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Abstract: A basic task of causal inference is to infer whether there exists a cause-

effect relationship between two sets of vectors of interest, akin to a binary clas-

sification problem. With a sequence of independent and identically distributed

paired vectors, one may employ the kernel mean embedding of probability dis-

tribution to map the empirical distribution to a feature space, and then train

a classifier in the feature space to infer the causation for a future pair of vec-

tors. This strategy, however, is susceptible to mislabeling, a common challenge

in causation studies. In this paper, we explore this issue and quantify mislabeling

effects. We develop valid learning methods with the mislabeling effects accounted

for and theoretically justify the validity of the proposed methods.
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1. Introduction

Learning cause-effect relationships has attracted extensive attention in both

statistical and machine learning communities. The potential outcome frame-

work, originating from Neyman (1923), is a popular statistical approach to

infer causality (Rubin 1974). Alternatively, learning causal relationships

among variables can also be framed as a classification problem. We may,

at least in principle, consider all associated variables, including causes, out-

comes, and confounding factors, and exhaustively form distinct pairs of X

and W . For each pair (X,W ), we assign a binary label, 1 or −1, to rep-

resent whether X is the cause of W based on a specific method tailored to

individual applications. Ultimately, this is a classification problem with the

binary label, denoted l, as the output and (X,W ) as the input.

A motivating example is the SUP3 dataset from the Kaggle competition

(Guyon 2013), consisting of n ≜ 162 variable pairs across diverse domains,

such as chemistry, climatology, ecology, economy, engineering, epidemiol-

ogy, genomics, medicine, physics, and sociology. Each pair is labeled as

either 1 or −1, indicating the presence or absence of a causal relationships

within the pair.

Lopez-Paz et al. (2015) framed learning cause-effect relationships for

paired vectors as a classification problem using kernel mean embeddings in
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the reproducing kernel Hilbert space (RKHS), a method further explored by

other authors, including Mooij et al. (2016), Monti, Zhang and Hyvärinen

(2020), and Tagasovska, Chavez-Demoulin and Vatter (2020).

These methods typically require training data to be free of mismea-

surement, but real-world applications often violate this assumption due to

mismeasurement, including covariate error (aka input error) and response

error (aka output error) (e.g., Carroll et al. 2006; Yi 2017; Yi, Delaigle

and Gustafson 2021). In cases where the response variable represents class

membership, response error is known as “label noise”, “label corruption”,

and “mis-labeling” in machine learning (e.g., Guo, Wang and Yi 2023; Guo,

Yi and Wang 2024).

Here, we focus on the scenario where input variables X and W are

error-free but the output label l is subject to mislabeling, a common issue

in learning causation relationships. Label noise arises from annotation er-

rors due to ambiguity in labeling instructions, lack of experience, subjective

judgement, uncertainty, imprecise answers to sensitive questions, or inac-

curate measurement instruments. In particular, mislabeling is a significant

concern in using observational data to determine causal relationships, which

is obscured by hidden factors.

Building on the framework of Lopez-Paz et al. (2015) for classification
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learning without mislabeling, we examine mislabeling effects and contribute

by (1) expanding the causal learning framework to account for mislabeled

outputs, (2) analyzing the impact of ignoring label noise, (3) establishing

theoretical properties that generalize existing results, (4) devising a correc-

tion method to accommodate the label noise effects, and (5) introducing

new metrics to evaluate classifier performance under mislabeling.

The remainder of this article is organized as follows. Sections 2 and

3 consider the case of precisely measured variables. Sections 4 - 6 focus

on label noise, examining its effects in Section 4, proposing our correction

method in Section 5, and introducing new metrics with sensitivity analyses

in Section 6. Finally, Section 7 provides discussions, with technical details

and additional numerical studies deferred to the supplementary material.

2. Learning Framework

2.1 Notation and Data Format

Considering the causal learning framework considered by Lopez-Paz et al.

(2015), suppose Zi ≜ (Xi,Wi) are independent random variables for i =

1, · · · , n, and for each i, li is a binary label, taking value 1 if Xi is the cause

of Wi and value 0 otherwise. Here, Xi and Wi can be either vectors or

univariate random variables. As an example with n = 2, X1 and W1 may
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2.1 Notation and Data Format

represent respectively an individual’s smoking status and lung cancer status,

while X2 and W2 may respectively indicate the raining status and presence

of clouds for a day. While Z1 and Z2 have distinct practical meanings,

a common question may arise to examine the presence or absence of the

causal relationship for the variables within them, which can be reflected by

the value of their associated binary label.

Additionally, for each i = 1, · · · , n, there is a random sample of mea-

surements for paired input Zi, denoted as Si =
{
Zij ≜ (Xij,Wij)

∣∣ j =

1, · · · ,mi

}
, where the Zij with j = 1, · · · ,mi are independently and identi-

cally distributed (i.i.d) having the same joint probability distribution Pi of

random vector Zi, and mi is a positive integer that may depend on i. These

samples could, for example, represent measurements of smoking status and

lung cancer status for mi patients or measurements of raining status and

the presence of clouds over mi days. This framework was considered by

Lopez-Paz et al. (2015), with the objective of training a binary classifier

using the output data
{
li
∣∣ i = 1, · · · , n

}
, together with mapping the input

Si into a feature space. The goal is to predict the causation for a new pair

of variables, say (X̃, W̃ ).

We make some comments here. As the practical meaning for each

pair Zi may differ across different indices i, analyzing them together might
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2.1 Notation and Data Format

appear unnatural. However, those paired variables may share similarity in

distribution, thus allowing us to examine them under the same framework.

While the Zi differ for different index i, they can share some common

elements or be related in nature, and the order of elements in Zi matters.

For example, in pair Z1 = (X1,W1) and Z2 = (X2,W2), X1 may represent

smoking status andW1 may represent lung cancer status, whereasX2 stands

for chest pain status and W2 can still represent lung cancer status. This

setup yields identical W1 and W2, yet Z1 differs from Z2. Additionally, we

may have l1 = 1, showing that smoking is the cause of lung cancer, and

l2 = −1, indicating that chest pain is not the cause of lung cancer. On

the other hand, if we interchange the roles of X2 and W2 such that X2

represents lung cancer status and W2 indicates chest pain status, then we

may have l2 = 1 to show that lung cancer causes chest pain (Potter and

Higginson 2004).

