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STATISTICAL INFERENCE FOR ULTRAHIGH DIMENSIONAL

LOCATION PARAMETER BASED ON SPATIAL MEDIAN

Guanghui Cheng, Liuhua Peng and Changliang Zou

Guangzhou University, The University of Melbourne, Nankai University

Abstract: Motivated by the widely used geometric median-of-means estimator in machine learning,

this paper studies statistical inference for ultrahigh dimensionality location parameter based on the

sample spatial median under a general multivariate model, including simultaneous confidence intervals

construction, global tests, and multiple testing with false discovery rate control. To achieve these goals,

we derive a novel Bahadur representation of the sample spatial median with a maximum-norm bound

on the remainder term, and establish Gaussian approximation for the sample spatial median over the

class of hyperrectangles. In addition, a multiplier bootstrap algorithm is proposed to approximate the

distribution of the sample spatial median. The approximations are valid when the dimension diverges

at an exponentially rate of the sample size, which facilitates the application of the spatial median in

the ultrahigh dimensional region. The proposed approaches are further illustrated by simulations and

analysis of a genomic dataset from a microarray study.

Key words and phrases: Bootstrap approximation, Gaussian approximation, High-dimensional, Spatial

median, FDR control

1. Introduction

Geometric median-of-means (GMOM) has been widely used for robust estimation of mul-

tivariate means, and it has been broadly adopted in machine learning (Minsker, 2015; Hsu

and Sabato, 2016; Prasad et al., 2020). The idea of GMOM is to first divide the data into
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disjoint subsamples and calculate the empirical means of each of the subsamples. Then

the GMOM estimator is computed as the spatial median (also called geometric median) of

the obtained empirical means. The previous studies on the GMOM focused on establishing

its non-asymptotic error bounds under certain heavy-tailed assumptions. Its distributional

properties, which are essential for statistical inference, remain unknown.

High-dimensional data with the dimension increases to infinity as the number of ob-

servations goes to infinity have been encountered in many scientific disciplines. There is

a growing evidence of the multivariate normal distribution is problematic to model high-

dimensional data due to the presents of heavy-tailedness and inadequate to accommodate

tail dependence. For example, the distributions of the microarray expression are observed to

be non-normal and have heavy tails even after log transformation in many gene expression

data (Purdom and Holmes, 2005; Wang et al., 2015). As another example, elliptical dis-

tributions, in particular the multivariate t-distribution and symmetric multivariate normal

inverse Gaussian distribution, provided far superior models to the multivariate normal for

daily and weekly US stock-return data (McNeil et al., 2005). In such cases, the sample spa-

tial median is favored against the sample mean for estimating the location parameter. The

above discussions strongly motivate studying the spatial median under high-dimensionality,

especially its distributional properties and the implementation in statistical inference for

high-dimensional location parameter.

Let X1, . . . , Xn be independent and identically distributed (i.i.d.) p-dimensional ran-

dom vectors from a population X with cumulative distribution function FX in Rp. In this

paper, we work on a general multivariate model where X admits the following stochastic
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representation:

X = θ + νΓU , (1.1)

where θ is the location parameter, ν is a nonnegative univariate random variable and U

is a p-dimensional random vector with independent components. Model (1.1) covers many

commonly used multivariate models and distribution families, including the independent

components model (Yao et al., 2015) and the elliptical distribution family (Fang et al.,

1990). We refer to Section 2 for more detailed discussions.

Spatial median, an extension of the univariate median to multivariate distributions,

was proposed for robust inference of the location parameter (Haldane, 1948; Weber, 1929).

The sample spatial median θ̂n ∈ Rp minimizes the empirical criteria function Ln(β) =∑n
i=1(‖Xi − β‖ − ‖Xi‖), where ‖ · ‖ is the Euclidean norm. Equivalently,

θ̂n = argmin
β∈Rp

Ln(β) = argmin
β∈Rp

n∑
i=1

(‖Xi − β‖ − ‖Xi‖) . (1.2)

The function Ln(β) is convex, and θ̂n is unique if {Xi}ni=1 are not concentrated on a line in

Rp when p > 2 (Milasevic and Ducharme, 1987). When p is fixed, the spatial median has

been well studied in the literature. We refer to Chapter 6.2 of Oja (2010) for a nice review.

In the high-dimensional setting, where the dimension p diverges to infinity as n → ∞,

there are several existing works that study the asymptotic properties of the sample spatial

median. Zou et al. (2014) offered an expansion of θ̂n under elliptical distributions with

identical shape matrix, and Cheng et al. (2019) extended the result to a general shape

matrix. As a recent work, Li and Xu (2022) improved the expansion in Cheng et al. (2019)
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with a smaller order remainder term under stronger conditions, and established a central limit

theorem for the squared Euclidean distance ‖θ̂n−θ‖2. In Zou et al. (2014) and Cheng et al.

(2019), they both require that p = O(n2). In addition, it is required in Li and Xu (2022) that

p diverges at the same rate as n. However, in modern areas such as genomics and proteomics,

the dimension of the data may grow exponentially with the sample size, which lies in the

“ultrahigh dimensional” region (Fan and Lv, 2008). The previous works with restrictions

on the polynomial dimensionality limit the usage of the spatial median under ultrahigh-

dimensionality. Moreover, the previous results are all under elliptical distributions. Thus, it

is of great importance to establish asymptotic properties of the spatial median and investigate

its applications under ultrahigh dimensionality and beyond elliptical distributions.

In this paper, we first establish Gaussian and bootstrap approximations hit hyperrectan-

gles for the sample spatial median under the general model (1.1) beyond elliptical distribu-

tions, which are valid when the dimension diverges exponentially with the sample size. They

serve as the theoretical foundations of statistical inference for the location parameter based

on the sample spatial median under ultrahigh dimensionality. Consistent simultaneous con-

fidence intervals (SCIs) and global tests for the location parameters are established. We also

study multiple testing for every component of θ based on θ̂n. Motivated by simultaneous in-

ference of θ, we define a high-dimensional asymptotic relative efficiency of the sample spatial

median relative to the sample mean. Most importantly, our theoretical results guarantee the

validity of the proposed inferential methods for exponentially divergent p. The advantages

of our proposed approaches have been justified by simulations and a real data analysis.

The main contributions of this paper are summarized as follow. Firstly, we establish SCIs

for the location parameter θ based on the sample spatial median θ̂n, which is new in the
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literature. The consistency of bootstrap approximation guarantees that the probability that

the SCIs cover all components of the location parameter approaches the nominal confidence

level under ultrahigh dimensionality. We also propose a novel test for ultrahigh dimensional

location parameter based on the maximum-norm of the sample spatial median. The proposed

test not only maintains nominal significance level asymptotically for exponentially divergent

p, but also is more powerful under sparse alternatives compared to those based on L2-norms

(Li and Xu, 2022; Wang et al., 2015). As another major inference, we study multiple testing

for every component of the location parameter, and the false discovery rate (FDR) can

be well controlled combined with the Benjamini-Hochberg procedure based on the sample

spatial median, which extends the existing methods based on the sample mean (Liu and

Shao, 2014). In all inferential methods, the procedures based on the sample spatial median

advances those based on the sample mean for heavy-tailed distributions.

Secondly, this paper serves as the first work that provides Gaussian and bootstrap ap-

proximations for the sample spatial median under ultrahigh dimensionality. Gaussian and

bootstrap approximations for high-dimensional sample mean have received extensive at-

traction in the last decade. Chernozhukov et al. (2013) and Chernozhukov et al. (2017)

established Gaussian and bootstrap approximations for the maxima of a sum of centered in-

dependent random vectors under Kolmogorov distance and on hyperrectangles, respectively.

