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Abstract: There is a substantial literature in case-control logistic regression on

whether or not non-confounding covariates should be adjusted for. However, only

limited and ad hoc theoretical results are available on this important topic. A

constrained maximum likelihood method was recently proposed, which appears

to be generally more powerful than logistic regression methods with or with-

out adjusting for non-confounding covariates. This note provides a theoretical

clarification for the case-control logistic regression with and without covariate

adjustment and the constrained maximum likelihood method on their relative

performances in terms of asymptotic relative efficiencies. We show that the ben-

efit of covariate adjustment in the case-control logistic regression depends on

the disease prevalence. We also show that the constrained maximum likelihood
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estimator gives an asymptotically uniformly most powerful test.

Key words and phrases: Asymptotic relative efficiency, case-control design, con-

strained maximum likelihood, logistic regression, non-confounding covariate.

1. Introduction

It is well known that adjusting for baseline covariates can lead to an im-

proved statistical inference efficiency (Fisher, 1932). Through rigorous

derivation, Robinson and Jewell (1991) showed that in logistic regression,

adjusting for non-confounding covariates in randomized clinical trials al-

ways benefits the testing for treatment effect in terms of Pitman’s asymp-

totic relative efficiency (ARE), albeit with some estimation precision loss.

Neuhaus (1998) extended the results of Robinson and Jewell (1991) to gen-

eralized linear models.

It is more complicated, however, when data are collected retrospec-

tively but analyzed using prospective logistic regression. In particular, Kuo

and Feingold (2010) showed through simulations that adjusting for non-

confounding covariates in case-control studies may decrease the statisti-

cal inference efficiency for exposure-disease association; see Xing and Xing

(2010) for additional comments. Pirinen et al. (2012) showed that adjusting

for non-confounding covariates in case-control studies can decrease estima-
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tion precision, resulting in a loss of power provided that the estimation is

approximately unbiased. In general, covariate adjustment could result in

both bias and loss of efficiency in estimation, and it is not clear how they

affect the hypothesis testing for exposure-disease association.

Zaitlen et al. (2012) proposed a liability threshold model that exploits

covariate-specific prevalence information to improve the inference efficiency

of exposure-disease association. Zhang et al. (2018) developed a constrained

profile maximum likelihood method with known disease prevalence when

the exposure and covariate are independent. Their simulation results indi-

cate that the method outperforms the standard logistic regression with or

without adjusting for covariates.

In this paper, we derive theoretical properties for the case-control lo-

gistic regression methods with and without covariate adjustment, and the

constrained maximum likelihood method. Specifically, when both exposure

and covariate are dichotomous, we derive the asymptotic biases, asymptotic

variances and AREs of the three methods. Furthermore, we obtain the

asymptotic distribution of the constrained maximum likelihood estimator

with a possibly misspecified disease prevalence. Our theoretical findings

are at least threefold. First, adjusting for non-confounding covariates can

decrease power in case-control studies when the true disease prevalence is
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low, which extends the finding of Robinson and Jewell (1991) and Neuhaus

(1998) to case-control studies. Second, the constrained maximum likelihood

method has a uniform power advantage over the other two methods. Third,

the constrained maximum likelihood method is robust against prevalence

misspecification.

2. Models and methods

Consider a case-control study design involving a binary response variable

D (D = 1: case; D = 0: control), a binary exposure variable of interest E

(E = 1: exposed; E = 0: unexposed) and a binary covariate X (X = 1:

high risk category; X = 0: low risk category). The exposure variable E

could be a genetic mutation or an environmental exposure. The covariate

X is assumed to be independent of E throughout this paper. Note that

spurious association could be produced when X and E are dependent but X

is not adjusted for. Let f = pr(D = 1), θ = pr(X = 1) and π = pr(E = 1)

be the prevalences of D, X and E, respectively, in the population from

which cases and controls are sampled. Throughout this paper, we assume

that X and E are non-degenerate so that 0 < π, θ < 1. Furthermore, we

assume that the following logistic regression model holds true:

pij(α, β, γ) = pr(D = 1 | X = i, E = j) =
exp(α + βi+ γj)

1 + exp(α + βi+ γj)
, (2.1)
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where α is the baseline log-relative risk, and β and γ are log odds ratios.