Although variables in different pairs Zi = (Xi,Wi) for i = 1, · · · , n

may share some elements or have practical connections, replicate measure-

ments for Zi, denoted
{
Zij ≜ (Xij,Wij)

∣∣ j = 1, · · · ,mi

}
, are assumed

to be independently collected from mi randomly selected subjects or units.

Additionally, S1, · · · ,Sn are assumed to be independently formed.

More formally, let (Z, τz) denote a separable topological space, with
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2.1 Notation and Data Format

τz representing the topology on the set Z (Armstrong 1983), and let σ(τz)

denote the σ-algebra generated by τz. Let P denote the set of all Borel prob-

ability measures on the measurable space (Z, σ(τz)), and let L = {−1,+1}.

Let M denote a mother distribution defined on P × L. For i = 1, · · · , n,

we assume that Zi is a random variable mapping from a probability space

(Ω, E ,P) to the measurable space (Z, σ(τz)), with Ω, E and P representing

a set, σ-algebra, and probability measure, respectively. We further assume

that
{
{Pi, li}

∣∣ i = 1, · · · , n
}
are independent and identically distributed

(i.i.d.) from M, where Pi is the probability measure of Zi.

In summary, the data collection process involves two-stage sampling.

First, n i.i.d. samples
{
{Pi, li}

∣∣ i = 1, · · · , n
}

are generated from the

mother distribution M, and then for each i, mi i.i.d samples Si =
{
Zij

∣∣ j =
1, · · · ,mi

}
are generated from the probability measure Pi. This two-stage

sampling framework is widely used in various domains, including distribu-

tion learning (e.g., Szabó et al. 2016) and multi-instance learning (e.g.,

Zhou and Xu 2007). In distribution learning, the mother distribution M

is called a Meta distribution, where the i.i.d. assumption in the first stage

sampling is typically imposed in both causal learning and distribution learn-

ing, although testing this assumption is difficult due to the unavailability

of the probability measure Pi.
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2.2 Training and Prediction Procedures

2.2 Training and Prediction Procedures

Lopez-Paz et al. (2015) developed the following learning algorithm:

• Step 1: for each i, we construct the probability measure:

PSi
(A∗) ≜

1

mi

mi∑
j=1

I
{
Zij ∈ A∗} for any A∗ ∈ σ(τz), (2.1)

where I(C∗) represents the indicator function, taking value 1 if the

statement C∗ is true and value 0 otherwise.

• Step 2: Let k : Z × Z → R denote a continuous, bounded, and

positive-definite kernel function, and let Hk denote the induced repro-

ducing kernel Hilbert space (RKHS) with the inner product, denoted

< ·, · >Hk
, (Muandet et al. 2017, Section 2.2). For each i, use the

kernel mean embedding of probability distribution to map PSi
into Hk

and let µk(PSi
) denote its empirical kernel mean embedding, given by

µk(PSi
) =

1

mi

mi∑
j=1

k(Zij, ·).

As explained in Section S1 of the supplementary material, µk(PSi
) is a

random function from Z to R due to the randomness of Si; when the

sample Si is realized as si, the resulting µk(Psi) becomes a determinis-

tic function from Z to R. Theorem S1 in the supplementary material

establishes the convergence in mean of the empirical kernel mean em-

bedding to the true kernel mean embedding. This mapping allows us
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to leverage the useful properties of the Hilbert space to analyze the

data Si through µk(PSi
).

• Step 3: Using the data
{
{µk(Psi), li}

∣∣ i = 1, · · · , n
}
, we train a

nonlinear binary classifier with
{
µk(Psi)

∣∣ i = 1, · · · , n
}
and

{
li
∣∣ i =

1, · · · , n
}
taken as the input and output, respectively.

With the trained classifier, we can predict whether a new vector, say X̃,

is the cause of another new vector, say W̃ , using realizations for a random

sample s̃ =
{
(x̃j, w̃j)

∣∣∣ j = 1, · · · , m̃
}
for the random vector (X̃, W̃ ).

3. Causation Learning Theory

For the kernel function k considered in Step 2 of Section 2.2 and any P ∈ P ,

let µk(P ) denote the kernel mean embedding of probability distribution that

maps P into RKHSHk, which represents a function from Z to R, as detailed

in Section S1 of the supplementary material. Let µk(P) =
{
µk(P )

∣∣ P ∈

P
}
, which is a subset of Hk: µk(P) ⊆ Hk. Let Mk denote a measure

on µk(P) × L induced by M (Lopez-Paz et al. 2015, Lemma 2). Then{
{µk(Pi), li}

∣∣ i = 1, · · · , n
}
is a sequence of i.i.d copies drawn from Mk,

which are used to train a binary classifier in the space Hk.

Let G =
{
g : Hk → R

∣∣ g is a measurable functional
}
, where g in G is

termed a functional because it maps a space of functions (i.e., Hk) to R,
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and g from Hk to R is called measurable if the preimage of any element

in Borel σ-algebra in R belongs to a σ-algebra in Hk. We follow Vapnik

(1998) to find a suitable discriminant functional f : Hk → R such that the

sign of f(µk(P )) is used to predict the output l of µk(P ). For the 0-1 loss

function L : L × L → R+, given by L(l1, l2) ≜
|l1−l2|

2
, we wish to minimize

the risk :

R(f) ≜ E{L(sign(f(µk(P ))), l)}, (3.2)

where the expectation is evaluated with respect to the joint distributionMk

for {µk(P ), l}, and sign(t) is given by sign(t) = 1 if t ≥ 0, and sign(t) = −1

if t < 0. Letting ℓ(α) = I{α ∈ [0,∞)}, we re-write (3.2) as

R(f) = E{ℓ(−lf(µk(P )))}. (3.3)

The goal is to find the minimum value of R(f), denoted R0, over G.