See also Chen (2018), Chernozhukov et al. (2019) and Chernozhukov et al. (2020) for re-

lated works. Compared to the sample mean, which has a simple linear form, the theoretical

difficulty for the sample spatial median lies in that it does not enjoy an explicit form. This

issue is addressed by deriving a novel Bahadur representation of the sample spatial median

with a maximum-norm bound on the remainder term, which extends the results of Zou et al.
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(2014), Cheng et al. (2019) and Li and Xu (2022) under elliptical distributions and polyno-

mial dimensionality. Moreover, our results can be applied to the GMOM under reasonable

conditions, and thus enhance the practice usage of GMOM.

Thirdly, we propose a novel multiplier bootstrap method for the sample spatial median.

Instead of multiplying on the loss function, which is generally the case for M-estimator

(Imaizumi and Otsu, 2021), the multiplier is applied on the centralized Xi. Specifically,

the bootstrap version of θ̂n is defined as θ̃n = argminβ∈Rd
∑n

i=1 ‖Zi(Xi − θ̂n) − β‖, where

Z1, . . . , Zn are the multipliers. The multiplier bootstrap is consistent under ultrahigh di-

mensionality thanks to this novel formulation. This is, however, different from the multiplier

bootstrap method for the sample mean, which again has an explicit form (Chernozhukov

et al., 2013, 2017).

The rest of the paper is organized as follows. Section 2 introduces model and assump-

tions. Section 3 establishes Gaussian and bootstrap approximations to the distribution of

the sample spatial median. Statistical inference for the location parameter based on the

sample spatial median is presented in Section 4. Section 5 reports numerical results includ-

ing simulations and a real data analysis. Preliminary lemmas, proofs of main results, and

additional simulations are given in the supplementary material.

Notation: Denote |x|∞ = max(|x1|, . . . , |xd|) as the maximum-norm of x = (x1, . . . , xd)
>.

Denote an . bn if an ≤ Cbn for a positive constant C, and an � bn means an . bn and

bn . an. For α > 0, let ψα(x) = exp(xα)− 1 be a function defined on [0,∞). Then the Or-

licz norm ‖·‖ψα of a random variableX is defined as ‖X‖ψα = inf {t > 0,E{ψα (|X|/t)} ≤ 1} .

We use tr(·) to denote the trace operator for square matrices. Moreover, we denote Ip as the

p× p identity matrix. For a, b ∈ R, we write a ∧ b = min(a, b).
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2. Model and assumptions

In this paper, we consider a general multivariate model for the distribution FX such that Xi

admits the following stochastic representation:

Xi = θ + νiΓUi , (2.1)

where θ is the location parameter, Γ is a nonrandom and invertible p × p matrix, Ui is a

p-dimensional random vector with independent standardized components, and νi is a non-

negative univariate random variable independent with the spatial sign of Ui. The distribution

of Xi depends on Γ through the shape matrix Ω = ΓΓ>.

Remark 1. Model (2.1) covers many commonly used multivariate models and distribu-

tion families. First, the independent components model (Yao et al., 2015) follows (2.1)

with νi being a nonnegative constant. Second, model (2.1) also includes elliptical distribu-

tions by choosing Ui ∼ N(0, Ip) and νi = ξi/‖Ui‖ for some nonnegative random variable

ξi independent of Ui. In this case, νi is independent of the spatial sign of Ui, but not Ui.

The independent components model has received great extension in high-dimensional data

analysis as well as signal processing and machine learning (Oja, 2010). In addition, the

elliptical distribution family covers many non-Gaussian distributions such as multivariate

t-distribution, multivariate logistic distribution, and so on. It is commonly adopted in the

literature on studying the sample spatial median (Cheng et al., 2019; Li and Xu, 2022; Zou

et al., 2014). In terms of the GMOM, if the data are from the independent components

model, the subsample means satisfy model (2.1) clearly. In addition, some subfamilies of el-

liptical distributions are closed under convolution, and thus the subsample means also follow
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model (2.1). Our results can be applied to the GMOM estimator directly in those cases.

For i = 1, . . . , n, denote

Wi = S(Xi − θ) and Ri = ‖Xi − θ‖ (2.2)

as the spatial-sign and radius of Xi−θ, where S(X) = ‖X‖−1XI(X 6= 0) is the multivariate

sign function with I(·) being the indicator function. Thus, θ̂n satisfies
∑n

i=1 S(Xi− θ̂n) = 0 .

Denote Ui = (Ui,1, . . . , Ui,p)
>, we impose the following three conditions.

Condition C1. Ui,1, . . . , Ui,p are i.i.d. symmetric random variables with E(Ui,j) = 0, E(U2
i,j) =

1, and ‖Ui,j‖ψα ≤ c0 with some constant c0 > 0 and 1 ≤ α ≤ 2.

Condition C2. The moments ζk = E(R−ki ) for k = 1, 2, 3, 4 exist for large enough p. In

addition, there exist two positive constants b and B̄ such that b ≤ lim supp E(Ri/
√
p)−k ≤ B̄

for k = 1, 2, 3, 4.

Condition C3. The shape matrix Ω = (ωj`)p×p satisfies tr(Ω) = p and it belongs to the

following class:

U(a0(p),m, M̄) =

{
Ω : m ≤ ωjj ≤ M̄,

p∑
`=1

|ωj`| ≤ a0(p), for all j = 1, . . . , p

}
,

where m ≤ M̄ are bounded positive constants.

Remark 2. In Condition C1, the symmetric assumption is to ensure that θ in model (2.1)

coincides with the population spatial median, which minimizes L(β) = E(‖X − β‖ − ‖X‖).

It is obvious that Condition C1 is satisfied by elliptical distributions with Ui ∼ N(0, Ip).

The condition ‖Ui,j‖ψα ≤ c0 implies that Ui,j has a sub-exponential distribution. It is worth
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highlighting that with slight modification of the proofs of main theorems, the i.i.d. condition

on Ui,1, . . . , Ui,p can be weaken by replacing Condition C1 with the following assumption:

Ui,1, . . . , Ui,p are independent symmetric random variables with E(Ui,j) = 0, E(U2
i,j) = 1 for

all j = 1, . . . , p, and sup1≤j≤p ‖Ui,j‖ψα ≤ c0 with some constant c0 > 0 and 1 ≤ α ≤ 2.

Remark 3. The condition b ≤ lim supp E(Ri/
√
p)−k ≤ B̄ indicates that ζk � p−k/2 for

k = 1, 2, 3, 4. It is introduced to avoid Xi from concentrating too much near θ. For elliptical

distributions, it is a generalization of Assumption 1 of Zou et al. (2014), which is satisfied

by many common distributions. For the independent components model, Condition C2 is

equivalent to that b ≤ lim supp E(‖ΓUi‖/
√
p)−k ≤ B̄ . According to Lemma A2 in Appendix

A, E(‖ΓUi‖k) = pk/2{1+o(1)} for k = 1, 2, 3, 4. Then the Cauchy-Schwarz inequality implies

that E(‖ΓUi‖−k) ≥ {E(‖ΓUi‖k)}−1 = p−k/2{1 + o(1)} , from which E(‖ΓUi‖−k) & p−k/2.

Furthermore, denote Γj as the jth row of Γ, by the inequality of harmonic and quadratic

means,

p2‖ΓUi‖−4 =

{
p

(Γ1Ui)2 + · · ·+ (ΓpUi)2

}
≤ (Γ1Ui)

−4 + · · ·+ (ΓpUi)
−4

p
.

It follows that E(‖ΓUi‖−4) . p−2 if E{(Γ1Ui)
−4}, . . . ,E{(ΓpUi)−4} are uniformly bounded,

and from which E(‖ΓUi‖−k) . p−k/2 by Jensen’s inequality. Thus, Condition C2 is satisfied

by the independent components models as long as Γ1Ui, . . . ,ΓpUi are not concentrating too

much near 0. See also discussions in Cardot et al. (2013) on similar conditions.

