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Abstract: Screening important features has become one of the important tasks in

statistical analysis and correspondingly, various screening procedures have been

proposed for various types of studies or data including both complete and in-

complete data. However, these methods would be computationally costly or even

infeasible when one faces massive health databases with both high dimensionality

and huge sample size, which have become increasingly popular for comparative

effectiveness and safety studies of medical products. In this paper, we consider

such a type of incomplete data, interval-censored failure time data, that have

not be discussed before and propose two procedures with the use of distance cor-

relation and orthogonal sampling as well as the the jackknife debiased average

technique. The proposed approaches can be easily implemented and their sure

screening and rank consistency properties are established. Simulation studies

demonstrate that the proposed methods work well for practical situations and

they are applied to the SEER breast cancer data.
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1. Introduction

This paper considers the feature screening for massive interval-censored fail-

ure time data. By being massive, we assume that the data have both large

numbers of features (p) and huge sample sizes (N), while by interval cen-

soring, we mean that the failure time of interest is only observed to belong

to an interval instead of being observed exactly (Sun, 2006). It is easy to

see that such data naturally occur in many studies such as epidemiologi-

cal or medical follow-up studies, in particular clinical trials. Two specific

examples of them are given by the medicare data in Wang et al. (2021b)

and the LEGEND-HTN data in Yang et al. (2023). For the problem, two

methods will be developed.

Screening important features has become one of the important tasks

in statistical analysis and correspondingly, various model-based or model-

free screening procedures have been proposed for various types of studies

or data including both complete and incomplete data. Among them, one

important contribution was given by Fan and Lv (2008) who proposed a

sure independence screening (SIS) procedure under the framework of linear
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models. Following Fan and Lv (2008), many researchers have generalized

SIS to other models, including the generalized linear model (Fan and Song,

2010), the additive model (Fan et al., 2011), and the multi-index model (Zhu

et al., 2011). Model-free methods include the robust-ranking-correlation-

based screening (Li et al., 2012a), the distance-correlation-based SIS (DC-

SIS) (Li et al., 2012b; Zhong et al., 2016), the conditional quantile SIS (Wu

and Yin, 2015), the projection-correlation-based SIS (Zhu et al., 2017),

and the jackknife debiased R-squared screening (Zhu et al., 2022). Feature

screening for interval-valued data are also studied(Zhong et al., 2023; Zhang

and Feng, 2024; Dai et al., 2020; Shu et al., 2024; Peng and Zhang, 2021).

Massive datasets often occur in many modern scientific fields, includ-

ing genetic studies, signal processing, and the internet. It is well-known

that the handling or analysis of such data present many challenges includ-

ing data storage, communication, computational speed, statistical accuracy

and algorithmic stability (Fan et al., 2020). Also the usual screening meth-

ods such as these described above would be computationally costly or even

infeasible, and the development of computationally convenient methods is

pivotal to overcome these challenges. For this, some methods have been pro-

posed, including the divide-and-conquer strategy (Zhao et al., 2016; Battey

et al., 2018; Shi et al., 2018), the online-updating approach (Schifano et al.,
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2016; Wang et al., 2018a; Kong and Xia, 2019; Luo and Song, 2020), and

the subsampling method(Ma et al., 2015; Wang et al., 2018b; Wang, 2019).

However, most of these approaches apply only to completely observed data.

Several authors have considered the screening problem for massive in-

complete or failure time data. For example, Kawaguchi et al. (2020) devel-

oped a scalable sparse Cox regression method for the problem, while Wang

et al. (2021b) proposed an efficient divide-and-conquer algorithm for fitting

the sparse Cox regression. Also Xue et al. (2019) proposed an online updat-

ing approach for testing the proportional hazards assumption, and Zuo et

al. (2021) developed a subsampling algorithm to efficiently approximate the

estimators of regression parameters in the additive hazards model. Further-

more, Wu et al. (2021) proposed some online-updating estimators for both

the regression coefficient and the baseline hazard function. A major limi-

tation of the methods above is that they were developed for right-censored

data, a special case of interval-censored data (Kalbfleisch and Prentice,

2002). In other words, they cannot be applied to interval-censored data

(Sun, 2006) since the analysis of the latter is much more complicated and

difficult than that of right-censored data due to their more complex struc-

tures. Corresponding to this, we will propose two new subsampling-based

approaches.
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The subsampling approach has recently attracted a good deal of atten-

tion for the analysis of the data with either large dimensionality (p) or sam-

ple size (N). For example, the available methods include the information-

based optimal subdata selection method given in Wang et al. (2019), the

subsampling winner algorithm developed by Fan and Sun (2021), the se-

quential addressing subsampling method introduced by Pan et al. (2023),

and the orthogonal subsampling (OSS) approach proposed by Wang et al.

(2021a). Note that the subsampling approach is typically designed for the

data with fixed dimensions and no one has considered its application to

the analysis of interval-censored data. In the following, we will discuss the

feature screening for massive interval-censored failure time data with both

N ≫ p and p being large and develop two methods with the use of the

DC-SIS and the sampling technique.

The proposed methods can be regarded as generalizations of the DC-SIS

screening method for regular or non-massive interval-censored data given in

Zhang et al. (2023), who demonstrated its excellent screening performance.

However, their method cannot be applied to massive interval-censored data

because the needed computation of the DC-SIS is in the degree of O(N3)

and thus it cannot run on ordinary machines for large data. Also for the

massive data, one needs to consider whether it is necessary to use all avail-
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able information because the characteristics of the massive data can cause

information overlap. To address these and other challenges, we will first de-

velop a simple average distance correlation screening procedure of orthog-

onal subsampling (SDC-OSS) and then a jackknife debiased distance cor-

relation screening procedure of orthogonal subsampling (JDC-OSS), which

incorporate the concepts of orthogonal subsampling and jackknife debiased

average screening.