However, computation of (3.3) is intractable due to the nonconvexity of

ℓ(·). As a remedy, one considers a surrogate function, say φ : R → R+,

which is convex and well upper bound ℓ(·), with ℓ(α) ≤ φ(α) for any α ∈ R.

Replacing ℓ(·) in (3.3) with a convex surrogate φ(·), we define the φ-risk as

Rφ(f) ≜ E{φ(−lf(µk(P )))}.

Further, assessing Rφ(f) for all f ∈ G is infeasible because G is too

big. In practice, we usually consider a smaller set of G, denoted F . For
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example, F can be taken as the set of all bounded linear functionals on Hk

(e.g., Conway 2019). We aim to find

f0 = argminf∈F Rφ(f). (3.4)

The convexity of φ enables efficient convex optimization for solving

(3.4). The φ-risk offers us a mathematically convenient measure to describe

an upper bound for risk (3.3). While different surrogate functions may

yield different upper bounds for (3.3), a well-calibrated surrogate function

φ(·) can accurately approximate ℓ(·) and allows us to identify meaningful

upper bounds of risk (3.3), as discussed by Bartlett et al. (2006), who

also explored a useful class of surrogate functions known as classification-

calibrated convex surrogates, defined as follows.

Definition (Bartlett et al. 2006). A convex function φ : R → R+ is called

classification-calibrated if for any η ̸= 1
2
,

inf
α:α(2η−1)≤0

{
ηφ(α) + (1− η)φ(−α)

}
> inf

α∈R

{
ηφ(α) + (1− η)φ(−α)

}
.

The class of classification-calibrated convex surrogate functions includes

familiar functions such as φ(u) = log2
{
1 + exp(u)

}
for the logistic loss

L(y, f(x)) = log2 (1 + exp(−yf(x))) used in logistic regression, φ(u) =

max{0, 1+u} for the hinge loss L(y, f(x)) = max{0, 1−yf(x)} used in the

support vector machine (SVM), and φ(u) = exp(u) for the exponential loss
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L(y, f(x)) = exp
{
− yf(x)

}
used in Adaboost, where y ∈ {−1, 1}, and f(x)

represents a predicted value.

Although using a convex surrogate function enables us to convert the

intractable minimization problem (3.3) to a convex optimization problem,

the unknown distribution Mk prevents us from obtaining f0 directly from

(3.4). To get around this difficulty, we replace Rφ(f) in (3.4) with the

empirical φ-risk:

R̂φ(f) ≜
1

n

n∑
i=1

φ(−lif(µk(PSi
))),

and aim to find

f̂ = argminf∈F R̂φ(f). (3.5)

The differences Rφ(f̂)−Rφ(f0) and R(f̂)−R0 describe the performance

of the classifier f̂ , where Rφ(f̂) and R(f̂) are random due to the involvement

of data in f̂ . With a well-chosen φ function, in conjunction of F and kernel

k, we expect Rφ(f̂) and R(f̂) to be close to or even identical to Rφ(f0) and

R0 in expectation, respectively. Let m = min
1≤i≤n

mi and let R(F) denote the

Rademacher complexity of F . Typically, the class F is chosen to ensure

R(F) is of order O(n− 1
2 ), as considered in this paper (e.g., Lopez-Paz et al.

2015, Section 3.1).

Theorem 1. Assume the following conditions hold:
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(R1). All elements in F are Lipschitz continuous with respect to the norm

in Hk, and there exists a common Lipschitz constant, denoted LF ,

for all elements in F such that for any f ∈ F and h, h′ ∈ Hk,

|f(h)− f(h′)| ≤ LF ||h− h′||Hk
;

(R2). There exists a positive constant B such that φ(−lf(h)) ≤ B for any

f ∈ F , h ∈ Hk, and l ∈ L;

(R3). φ : R → R+ is a Lipschitz continuous function with Lφ denoting a

Lipschitz constant, such that φ(α) ≥ ℓ(α);

(R4). The kernel function k associated with Hk satisfies supz∈Z k(z, z) ≤ 1.

For any 0 < δ < 1, let

C(n,m,Lφ, LF , B) ≜ 4LφR(F) + 2B

√
log(2n)

2n
+

4LφLF

n
n∑

i=1

[√
E{k(Zi, Zi)}

mi

+

√
log
(
2n2
)

2mi

]
. (3.6)

Then for f̂ in (3.5) and f0 in (3.4),

(a). 0 ≤ E{Rφ(f̂)−Rφ(f0)} ≤ C
(
n,m,Lφ, LF , B

)
+ 2B

n
;

(b). lim
n→∞

lim
m→∞

E{Rφ(f̂)−Rφ(f0)} = 0;

(c). if φ is classification-calibrated and inf
h∈G

Rφ(h) = min
f∈F

Rφ(f) = Rφ(f0),

then

Statistica Sinica: Newly accepted Paper 



(i) there exists a nondecreasing continuous function ζφ : R → [0, 1]

with ζφ(0) = 0, such that

E{R(f̂)−R0} ≤ ζφ

(
C
(
n,m,Lφ, LF , B

)
+

2B

n

)
;

(ii) lim
n→∞

lim
m→∞

E{R(f̂)−R0} = 0.