Note that the above model does not involve E-X interaction term due to

the assumption that the E-D odds ratio does not depend on X. We are

interested in testing the null hypothesis of no association between D and

E with the adjustment of X, i.e., H0 : γ = 0. Under the case-control study

design, data for (E,X) are randomly sampled from case population (D = 1)

and control population (D = 0). Let ndij denote the number of subjects

with D = d, X = i and E = j. The total numbers of cases and controls are

denoted by n1++ and n0++, respectively, and let ν = n1++/n0++.

This paper provides a theoretical clarification on the AREs for three

methods. The first method, henceforth referred to as “Adj”, fits model

(2.1) to the case-control data by adjusting for X as if the data were prospec-

tively collected. The corresponding estimator of γ, γ̂A, is the maximizer of

the prospective likelihood function, which is consistent, asymptotically nor-

mally distributed, and semiparametric efficient (Anderson, 1972; Prentice

and Pyke, 1979; Breslow et al., 2000). Robinson and Jewell (1991) de-

rived a closed-form estimator of the asymptotic variance of γ̂A. The null

hypothesis, H0 : γ = 0, can be tested using a Wald statistic.

The second method, referred to as “Mar”, tests the marginal associa-

tion between D and E. Mar fits the following logistic regression without
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adjusting for X:

pr(D = 1 | E = j) =
exp(α0 + γ0j)

1 + exp(α0 + γ0j)
, (2.2)

where α0 is the marginal baseline log-relative risk and γ0 is the marginal

E-D log odds ratio. Note that α0 and γ0 generally differ from α and γ in

model (2.1) unless β equals zero. The corresponding maximum likelihood

estimator of γ0, denoted by γ̂M , takes the form γ̂M = log(n1+1/n1+0) −

log(n0+1/n0+0). The null hypothesis of no association between D and E,

formulated as γ0 = 0, can again be tested using a Wald statistic.

The third method, referred to as “AdjCon”, is based on a constrained

maximum likelihood method (Zhang et al., 2018). AdjCon optimizes the

same likelihood function adopted in Adj, subject to the following additional

condition and constraint:

(C1) the variables E and X are independent;

(C2) the disease prevalence is known to be f (i.e., pr(D = 1) = f).

The constraint (C2) can be expressed as

θ = {f − p01π− p00(1− π)}/{p11π+ p10(1− π)− p01π− p00(1− π)}, (2.3)

where pij = pij(α, β, γ) is defined in (2.1). The likelihood function under
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(C1) and (C2) can be written as:

1∏
d=0

1∏
i=0

1∏
j=0

{pr(D = d | X = i, E = j)pr(X = i)pr(E = j)}ndij , (2.4)

where θ = pr(X = 1) = 1−pr(X = 0) is replaced with the right-hand side of

(2.3). The corresponding maximum likelihood estimator, denoted by γ̂AC ,

can then be numerically obtained using any non-linear optimization algo-

rithm. The null hypothesis H0 : γ = 0 can be tested using a Wald statistic

based on γ̂AC . Intuitively, AdjCon should be more efficient than Adj

since the former incorporates additional condition and constraint. Indeed,

simulation results in Zhang et al. (2018) showed that AdjCon outperforms

both Adj and Mar.

3. Main Results

In this section, we establish theoretical properties for the estimators γ̂M ,

γ̂A and γ̂AC . Specifically, asymptotic biases are derived in Section 3.1;

asymptotic distributions are presented in Section 3.2; AREs for testing the

null hypothesis are given in Section 3.3; robustness of γ̂AC when prevalence

is misspecified is investigated in Section 3.4.
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3.1 Asymptotic bias without covariate adjustment

3.1 Asymptotic bias without covariate adjustment

Here we derive an asymptotic expression and the corresponding asymptotic

bias for γ̂M . Let n = n1++ + n0++. To avoid singularity, assume that

ν = n1++/n0++ is bounded away from zero and infinity.