The proposed methods have several features or advantages. First, they

are model-free or do not rely on any specific regression model, allowing for

flexible analysis of the relationship between response and predictor vari-

ables. Second, they efficiently manage computation complexity by limiting

the original O(N3) calculations to O(Bn3), where B is the number of seg-

ments and n is the number of subsamples in each segment to be defined

below. Third, they have the sure screening and rank consistency proper-

ties. Note that the main difference between the method given by Zhang et

al. (2023) and that proposed in this paper is that the former makes use of

full data and thus may be infeasible or fail for the situation discussed here.

In contrast, the proposed method only utilizes a subset of the full sam-

ples through the subsampling and incorporates the concepts of aggregation

and jackknife debiasing. These new features make the establishment of the
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theoretical properties of the proposed methods much more challenging and

difficult. More discussion on this are given below.

The remainder of the paper is organized as follows. We will first in-

troduce the notation and the set-up of the problem and then describe the

idea of the proposed methods in Section 2. In Section 3, two screening

procedures, SDC-OSS and JDC-OSS, will be developed, and their asymp-

totic properties, the sure screening and rank consistency properties, will be

established in Section 4. An extensive simulation study will be conducted

in Section 5 to investigate the finite sample performance of the proposed

methods and the results suggest that they work well for practical situations.

In Section 6, an application to the SEER breast cancer data is provided and

Section 7 gives some discussion and concluding remarks.

2. Notation and Set-up

Consider a failure time study consisting ofN independent subjects and let T

denote the failure time of interest. Suppose that for each subject, there ex-

ists a p-dimensional vector of covariates denoted by X = (X1, X2, . . . , Xp)
⊤

and let S(t|X) = P (T > t|X) denote the survival function for a subject

with the covariate X. Furthermore, define

M = {k : S(t|X) functionally depends on Xk for t ≥ 0, k = 1, . . . , p} ,
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representing the index set of the active covariates or covariates that have

an effect on T . The main goal here is to perform the feature screening to

identify the active covariates or estimate the index set M when one faces

massive interval-censored data. For this, as others, we will make the sparse

assumption that only a handful or small number of covariates or features

are relevant to the failure time of interest T .

For the observed data, we will assume that for each subject, there exist

two monitoring or observation times denoted by U and V with U < V and

T is only known to be in one of three situations: T is between U and V

or interval-censored, T is greater than V or right-censored, and T is less

than U or left-censored. That is, we have case II interval-censored data

(Sun, 2006) given by D = {(Ui, Vi, δi1, δi2, δi3,Xi), i = 1, 2, . . . , N}, the N

i.i.d. copies of (U, V, δ1, δ2, δ3,X), where δ1 = I(T < U), δ2 = I(U ≤ T <

V ), δ3 = 1−δ1−δ2, and Xi = (Xi1, Xi2, . . . , Xip)
⊤. In the following, we will

assume that the censoring mechanism is independent or non-informative

(Sun, 2006), meaning that given X, T is independent of U and V , denoted

as T ⊥ (U, V )|X. Also similar to Zhu et al. (2022), it will be assumed

that the sample size N is extremely large (i.e., N in thousands to hundreds

of millions) and the covariate dimension p is ultrahigh dimensional (i.e.,

p in thousands or tens of thousands), meaning that log(p) = O(N ζ) with
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ζ ∈
(
0, (α + ι)max{1− 2γ − 2κ, γ}

)
(Li and Xu, 2023). Here α, ι, γ and κ

will be detailed in Section 4.

Let ωj ≥ 0 denote a marginal correlation measure or measure of the cor-

relation strength between T and Xj. In general, a commonly used strategy

for feature screening is first to estimate ωj, say, by a centralized estimator

ω̂j based on the observed data D and then estimate M by

M̂ = {j : ω̂j ≥ γ, j = 1, . . . , p} (2.1)

for a pre-specified threshold γ > 0. Similarly, one can select a positive

integer d0 and define the estimated active set as

M̂ = {j : ω̂j is amongst the first d0 largest of all ω̂j(j = 1, 2, . . . , p)} .

In the next section, we will develop two methods for obtaining the estima-

tors ω̂j’s, which lead to two feature screening procedures, a simple average

distance correlation screening method and a jackknife debiased average dis-

tance correlation screening method based on orthogonal sampling. For the

threshold value d0, by following Fan and Lv (2008), one simple choice is

d0 = [N/ log(N)], where [a] represents the integer part of a real value a.

Before presenting the proposed estimators ω̂j’s in the next section, we

need to discuss the transformation of the observed data. For this, first

note that an ideal method for estimating the ωj’s would be to use their
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empirical estimators if one observes the exact value of T . However, this is

impossible for the situation here due to interval censoring. To deal with

this, by following Zhang et al. (2023), we consider the transformed data or

variables

L = δ1 · U + δ2 · (V − U) + δ3 · (η − V ),

H = δ1 · U + δ2 · V + δ3 · V,

which represent the length and endpoint of the time interval within which

the event time lies, respectively. Here η can be any large constant and

η = 106 will be used in the numerical studies below.

For the transformed data, we have that H = V if T is either be-

tween U and V (interval-censored) or greater than V (right-censored) and

H = U if T is less than U (left-censored). In other words, H repre-

sents either the left or right endpoint of the observed interval. Further-

more, define the standardized L and H as L∗ = [L − E(L)]/
√
V ar(L)

and H∗ = [H−E(H)]/
√

V ar(H), where E(·) and V ar(·) denote the corre-

sponding expectations and variances, respectively. Both Székely, Rizzo, and

Bakirov (2007) and Zhang et al. (2023) have showed that the zero distance

correlation between (L∗, H∗) and X implies the zero distance correlation

between the observed data on T and X. Also it can be shown that if T

depends on X, then the observed data depend on X and vice versa. Thus
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it is natural and reasonable to develop the estimators of the ωj’s by using

the transformed data { (L∗
i , H

∗
i ,Xi); i = 1, ..., N }.

3. Feature Screening for Massive Interval-censored Data

In this section, as mentioned above, we will propose two estimators ω̂j’s

for the marginal correlation measure ωj and then give two feature screening

procedures or methods to estimate the index set of the active covariates M.