(d). If inf
h∈G

Rφ(h) = min
f∈F

Rφ(f) = Rφ(f0), then there exists a nonnegative,

convex, continuous, and strictly increasing function ψφ : [0, 1] → R

such that

ψφ

(
E{R(f̂)−R0}

)
≤ E{Rφ(f̂)−Rφ(f0)}. (3.7)

Furthermore, the following three conditions are equivalent:

(i) φ is classification-calibrated;

(ii) For any sequence of real numbers,
{
θi ∈ [0, 1]

∣∣i = 1, 2, · · ·
}
,

lim
i→∞

ψφ(θi) = 0 if and only if lim
i→∞

θi = 0;

(iii) For every sequence of measurable functional
{
fi : Hk → R

∣∣∣i =
1, 2, · · ·

}
,

lim
i→∞

Rφ(fi) = Rφ(f0) implies lim
i→∞

R(fi) = R0.
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The proof of Theorem 1 is presented in Section S1.3 of the supplemen-

tary material. Theorem 1 (a) is related to but differs from Theorem 3 of

Lopez-Paz et al. (2015). Both theorems assume the same conditions and

they describe upper bounds for Rφ(f̂) − Rφ(f0). However, they focus on

distinct perspectives. Theorem 3 of Lopez-Paz et al. (2015) presents a high

probability upper bound for Rφ(f̂)−Rφ(f0), whereas our result establishes

an upper bound on its expectation. In addition, Theorem 1 (b) further

strengthenes the result from the asymptotic viewpoint and shows that as

n and m grow sufficiently large, the expected difference Rφ(f̂) − Rφ(f0)

approaches 0, demonstrating convergence. Furthermore, considering the

excess risk R(f̂)− R0, Theorem 1 (c) identifies an upper bound for its ex-

pectation, both nonasymptotically and asymptotically. Notably, we present

Theorem 1 (d) to connect E{R(f̂)−R0} with E{Rφ(f̂)−Rφ(f0)} through

a strictly increasing, nonnegative, continuous and convex function ψφ. This

connection offers us a guideline in choosing a suitable φ-surrogate function.

When φ is chosen as a classification-calibrated convex surrogate, ψφ has de-

sirable mathematical properties, as reflected by that lim
n→∞

lim
m→∞

E{Rφ(f̂) −

Rφ(f0)} = 0 implies lim
n→∞

lim
m→∞

E{R(f̂) − R0} = 0. All these results of-

fer multiple angles to describe how φ-surrogate functions may behave in

comparison with the original 0-1 loss, which are, however, not covered in
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Lopez-Paz et al. (2015).

Condition (R1) in Theorem 1 is commonly imposed on classifiers in

machine learning contexts (e.g., Gouk et al. 2021). This condition can

be easily met in practical cases, such as settings where Hk degenerates to

the Euclidean space and F is specified as the set of linear functions with

bounded coefficients. With a continuous φ(·) function, condition (R2) is

met by considering the class F in which |f(h)| is bounded by a common

constant for all f ∈ F . This follows from the property that any continuous

function is bounded over a bounded closed set in R. Condition (R3) holds

for practically used loss functions such as the logistic loss and hinge loss,

as shown in Section S2.4 of the supplementary material. Condition (R4) is

satisfied by widely-used kernel functions such as the Gaussian kernel.

Theorem 1 describes the φ-risk for the minimizer f̂ in (3.5) relative to

the φ-risk for the minimizer f0 in (3.4). More broadly, one may examine

the φ-risk for any g in F relative to Rφ(f0) through the difference of g from

f̂ , as shown in the following theorem whose proof is included in Section

S1.4 of the supplementary material.

Theorem 2. Assume the conditions of Theorem 1. Let g : Hk → R denote
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any measurable functional in F , and let

F (f̂ , g, Lφ) = E
(
Lφ sup

x∈Hk

|g(x)− f̂(x)|
)
.

Then the following results hold:

(a). E
{
Rφ(g)−Rφ(f0)

}
≤ C

(
n,m,Lφ, LF , B

)
+ 4B

n
+ F (f̂ , g, Lφ)

(b). E
{
Rφ(g)−Rφ(f0)

}
≤ lim sup

n→∞
lim sup
m→∞

F (f̂ , g, Lφ)

(c). If φ is classification-calibrated and inf
h∈G

Rφ(h) = min
f∈F

Rφ(f) = Rφ(f0),

then

E{R(g)−R0} ≤ ζφ

[
C
(
n,m,Lφ, LF , B

)
+

4B

n
+ F (f̂ , g, Lφ)

]

and

E{R(g)−R0} ≤ ζφ

(
lim sup
n→∞

lim sup
m→∞

F (f̂ , g, Lφ)
)
, (3.8)

where ζφ(·) is as in Theorem 1.

(d). If inf
h∈G

Rφ(h) = min
f∈F

Rφ(f) = Rφ(f0), then

ψφ

(
E{R(g)−R0}

)
≤ E{Rφ(g)−Rφ(f0)},

where ψφ is introduced in Theorem 1 (d).

Instead of comparing the minimizer f̂ in (3.5) with the minimizer

f0 in (3.4), Theorem 2 extends Theorem 1 by comparing f0 with any
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functional g in F . The upper bound in Theorem 2 (a) retains the term

C
(
n,m,Lφ, LF , B

)
from Theorem 1 (a) but extends the term 2B

n
in Theo-

rem 1 (a) to 4B
n

in Theorem 2 (a), in addition to the inclusion of an extra

term F (f̂ , g, Lφ) to account for the comparison with an arbitrary functional

g rather than just f̂ .

4. Impact of Mismeasured Output

Theorems 1 and 2 apply only for the case where the true labels li are

available. Here we consider the setting where the true label li is unavailable

but its observed version, denoted by l∗i ∈ L, is available for i = 1, · · · , n.

To facilitate the relationship between l∗i and li, one may consider

p∗a ≜ P(l∗i = a|Si, li = a) for a = −1 or 1, (4.9)

which is often combined with the assumption that P(l∗i = a|Si, li = a) =

P(l∗i = a|li = a), also called instance-independent label noise, as done in

this paper. Alternatively, swapping l∗i and li in (4.9) gives

pa ≜ P(li = a|Si, l
∗
i = a) for a = −1 or 1, (4.10)

for which one may assume that P(li = a|Si, l
∗
i = a) = P(li = a|l∗i = a).

Both (4.9) and (4.10) can equally describe the degrees of mislabeling, and
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they are called the (mis)classification and reclassification probabilities (Yi

2017, p.70).

