DeSalvo, A. Rostamizadeh, and A. Talwalkar (2018). Hyperband: A novel bandit-based approach

to hyperparameter optimization. Journal of Machine Learning Research 18 (185), 1–52.

Mainini, L., A. Serani, M. P. Rumpfkeil, E. Minisci, D. Quagliarella, H. Pehlivan, S. Yildiz, S. Ficini, R. Pellegrini,

F. Di Fiore, et al. (2022). Analytical benchmark problems for multifidelity optimization methods. arXiv preprint

arXiv:2204.07867 .

Marler, R. T. and J. S. Arora (2004). Survey of multi-objective optimization methods for engineering. Structural and

Multidisciplinary Optimization 26 (6), 369–395.

Picheny, V., D. Ginsbourger, Y. Richet, and G. Caplin (2013). Quantile-based optimization of noisy computer experi-

ments with tunable precision. Technometrics 55 (1), 2–13.

Poloczek, M., J. Wang, and P. Frazier (2017). Multi-information source optimization. Advances in Neural Information

Processing Systems 30.

Prechelt, L. (2012). Early stopping-But when? In Neural Networks: Tricks of the Trade, pp. 53–67. Springer.

Qian, P. Z. G. (2009). Nested latin hypercube designs. Biometrika 96 (4), 957–970.

37

Statistica Sinica: Newly accepted Paper

Qian, P. Z. G. and C. F. J. Wu (2008). Bayesian hierarchical modeling for integrating low-accuracy and high-accuracy

experiments. Technometrics 50 (2), 192–204.

Qian, Z., C. C. Seepersad, V. R. Joseph, J. K. Allen, and C. F. J. Wu (2006). Building surrogate models based on

detailed and approximate simulations. Journal of Mechanical Design 128, 668–677.

Rasmussen, C. E. (2004). Gaussian processes in machine learning. In Advanced Lectures on Machine Learning, pp.

63–71. Springer.

Sanders, R. (1987). The pareto principle: Its use and abuse. Journal of Services Marketing 1 (2), 37–40.

Shahriari, B., K. Swersky, Z. Y. Wang, R. R. Adams, and N. de Freitas (2016). Taking the human out of the loop: A

review of bayesian optimization. In Proceedings of the IEEE, Volume 104, pp. 148–175.

Snoek, J., H. Larochelle, and R. P. Adams (2012). Practical bayesian optimization of machine learning algorithms.

Advances in Neural Information Processing Systems 25 , 2951–2959.

Srinivas, N., A. Krause, S. Kakade, and M. Seeger (2010). Gaussian process optimization in the bandit setting: No

regret and experimental design. In Proceedings of the 27th International Conference on Machine Learning, pp.

1015–1022.

Stroh, R., J. Bect, S. Demeyer, N. Fischer, D. Marquis, and E. Vazquez (2022). Sequential design of multi-fidelity

computer experiments: Maximizing the rate of stepwise uncertainty reduction. Technometrics 64 (2), 199–209.

Tuo, R., C. F. J. Wu, and D. Yu (2014). Surrogate modeling of computer experiments with different mesh densities.

Technometrics 56 (3), 372–380.

Xiong, S., P. Z. G. Qian, and C. F. J. Wu (2013). Sequential design and analysis of high-accuracy and low-accuracy

computer codes. Technometrics 55 (1), 37–46.

38

Statistica Sinica: Newly accepted Paper

Yang, Y., C. Ji, and K. Deng (2021). Rapid design of metamaterials via multitarget bayesian optimization. The Annals

of Applied Statistics 15 (2), 768–796.

Zhu, Z., D. W. Ng, H. S. Park, and M. C. McAlpine (2021). 3D-printed multifunctional materials enabled by artificial-

intelligence-assisted fabrication technologies. Nature Review Materials 6, 27–47.

School of Statistics and Data Science, LPMC and KLMDASR, Nankai University, Tianjin 300071, China

E-mail: yangyang nk@nankai.edu.cn

Department of Statistics and Data Science, Tsinghua University, Beijing 100084, China

E-mail: kdeng@tsinghua.edu.cn

Department of Statistics, Purdue University, West Lafayette, Indiana 47907, U.S.A.

E-mail: yuzhu@purdue.edu

39

Statistica Sinica: Newly accepted Paper

	Introduction
	A Review for Black-Box Function Optimization via BO
	Joint Surrogate Model for CT and ET Runs
	The Baseline Model
	The Improved Model
	Parameter Estimation of the Improved Model
	Response Prediction Based on the Improved Model

	Efficient Exploration of the Hyperparameter Space
	The Baseline Exploration Strategies
	The Proposed BOPT-HPO Algorithm

	Experiments
	Optimizing Synthetic Black-Box Functions
	Support Vector Machines on MNIST
	Feed-Forward Neural Networks on MNIST
	Convolutional Neural Network on CIFAR-10

	Conclusion