Remark 4. It is noticed that the shape matrix Ω is only well defined up to a scalar multiple,

the condition tr(Ω) = p is used to regularize Ω to make model (2.1) identifiable. The

class U(a0(p),m, M̄) covers a wide range of symmetric square matrices, and it is commonly
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adopted in the literature on high-dimensional analysis. For example, a similar matrix class

is introduced in Bickel and Levina (2008). The condition m ≤ ωjj ≤ M̄ requires bounded

diagonal elements. The order of a0(p), which will be specified later, controls the orders of

the off-diagonal elements of Ω.

3. Gaussian and bootstrap approximations

3.1 Bahadur representation and Gaussian approximation

In this section, we establish Gaussian approximation for θ̂n, which is valid when p diverges

exponentially over n. The following lemma offers a Bahadur representation of θ̂n, and it

severs as the foundation of the Gaussian approximation result in Theorem 1.

Lemma 1. (Bahadur representation) Assume Conditions C1, C2 and C3 with a0(p) � p1−δ

for some positive constant δ ≤ 1/2 hold. If log p = o(n1/3) and log n = o(p1/3∧δ), then

n1/2(θ̂n − θ) = n−1/2ζ−11

n∑
i=1

Wi + Cn ,

where |Cn|∞ = Op{n−1/4 log1/2(np) + p−(1/6∧δ/2) log1/2(np)}.

Remark 5. To the best of our knowledge, Lemma 1 firstly offers the Bahadur representation

of the sample spatial median with a maximum-norm bound on the remainder term. In Zou

et al. (2014) and Cheng et al. (2019), the same expansion with the remainder term Cn satisfies

‖Cn‖ = op(ζ
−1
1 ) was obtained, and their result was improved to ‖Cn‖ = op(1) in Li and Xu

(2022), by replacing ζ1 with n−1
∑n

i=1R
−1
i in the linear term, but under a more restricted

condition that p and n are of the same order. It is worth noticing that the previous results

(Li and Xu, 2022; Zou et al., 2014) are derived under elliptical distributions with a bounded
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3.1 Bahadur representation and Gaussian approximation

spectral norm for the shape matrix. In this paper, we first extend the model to (2.1), which

covers the elliptical distribution as a special case. Second, we weaken the condition on the

shape matrix by controlling the sparsity of its L1 norm. More specifically, when the shape

matrix Ω has a bounded spectral norm, it follows immediately that ‖Ω‖1 = O(
√
p) with the

fact ‖Ω‖1 ≤
√
p‖Ω‖2, and thus Condition C3 is satisfied with a0(p) �

√
p.

Let Are = {
∏p

j=1[aj, bj] : −∞ ≤ aj ≤ bj ≤ ∞, j = 1, . . . , p} be the class of rectangles in

Rp. With Lemma 1 on hand, we establish the following Gaussian approximation result for

θ̂n over hyperrectangles.

Theorem 1. (Gaussian approximation) Assume Conditions C1, C2 and C3 with a0(p) �

p1−δ for some positive constant δ ≤ 1/2 hold. If log p = o(n1/5) and log n = o(p1/3∧δ), then

ρn(Are) = sup
A∈Are

∣∣∣P{n1/2(θ̂n − θ) ∈ A} − P (G ∈ A)
∣∣∣→ 0

as n→∞, where G ∼ N(0, ζ−21 B) with B = E(W1W
>
1 ).

Remark 6. The Gaussian approximation for θ̂n indicates that the probabilities P{n1/2(θ̂n−

θ) ∈ A} can be approximated by that of a centered Gaussian random vector with covariance

matrix ζ−21 B for hyperrectangles A ∈ Are. The condition of log p = o(n1/5), commonly

adopted in Gaussian approximation for independent partial sums (Chernozhukov et al., 2013,

2017), allows for the dimension p divergence exponentially with the sample size n and thus

is in line with the ultrahigh dimensional case. The condition of log(n) = o(p1/3∧δ) restricts

n to be diverging too fast compared to p, which is still in line with the high-dimensional

scenario. It is worth mentioning that this condition can be satisfied for a broad range of n

and p, especially under the high-dimensional case. For example, log(n) = o(p1/3∧δ) is true
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3.1 Bahadur representation and Gaussian approximation

when p/n→ γ for some constant γ > 0 (assumed in Li and Xu (2022)) or p/n→∞. Thus,

the Gaussian approximation result in Theorem 1 requires much weaker restrictions on the

rates of n and p compared to the asymptotic normality of ‖θ̂n − θ‖2.

Let Bj` be the (j, `)th element of B. According to Lemma A4 (iii) in Appendix A,

ζ−21 Bj` = ζ−21 p−1ωj,` + O(p−δ/2) for all 1 ≤ j, ` ≤ p. Thus, the covariance matrix of G in

Theorem 1 is asymptotically proportional to the shape matrix Ω.

Remark 7. As the sample spatial median is a special M-estimator, Gaussian approximation

for M-estimator in Imaizumi and Otsu (2021) is potentially applicable to the spatial median

under high-dimensionality. However, it is worth highlighting that the results in Imaizumi

and Otsu (2021) cannot be applied to our framework. To be precise, Assumption 1 (A3) in

Imaizumi and Otsu (2021) assumes that there exist constants C > 0 and α ∈ (0, 2) such

that logN (ε,Θ, ‖ · ‖) ≤ Cε−α holds for all ε ∈ (0, 1), where Θ is the parameter space, and

N (ε,Θ, ‖ · ‖) is the ε-covering number of Θ under the Euclidean norm ‖ · ‖ (van der Vaart

and Wellner, 1996). When Θ is a compact subset of Rp, N (ε,Θ, ‖ · ‖) is of order O(ε−p). In

this case, logN (ε,Θ, ‖ · ‖) ≤ Cε−α cannot be satisfied when p → ∞. Thus, our theoretical

findings are independent of those in Imaizumi and Otsu (2021).

Theorem 1 immediately implies the following corollary since the Kolmogorov distance of

sup-norm is a subset of Are corresponding to max-hyperrectangles in Rp.

Corollary 1. Under the conditions assumed in Theorem 1, as n→∞,

ρn = sup
t∈R

∣∣∣P(n1/2|θ̂n − θ|∞ ≤ t)− P(|G|∞ ≤ t)
∣∣∣→ 0.
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3.2 Multiplier bootstrap approximation

3.2 Multiplier bootstrap approximation

Theorem 1 allows us to approximate the distribution of n1/2(θ̂n − θ) by that of G hit

hyperrectangles, where G ∼ N(0, ζ−21 B). However, it cannot be used directly in statistical

inference for θ as the quantity ζ1 and the matrix B depend on the underlying distribution FX

and are thus unknown. Estimating the matrix B is challenging under high-dimensionality and

the resampling with replacement approach often exhibits poor finite-sample performance and

lacks theoretical justification for the spatial median. Furthermore, the multiplier bootstrap

method in Chernozhukov et al. (2019, 2020), developed for the sample mean, cannot be

easily adapted to the spatial median due to the latter does not enjoy a simple average form.

To solve this issue, we propose an easy-to-implement bootstrap method to approximate the

distribution of n1/2(θ̂n − θ).