Now we study the impact of mislabeling with either (4.9) or (4.10)

used. To highlight the ideas, we assume that p∗−1 and p
∗
1 (or p−1 and p1) are

known for now. The extension to accommodating scenarios with unknown

misclassifications is included in the last section. Different from Section 3

with
{
{Si, li}

∣∣ i = 1, · · · , n
}
available, here only the error-prone measure-

ments
{
{Si, l

∗
i }
∣∣ i = 1, · · · , n

}
are accessible, with

{
{Pi, l

∗
i }
∣∣ i = 1, · · · , n

}
being i.i.d. following the distribution, denoted M∗ on P×L. Similar to the

discussion in Section 3, let M∗
k denote the measure on µk(P)× L induced

from M∗, then
{
{µk(Pi), l

∗
i }
∣∣ i = 1, · · · , n

}
is a sequence of i.i.d copies

from M∗
k.

It may be tempting to train the classifier using the same process dis-

cussed in Section 2 by replacing li with l
∗
i , i.e., use the error-prone samples{

{µk(Psi), l
∗
i }
∣∣ i = 1, · · · , n

}
for Step 3 in Section 2.2. We call such a

trained classifier the naive classifier, given by

f̂ ∗ = argminf∈F R̂∗
φ(f), (4.11)

where R̂∗
φ(f) ≜

1
n

∑n
i=1 φ(−l∗i f(µk(Psi))) is a naive version of R̂φ(f) in (3.5).
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Let D denote the total degree of misclassification in the label, given by

D =


2− p∗−1 − p∗1, if (4.9) is taken;

2− p−1 − p1, if (4.10) is taken.

Theorem 3. Assume the conditions in Theorem 1 and the following con-

ditions:

(R5). All elements in F are uniformly bounded. That is, there exists a

constant M > 0 such that |f(h)| ≤ M ||h||Hk
for any f ∈ F and

h ∈ Hk;

(R6). There exists a constant A > 0 such that k(z1, z2) ≤ A for any z1, z2 ∈

Z.

Then the following results hold:

(a). for any given data size n,

E{|Rφ(f̂
∗)−Rφ(f̂)|} ≤ C

(
n,m,Lφ, LF , B

)
+
4B

n
+4MLφAD, (4.12)

Furthermore, if φ is classification-calibrated and inf
h∈G

Rφ(h) = minf∈F Rφ(f) =

R(f0), then

E{|R(f̂ ∗)−R(f̂)|} ≤ 2ζφ

(
C
(
n,m,Lφ, LF , B

)
+

4B

n
+ 2MLφAD

)
,

where ζφ(·) is as in Theorem 1.
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(b).

lim sup
n→∞

lim sup
m→∞

E{|Rφ(f̂
∗)−Rφ(f̂)|} ≤ 4MLφAD. (4.13)

Furthermore, if φ is classification-calibrated and inf
h∈G

Rφ(h) = min
f∈F

Rφ(f) =

R(f0), then

lim sup
n→∞

lim sup
m→∞

E{|R(f̂ ∗)−R(f̂)|} ≤ 2ζφ(2MLφAD),

where ζφ(·) is as in Theorem 1.

The proof of this theorem is presented in Section S1.5 of the supple-

mentary material. Conditions (R5) and (R6) share similarities to those in

Theorem 1. When f(0) = 0 for all f ∈ F , condition (R1) in Theorem

1 implies condition (R5) in Theorem 3. If A in condition (R6) equals 1,

condition (R4) in Theorem 1 evidently holds. Notably, Theorem 3 suggests

that the empirical φ-risk derived from the naive classifier cannot indefi-

nitely differ from that of the correct classifier. It describes upper bounds

for the expected excess φ-risk |Rφ(f̂
∗)−Rφ(f̂)| and the risk

∣∣R(f̂ ∗)−R(f̂)
∣∣

for the naive classifier f̂ ∗ in two different manners, nonasymptotically and

asymptotically. Although the upper bound (4.12) is not necessarily sharp,

it carries important implications. This bound is the sum of the asymptotic

bound in (4.13) and C(n,m,Lφ, LF , B) + 4Bn−1, where the latter term

reflects the influence of the size n of data and the Rademacher complexity
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of F . As n → ∞ and m → ∞, C(n,m,Lφ, LF , B) → 0, and thus, Theo-

rem 3 (a) leads to Theorem 3 (b). Further, applying Jensen’s inequality to

Theorem 3 (a) gives that

∣∣E{Rφ(f̂
∗)−Rφ(f̂)}

∣∣ ≤ C
(
n,m,Lφ, LF , B

)
+

4B

n
+ 4MLφAD, (4.14)

which characterizes a range for the difference between Rφ(f̂
∗) and Rφ(f̂)

under finite settings, influenced by various factors such as M , Lφ, A, B,

R(F), and the total degree D of label misclassification. Theorem 3 (b)

suggests that with a small degree of label noise, the upper bound (4.13)

is close to zero, showing the practical utility of the naive classifier. Under

such circumstances, even in the absence of precise measurements, using

error-contaminated data can still aid in learning f0 by increasing sample

sizes mi or n.

5. Correcting Mislabeling Effects

To correct mislabeling effects, we propose a new surrogate function by mod-

ifying the initial surrogate function φ introduced in Section 3 defined for

true labels. For any t ∈ R and l∗ ∈ L, we define

φ∗(t, l∗) =


p∗−l∗φ(−tl∗)−(1−p∗

l∗ )φ(tl
∗)

p∗1+p∗−1−1
, if (4.9) is taken;

φ(−tl∗)pl∗ + φ(tl∗)(1− pl∗), if (4.10) is taken,

(5.15)
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and similar to (3.4), we define the φ∗-risk as

Rφ∗(f) ≜ E{φ∗(f(µk(P )), l
∗)}, (5.16)

where the expectation is evaluated with respect to the joint distribution

M∗
k of {µk(P ), l

∗}, and f is a functional from Hk to R.