It is well-known that in the case of massive data or when the sample size

N may be tens of thousands or more, computing the correlation between

each covariate and the response variable can be computationally challeng-

ing. Also running such computations may result in memory issues and

unacceptable computing times, and the information overlap can become

a significant issue too. To address these issues, we propose first perform

the orthogonal subsampling and then randomly divide the entire subsam-

ple into B segments. On each data segment, we will computer or estimate

the distance correlation for each covariate to improve the calculation speed

while ensuring that the samples overlap as little as possible. The estimates

are then aggregated based on each subsample segment. In the following,

we will first describe the orthogonal subsampling and distance correlation

estimators and then the proposed feature screening methods.
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3.1 Orthogonal subsampling

3.1 Orthogonal subsampling

As mentioned above, the orthogonal subsampling (OSS) was initially pro-

posed by Wang et al. (2021a) with the aim of selecting data points that

are ‘dissimilar’ to approximate combinatorial optimization. This is because

large datasets often contain overlapping information between data points

and to ensure that a subsample covers diverse information, it is desirable to

avoid including a data point and its ‘similar’ points. By ‘similar’, we mean

that they share overlap information.

Assume that all covariates are scaled to the range of [−1, 1], which can

be accomplished by dividing each covariate by its largest absolute value

observed. To avoid the confusion or for the generality, we will refer the

resulting design matrix as to Z. The optimality of orthogonal arrays is based

on two features of their arrangements of row points. Firstly, the extreme

values points that have large distances from the center are located at the

corners of the data domain [−1, 1]p , the space between −1 and 1 in the

p-dimensional space. Secondly, the combinatorial orthogonality points (or

more precisely, their signs) are as dissimilar as possible. The OSS approach

then minimizes a discrepancy function that measures the distortion of a

data point while maintaining the two features simultaneously.

More specifically, let Zi· denote the ith data point in the design matrix
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3.1 Orthogonal subsampling

Z and Zij the (i, j) element of Z. The discrepancy function contains two

parts targeting the two features. For the feature of extreme values, the

function can include p−∥Zi·∥, where ∥ ·∥ denotes the Euclidean norm. The

dimension p is to ensure that the term p−∥Zi·∥ is positive. For the feature

of combinatorial orthogonality, define ξ(Zi·,Zj·) =
∑p

l=1 ξ1(Zil, Zjl) , where

ξ1(x, y) is equal to 1 if both x and y have the same sign and 0 otherwise. It

is easy to see that ξ(Zi·,Zj·) gives the number of the components in Zi· and

Zj· that have the same signs. Combining the two parts, the discrepancy

function is given by

L(ZA·) =
∑

{i<j}∈A

[
p− ∥Zi·∥2/2− ∥Zj·∥2/2 + ξ(Zi·,Zj·)

]2
,

where A denotes a subset of {1, . . . , N} with the cardinality K and ZA·

a matrix with K rows and p columns consisting of data points Zi·, i ∈

A. The indicator set for the subsample Ã is then obtained by solving the

optimization problem

ZÃ· = argminA⊆{1,...,N}L(ZA·) s.t. ZÃ· contains K points. (3.2)

The summary of the description above is given in Algorithm 1 of Supple-

mentary Material.

Note for the computational complexity, one is usually interested in the

situation when N is large. In this case, Z consists of ki = N/i points at
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3.2 Distance correlation measure based on subsamples

each iteration and the time for finding z becomes O(Np/i). Therefore, the

complexity for selecting n data points is O(Np/1) + . . . + O(Np/(K)) =

O(Np log(K)). Note that n can be any integer less than N in the OSS

approach, not restricted to be a multiple of 4.

3.2 Distance correlation measure based on subsamples

In this subsection, we discuss the computation and estimation of the corre-

lation measure for each covariate based on the subsamples given by the or-

thogonal sampling on each segment. Without loss of generality, assume that

the entire subsample D is randomly divided into B manageable segments

{Db}Bb=1, where B = O(Nα), α ∈ (1
5
, 3
5
). So each segment contains [K/B]

samples, where [·] represents the rounding to the integer. As discussed above

and depending on the computational environment, these segments can be

either distributively stored and processed by multiple computers or sequen-

tially processed by a single computer. Then the orthogonal subsampling is

performed on each segment to yield n samples with n = O(N ι), ι ∈ (0, 1
5
).

For the simplicity of notation, we will write the random vector (L∗, H∗)⊤

as Y in the following. Let ϕXj
(w) and ϕY(r) denote the characteristic func-

tions of Xj and Y, respectively, and ϕXj ,Y(w, r) their joint characteristic

function. Then by the definition, the nonnegative distance covariance be-
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3.2 Distance correlation measure based on subsamples

tween Xj and Y is given by

dcov2(Xj,Y) =

∫
Rdx+dy

∥∥ϕXj ,Y(w, r)− ϕXj
(w)ϕY(r)

∥∥2

cdxcdy∥w∥1+dx
dx

∥r∥1+dy
dy

dwdr,

where dx and dy represent the dimensions of Xj and Y, respectively, cd =

π(1+d)/2/Γ((1 + d)/2), and ∥a∥d denotes the Euclidean norm of a ∈ Rd.

Correspondingly, a correlation measure, the distance correlation (DC), can

be computed as

ωDC
j =

dcov2(Xj,Y)√
dcov2(Xj, Xj)dcov2(Y,Y)

,

which is equal to 0 if and only if Xj and Y are independent (Székely, Rizzo,

and Bakirov, 2007; Zhang et al., 2023).

To estimate the ωj’s, note that it follows from Székely, Rizzo, and

Bakirov (2007) that dcov2(Xj,Y) can be partitioned as dcov2(Xj,Y) =

Sj1 + Sj2Sj3 − 2Sj4, where

Sj1 = E(∥Xj − X̃j∥1∥Y − Ỹ∥2),

Sj2 = E(∥Xj − X̃j∥1), Sj3 = E(∥Y − Ỹ∥2),

Sj4 = E{E(∥Xj − X̃j∥1|Xj)E(∥Y − Ỹ∥2|Y)}

with (X̃j, Ỹ) denoting an independent copy of (Xj,Y). These suggest that

we can obtain the unbiased estimators of Sj1, Sj2, Sj3, and Sj4 given by the

following U -statistics

Ŝj1 =

(
n

2

)−1 n∑
i,k

1

2!