Recall that the sample spatial median of X1, . . . , Xn is θ̂n = argminβ∈Rp Ln(β) =

argminβ∈Rp
∑n

i=1(‖Xi−β‖−‖Xi‖). Now, consider the sequence Z1(X1−θ̂n), . . . , Zn(Xn−θ̂n),

where Z1, . . . , Zn are i.i.d. random variables independent ofX1, . . . , Xn. As E
{

Z1(X1−θ̂n)
‖Z1(X1−θ̂n)‖

}
=

E
(
Z1

|Z1|

)
E
(

X1−θ̂n
‖X1−θ̂n‖

)
, the population spatial median of Z1(X1 − θ̂n), . . . , Zn(Xn − θ̂n) is 0

if E(Z1/|Z1|) = 0, which holds for any symmetric random variable. Thus, we propose the

bootstrap version of the sample spatial median as

θ̃n = argmin
β∈Rp

n∑
i=1

‖Zi(Xi − θ̂n)− β‖ . (3.1)

Then, the distribution of n1/2θ̃n conditional on X1, . . . , Xn is used to approximate that of

n1/2(θ̂n − θ). This algorithm is called the multiplier bootstrap, and Z1, . . . , Zn are the

multiplier weights.
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3.2 Multiplier bootstrap approximation

To ensure that the asymptotic distribution of n1/2θ̃n mimics that of n1/2(θ̂n − θ), the

multiplier weights Z1, . . . , Zn should be chosen such that the gradient and Hessian matrix of

the loss function L
(B)
n (β) =

∑n
i=1 ‖Zi(Xi− θ̂n)−β‖ at β = 0, given by

∑n
i=1

Zi(Xi−θ̂n)
‖Zi(Xi−θ̂n)‖

and∑n
i=1

1

‖Zi(Xi−θ̂n)‖

[
Ip − {Zi(Xi−θ̂n)}{Zi(Xi−θ̂n)}

>

‖Zi(Xi−θ̂n)‖2

]
, approximate those of Ln(β) =

∑n
i=1(‖Xi −

β‖−‖Xi‖) at β = θ, which are
∑n

i=1
Xi−θ
‖Xi−θ‖ and

∑n
i=1

1
‖Xi−θ‖

{
Ip − (Xi−θ)(Xi−θ)>

‖Xi−θ‖2

}
. In view of

this, Rademacher variables (Chernozhukov et al., 2019), with P(Zi = 1) = P(Zi = −1) = 1/2

for i = 1, . . . , n, offers a natural choice for the multiplier bootstrap method, ensuring that

the bootstrap version of the sample spatial median θ̃n has the same asymptotic distribution

as θ̂n− θ. Additionally, it is fast and easy to implement. Although other multiplier weights

might be applicable, investigating alternatives is beyond the scope of this paper.

The next theorem shows the validity of the multiplier bootstrap.

Theorem 2. (Bootstrap approximation) Under the conditions assumed in Theorem 1,

ρMB
n (Are) = sup

A∈Are

∣∣∣P{n1/2(θ̂n − θ) ∈ A} − P∗(n1/2θ̃n ∈ A)
∣∣∣→ 0

in probability as n→∞, where P∗ denotes the conditional probability given X1, . . . , Xn.

Under the same conditions on the divergence rates of n and p as in Theorem 1, Theorem

2 validates that conditional on X1, . . . , Xn, the distribution of the bootstrap sample spatial

median θ̃n approximates that of θ̂n consistently over hyperrectangles.

Remark 8. The proof of Theorem 2 is nontrivial and does not follow directly from ex-

isting results since θ̃n has no explicit form, which is different from the multiplier boot-

strap methods for high-dimensional sample mean that have been analysed in the liter-

ature. The key step in the proof is to obtain a Bahadur representation of θ̃n similar
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as θ̂n in Lemma 1. Specifically, we show that n1/2θ̃n = n−1/2ζ−11

∑n
i=1 ZiWi + C̃n with

|C̃n|∞ = Op{n−1/4 log1/2(np) + p−(1/6∧δ/2) log1/2(np)} in Lemma A5 in Appendix A.

The next corollary is an immediate consequence of Theorem 2.

Corollary 2. Under the conditions assumed in Theorem 2, as n→∞,

ρMB
n = sup

t∈R

∣∣∣P{n1/2|θ̂n − θ|∞ ≤ t} − P∗(n1/2|θ̃n|∞ ≤ t)
∣∣∣→ 0 in probability.

4. Statistical inference

The Gaussian and multiplier bootstrap approximations for the sample spatial median enable

many statistical inferential methods for ultrahigh dimensional population location parame-

ter. In this section, we present the following statistical inferences: simultaneous confidence

intervals (SCIs) and global tests for the population location parameter, multiple testing for

every component of θ, and high-dimensional relative efficiency of the sample spatial median

compared to the sample mean.

4.1 Simultaneous confidence intervals

We are interested in building SCIs for all components of θ = (θ1, . . . , θp)
>. Corollary 2

motivates the following way of constructing SCIs for θ. Given a nominal confidence level

1− τ , define the set Cτ as

Cτ =
{
θ ∈ Rp, n1/2|θ̂n − θ|∞ < qB1−τ

}
,

15
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4.1 Simultaneous confidence intervals

where qB1−τ is the (1−τ)th quantile of n1/2|θ̃n|∞ givenX1, . . . , Xn. Denote θ̂n = (θ̂n,1, . . . , θ̂n,p)
>,

the confidence intervals are [θ−n,j, θ
+
n,j] for j = 1, . . . , p, where

θ−n,j = θ̂n,j − n−1/2qB1−τ and θ+n,j = θ̂n,j + n−1/2qB1−τ .

The next theorem shows that Cτ preserves the nominal simultaneous confidence level 1− τ

asymptotically under ultrahigh dimensionality.

Theorem 3. Suppose the conditions of Theorem 2 hold, then P(θ ∈ Cτ )→ 1− τ as n→∞.

Equivalently, P(θj ∈ [θ−n,j, θ
+
n,j] for all 1 ≤ j ≤ p)→ 1− τ as n→∞.

Remark 9. Unlike the fixed dimensional setting, n1/2|θ̃n|∞ and n1/2|θ̂n − θ|∞ are maxima

of divergent numbers of variables, and their quantiles are generally divergent as p → ∞.

Thus, Theorem 3 is not a direct consequence of Corollary 2. To ascertain the consistency

of Cτ theoretically, we show that, with probability approaching one, qB1−τ is bounded by two

quantiles of n1/2|θ̂n−θ|∞ with quantile levels close enough to 1−τ using an anti-concentration

inequality for divergent random sequences.

Remark 10. The Gaussian approximation for the sample mean X̄n = n−1
∑n

i=1Xi (Cher-

nozhukov et al., 2013, 2017, 2019) indicate that if log p = o(n1/5),

sup
t∈R

∣∣P(n1/2|X̄n − θ|∞ ≤ t)− P(|G0|∞ ≤ t)
∣∣→ 0 (4.1)

as n→∞ under some moderate conditions, where G0 ∼ N(0,Σ) with Σ = E(XX>). Define

X∗i = Zi(Xi − X̄n) for i = 1, . . . , n, where Z1, . . . , Zn are the Rademacher weights. Denote
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4.2 Global tests for high-dimensional location parameters

X̄∗n = n−1
∑n

i=1X
∗
i , it has been shown in Chernozhukov et al. (2019) that

supt∈R
∣∣P(n1/2|X̄n − θ|∞ ≤ t)− P∗(n1/2|X̄∗n|∞ ≤ t)

∣∣→ 0 (4.2)

in probability as n→∞ when log p = o(n1/5). Based on (4.2), define

C ′τ =
{
θ ∈ Rp, n1/2|X̄n − θ|∞ < qB′1−τ

}
,

where qB′1−τ is the (1− τ)th quantile of n1/2|X̄∗n|∞ conditional on X1, . . . , Xn. Then C ′τ is also

an asymptotic 1 − τ SCIs for θ. Based on the discussion in Section 4.4, Cτ has advantage

(relative shorter intervals) over C ′τ under heavy-tailed distributions. We refer to Section 5.1

for finite-sample justifications on this.

4.2 Global tests for high-dimensional location parameters

In this section, we propose a novel approach for global tests on high-dimensional location

parameters. Let θ0 be a known p-dimensional vector, we are interested in testing

H0 : θ = θ0 versus H1 : θ 6= θ0. (4.3)

Theorems 1 and 2 motivate us proposing a maximum-norm type test statistic. Define

Tn = n1/2|θ̂n − θ0|∞ (4.4)

as the test statistic, and H0 is rejected when Tn is larger than a critical value. We can

use the multiplier bootstrap to approximate the distribution of Tn under H0. Specifically,
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4.2 Global tests for high-dimensional location parameters

with a nominal significance level τ , the null hypothesis is rejected if Tn > qB1−τ . Theorem

3 guarantees that the test based on Tn maintains nominal significance level asymptotically

under ultrahigh dimensionality, that is, P(Tn > qB1−τ | H0) → τ as n → ∞ when log p =

o(n1/5).