By incorporating the misclassification probabilities p∗1 and p∗−1, or the

reclassification probabilities p1 and p−1, into the modified surrogate func-

tion φ∗(·, ·), we effectively mitigate the mislabeling effects. The adjustment

ensures our original objective of minimizing the φ-risk to be preserved by

minimizing the φ∗-risk, as demonstrated by the following Theorem 4, whose

proof is presented in Section S1.6 of the supplementary material. Impor-

tantly, this new surrogate function φ∗(t, l∗) can be directly applied to iden-

tify the optimal learner using the observed noisy labels.

Theorem 4. For any f ∈ F , we have that

Rφ∗(f) = Rφ(f),

where Rφ∗(f) and Rφ(f) are defined in (5.16) and (3.4), respectively.

Similar to R̂φ(·) in (3.5), we define

R̂φ∗(f) ≜
1

n

n∑
i=1

φ∗(f(µk(Psi)), l
∗
i ), (5.17)
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and determine the classifier based on using error-corrupted data:

f̂ correct = argminf∈F R̂φ∗(f). (5.18)

When applying (4.9), φ∗ in (5.15) may be a nonconvex function with re-

spect to t due to the negative coefficient of φ(tl∗), leading to a nonconvex

optimization problem in (5.18). While nonconvex optimization presents a

computational challenge, it is commonly encountered in classification tasks.

In this case, a widely used approach is to relax nonconvex problems to be

convex ones, similar to the idea of replacing the 0-1 loss function with a con-

vex surrogate loss, as discussed in Section 3. Alternatively, one can directly

solve nonconvex optimization problems using techniques such as projected

gradient descent, alternating minimization, and stochastic optimization al-

gorithms (Jain and Kar 2017).

Let

L∗
φ =


2Lφ

|1−p∗1−p∗−1|
, if (4.9) is taken;

Lφ, if (4.10) is taken.

(5.19)

and

B∗ =


2B

|1−p∗1−p∗−1|
, if (4.9) is taken;

B, if (4.10) is taken.

(5.20)

Theorem 5. Assume that the conditions of Theorem 1 hold. Then for

f̂ correct in (5.18) and f0 in (3.4),
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(a). 0 ≤ E{Rφ(f̂
correct)−Rφ(f0)} ≤ C

(
n,m,L∗

φ, LF , B
∗
)
+ 2B∗

n
;

(b). lim
n→∞

lim
m→∞

E{Rφ(f̂
correct)−Rφ(f0)} = 0;

(c). if φ is classification-calibrated and inf
h∈G

Rφ(h) = min
f∈F

Rφ(f) = R(f0),

then

(i) 0 ≤ E{R(f̂ correct)−R0} ≤ ζφ

(
C
(
n,m,L∗

φ, LF , B
∗
)
+ 2B∗

n

)
, where

ζφ(·) is as in Theorem 1.

(ii) lim
n→∞

lim
m→∞

E{R(f̂ correct)−R0} = 0.

The proof of Theorem 5 is presented in Section S1.7 of the supple-

mentary material. The theorem states that E{Rφ(f̂
correct) − Rφ(f0)} and

E{R(f̂ correct) − R(f0)} converge to zero as the sample sizes m and n ap-

proach infinity, which align with the convergence of E{Rφ(f̂) − Rφ(f0)}

and E{R(f̂)− R0}, respectively, as shown in Theorem 1. That is, like the

empirically optimal classifier f̂ obtained from precise measurements, the

corrected classifier f̂ correct obtained from mismeasured data is asymptoti-

cally consistent for φ-risk in expectation.

We further comment on the performance of the classifier f̂ correct. Rela-

tive to the classifier f̂ trained from clean data, Theorem 5 is a counterpart

of Theorem 1 (a)-(c), which incorporates the label noise effects through L∗
φ
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and B∗. The upper bounds established for f̂ correct are identical to those

for f̂ when model (4.10) is used, but larger than those for f̂ when model

(4.9) is used, potentially indicating the price paid to train a valid classifier

using noisy data relative to clean data. On the other hand, regarding the

naive classifier f̂ ∗ trained from noisy data without accounting for the label

noise effects, though Theorems 3 and 5 do not compare f̂ ∗ and f̂ correct rel-

ative to the same reference classifier, it is interesting to compare the upper

bounds they identify. Specifically, comparing the upper bound in (4.12)

and Theorem 5 (a), the resulting difference is

Dφ ≜4
{
R(F) +

1

n
LF
}
(Lφ − L∗

φ) + 2

√
log (2n)

n
(B −B∗) +

4B

n
− 2B∗

n

+ 4MLφAD.

When model (4.10) is used, Dφ = 4MLφAD+ 2B
n
, indicating that the upper

bound for the classifier f̂ correct in Theorem 5 (a) is 4MLφAD + 2B
n

smaller

than that for the naive classifier in (4.12). On the other hand, when model

(4.9) is considered, Dφ ≤ 4MLφAD when n is large, as other terms in Dφ

is close to 0.

The preceding development focuses on classification within the infinite-

dimensional RKHS Hk. While this provides a theoretical foundation, prac-

tical implementation often requires working within a finite-dimensional ap-
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proximation ofHk. To this end, we construct a finite-dimensional space that

approximates Hk, and provides the detail in Section S2 of the supplemen-

tary material, where we devise a classification method to address label noise

within the finite-dimensional space approximating Hk and establish infor-

mative upper bounds for the φ-risk of the naive and correction classifiers

relative to the true classifier in Theorems S2 and S3 of the supplementary

material.

6. Sensitivity Analyses and Proposed Metrics

In this section, we propose assessment metrics to characterize the impact

of mislabeling and examine the performance of the proposed correction

method by using the SUP3 dataset discussed in Section 1, with the details

deferred to Section S3 of the supplementary material. While the provided

causal information is deemed to involve mislabeling, there is no validation

dataset to quantify the degree of mislabeling. Consequently, we undertake

sensitivity analyses to explore the impact of mislabeling and assess the

performance of the proposed correction method, which involves examining

(4.10) under various assumptions for the values of p1 and p−1.
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6.1 Implementation Details

6.1 Implementation Details

Causal learning is practically executed by transforming classification in

the infinite-dimensional RKHS space Hk with kernel function k into an

r-dimensional vector space that approximates Hk, as also implemented in

our study here, where we use the Gaussian kernel function, k(v1, v2) =

exp(−γ||v1 − v2||22), with hyper parameter γ. The parameter r is user-

specified; a larger value r leads to a more accurate approximation but en-

tails a higher computational cost. Further details on this approximation

method, along with theoretical guarantees when using the Gaussian kernel,

are provided in Section S2 of the supplementary material.