Lemma 1. We have the following asymptotic expansion for the marginal

maximum likelihood estimator γ̂M :

γ̂M = γ + δ +OP (n
−1/2) as n → ∞, (3.5)

where

δ = log

{
1 +

eα(b1 − b2)(1− eγ)

(1 + eα+γb1)(1 + eαb2)

}
, (3.6)

and b1 = 1 + (eβ − 1)(1− θ), b2 = {1 + (e−β − 1)(1− θ)}−1.

It can be shown that b1 ≥ b2, with the equality holding if and only

if γ = 0 or β = 0. Furthermore, the signs of γ and δ are opposite and

|δ| ≤ |γ| - see (S1.6) and (S2.1) in the Supplementary Material for details.

As a result, we have the following corollary:

Corollary 1. The limiting value of γ̂M , γ + δ, shrinks towards zero (i.e.,

|γ + δ| ≤ |γ|). Furthermore, the asymptotic bias δ equals zero if and only if

either X or E is not associated with D. Finally, |δ| is maximized at f = f ∗,
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3.1 Asymptotic bias without covariate adjustment

where

f ∗ =
1∑

i=0

1∑
j=0

pij(α
∗, β, γ)θi(1− θ)1−iπj(1− π)1−j, (3.7)

and

α∗ = −1

2
{log(b1b2) + γ}. (3.8)

Lemma 1 and Corollary 1 confirm the empirical observations that the

maximum likelihood estimator of γ is conservative when ignoring non-

confounding covariates (Stringer et al., 2011). The asymptotic unbiasedness

conditions β = 0 and γ = 0 correspond to two non-confounding assumptions

in prospective logistic regression (Robinson and Jewell, 1991). Gail et al.

(1984) and Neuhaus and Jewell (1993) obtained similar results, but only for

β around zero. In contrast, our results hold for general β. Moreover, f → 0

implies δ → 0, i.e., adjusting for X results in a very small bias in the low

disease prevalence situation, which is consistent with previous findings (Lee,

1982). Figure 1(A) displays the asymptotic bias in one parameter setting

based on Lemma 1. The bias appears to increase with f for f ∈ (0, f ∗] and

decrease with f for f ∈ [f ∗, 1). Unlike γ̂M , both γ̂A and γ̂AC are asymptot-

ically unbiased under model (2.1). That is, γ̂A = γ+OP (n
−1/2) (Anderson,

1972; Prentice and Pyke, 1979) and γ̂AC = γ + OP (n
−1/2) (Zhang et al.,

2018).
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3.1 Asymptotic bias without covariate adjustment
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Figure 1: (A) The limiting value of γ̂M , γ + δ, as a function of the disease

prevalence f , with the underlying parameters being π = 0.5, θ = 0.4, β = 1

and γ = 0.3; (B) The limiting variances of n1/2γ̂A (dashed line), n1/2γ̂AC

(solid line) and n1/2γ̂M (dotted line), with the underlying parameters being

π = 0.5, θ = 0.4, β = 1, γ = 0.05 and ν = 1; (C) The asymptotic powers of

Mar (dotted line), Adj (dashed line) and AdjCon (solid line), with the

underlying parameters being n = 5 × 104, q = 1, θ = 0.4, π = 0.5, β = 1

and γ = 0.05.

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



3.2 Asymptotic normality

3.2 Asymptotic normality

In this subsection, we establish the asymptotic normality for γ̂M , γ̂A and

γ̂AC .

Lemma 2. As n goes to infinity, n1/2(γ̂M − γ − δ), n1/2(γ̂A − γ) and

n1/2(γ̂AC − γ) converge in distribution to normal with mean zero and vari-

ances σ2
M , σ2

A and σ2
AC, whose explicit expressions are given in (S3.1),

(S3.3), and (S3.7) in the Supplementary Material.

We can analytically compare σ2
M , σ2

A and σ2
AC using their explicit ex-

pressions, especially when γ → 0 (and f → 0), as detailed in the following

corollary.

Corollary 2. For σ2
M , σ2

AC and σ2
A, we have the following:

1. σ2
M ≤ σ2

A, with equality holding if and only if β = 0.