Remark 11. An alternative test for (4.3) can be constructed based on X̄n by defining the test

statistic as TMean = n1/2|X̄n − θ0|∞. Then, the null hypothesis is rejected if TMean > qB′1−τ .

The test based on Tn can be deemed as a nonparametric extension of the test based on

TMean . As θ̂n is more efficient than X̄n for simultaneous inference of θ under heavy-tailed

distributions as discussed in Section 4.4, we expect that the proposed test based on Tn is

more powerful than that based on TMean in those cases. This has been reflected by the

simulation results in Appendix D of the supplementary material.

The next theorem summarises the asymptotic power of the proposed test based on Tn.

Theorem 4. Suppose the conditions of Theorem 2 hold, where log p = o(n1/5) and log n =

o(p1/3∧δ). For any given 0 < τ < 1, if |θ − θ0|∞ ≥ Cn−1/2 log1/2(np) for some sufficient

large constant C > 0, then P(Tn > qB1−τ | H1)→ 1 as n, p→∞.

Theorem 4 indicates that the test based on Tn possesses non-trivial power when the

order of |θ̂n − θ0|∞ is at least n−1/2 log1/2(np) for a fixed significant level τ . The constant

C is introduced to ensure that the signal term |θ̂n − θ0|∞ is large enough to achieve the

non-trivial power. According to the proof of Theorem 4 in the supplementary materials, the

test is consistent as long as the universal constant C is larger than 4B̄M̄ , where B̄ and M̄

are defined in Conditions C2 and C3, respectively.

Remark 12. Wang et al. (2015) proposed a L2-norm type test (WPL test) for (4.3) with

θ0 = 0 based on TWPL =
∑n

i=1

∑i−1
j=1W

>
i Wi. It has been argued in Wang et al. (2015) and
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4.3 Multiple testing with FDR control in large-scale tests

Li and Xu (2022) that the signal of the WPL test is determined by the magnitude of ‖θ‖,

the L2-norm of θ. As a contrast, the power of the test based on Tn depends on |θ|∞. Thus,

the proposed test based on Tn is expected to be more powerful under sparse alternatives,

when θ contains only a limited number of non-zero components and its maximum element

has certain order of magnitude. In such cases, ‖θ‖ is not big enough for the rejection of the

WPL test. See Appendix D in the supplementary material and Section 5.3 for numerical

justifications.

4.3 Multiple testing with FDR control in large-scale tests

Multiple testing with false discovery rate (FDR) control has been applied to many real

problems, such as detecting differentially expressed genes in genomic study. In this section,

we study multiple testing for every component of θ based on the spatial median with the

Benjamini and Hochberg (B-H) method for FDR control. For j = 1, . . . , p, we are interested

in testing

H0j : θj = θ0,j versus H1j : θj 6= θ0,j

simultaneously, where θ0,1, . . . , θ0,p are given values. Define the test statistics as

Tn,j = n1/2(θ̂n,j − θ0,j)/sn,j

for j = 1, . . . , p, where s2n,j = ζ̂−21 B̂jj with ζ̂1 = n−1
∑n

i=1 ‖Xi − θ̂n‖−1, and B̂jj is the jth

diagonal element of B̂ = n−1
∑n

i=1 ‖Xi − θ̂n‖−2(Xi − θ̂n)(Xi − θ̂n)>.

According to the proof of Theorem 5 in Appendix B of the supplementary materials, Tn,j
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4.3 Multiple testing with FDR control in large-scale tests

converges in distribution to a standard normal as n, p → ∞, provided that log p = o(n1/5)

and log n = o(p1/3∧δ) under H0j for all j = 1, . . . , p simultaneously. Specifically,

max
1≤j≤p

sup
t∈R

∣∣∣P(n1/2(θ̂n,j − θ0,j)/sn,j ≤ t
)
− Φ(t)

∣∣∣→ 0

as n, p → ∞ with log p = o(n1/5) and log n = o(p1/3∧δ) under H0j, where Φ(·) denotes the

cumulative distribution function (cdf) of the standard normal distribution. Thus, we utilize

the standard normal distribution to estimate the marginal p-values. For j = 1, . . . , p, define

the p-value for H0j as Pj = 2− 2Φ(|Tn,j|). Denote P(1) ≤ · · · ≤ P(p) be the ordered p-values,

and define

k̂ = max
{
j = 1, . . . , p : P(j) ≤ τj/p

}

for a pre-specific significance level τ . Then, the B-H procedure rejects the null hypotheses

for which Pj ≤ P(k̂). Denote HR = {j : Pj ≤ P(k̂)} as the set of indices j such that H0j

is rejected by the B-H method, and let |HR| be the cardinality of HR that equals the total

number of rejected null hypotheses.

Let H0 ⊂ {1, . . . , p} be the set of indices j corresponding to the true null hypotheses H0j.

The false discovery proportion (FDP) and false discovery rate (FDR) of the B-H method are

defined as

FDPM =
|H0 ∩HR|
|HR| ∨ 1

and FDRM = E(FDPM).

Regarding that Tn,1, . . . , Tn,p are dependent, we impose the following condition on the
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4.3 Multiple testing with FDR control in large-scale tests

weak dependence between any two components of Wi. Define the correlation matrix as

(rj`)p×p = {diag(B)}−1/2B{diag(B)}−1/2, where diag(B) is the diagonal matrix of B.

Condition C4. Suppose max1≤j<`≤p |rj`| ≤ r for some constant 0 < r < 1. In addition,

for all 1 ≤ j ≤ p, the cardinality of {` : |rj`| ≥ (log p)−3} is at most pη for some constant

0 < η < (1− r)/(1 + r).

Condition C4, which imposes weak dependence among Tn,1, . . . , Tn,j, is similarly assumed

in Liu and Shao (2014) and Belloni et al. (2018). First, as the correlation between Tn,j and

Tn,` tends to rj`, the condition that max1≤j<`≤p |rj`| ≤ r ensures that the correlations between

Tn,1, . . . , Tn,p are uniformly bounded by r. In addition, the condition that the cardinality

of {` : |rj`| ≥ (log p)−3} is at most pη for all 1 ≤ j ≤ p requires that each statistic Tn,j

is weakly correlated or uncorrelated with at least p − pη other test statistics. Thus, the

parameter η controls the number of highly correlated test statistics. Under the condition

η < (1− r)/(1 + r), a larger r results in a smaller allowable η, meaning fewer test statistics

can be highly correlated. Finally, the constrain between η and r is reflected by (S.11) in the

proof of Theorem 5 in the supplementary materials, where it requires −1 + η + 2(r+ε)
1+r

< 0,

or equivalently, η < (1− r − 2ε)/(1 + r) for any ε > 0 for the validity of FDR control.

Theorem 5. Suppose Condition C4 and the conditions of Theorem 1 hold. In addition,

there exists H ⊂ {1, . . . , p} such that H =
{
j : ζ1B−1/2jj n1/2|θj − θ0,j| ≥ 2 log1/2(p)

}
and

|H| ≥ log log p → ∞ as p → ∞. Assume that the number of false null hypotheses p1 ≤ p$

for some 0 < $ < 1. Then, FDRM/(τp0/p)→ 1 as n→∞.