∑
Ω{i,k}

∥Xji −Xjk∥1∥Yi −Yk∥2
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3.3 Average distance correlation procedures of OSS

=
1

n(n− 1)

n∑
i̸=k

∥Xji −Xjk∥1∥Yi −Yk∥2 ,

Ŝj2 =

(
n

2

)−1 n∑
i,k

1

2!

∑
Ω{i,k}

∥Xji −Xjk∥1 =
1

n(n− 1)

n∑
i̸=k

∥Xji −Xjk∥1 ,

Ŝj3 =

(
n

2

)−1 n∑
i,k

1

2!

∑
Ω{i,k}

∥Yi −Yk∥2 =
1

n(n− 1)

n∑
i̸=k

∥Yi −Yk∥2 ,

Ŝj4 =

(
n

3

)−1 n∑
i,k

1

3!

∑
Ω{i,k,l}

∥Xji −Xjl∥1∥Yk −Yl∥2

=
1

n(n− 1)(n− 2)

n∑
i̸=k ̸=l

∥Xji −Xjl∥1∥Yk −Yl∥2 .

In the above, Ω{i, k} and Ω{i, k, l} represent the set of all possible per-

mutations {i, k}, and {i, k, l}, respectively. Similarly, we can obtain the

unbiased estimators of dcov2(Xj, Xj) and dcov2(Y,Y) and consequently an

unbiased estimator of ωj given by

ω̂DC
j =

d̂cov2(Xj,Y)√
d̂cov2(Xj, Xj)d̂cov2(Y,Y)

. (3.3)

The estimator ω̂DC
j is expected to fluctuate around zero if Xj is an inactive

covariate and be away from zero otherwise.

3.3 Average distance correlation procedures of OSS

Now we are ready to present the two proposed screening methods. Let

ω̂DC
(b),j =

d̂cov2(b)(Xj,Y)√
d̂cov2(b)(Xj, Xj)d̂cov2(b)(Y,Y)
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3.3 Average distance correlation procedures of OSS

denote the estimator given in (3.3) based on the data segment Db. Then it

is natural to estimate the marginal correlation between Xj and Y based on

the whole dataset by the simple average

ω̂SDC
j =

1

B

B∑
b=1

ω̂DC
(b),j

over all data segments, j = 1, ..., p. The process or procedure is summarized

in Algorithm 2 of Supplementary Material. It is apparent that the main

advantage of the method based on ω̂SDC
j or the SDC-OSS is that it is

straightforward and can be easily implemented. On the other hand, the

measure ω̂SDC
j could be biased due to the accumulated bias inherited from

the local estimators as seen in the numerical study below. To address this

issue while maintaining a compact subsampling size, we propose the second

method, JDC-OSS, or the jackknife debiased version of the first method.

LetDb denote the subsample indicator set of the b-th segment,X(b,−m) =

(Xi : i ∈ Db, j ̸= m)⊤, and Y(b,−m) = (Yi : i ∈ Db, j ̸= m)⊤ represent the

b-th subsample with the m-th subject removed. Based on X(b,−m) and

Y(b,−m), we can obtain the leave-one-out estimator d̂cov2(b,−m)(Xj,Y) of

the distance covariance dcov2(b,−m)(Xj,Y). Then we can estimate the bias

by

△̂(b)(Xj ,Y) =
(n− 1)

n

n∑
m=1

d̂cov2(b,−m)(Xj ,Y)− (n− 1)d̂cov2(b)(Xj ,Y) , (3.4)
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and thus obtain the jackknife debiased simple average distance covariance esti-

mator between Xj and Y given by

d̂cov2
JDC

(Xj ,Y) =
1

B

B∑
b=1

{d̂cov2(b)(Xj ,Y)− △̂(b)(Xj ,Y)}.

Similarly, we can obtain jackknife debiased simple average distance covariance

estimators of dcov2(Xj , Xj) and dcov2(Y,Y). These naturally give the jackknife

debiased simple average distance correlation estimator

ω̂JDC
j =

d̂cov2
JDC

(Xj ,Y)√
d̂cov2

JDC
(Xj , Xj)d̂cov2

JDC
(Y,Y)

,

and thus the second proposed screening procedure, the JDC-OSS, which is sum-

marized in Algorithm 3 of Supplementary Material. In the next section, we will

establish the asymptotic properties of the two proposed methods that replace the

ω̂j ’s in (2.1) by the ω̂SDC
j ’s and ω̂JDC

j ’s, respectively.

4. Asymptotic Properties

To establish the asymptotic properties of the two proposed screening procedures,

SDC-OSS and JDC-OSS, we need the following regularity conditions.

(C1) Assume that there exists η > 0 such that P (V − U ≥ η) = 1. The union of

the supports of U and V is contained in the interval [σ, τ ], where 0 < σ < τ < ∞.

(C2) There exists a positive constant s0 such that for all 0 < s ≤ 2s0, we have

sup
p

max
1≤k≤p

E{exp(s∥Xk∥21)} < ∞, and E{exp(s∥max{U, V }∥21)} < ∞.

Statistica Sinica: Newly accepted Paper 



(C3) The minimum distance correlation of active predictors satisfies min
k∈M

ωk ≥

2cN−(α+ι)κ for some constants c > 0 and κ ∈ [0, 1/2] .

Note that Condition (C1) is commonly used in the studies of interval-censored

data (Zhang et al., 2010; Zhou et al., 2017) and usually satisfied in practice. Con-

dition (C2) is a common assumption required by most of the existing screening

procedures (Zhang et al., 2023). Condition (C3) requires that the values of

marginal utilities between each active variable and response are not too small.

It is also a standard assumption in the feature screening literature and simi-

lar to Condition 3 of Fan and Lv (2008), Condition 2 of Li et al. (2012b), and

Conditions 2 and 5 of Wu and Cook (2015) among others.