2. If γ → 0, then σ2
M → σ2

0 and σ2
A → λσ2

0, where σ2
0 = (2 + ν +

1/ν)/{π(1− π)} and

λ = 1 +
νθ(1− θ)

(1 + ν)

(1− eβ)2{
(1− θ)ϕ+ eβθϕ−1

}2
+ νeβ

{
(1− θ)ϕ+ θϕ−1

}2 (3.9)

with ϕ =
√

1+eα+β

1+eα
. Furthermore, λ ≥ 1 and the equality holds if and only

if β = 0.

3. If γ → 0 and f → 0, then we have λ → λ0, σ2
AC → σ2

0 and
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3.2 Asymptotic normality

σ2
A → λ0σ

2
0, where

λ0 = 1 +
νθ(1− θ)

(1 + ν)

(1− eβ)2

(1− θ + eβθ)2 + νeβ
≥ 1, (3.10)

and λ0 = 1 if and only if β = 0.

Unlike linear models, adjusting for non-confounding covariates in case-

control logistic regression always leads to an increase in the variance of γ

estimator, i.e., σ2
M ≤ σ2

A, as claimed in Colollary 2. This result agrees with

the finding of Robinson and Jewell (1991) for prospective studies. In the

rare disease situation, Corollary 2 states that γ̂M and γ̂AC have the same

asymptotic variance, and that γ̂A has a larger asymptotic variance unless

the covariate X is independent of the disease D. This result complements

that of Pirinen et al. (2012), which only derives the approximated ratio of

the variances for γ̂M and γ̂A. Figure 1(B) displays the asymptotic variances

as functions of f in one parameter setting. The asymptotic variance of γ̂M

appears to be the smallest in general. The variance of γ̂A is the largest

among the three estimators. On the other hand, the variance of γ̂AC falls

in between the other two, and it first increases then decreases with f .

We now compare the performances of the Wald test for the three meth-

ods (Mar, Adj and AdjCon) under the contiguous alternative hypothesis

H1 : γ = c1n
−1/2, where c1 is a fixed non-zero constant. With the asymp-

totic mean and variance for each method in Lemmas 1 and 2, we can derive
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3.3 Asymptotic relative efficiencies

the limiting power for the corresponding Wald test under H1. As shown

in Figure 1(C), AdjCon appears to be more powerful than Adj, which is

due to the asymptotic unbiasedness of γ̂A and γ̂AC and the smaller asymp-

totic variance of AdjCon, especially when f is close to 0 or 1. When f

approaches 0.5, the power gain of AdjCon over Adj becomes negligible,

as their asymptotic variances converge. When f is close to 0 or 1, Mar

appears to be more powerful than Adj, as they have similar means but

Adj gives a larger variance. However, Mar becomes less powerful than

the other two methods as f takes value around 0.5. This stems from the

fact that γ̂M is considerably biased toward zero and its variance advantage

cannot be compensated for the bias disadvantage. AdjCon appears to be

slightly more powerful than Mar when f is close to 0 or 1 (Figure 1(C)).

The next subsection gives theoretical results related to Figure 1(C).

3.3 Asymptotic relative efficiencies

Asymptotic power comparison of various methods is carried out analytically

through Pitman’s ARE (Pitman, 1979; Serfling, 2009). For test statistics

T1 and T2, the T1 vs. T2 Pitman ARE is equal to eP (T1, T2) = lim(m2/m1)

(refer to the Supplementary Material for details), where m1 and m2 are

the sample sizes of T1 and T2 for achieving the same asymptotic power
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3.3 Asymptotic relative efficiencies

under the contiguous alternative hypotheses γ = cm
−1/2
2 and γ = cm

−1/2
1 ,

respectively. Therefore, eP (T1, T2) > 1 indicates that T1 is asymptotically

more powerful than T2, and vice versa. Denote by TM , TA and TAC the

Wald test statistics corresponding to γ̂M , γ̂A and γ̂AC , respectively. Let

ρ = eα, which is related to the disease prevalence. We evaluate eP (TM , TA)

and eP (TM , TAC) in Theorem 1 and Theorem 2, respectively.

Theorem 1. The TM vs. TA Pitman ARE has the following asymptotic

representation:

eP (TM , TA) =

{
b1b2ρ

2 + 2b2ρ+ 1

b1b2ρ2 + (b1 + b2)ρ+ 1

}2

λ, (3.11)

where λ ≥ 1 is defined in (3.9) and b1 and b2 are defined below (3.6).