Theorem 5 shows the B-H procedure based on P1, . . . , Pp controls the FDR asymptot-

ically, and it extends Theorem 4.1 in Liu and Shao (2014) to spatial median-based test

statistic.
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4.4 High-dimensional asymptotic relative efficiency

4.4 High-dimensional asymptotic relative efficiency

As two candidate estimators of the location parameter θ, it is of interest to study the

asymptotic relative efficiency (ARE) of the sample spatial median θ̂n relative to the sample

mean X̄n. When p is fixed, for spherical multivariate normal distribution, Brown (1983)

showed that the asymptotic efficiency of θ̂n relative X̄n, denoted as ARE(θ̂n, X̄n), exceeds

the usual univariate case 2/π. In addition, ARE(θ̂n, X̄n) increases as the dimension increases,

and it approaches to 1 as p tends to be sufficient large (Magyar and Tyler, 2011). However,

when p → ∞, the ARE is not straightforward to quantify as there are no obvious “final”

limit distributions for θ̂n and X̄n. Motivated by the discussions in Sections 4.1 and 4.2, we

compare θ̂n and X̄n in terms of their efficiencies in simultaneous inference for θ, which are

determined by the variations of |θ̂−θ|∞ and |X̄n−θ|∞. According to Corollary 1 and (4.1),

we define the high-dimensional ARE of θ̂n compared to X̄n in simultaneous inference for θ

as

ARE(θ̂n, X̄n) = Var(|G0|∞)/Var(|G|∞) , (4.5)

which approximates Var(|X̄n − θ|∞)/Var(|θ̂n − θ|∞). If limp→∞ARE(θ̂n, X̄n) > 1, we say

that θ̂n is more efficient than X̄n in simultaneous inference for θ under high-dimensionality.

As discussed in Remark 6, G ∼ N(0, ζ−21 B) with ζ−21 Bj` = ζ−21 p−1ωj` for all 1 ≤ j, ` ≤ p.

Moreover, we can show that Σj` = E(ν2i )ωj` +O(p−1/2) similar to the proof of Lemma A3 in

Appendix C of the supplementary material, where Σj` is the (j, `)th element of Σ. Thus, both

the covariance matrix Σ and ζ−21 B are proportional to Ω asymptotically, and ARE(θ̂n, X̄n)

is approximately E(ν2i )ζ21p.
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4.4 High-dimensional asymptotic relative efficiency

As Σ and ζ−21 B are rarely known in practice, we use bootstrap approximation to estimate

the value of Var(|G0|∞)/Var(|G|∞). Combining Corollary 2 and (4.2), we propose using

Var∗(|X̄∗n|∞)/Var∗(|θ̃n|∞),

to estimate ARE(θ̂n, X̄n).

Example 1. Suppose X1, . . . Xn are i.i.d. from N(θ, Ip), then Xi = θ+νiUi with νi = 1 and

Ui ∼ N(0, Ip). Thus, ‖Ui‖2 follows a chi-squared distribution with p degrees of freedom. It

follows that E(ν2i ) = 1 and ζ1 = E(‖Ui‖−1) = Γ(p/2 − 1/2)/{21/2Γ(p/2)}, where Γ(·) is the

gamma function. Then, ARE(θ̂n, X̄n) = p{Γ(p/2 − 1/2)}2/{21/2Γ(p/2)}2. Using Stirling’s

formula, limp→∞ARE(θ̂n, X̄n) = 1. Thus, for high-dimensional Gaussian data, the sample

spatial median has the same asymptotically efficiency as the sample mean in simultaneous

inference for θ.

Example 2. When the data are from the multivariate t-distribution with degrees of freedom

v > 2 and shape matrix Ω = Ip, we have Xi = θ + νiUi with νi =
√
v/ξi and Ui ∼ N(0, Ip),

where ξi is a chi-squared random variable with degrees of freedom v independent of Ui.

Then, E(ν2i ) = E(v/ξi) = v/(v − 2) and ζ1 = E(v−1/2ξ
1/2
i ‖Ui‖−1) = Γ(v/2 + 1/2)Γ(p/2 −

1/2)/{v1/2Γ(v/2)Γ(p/2)}. Thus, the ARE is ARE(θ̂n, X̄n) = (v−2)−1p{Γ(v/2+1/2)Γ(p/2−

1/2)}2/{Γ(v/2)Γ(p/2)}2. It is clear that ARE(θ̂n, X̄) > 1 for large enough p. In addition,

lim
p→∞

ARE(θ̂n, X̄n) = 2(v − 2)−1{Γ(v/2 + 1/2)}2/{Γ(v/2)}2 > 1 .

Thus, for high-dimensional t-distribution, the sample spatial median is asymptotically more

efficient than the sample mean in simultaneous inference for θ. Table 1 and Figure 1 presents
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4.4 High-dimensional asymptotic relative efficiency

the values of the limiting ARE limp→∞ARE(θ̂n, X̄n) for different degrees of freedom v. The

limiting ARE starts at 2.546 when v = 3, and decreases as v increases. As v approaches infin-

ity, the value of the limiting ARE limp→∞ARE(θ̂n, X̄n) converges to 1, which corresponding

to the scenario of a multivariate normal distribution, where the ARE limit is 1.

Table 1: Asymptotic relative efficiency limp→∞ARE(θ̂n, X̄n) = 2(v − 2)−1{Γ(v/2 +
1/2)}2/{Γ(v/2)}2 for multivariate t-distributions with different degrees of freedom.

v 3 4 5 10 20 50 100

limp→∞ARE(θ̂n, X̄n) 2.546 1.767 1.509 1.189 1.084 1.031 1.015
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Figure 1: Asymptotic relative efficiency limp→∞ARE(θ̂n, X̄n) = 2(v − 2)−1{Γ(v/2 +
1/2)}2/{Γ(v/2)}2 for multivariate t-distributions with different degrees of freedom.

Figure 2 plots the simulated values of Var(|X̄n|∞)/Var(|θ̂n|∞) with a range of dimen-

sions and sample sizes under different models. For Gaussian data, the relative efficiency kept

increasing in p, and it approached 1 as p getting larger. For the data simulated from multi-

variate t-distribution, the relative efficiency was greater than 1 for all combinations of n and
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p. This indicates that the sample spatial median is more efficient than the sample mean for

t-distribution. The results were consistent under different covariance structure considered in

the simulation.
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Figure 2: Finite sample relative efficiency of |θ̂n|∞ compared to |X̄n|∞ based on 5000 repli-
cations, the data are generated from multivariate normal distribution (Gaussian) and t-
distribution with 5 degrees of freedom (t5). The shape matrix Ω = (ρ|j−`|)p×p with ρ = 0
and 0.8.

5. Numerical studies

In this section, we report Monte Carlo simulations on simultaneous confidence intervals

and multiple testing with FDR control, along with a real data analysis, to demonstrate the

performance of the proposed approaches. Additional simulations on global tests can be found
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5.1 Simulations on simultaneous confidence intervals

in Appendix D of the supplementary material. In the simulations, all results were based on

2500 replications. In the bootstrap implementation, the number of bootstrap iterations was

set to B = 400. To calculate the sample spatial median, we utilized the algorithm proposed

by Vardi and Zhang (2000), which only requires O(np) operations at each iteration. This

efficient algorithm is implemented as the Weiszfeld function in the R package “Gmedian”.

A comparison of the computation times for the sample spatial median and sample mean,

as well as the implementation time for both the spatial median-based and sample mean-

based multiplier bootstrap methods can be found in Tables A1 and A2 of the supplementary

materials.

5.1 Simulations on simultaneous confidence intervals

We first examine the performance of the SCIs based on θ̂n, and compare it with the SCIs

based on X̄n. The sample size n is taken to be 100 or 200, and the dimensions p = 100 and

1000 are considered for each sample size. Two types of commonly used elliptical distributions

are considered: (I) the multivariate normal distribution N(θ,Σ); (II) the multivariate t-

distribution with 3 degrees of freedom, mean vector θ, and covariance matrix Σ. In addition,

we include the following independent components model: (III) Xi = θ + Σ1/2Zi, where each

component of Zi are i.i.d. from the standard Laplace distribution. We set Σ = (ρ|j−`|)

with ρ = 0, 0.2, 0.5 and 0.8. To save space, we present the results for ρ = 0 and 0.8 here.