In the following, we will first establish the asymptotic order of the variances

of the two proposed estimators ω̂SDC
j and ω̂JDC

j . Note that both ω̂SDC
j and

ω̂JDC
j are unbiased and thus their estimation accuracies are determined by their

variances. Then in Theorem 2 and 3, we will give the sure screening property and

rank consistency property of the proposed method, respectively. For simplicity,

we use the ω̂j ’s to denote both ω̂SDC
j ’s and ω̂JDC

j ’s in Theorems 2 and 3 with

the proof for all results sketched in the Supplementary Material.

Theorem 1. Assume that B = O(Nα) with α ∈ (15 ,
3
5) and n = O(N ι) with

ι ∈ (0, 15). Then under Condition (C2), we have that

max
j=1,...,p

V ar(ω̂SDC
j ) = O

( 1

Nα+2ι

)
+O

( 1

Nα+5/2ι

)
+O

( 1

Nα+3ι

)
,
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and

max
j=1,...,p

V ar(ω̂JDC
j ) = O

( 1

Nα

)
+O

( 1

Nα+1/2ι

)
+O

( 1

Nα+ι

)
.

The results above tell us that the largest variances of the estimators ω̂SDC
j

and ω̂JDC
j have the orders O

(
1

Nα+2ι

)
and O

(
1

Nα

)
, respectively. That is, both

variances converge to zero under massive data.

Theorem 2. [The sure screening property of SDC-OSS and JDC-OSS]. Assume

that B = O(Nα) with α ∈ (15 ,
3
5), and n = O(N ι) with ι ∈ (0, 15). Also assume

that Conditions (C1) and (C2) hold. Then for any 0 < γ < 1/2 − κ with κ ∈

[0, 1/2], there exist positive constants c, c1, and c2 such that

Pr

(
max
1≤j≤p

|ω̂j − ωj | ≥ cN−(α+ι)κ

)
≤ O

(
p exp(−c1N

(α+ι)(1−2γ−2κ)) +Nα+ιp exp(−c2N
(α+ι)γ)

)
.

In addition, under Conditions (C1)-(C3), we have that

Pr(M ⊆ M̂) ≥ 1−O
(
|M|

[
exp(−c1N

(α+ι)(1−2γ−2κ)) +Nα+ι exp(−c2N
(α+ι)γ)

])
,

where |M| denotes the cardinality of M.

Remark 1: Theorem 2 is usually called the sure screening property and it

establishes the connection between the estimated and true correlation measures

between covariates and a response variable. Also it provides a bound on the prob-

ability that the genuinely significant set of variables is contained within the esti-

mated important set. The theorem tells us that the probability of the event ‘there

exists a j such that the distance between ω̂j and ωj is greater than cN−(α+ι)κ’
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converges to 0 at the exponential rate O(p exp(−cN (α+ι)max{1−2γ−2κ,γ})). Simi-

larly, the probability of the event ‘M ⊆ M̂’ converges to 1 at the same rate.

Theorem 3. [The rank consistency property of SDC-OSS and JDC-OSS]. As-

sume that B = O(Nα) with α ∈ (15 ,
3
5), and n = O(N ι) with ι ∈ (0, 15). Also

suppose that ωj = 0 for j /∈ M and Conditions (C1)-(C3) given above hold. Then

there exist positive constants c, c1 and c2 such that

Pr
(
max
j /∈M

ω̂j ≤ min
j∈M

ω̂j

)
≥ 1−O

(
p
[
exp(−c1N

(α+ι)(1−2γ−2κ)) +Nα+ι exp(−c2N
(α+ι)γ)

])
.

Remark 2: Theorem 3 is commonly referred to as the rank consistency prop-

erty. It states that the probability of the estimated correlation measure for irrel-

evant variables being lesser than the estimated correlation measure for significant

variables converges to 1 at the exponential speedO(p exp(−cN (α+ι)max{1−2γ−2κ,γ})).

Remark 3: Note that in Theorems 2 and 3 there are only the conditions for

the number of segments B and the subsample size n within each segment. Other

existing sampling methods (e.g., simple random subsampling, random addressing

sampling(Zhu et al., 2022), sequential addressing subsampling(Pan et al., 2023),

etc.) can also set the number of segments B and the subsample size n within

each segment to satisfy the conditions in the above theorems. Therefore, the

theoretical framework given in the manuscript remains broadly applicable across

various sampling methods, not just OSS.

Remark 4: On the comparison of the proposed method to that given in
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Zhang et al. (2023), note that the latter is effective only for hundreds of samples

and cannot be implemented for massive sample sizes due to its computational

complexity of O(pN3). In contrast, the total computational complexity of the

proposed method is O(Nplog(nB)) + O(Bpn3) = O(p((α + ι)N + Nα+3ι)) =

O(pNmax{α+3ι,1}). Thus the proposed method effectively solves the computa-

tional challenges under massive data and significantly reduces the computational

complexity from O(pN3) to O(pNmax{α+3ι,1}). Another difference between the

two methods is that unlike or beyond Zhang et al. (2023), we showed in Theo-

rem 1 that the ω̂j ’s are effective and efficient in estimating the ωj ’s. This further

ensures the screening performance of the proposed method and serves as a theo-

retical foundation of the proposed method. In addition, the methodology used in

the proof of Theorem 2 is significantly different from that of Zhang et al. (2023).

5. A Simulation Study

In this section, we present some results obtained from an extensive simulation

study conducted to investigate the finite sample performance of the two screen-

ing procedures, SDC-OSS and JDC-OSS, proposed in the previous sections. For

comparison, we also considered the divide-and-conquer (DC) method, which will

be referred to as DC-DC, and the simple random subsampling combined with

JDC and SDC, which will be abbreviated as JDC-RSS and SDC-RSS, respec-

tively. Note that because of the large sample size, it is not possible to conduct the
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DC screening based on the complete data using standard computers. To generate

the true failure times, we considered the following three set-ups or cases.

Model 1. We first generated the covariate vector X from the normal dis-

tribution Np(0,Σ) with Σi,j = (0.3|i−j|) for i, j = 1, . . . , p. The true failure time

of interest Ti was then generated under the Cox Proportional Hazards model

with the baseline hazard function λ(t) = (t − 0.5)2 and the true parameter

β = (110,0p−10)
⊤, where 110 represents the 10-dimensional vector with all ele-

ments being 1. That is, there exist ten important or relevant variables.