Theorem 1 gives an analytical form for eP (TM , TA), which allows us

to evaluate their AREs under different prevalence levels. In particular, we

have the following result in the rare disease situation.

Corollary 3. For rare disease (i.e., ρ → 0), the TM vs. TA Pitman ARE

has the following asymptotic expansion:

eP (TM , TA) = λ0 +O(ρ), (3.12)

where λ0 ≥ 1 with λ0 being defined in (3.10), and the equality holds if and

only X and D are independent (or equivalently β = 0).
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3.4 Constrained maximum method under prevalence misspecification

It is not surprising that AdjCon is generally more powerful than Adj

since the two methods are based on the same model but the former incor-

porates additional condition and constraint. Furthermore, as indicated in

Figure 1(C), AdjCon also appears to be more powerful than Mar. The

following theorem gives a theoretical justification.

Theorem 2. For rare disease (i.e., ρ → 0), the TM vs. TAC Pitman ARE

has the following asymptotic representation:

eP (TM , TAC) = 1 + τρ2 + o(ρ2), (3.13)

where

τ = −
(1− θ)θ(eβ − 1)2

[
(1 + 1/ν){(θ(eβ − 1) + 1)2 + eβν}+ 2(1 + (e2β − 1)θ)

]
{θ (eβ − 1) + 1}2

.

(3.14)

Remark: Clearly, τ ≤ 0. Furthermore, τ = 0 holds if and only if β = 0,

which is equivalent to X and D being independent.

3.4 Constrained maximum method under prevalence misspecifi-

cation

This section studies robustness of AdjCon against misspecification of dis-

ease prevalence. Numerical studies of Zhang et al. (2018) suggested that

AdjCon is not very sensitive to the misspecification. Before stating our
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3.4 Constrained maximum method under prevalence misspecification

theoretical result, we introduce some more notations and assumptions. Let

s = (β, γ, θ, π)T denote unknown model parameters. Note that the inter-

cept parameter α is determined by f and s according to (2.3). Denote

by lf (·) the log-likelihood function with given prevalence f . Let the true

prevalence be f0. Let s∗f denote the maximizer of Ef0{lf (s)}. Let ŝf de-

note the maximum likelihood estimator of sf with the disease prevalence

being specified to be f . Throughout this section, we assume that f is

bounded away from 1 (i.e., f ∈ (0, 1 − ϵ] for some ϵ > 0) and for all

(β∗, γ∗, θ∗, π∗) ∈ {s∗f : f ∈ (0, 1 − ϵ]}, β∗ and γ∗ are bounded away from

infinity and θ∗ and π∗ are bounded away from zero and one.

Theorem 3. For any specified prevalence f ∈ (0, 1 − ϵ], we have the fol-

lowing asymptotic properties:

√
n(ŝf − s∗f ) → N(0,Σf (s

∗
f )) in distribution, (3.15)

∥s∗f − s∗f0∥ ≤ C1|f − f0|, (3.16)

and

∥Σf (s
∗
f )− Σf0(s

∗
f0
)∥ ≤ C2|f − f0|, (3.17)

where ∥ · ∥ is the Euclidean norm, Σf (s
∗
f ) is the asymptotic covariance

matrix of ŝf evaluated at s∗f , and C1 and C2 are constants independent of

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



f .

Theorem 3 establishes the asymptotic normality of the maximum like-

lihood estimator with a possibly misspecified disease prevalence. Further-

more, the limiting value s∗f of the maximum likelihood estimator ŝf and the

corresponding asymptotic covariance matrix Σf (s
∗
f ) are Lipschitz continu-

ous with respect to f , indicating that the statistical inference is not very

sensitive to disease prevalence misspecification.

4. Simulation Studies

In this section, we conduct simulation studies to evaluate the finite sample

performance of Mar, Adj, and AdjCon. Our focus is to comparatively

evaluate the performance of these methods in hypothesis testing. Additional

results that further demonstrate the robustness of AdjCon in the context

of prevalence misspecification are presented in the Supplementary Material.