To assess the impact of different approximations, we consider different

values for r and γ within specified ranges, denoted [ar, br] and [aγ, bγ], re-

spectively. We set [ar, br] = [100, 1000] by evenly dividing it into 10 subin-

tervals and setting r to each of those cutpoint values; we take [aγ, bγ] =

[0.01, 10] by dividing it into 10 subintervals with equal length after taking

the transformation of logarithm to the base ten and letting γ take each of

the cutpoint values, that is, 10−2+ j
3 with j = 0, 1, · · · , 9.

In characterizing different degrees of label noise, we consider model

(4.10) and allow p1 and p−1 to take values in an interval, denoted [ap, bp],

where we set [ap, bp] = [0.5, 1] by dividing it into 50 subintervals with
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6.1 Implementation Details

equal length and let p1 and p−1 take each of those cutpoint values except

(p1, p−1) = (0.5, 0.5) or (1, 1). Let θ = (p1, p−1, r, γ).

The sensitivity analyses proceed in the following three steps:

1. With given values of p1 and p−1, independently generate values of li

based on the reported value of l∗i using (4.10) for i = 1, · · · , n.

2. With the specified values for r in (S.49) and γ in (S.1) of the supple-

mentary material, for i = 1, · · · , n, we use the r-dimensional vector

µk,r(PSi
) discussed in Section S2 of the supplementary material to

approximate µk(PSi
) described in Section 2.2.

3. Given a value of θ, we consider three methods of using data, by respec-

tively solving (3.5), (4.11), and (5.18), with µk(PSi
) in R̂φ(·) of (3.5)

replaced by µk,r(PSi
) that is presented in (S.56) of the supplementary

material. We call these as the true, naive, and correction methods, re-

spectively, and for a given classification method, let sign(fθ), sign(f
∗
θ ),

and sign(f correct
θ ) denote the true, naive, and correction classifiers,

respectively, where fθ, f
∗
θ , and f correct

θ represent the corresponding

discriminant functions from Rr to R for an employed classification

method.

Here we consider two classification methods: logistic regression (LR)
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6.1 Implementation Details

and Gaussian kernel-based support vector machine (SVM). In the

LR method, we specify the convex surrogate function φ(·) to be

φ(u) = log2
{
1+ exp(u)

}
for the logistic loss, and take the class F as

Fr ≜
{
f
∣∣∣ f(x) = wTx+ c, with w ∈ Rr and c ∈ R satisfying ||w||22 ≤

Cr and |c| ≤ Cr

}
. For the SVM method, we set the convex sur-

rogate function φ(·) to be φ(u) = max{1, 1 + u} for the hinge loss,

and let Fr ≜
{
f
∣∣∣ f(x) =

n∑
i=1

αilik(µk,r(PSi
), x) + b, with |αi| ≤

Cr for i = 1, · · · , n and |b| ≤ Cr

}
. Here, Cr is a large constant, and k

represents the Gaussian kernel (S.1) with γ = 1 (Section 6.3, Mohri,

Rostamizadeh, and Talwalkar 2018), i.e., k(z, z′) = exp(−||z − z′||22).

We employ the gradient decent (GD) method (Boyd and Vanden-

berghe 2004) to train a classifier.

When the convex surrogate φ is chosen for the logistic or hinge loss,

and the class F of functionals is set to Fr, we show in Section S2.4

of the supplementary material that the conditions of Theorem S3 are

satisfied. Consequently, the theoretical results in Theorem S3 apply

to the correction classifier sign(f correct
θ ).
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6.2 Evaluation Metrics and Results

6.2 Evaluation Metrics and Results

We compute the accuracy and recall of true classifier sign(fθ), respectively

given by A(θ) = 1 −
n∑

i=1
|li−l̂i|

2n
and R(θ) = 1 −

n∑
i=1

I{li=1}|li−l̂i|

2
n∑

i=1
I{li=1}

, where l̂i rep-

resents the predicted value for li using classifier sign(fθ). Similarly, A∗(θ)

and R∗(θ) are defined for the naive classifier sign(f ∗
θ ), and A

correct(θ) and

Rcorrect(θ) are defined for corrected classifier sign(f correct
θ ).

To quantify the mislabeling effects and assess the performance of the

proposed correction method, we define

DA(θ) ≜ A(θ)− A∗(θ) and DR(θ) ≜ R(θ)−R∗(θ),

referred to as accuracy-bias and recall-bias, respectively, along with

Dcorrect
A (θ) ≜ A(θ)− Acorrect(θ) and Dcorrect

R (θ) ≜ R(θ)−Rcorrect(θ),

termed accuracy-correction and recall-correction, respectively.

A large value of DA(θ) or DR(θ) indicates a substantial mislabeling

effect, and a large value of Dcorrect
A (θ) or Dcorrect

R (θ) indicates a poor perfor-

mance of the proposed correction method for a given value of θ.

To see how these measures vary with the degree of mislabeling, we divide

[0.5, 1] into N equal length subintervals with the cutpoints 0.5 = a0 < a1 <

· · · < aN−1 < aN = 1, and calculate these measures for θ = (ai, aj, r, γ)

with i, j = 1, · · · , N . To provide a comprehensive view, we construct a
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6.2 Evaluation Metrics and Results

heatmap for DA(p1, p−1, r, γ), DR(p1, p−1, r, γ), D
correct
A (p1, p−1, r, γ), and

Dcorrect
R (p1, p−1, r, γ) with given values of r and γ, where p1 and p−1 take

values of ai and aj for i, j = 1, · · · , N , respectively, excluding (p1, p−1) =

(0.5, 0.5) or (1, 1).