Model 2. In this setup, the covariate vector X was generated in the same

way as above but withΣi,j = (0.5|i−j|) for i, j = 1, . . . , p, and the true failure time

of interest was generated under the transformation model H(T ) = −X⊤β + ϵ.

For the selection of the pre-specified function H(·), the true parameter β and

the distribution of ϵ, we considered the following three scenarios.

(a) H(t) = log(0.5(e2t − 1)), ϵ follows the Student t distribution with 3 degrees

of freedom, and β = (1, 0.7,06, 0.8, 1,0p−10)
⊤.

(b) Both the function H(·) and the distribution of ϵ were set to be the same

as in (a). For the regression coefficients, we took the first ten components to

be β0 = (β1, . . . , β10)
⊤ = α0(−1)U1U2 and the remaining to be 0. Here U1 was

generated from the Bernoulli distribution B(0.6), U2 generated from the uniform

distribution U(1, 2), and α0 = 1.

(c) For this scenario, we took H(t) = log(t) and assumed that ϵ follows the
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standard normal distribution. For the regression coefficients, we took the first

six components as non-zero coefficients, and their values are generated in the

manner described in (b). All of the other coefficients were set to be zero.

Model 3. For this model, all set-ups are the same as Model 1 except that

we generated the failure time of interest from the log-linear model log(T ) = α+

X⊤β+ σϵ, where α = 0.4, σ = 2 and ϵ follows the standard normal distribution.

For the generation of the observed interval-censored data, for each subject,

we first randomly generated m values 0 < t1 < . . . < tm < τ from the uniform

distribution U(0, τ) to yield m+ 1 intervals [t0, t1), [t1, t2), . . . , [tm, tm+1), where

t0 = 0, tm+1 = ∞, τ was chosen to give the required right-censored percentage.

The observation interval [Ui, Vi) was then taken to be the interval [tj , tj+1) that

includes the true failure time Ti. In the following, we set m = 20 and η = 106

and considered the right-censored rates of low (20%), moderate (40%) and high

(60%). The screening results given below are based on N = 105 and p = 1000

with 200 replications.

To evaluate the performance of the proposed procedures, we calculated the

following four metrics.

(1) time (sec): the execution time of the respective method in seconds across 200

replications.

(2) PA: the proportion of all active predictors selected for a given model size

d0 = ⌈5(nB)(1/5−1/500)⌉ in 200 replications.
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(3) S: the 5%, 25%, 50%, 75%, and 95% quantiles of the minimum model size

to include all active predictors over 200 replications.

(4) AUS: the rank consistency index given by

AUS = 1−
( 1

|M||Mc|
∑
i∈M

∑
j∈Mc

[
I{ω̂i < ω̂j}+ 0.5I{ω̂i = ω̂j}

])
,

where |M| and |Mc| denote the sizes of the sets of true important and non-

important variables, respectively.

First we present the time used by the orthogonal subsampling across various

total sample sizes and sub-sample sizes, with the covariate dimension of p =

1000. It shows that the execution time of orthogonal subsampling aligns with the

theoretical expectation of O(Np log (nB)), as described in Section 3.1. Table 2

gives the outcomes of the two proposed feature screening methods, SDC-OSS and

JDC-OSS, in comparison with DC-DC, JDC-RSS, and SDC-OSS under Model

1 with n = 10 or 15 and B = 100 or 150. One can see from Table 2 that both

methods seem to perform well for the considered situations and this is especially

the case with larger total subsample sizes (nB). That is, a sufficiently large

total subsample size (nB) can lead to optimal performance, where the important

variables can be selected before the unimportant ones and the probability of

correctly selecting all of the essential variables is close to 1. More specifically,

the two proposed methods gave similar performance, especially in terms of the

AUC and PA measures or for large total subsample size (nB), with the JDC-

Statistica Sinica: Newly accepted Paper 



Table 1: The times (sec) required by OSS under different settings

N

nB
100 1000 1500 3000 5000

105 46.67971 241.6879 442.1897 1354.251 3211.391

106 592.0568 921.4064 1410.246 3418.268 7295.892

OSS slightly better than the SDC-OSS as expected. In other words, the main

difference between the two procedures occurred at the higher quantiles of the S

measure and smaller total subsample sizes.

In terms of comparison, one can see from Table 2 that the DC-DC method

can provide effective screening but it can be slower in hundred times than the pro-

posed method. Also the proposed method attains satisfactory screening outcomes

when the total subsample size (nB) is sufficiently large. That is, a sufficiently

large total subsample size (nB) can lead to optimal performance, meaning that

the important variables can be selected before the unimportant ones and the

probability of correctly selecting all of the essential variables is close to 1. Fur-

thermore, the screening method combining JDC (and SDC) with simple random

sampling (RSS) exhibited inferior screening performance compared to JDC (and

SDC) with orthogonal subsampling (OSS).

To save the space, the results obtained under Models 2 and 3 are given in

Tables 1 - 4 of Supplementary Material. Here we have that n = 10, 15 or 20 and

B = 25, 40, 60, 80, 100, 150, 200 or 300 for Model 2, and for Model 3, n = 8
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Table 2: Simulation results under Model 1.

n B(d0) Method time(sec) AUC(%) PA
S

5% 25% 50% 75% 95%
Right-censored rate = 20%

100 N/B(20) DC-DC 15629.24 100.000 1.00 10 10 10 10 10
10(20) JDC-OSS 132.74 99.471 0.48 10 12.75 22.5 54.75 228.1

SDC-OSS 103.14 99.450 0.48 10 13 23 57 242.9
JDC-RSS 34.26 99.277 0.31 11 17 35 78.5 241.45
SDC-RSS 5.44 99.297 0.30 11 17.75 34.5 85 243

15(21) JDC-OSS 503.44 99.975 0.95 10 10 10 12 18.3
SDC-OSS 425.83 99.975 0.95 10 10 10 12 22
JDC-RSS 91.87 99.927 0.93 10 10 10 12 31.05
SDC-RSS 15.77 99.908 0.91 10 10 10 13 38.1