We evaluate the hypothesis test performance of the three considered

methods using simulation data. First, the covariate X and the exposure E

are generated from Bernoulli distributions with success probabilities θ = 0.5

and π = 0.5, respectively. Next, the disease status D is generated from

the logistic regression model (2.1) with β = 1.0, γ = 0 or 0.075, and

f = 0.01, 0.05, 0.10, . . . , 0.30. A large population of size 107 are generated
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for each disease prevalence, and n1++ = 10, 000 cases and n0++ = 10, 000

controls are randomly sampled from diseased individuals and non-diseased

individuals, respectively. Wald test statistics for AdjCon, Mar, and Adj

are calculated for each generated dataset, and type-I error rates (γ = 0)

and powers (γ = 0.075) under nomininal level 0.05 are obtained based on

100,000 simulation replicates.

As expected, all methods have well controlled type-I error rates (Fig-

ure 2(A)). As shown in Figure 2(B), the three methods have power trends

the same as those in Figure 1(C). That is, AdjCon is uniformly more pow-

erful than Mar and Adj, while Mar is more powerful than Adj for small

f and vice versa for large f .

We also conduct a sensitivity analysis with misspecified disease preva-

lence in AdjCon. It turns out that AdjCon is quite robust in the sense

that the type-I error rates can be well controlled and the powers are still sat-

isfying. We refer to Section S8 of the Supplementary Material for detailed

simulation description and results (Table S1 and Figure S1).

5. Real Data Analysis

In this section, we analyze a case-control dataset on high-density lipopro-

tein cholesterol (HDL-C) (Edmondson et al., 2011). Individuals with HDL-
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Figure 2: (A) Type-I error rates of Mar (dotted line), Adj (dashed line),

and AdjCon (solid line) for testing exposure-disease association (H0 : γ =

0) with γ = 0, β = 1, θ = π = 0.5, n0 = n1 = 10000; (B) Powers

of Mar (dotted line), Adj (dashed line), and AdjCon (solid line) for

testing exposure-disease association (H0 : γ = 0) with γ = 0.075, β = 1,

θ = π = 0.5, n0 = n1 = 10000.

C level above the 90th percentile are considered as cases and those below

the 30th percentile as controls. Of the 1231 subjects recruited from the

University of Pennsylvania Hospital, 625 are identified as cases and 606

as controls. We consider a single covariate by dichotomizing body mass

index (BMI) (1 = “BMI > 26”; 0 = “BMI ≤ 26). This study involves

64 single nucleotide polymorphisms (SNPs) across 13 candidate genetic re-
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gions (PCSK5, NR1H3, FADS1-2-3, MVK/MMAB, LCAT, APOE, PLTP,

GALNT2, LPL, ABCA1, LIPC, CETP, and LIPG), which have been pre-

viously reported to be associated with HDL-C levels (Edmondson et al.,

2011). We aim to examine the association between the HDL-C level and

these SNPs while adjusting for BMI.

Among the 64 SNPs, 41 are not significantly associated with BMI at

level 0.05 by Pearson χ2 tests (Table S2 in the Supplementary Material).

BMI is strongly associated with the HDL-C level (Polychoric correlation

coefficient = 0.65, p-value < 2 × 10−16), so that BMI can be regarded as

a non-confounding covariate for the association analysis between each of

the 41 SNPs and the HDL-C level. We apply AdjCon, Mar, and Adj to

test the association between each SNP and the HDL-C level by adjusting

for BMI. We fix the prevalence rate at 25% in the AdjCon method as in

Zhang et al. (2018). The resulting p-values are presented in Table S3 in the

Supplementary Material. An association is considered to be significant if

the corresponding Bonferroni corrected p-value is smaller than 0.05.

Table 1 shows all significant associations among the 41 SNPs. Evidently,

the p-values of AdjCon are uniformly smaller than those of Mar and Adj

except for one SNP, and AdjCon uniquely identify two significant SNPs.