The results for ρ ∈ {0.2, 0.5} are similar and are reported in the supplementary material.

We consider both sparse and dense case scenarios for θ: (i) θ1 = (2,−2, 3, 0, . . . , 0); (ii)

θ2 = (0.2, . . . , 0.2bp/4c, 0, . . . , 0). Here b·c is the floor function.

Table 2 reports the coverage probability and median length of the SCIs based on θ̂n, the
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5.2 Simulations on multiple testing with FDR control

results of the SCIs based on X̄n are presented in parentheses. Recall that the SCIs base on

θ̂n are [θ−n,j, θ
+
n,j] for j = 1, . . . , p, where θ−n,j = θ̂n,j − n−1/2qB1−τ and θ+n,j = θ̂n,j + n−1/2qB1−τ .

The length of each confidence interval based on θ̂n is the same for all θj, given by 2n−1/2qB1−τ

for all j = 1, . . . , p. It is important to note that qB1−τ depends on the dimension p. A

similar argument applies to the SCIs based on X̄n. Thus, The “Median length” reported

in Table 2 refers to the median of the lengths of the confidence intervals for all θj’s across

2500 replications. For Models I and II from elliptical distributions, we observe that the SCIs

based on θ̂n and X̄n both achieve satisfying coverage probability for different choices for ρ,

θ, n and p. For the data simulated from the multivariate normal distribution, the median

length of the SCIs based on θ̂n is very close to that of the the SCIs based on X̄n. These

results indicate that θ̂n has similar asymptotic efficiency as X̄n in simultaneous inference for

θ under high-dimensional Gaussian model as discussed in Section 4.4. For the multivariate

t-distribution, the SCIs based on θ̂n is much narrower than the SCIs based on X̄n. These

results suggest that the SCIs based on θ̂n is more efficient than the SCIs based on X̄n for

multivariate t-distribution, which is heavy-tailed. This is consistent with the asymptotic

analysis in Section 4.4. Moreover, the results for Model III, which does not belong to the

elliptical distribution family, shows the robustness of the SCIs based on the spatial median,

and it performs similar to the SCIs based on the sample mean. It is shown that the median

length of the SCIs decreases when n increases or p decreases for each model.

5.2 Simulations on multiple testing with FDR control

In this section, we examine the performance of the sample spatial median-based B-H method

introduced in Section 4.3, and compare it to the B-H procedure based on the sample mean
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5.2 Simulations on multiple testing with FDR control

Table 2: Coverage probability (in %) and median length of the SCIs based on θ̂n, the results
of the SCIs based on X̄n are in parentheses.

θ = θ1 θ = θ2

Coverage probability Median length Coverage probability Median length
Model ρ n p 90% 95% 90% 95% 90% 95% 90% 95%

I 0 100 100 89.6 (89.9) 94.4 (94.4) 0.65 (0.65) 0.69 (0.69) 88.9 (88.8) 94.1 (93.9) 0.65 (0.65) 0.69 (0.69)
1000 89.5 (89.6) 94.7 (94.4) 0.77 (0.77) 0.80 (0.80) 89.5 (89.5) 94.0 (94.0) 0.77 (0.77) 0.81 (0.80)

200 100 89.8 (89.8) 95.1 (95.1) 0.46 (0.46) 0.49 (0.49) 88.6 (88.8) 94.4 (94.7) 0.46 (0.46) 0.49 (0.49)
1000 89.7 (89.7) 94.4 (94.6) 0.55 (0.55) 0.57 (0.57) 89.1 (89.2) 94.7 (94.6) 0.55 (0.55) 0.57 (0.57)

0.8 100 100 89.1 (88.7) 94.6 (94.6) 0.64 (0.63) 0.68 (0.67) 88.4 (88.6) 93.7 (94.1) 0.64 (0.63) 0.68 (0.67)
1000 88.4 (88.4) 93.8 (93.7) 0.76 (0.76) 0.80 (0.79) 89.0 (89.2) 94.6 (94.6) 0.76 (0.76) 0.80 (0.79)

200 100 90.5 (90.1) 95.2 (94.9) 0.45 (0.45) 0.48 (0.48) 89.6 (89.6) 94.0 (94.1) 0.45 (0.45) 0.48 (0.48)
1000 90.4 (90.4) 94.5 (94.4) 0.54 (0.54) 0.56 (0.56) 88.4 (88.5) 93.6 (93.8) 0.54 (0.54) 0.56 (0.56)

II 0 100 100 89.7 (88.6) 94.7 (93.7) 0.71 (1.05) 0.75 (1.11) 88.8 (88.8) 94.5 (94.2) 0.71 (1.05) 0.75 (1.11)
1000 89.4 (91.0) 95.8 (95.0) 0.84 (1.25) 0.88 (1.30) 89.1 (89.0) 94.4 (94.5) 0.84 (1.25) 0.88 (1.31)

200 100 88.6 (89.1) 94.2 (95.1) 0.50 (0.76) 0.53 (0.81) 89.5 (89.7) 94.4 (94.8) 0.50 (0.76) 0.53 (0.80)
1000 89.6 (88.7) 94.8 (94.6) 0.59 (0.90) 0.62 (0.94) 90.1 (89.5) 94.8 (93.9) 0.59 (0.90) 0.62 (0.94)

0.8 100 100 89.1 (90.7) 94.4 (94.9) 0.69 (1.02) 0.74 (1.09) 89.4 (89.7) 94.2 (94.4) 0.69 (1.02) 0.74 (1.09)
1000 89.3 (89.1) 94.6 (94.4) 0.83 (1.23) 0.87 (1.29) 89.8 (88.8) 94.7 (94.4) 0.83 (1.23) 0.87 (1.29)

200 100 87.6 (87.7) 93.4 (93.6) 0.49 (0.73) 0.52 (0.78) 90.3 (90.1) 94.9 (95.2) 0.49 (0.73) 0.52 (0.78)
1000 88.7 (89.7) 94.7 (94.6) 0.59 (0.88) 0.61 (0.92) 90.2 (90.8) 94.7 (95.7) 0.59 (0.89) 0.61 (0.93)

III 0 100 100 89.8 (89.4) 94.6 (94.5) 0.65 (0.66) 0.69 (0.70) 89.1 (89.0) 94.4 (94.4) 0.65 (0.66) 0.69 (0.70)
1000 88.3 (88.2) 93.6 (93.7) 0.78 (0.78) 0.82 (0.82) 89.1 (89.0) 94.2 (93.8) 0.78 (0.78) 0.82 (0.82)

200 100 90.6 (91.1) 95.0 (95.0) 0.46 (0.46) 0.49 (0.49) 90.6 (90.1) 95.2 (95.2) 0.46 (0.46) 0.49 (0.49)
1000 90.1 (90.4) 95.0 (94.6) 0.55 (0.55) 0.57 (0.58) 88.7 (89) 93.6 (93.8) 0.55 (0.55) 0.57 (0.58)

0.8 100 100 90.4 (89.7) 95.0 (94.8) 0.63 (0.63) 0.68 (0.68) 89.0 (88.9) 95.0 (94.9) 0.63 (0.63) 0.67 (0.68)
1000 88.7 (88.9) 93.8 (94.0) 0.77 (0.77) 0.80 (0.80) 89.0 (89.0) 94.6 (94.3) 0.76 (0.76) 0.80 (0.80)

200 100 88.8 (89.1) 94.2 (94.0) 0.45 (0.45) 0.48 (0.48) 90.2 (89.7) 94.8 (95.0) 0.45 (0.45) 0.48 (0.48)
1000 90.0 (90.3) 95.0 (95.0) 0.54 (0.54) 0.57 (0.57) 88.8 (89.1) 94.2 (94.1) 0.54 (0.54) 0.57 (0.57)

with p-values calculated from N(0, 1) in Liu and Shao (2014). We set θ0,j = 0 for all j =

1, . . . , p. The data are generated from Models I and II with p = 1000. For θ = (θ1, . . . , θp)
>,

let θj = 2(log p/n)1/2 for 1 ≤ j ≤ p1 and θj = 0 for (p1 + 1) ≤ j ≤ p, where p1 = 0.1p.