150 N/B(18) DC-DC 10500.55 100.000 1.00 10 10 10 10 10
10(21) JDC-OSS 325.50 99.835 0.74 10 10 11 22 84.45

SDC-OSS 273.94 99.814 0.78 10 10 12 19 98.45
JDC-RSS 52.52 99.786 0.71 10 10 13 25.25 125.05
SDC-RSS 10.92 99.725 0.65 10 11 14 31.25 131.3

15(23) JDC-OSS 474.57 99.991 0.99 10 10 10 10 12
SDC-OSS 414.56 99.988 0.99 10 10 10 10 12
JDC-RSS 66.88 99.994 0.99 10 10 10 10 13
SDC-RSS 9.92 99.995 1.00 10 10 10 10 13

Right-censored rate = 40%
100 N/B(20) DC-DC 15611.10 100.000 1.00 10 10 10 10 10

10(20) JDC-OSS 135.47 99.706 0.68 10 11 13 25.25 150.2
SDC-OSS 104.66 99.687 0.67 10 11 14 28.25 180.05
JDC-RSS 35.83 99.615 0.57 10 11 17 46.25 193
SDC-RSS 5.53 99.584 0.54 10 12 17 46.25 164.1

15(21) JDC-OSS 503.78 99.995 0.99 10 10 10 10 13.05
SDC-OSS 421.29 99.993 1.00 10 10 10 10 12
JDC-RSS 96.10 99.989 0.98 10 10 10 10 14
SDC-RSS 15.73 99.988 0.98 10 10 10 10 13.05

150 N/B(18) DC-DC 10557.73 100.000 1.00 10 10 10 10 10
10(21) JDC-OSS 362.10 99.946 0.91 10 10 10 13 33.45

SDC-OSS 302.08 99.936 0.90 10 10 10 14 41.05
JDC-RSS 58.27 99.886 0.89 10 10 10 13 53.15
SDC-RSS 11.83 99.855 0.84 10 10 10.5 14 88

15(23) JDC-OSS 453.07 100.000 1.00 10 10 10 10 10
SDC-OSS 395.47 100.000 1.00 10 10 10 10 10
JDC-RSS 65.91 99.998 1.00 10 10 10 10 10
SDC-RSS 9.55 99.999 1.00 10 10 10 10 10

Right-censored rate = 60%
100 N/B(20) DC-DC 15568.42 100.000 1.00 10 10 10 10 10

10(20) JDC-OSS 128.70 99.749 0.66 10 11 15 29.5 119.85
SDC-OSS 99.50 99.697 0.67 10 11 15 27.25 188.65
JDC-RSS 33.81 99.623 0.52 10 12 19 38 207.45
SDC-RSS 5.47 99.595 0.53 10 12.75 19 48.75 183.2

15(21) JDC-OSS 497.38 99.989 0.99 10 10 10 10 13
SDC-OSS 417.26 99.988 0.98 10 10 10 10 13.05
JDC-RSS 94.92 99.985 0.98 10 10 10 10 15
SDC-RSS 15.84 99.975 0.97 10 10 10 10 17.1

150 N/B(18) DC-DC 10525.82 100.000 1.00 10 10 10 10 10
10(21) JDC-OSS 367.93 99.948 0.91 10 10 11 14 29.15

SDC-OSS 304.56 99.947 0.90 10 10 11 15 35.2
JDC-RSS 57.70 99.934 0.89 10 10 10 14 30.15
SDC-RSS 11.98 99.917 0.84 10 10 11 15 55.05

15(23) JDC-OSS 502.84 100.000 1.00 10 10 10 10 10
SDC-OSS 441.43 99.999 1.00 10 10 10 10 10
JDC-RSS 68.41 99.999 1.00 10 10 10 10 10
SDC-RSS 10.08 100.000 1.00 10 10 10 10 10
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or 10 and B = 80, 100, 150 or 200. The results are similar to those given above

and again suggest that the two proposed approaches performed well in general,

which is especially the case when the larger total sub-sample size (nB) was used.

In particular, they indicate that as expected from the asymptotic properties, the

proposed methods can achieve the optimal performance to identify all impor-

tant variables before the unimportant ones with a high probability of correctly

selecting all important variables with a sufficiently large total subsample size.

Furthermore, the performance seems to be robust with respect to the underlying

model used to generate the true failure time of interest. Also again as seen be-

fore, the main difference between the two proposed methods occurred when the

total subsample size is small.

In addition, we also carried out the assessment of the two proposed proce-

dures in terms of the False Discovery Rate (FDR) control and the results obtained

under Model 1 are provided in Supplementary Material. In particular, they in-

dicated that the two propsoed methods gave good and consistent performances.

Also they are similar in terms of FDR and power.

6. An Application

In this section, we apply the two feature screening procedures proposed in the

previous sections to the data on the survival time of breast cancer patients in the

Surveillance, Epidemiology, and End Results (SEER) program, a commonly used
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Figure 1: The comparison of JDC-OSS and SDC-OSS in different B with n = 10.

data source in cancer research (https://seer.cancer.gov). The SEER program was

established as one of the first steps in the War on Cancer declared by President

Nixon’s Administration and began collecting information on January 1, 1973

in some of US states with other areas added to the SEER database over the

years. After the year 2000, the SEER captured approximately 25% of all cancers

diagnosed in the United States each year.

In the following, we consider the data released in April 2021 and based on

the November 2020 submission. The dataset includes the information on 157,905

breast cancer patients diagnosed between 2010 and 2015 and 191 covariates,

including sex, age, race, year of diagnosis, marital status, and the information
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on initial treatment as well as the survival time if the death happened. For the

analysis here, we are mainly interested in the death time, the failure time of

interest, of the cancer patient, on which only interval-censored data are available

due to the periodic collection nature of the data.