Furthermore, to assess the influence by r and γ, we calculate TX(N, r, γ) ≜

N∑
i=1

N∑
j=1

DX(ai, aj, r, γ); and T
correct
X (N, r, γ) ≜

N∑
i=1

N∑
j=1

Dcorrect
X (ai, aj, r, γ), with

“X” representing “A” or “R”. These metrics reflect the overall performance

of the naive or proposed correction method in terms of accuracy and recall.

In our sensitivity analyses, we take N = 50, and display heatmaps

for DX(p1, p−1, 500, 3) and Dcorrect
X (p1, p−1, 500, 3) in the first and last two

columns in Figure 1, respectively, where “X” represents “A” or “R”. Clearly,

DA(θ) and DR(θ) differs from zero for nearly all values of p1 and p−1, show-

ing the existence of mismeasurement effects. As expected, such effects be-

come more substantial as the degree of mislabeling increases regardless of

whether the LR and SVM classifiers are used, although the impact varies

with the classifier used. The proposed correction method outperforms the

naive method in terms of accuracy and recall for both the LR and SVM

classifiers.

(insert Figure 1 about here)

To assess how the mislabeling effects and the performance of the pro-
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posed correction method vary with r and γ, we consider r = 100, 500, or

1000, and γ = 0.01, 0.1, 1, 3, or 10, and report in Table 1 the results of

TX(50, r, γ), and T
correct
X (50, r, γ) obtained from the logistic regression and

SVM classifiers, where “X” stands for “A” or “R”. Additional results are

reported in Figure S.1 of the supplementary material. Clearly, the misla-

beling effects may be differently exhibited by different choices of a classifier.

The choice of r and γ can impact the performance of both the naive and

proposed methods. Overall, the proposed correction method outperforms

the naive methods in all settings of r and γ.

(insert Table 1 about here)

7. Discussion

In this paper, we cast causal inference as a binary classification problem as

in Lopez-Paz et al. (2015) but extend their framework to handle label noise.

Further exploration can be considered for determining causal relationships

for paired variables, which is inherently complex and contingent upon spe-

cific contexts. While one may consider all possible grouping combinations

as noted in Section 1, this process, however, entails a myriad of possibilities

when the number of variables is moderate or large.
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Refining structures to better facilitate relationships among variables is

an intriguing prospect. Instead of simply examining causal links between

two vectors Xi and Wi, we may pool all components in Xi and Wi and

use a directed acyclic graph (DAG) to represent causal relationships, where

nodes represent variables and edges denote causal directions. We may also

explore directed random graphs, where edge existence and direction are

probabilistic. Labeling causal relationships would then involve probability

components.

Our focus here is on settings with instance-independent label noise,

also known as nondifferential response error, where all units have an equal

probability of being mislabeled. In cases where subjects have varying prob-

abilities of being mislabeled, we can refine our approach by forming two

sets: one for subjects without label noise (using the usual classifier) and

one with label noise (using the developed procedure).

As commented by a referee, when predicting labels for a new pair of

variables, (X̃, W̃ ), with a sample of measurements, S̃ ≜
{
(X̃k, W̃k)

∣∣ k =

1, · · · , m̃
}
, it may be interesting to include the new data S̃ to the origi-

nal dataset to retrain the classifier for possible performance enhancement.

Techniques of handling missing outcomes may be useful in this regard.
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Our development assumes knowledge of misclassification probabilities

p∗−1 and p∗1 (or p−1 and p1), typically used in sensitivity analyses to assess

classifier performance under varying degrees of label noise. Extending our

method to handle unknown misclassifications is interesting. This extension

can be achieved by utilizing validation data with measurements for both

true labels and their surrogate versions and using a two-stage procedure:

in the first stage, estimate misclassification probabilities using validation

data, and in the second stage, apply our approach using these estimates.

Without validation data, an alternative is to construct a new loss func-

tion independent of misclassification probabilities. Using the minimax tech-

nique, we maximize the empirical φ∗-risk (5.17) with respect to misclassi-

fication probabilities p∗−1 and p∗1 (or p−1 and p1) over a user-specified set

B, and minimize this with respect to the classifier f over the class F of

candidate classifiers. Ideally, B would contain the true misclassification

probabilities, with a smaller B leading to better classifier performance.
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Table 1: Sensitivity analyses of the SUP3 data: assessing the impact of

different choices of r and γ on accuracy and recall

γ
TA(50, 100, γ) TA(50, 500, γ) TA(50, 1000, γ) TR(50, 100, γ) TR(50, 500, γ) TR(50, 1000, γ)

LR SVM LR SVM LR SVM LR SVM LR SVM LR SVM

0.01 263 330 570 597 612 599 861 827 1074 1082 1110 1076

0.1 299 377 563 600 640 600 895 948 1087 1096 1154 1068

1 332 403 596 598 617 602 949 995 1196 1076 1108 1072

3 307 401 591 603 635 600 939 1071 1148 1092 1151 1075

10 339 408 575 598 640 602 1004 1021 1108 1075 1165 1075

γ
T correct
A (50, 100, γ) T correct

A (50, 500, γ) T correct
A (50, 1000, γ) T correct

R (50, 100, γ) Tcorrect
R (50, 500, γ) Tcorrect

R (50, 1000, γ)

LR SVM LR SVM LR SVM LR SVM LR SVM LR SVM

0.01 22 209 405 199 557 39 126 122 659 402 926 55

0.1 44 299 427 204 590 49 135 778 722 396 987 75

1 128 321 444 207 590 46 310 3 749 416 989 79

3 108 281 436 222 604 45 343 548 720 443 1031 78

10 99 357 455 202 585 46 252 646 759 388 997 77
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Figure 1: Heatmaps generated from a naive method for DA(p1, p−1, r, γ) and

DR(p1, p−1, r, γ) and the proposed correction method for Dcorrect
A (p1, p−1, r, γ)

and Dcorrect
R (p1, p−1, r, γ), where the results for LR and SVM classifiers are

reported in the top and bottom panels, respectively.
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