Table 3 reports the empirical FDR and power for the sample spatial median-based

(FDRM and powerM) and the sample mean-based (FDRA and powerA) B-H procedures (Liu

and Shao, 2014) with nominal level α = 0.1 and 0.2. The results indicate that the FDR are

well controlled by both methods. For the multivariate normal distribution, the B-H proce-

dures based on the spatial median and the sample mean have similar performance. However,

the spatial median-based B-H method outperforms the sample mean-based B-H procedure

in terms of empirical power under multivariate t-distribution, which is heavy-tailed.
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Table 3: Empirical FDR and power for the spatial median-based (FDRM and powerM) and
the sample mean-based (FDRA and powerA) in Liu and Shao (2014) via B-H procedures.

α = 0.1 α = 0.2
Model ρ n FDRM FDRA powerM powerA FDRM FDRA powerM powerA

I 0 50 0.124 0.124 0.996 0.996 0.224 0.222 0.999 0.999
100 0.107 0.106 0.997 0.997 0.202 0.201 0.999 0.999

0.2 50 0.125 0.124 0.996 0.996 0.224 0.223 0.999 0.999
100 0.107 0.106 0.997 0.997 0.202 0.201 0.999 0.999

0.5 50 0.125 0.124 0.996 0.996 0.225 0.223 0.999 0.999
100 0.107 0.105 0.997 0.997 0.202 0.201 0.999 0.999

0.8 50 0.127 0.124 0.996 0.996 0.227 0.223 0.999 0.999
100 0.108 0.105 0.997 0.997 0.204 0.199 0.999 0.999

II 0 50 0.117 0.099 0.984 0.728 0.215 0.193 0.992 0.805
100 0.103 0.088 0.987 0.710 0.197 0.179 0.994 0.795

0.2 50 0.117 0.098 0.984 0.727 0.215 0.194 0.992 0.805
100 0.103 0.087 0.987 0.709 0.198 0.179 0.994 0.795

0.5 50 0.118 0.099 0.984 0.727 0.216 0.194 0.992 0.803
100 0.103 0.087 0.987 0.708 0.198 0.178 0.994 0.794

0.8 50 0.120 0.098 0.984 0.724 0.218 0.192 0.992 0.800
100 0.104 0.087 0.987 0.705 0.199 0.177 0.994 0.791

5.3 Real data analysis

Type 2 diabetesis a disease in which the body becomes resistant to normal effects of insulin

and gradually loses the capacity to produce enough insulin. Because skeletal muscle is

the main tissue for insulin-stimulated glucose disposal, skeletal muscle insulin resistance

is commonly viewed as the critical component of whole-body insulin resistance, and thus

is critical to the pathogenesis of Type 2 diabetes. To investigate the effects of insulin on

gene expression in skeletal muscle, a microarray study was performed in 15 diabetic patients

using the Affymetrix Hu95A chip of muscle biopsies both before and after insulin treatment

(Wu et al., 2007). In this paper, we are interested in the gene expression alteration, that

is, the change of the gene expression level, due to the treatment. The data are available

at https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE22309. The data were
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normalized by the quantile normalization method implemented by the normalizeQuantiles

function in the limma R package. Follow Wang et al. (2015), we focused on 2547 curated gene

sets with at least 15 genes, which are from the C2 collection of the GSEA online pathway

databases. The gene expression values are consolidated by taking the average when multiple

probes are associated with the same gene.

We implemented the Median test based on Tn on the 2519 gene sets. This is equivalent

to testing whether the median change vector of gene expression levels is equal to 0. The

number of bootstrap iterations is B = 105. With the Bonferroni correction, there are 1242

gene sets identified as significant at 5% level. For comparison, we applied the WPL test

(Wang et al., 2015) and the CQ test (Chen and Qin, 2010) on the same gene sets. For the

WPL test, 1060 gene sets are selected as significant; and for the CQ test, 630 gene sets are

identified as significant. Out of the 630 gene sets selected by the CQ test, 605 of them are

also identified by our proposed method, and 629 of them are identified by the WPL test.

It has been argued in Wang et al. (2015) that some gene expression levels have heavy tails

as their kurtosises are much larger than the kurtosis of a normal distribution, 3. Thus, the

methods based on the spatial median (Median test and the WPL test) are expected to be

more robust and efficient than those based on moments (CQ test). In addition, out of the

1060 gene sets identified by the WPL test, 958 of them are significant based on our proposed

approach.

As argued in Remark 12, the Median test based on Tn is more powerful in detecting

strong sparse signal compared to the WPL test. To see this, we look into the following three

gene sets:

(1) ZHAN MULTIPLE MYELOMA UP;

30

Statistica Sinica: Newly accepted Paper 
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(2) MIKKELSEN MEF HCP WITH H3K27ME3;

(3) JAZAG TGFB1 SIGNALING VIA SMAD4 UP.

The p-values of the WPL test for these three gene sets are 0.41, 0.31, 0.27, respectively.

However, the p-values of the Median test are all less than 1.0×10−5 with B = 105 bootstrap

iterations for these three gene sets. Figure 3 plots the SCIs for the spatial median vectors

of the change of gene expression levels for these three gene sets. The confidence intervals

that do not cover 0 are colored in red. It is very clear that the only one or two big values

in the spatial median results in a rejection of the Median test, while the signals from other

dimensions are not strong enough to land a rejection by the WPL test.
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Figure 3: Simultaneous Confidence intervals (SCIs) for spatial medians of three gene sets.
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Finally, we use the spatial median-based B-H procedure to perform multiple testing with

FDR control on the three gene sets to detect differentially expressed genes (DEG), which

is one of the most important targets in genomic analysis. Table 4 reports the detected

differentially expressed genes (DEG) in each gene set with nominal level α = 0.1, along

with the corresponding marginal p-value Pj = 2 − 2Φ(|Tn,j|) and the confidence interval in

the SCIs for the selected genes. It can be seen that for all the selected genes, the marginal

p-values are very small, and the corresponding confidence intervals do not cover 0.

Table 4: Detected differentially expressed genes (DEG) by the spatial median-based B-
H procedure for three gene sets with α = 0.1; “p-value” refers to the marginal p-value
Pj = 2 − 2Φ(|Tn,j|), and “CI” refers to the confidence interval in the SCIs for the selected
genes.
Gene set DEG p-value CI
ZHAN MULTIPLE MYELOMA UP CDKN1A 0.00082 (0.234, 0.550)
MIKKELSEN MEF HCP WITH H3K27ME3 MYOD1 < 0.00001 (0.433, 0.791)
JAZAG TGFB1 SIGNALING VIA SMAD4 UP HDAC4 0.00058 (0.254, 0.644)

6. Discussion

In this paper, we established one-sample Gaussian and bootstrap approximations for ultra-

high dimensional sample spatial median under a general model beyond elliptical distributions.

It is of interest to study whether our results are potentially extendable to some other dis-

tribution families and two-sample or multi-sample Gaussian and bootstrap approximations.

We leave this to a future work. In addition, the proposed test based on the maxima of the

sample spatial median is more powerful under sparse alternatives compared to those based

on L2-norms. It is well known that the L2-norm type tests are more powerful under dense al-

ternatives. Thus, it is of interest to consider combining the test based on the maximum-norm

and L2-norm, which could be potentially powerful under both sparse and dense alternatives.
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We also leave this to a future study.

Supplementary Materials

The supplementary materials consist of the proofs of main results in the paper, preliminary

lemmas, and additional simulation results.
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