These empirical results align with the theoretical results in Section 3.3.
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Table 1: Bonferroni adjusted p-values for SNP vs. HDL-C association tests

SNP Mar Adj AdjCon SNP Mar Adj AdjCon

rs3779788 0.039 0.020 0.015 rs256 0.111 0.041 0.031

rs263 0.008 0.002 0.001 rs264 0.105 0.040 0.034

rs328 0.056 0.057 0.032 rs12679834 0.087 0.074 0.045

rs3208305 0.017 0.025 0.016 rs13702 0.018 0.022 0.015

rs11076174 1.8E-3 2.8E-3 1.9E-3 rs11076176 5.6E-7 6.1E-8 5.2E-8

rs289714 5.3E-7 3.2E-8 3.0E-8

This table includes those SNPs significantly associated with the HDL-C level by at

least one method at level 0.05 after Bonferroni adjustment.

6. Discussion

Adjusting for independent risk factors in randomized clinical trials can help

improve estimation efficiency and test power in linear regression analyses

(Fisher, 1932; Kahan et al., 2014). In case-control studies, there is still

debate on whether independent covariates should be adjusted for in logistic

regression analyses. We theoretically explored three methods’s estimation

efficiency and power when both the covariate and exposure of interest are

binary. Our results can be summarized as follows. First, the estimated

odds ratio of the exposure effect with the independent covariate ignored
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(γ̂M) is smaller than that of the covariate-adjusted estimate (γ̂A). This

provided theoretical justification for the empirical observations in the lit-

erature (Stringer et al., 2011). Second, the variance of γ̂M is smaller than

that of γ̂A. This extended results in Pirinen et al. (2012) for rare outcome.

Third, the variance of the estimated odds ratio for the covariate-adjusted

exposure effect lies between those of Mar and Adj if the covariate-exposure

independence is explicitly accommodated in the maximum likelihood esti-

mation (AdjCon). AdjCon is always more powerful than both Mar and

Adj, Mar is more powerful than Adj at low outcome prevalence, and Adj

is more powerful than Mar when the outcome prevalence is close to 0.5.

Last, we show the statistical inference for the AdjCon method is not sensi-

tive to the outcome prevalence misspecification. These results theoretically

confirm the empirical findings in Zhang et al. (2018).

The main results provide us with useful guidance for choosing appropri-

ate approaches in case-control studies. In particular, we suggest using the

constrained maximum likelihood method if the computational burden is not

an issue. The marginal approach is preferred if the outcome prevalence is

small, especially when one is interested in screening variables among a large

number of potential risk factors (e.g., in genomewide association analysis

studies).
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Our theoretical results are developed in a simple situation where the

exposures of interest and the covariate are both binary. Further work is

warranted to extend the current results to more general situations. For

example, the exposure and covariate can be categorical or even continuous,

there could be multiple independent covariates, and the sampling of cases

and controls could be stratified. The three methods considered here can

be extended to allow for link functions other than the logit link function.

In Section S10 of the Supplementary Material, we conduct a simulation

study for the probit link function and find that the corresponding results

are similar to those under the logit link function.

There are some works related to ours in the literature. Methods have

been developed to exploit gene-environment independence and prevalence

information in the analysis of case-control data (Piegorsch et al., 1994; Chat-

terjee and Carroll, 2005; Mukherjee and Chatterjee, 2008; Chen and Chen,

2011; Clayton, 2012; Qin et al., 2014), to improve estimation efficiency and

test power. Piegorsch et al. (1994) observed an improved efficiency for es-

timating gene-environment interaction effects using case-control data when

the gene and environmental risk factors were independent in the popula-

tion and the outcome was rare. Chatterjee and Carroll (2005) extended

this method to incorporate covariates and allowed for a stratified sampling
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in the context of logistic regression models. Mukherjee and Chatterjee

(2008) developed an empirical Bayes shrinkage method to relax the gene-

environment independence assumption required in Chatterjee and Carroll

(2005). Chen and Chen (2011) observed that no power improvement can be

achieved by incorporating gene-environment independence if both gene and

environmental factors are dichotomous. Qin et al. (2014) developed a rig-

orous statistical procedure to utilize covariate-specific outcome prevalence

in the context of an exponential tilt model. The improvement in statistical

efficiency of the method AdjCon is similar in spirit to these methods.

Supplementary Material

Detailed proofs of all theorems and lemmas, as well as definitions not in-

cluded in the main paper due to space limitations, are available in the

Supplementary Material accessible online at Statistica Sinica.
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