Figure 1 presents the line plots of the estimated correlation measures under

different settings for the two methods proposed in the previous sections. The

plots are based on the top 100 covariate rankings from the highest segment for

fixed per-segment sample size n = 10 and four different segment sizes B =

100, 200, 400 and 1000. It is apparent that for both procedures, as seen in the

simulation study, a larger total subsample size yielded the improved screening

performance and the corresponding measure value became more stable or less

fluctuated. It can be observed that under a fixed n and as the number of segments

increases, the decreasing trend tends to flatten. Meanwhile, for a smaller number

of segments, the fluctuation of the latter part of the SDC-OSS method is relatively

large. In other words, the screening stability of the JDC-OSS method is higher

than that of the SDC-OSS method.

Furthermore, similar to Figure 1, Figure 2 in S2 of the Supplementary Ma-

terial provides the line plots of the correlation measures for the two methods

JDC-OSS and SDC-OSS based on the rankings of the top 100 covariates under

different settings of fixed segments B = 300 and varying per-segment sample size

n = 5, 10, 20 and 50. From the figure, it can be observed that the fluctuation am-
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Table 3: The screening results for the SEER data with all 191 covariates.

Covariates

DC

(B=1000)

(n=N/n)

JDC-OSS

(B=1000)

(n=8)

SDC-OSS

(B=1000)

(n=8)

JDC-RSS

(B=1000)

(n=8)

SDC-RSS

(B=1000)

(n=8)

DC

(B=200)

(n=N/n)

JDC-OSS

(B=200)

(n=8)

SDC-OSS

(B=200)

(n=8)

JDC-RSS

(B=200)

(n=8)

SDC-RSS

(B=200)

(n=8)

Age
√ √ √ √ √ √ √ √

Year.of.diagnosis
√ √ √ √ √ √ √ √ √

CS.version.input.original
√ √ √ √ √ √ √ √

CS.version.input.current
√ √ √ √ √ √ √ √ √

Regional.nodes.examined
√ √ √ √ √ √ √ √

CS.tumor.size
√ √ √ √ √ √

RX.Summ.Surg.Prim.Site
√ √ √ √ √ √ √ √

Breast.T
√ √ √ √ √ √ √ √ √

Breast.Stage
√ √ √ √ √ √ √ √

Primary.Site
√ √ √ √ √ √ √

Marital.status.at.diagnosis
√ √ √ √ √ √ √ √

CS.lymph.nodes
√ √ √ √ √

Radiation.recode
√ √ √ √ √ √ √ √

Breast.N
√ √ √ √ √ √ √ √

Regional.nodes.positive
√ √ √

AYA.site.recode.2020.Revision
√ √ √

Histologic.Type.ICD.O.3
√ √ √ √ √ √

Histology.ICD.O.2
√ √ √ √ √

plitude of the SDC-OSS method is significantly higher than that of the JDC-OSS

method. Similarly, it can be inferred that JDC-OSS performs better in terms of

screening stability.

Table 3 presents the screening results given by the DC-DC method, which

divided the full sample into B segments for divide-and-conquer analysis, along

with the JDC-OSS, SDC-OSS, JDC-RSS, and SDC-RSS methods. The settings

are the same as described in the simulation section, where B represents the

number of segments and n is the sample size within each segment. To maintain

the consistency in the number of screenings, we artificially set the threshold value

d0 to 20 across all methods. It can be observed from Table 3 that different number

of segments in the full samples corresponds to a small overlap in important
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variables screened by the DC-DC method. This indicates that the method is less

stable. The stability of JDC and SDC based on two different sampling methods

is relatively better, and the stability of the two methods based on OSS sampling

is better than that of the two methods based on RSS method.

On the identified factors,, the covariates ‘Radiation.recode’ represent meth-

ods of radiation therapy, ‘Primary.Site’ indicate tumor location information,

‘CS.tumor.size’ denote tumor size information, ‘RX.Summ.Surg.Prim.Site’ de-

scribe surgical conditions at the primary site, ‘Breast.Stage’ ‘Breast.N’ and ‘Breast.T’

respectively represent different stages of breast tumors, while ‘CS.lymph.nodes’

signify expanded tumor information. Clearly, from a practical perspective, all

of the aforementioned variables significantly impact the survival time or time of

death. Moreover, the aforementioned screening methods effectively identify these

variables as important variables.

To further see the effectiveness of the proposed methods, we apply the meth-

ods above to a set of randomly selected 50 variables along with their interactions,

resulting in a total of 1275 variables, and the results are given in Table 5 in S2

of the Supplementary Material. Here as above, B represents the number of seg-

ments and n represents the sample size within each segment. From the table,

it is apparent that there is a high degree of overlaps in the important variables

selected by the five methods. In particular, the methods based on orthogonal

subsampling seem to be more stable compared to these based on random sub-
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sampling.

7. Discussion and Concluding Remark

This paper discussed feature screening for massive interval-censored failure time

data where both the sample size and the number of covariates or factors are huge.

For the problem, two distance correlation and orthogonal sampling-based screen-

ing methods were developed with the use of the jackknife debiasing technique

in the second method. Both methods are model-free and thus offer a broader

range of applications without model constraints. In other words, the proposed

methods can efficiently handle large-scale interval-censored datasets under dif-

ferent models by utilizing orthogonal sampling to extract a small number of

samples comprising the maximum amount of information for segmented mas-

sive data. Furthermore, the proposed procedures have been shown to possess

the sure screening and rank consistency properties, and the numerical studies

demonstrated that they performed well in different settings.

It is apparent that the first proposed method, SDC-OSS, can be relatively

easily implemented compared to the second proposed method, JDC-OSS, but the

latter may be more stable and perform better than the former when the total

subsample size is small. Nevertheless, the two should give similar performances

if a larger total subsample size can be used, which could be realized if more

individual computers are available. A possible shortcoming of the two procedures
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is that both are marginal screening methods and thus cannot take into account

the relationship between covariates or factors.

In the previous sections, we only considered case II interval-censored data

and the ideas discussed above should be applicable to more general situations such

as case K interval-censored data and truncated interval-censored data. However,

more work would be needed to investigate, for example, the effectiveness of the

generalized methods as well as their theoretical properties. Another direction for

future research is to establish the theoretical properties of the FDR control for

the two screening methods proposed above.

Supplementary Material

The online Supplementary Material includes the three algorithms mentioned

above, some additional simulation results, and the proofs of all the theorems.
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