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STATISTICAL INFERENCE FOR MULTIVARIATE

FUNCTIONAL PANEL DATA

Shuang Sun and Lijian Yang

Tsinghua University

Abstract: Statistical inference is developed for vector-valued functional panel

data which are i.i.d. with respect to subjects and infinite moving average in

time. B-spline estimation is proposed for trajectories, which are used to construct

a two-step estimator of the vector mean function. By using explicit Gaussian

strong approximation in vector form, in the context of moving average panel, the

proposed spline estimator is shown to be oracally efficient in the sense that it is

asymptotically equivalent to the infeasible estimator with all trajectories known.

This deep theoretical result points to a limiting Gaussian distribution of the vec-

tor mean estimator, which allows for the construction of various simultaneous

confidence region (SCR) for the vector mean function itself and linear combina-

tion of its elements. Asymptotic correctness of the SCRs is both established in

theory and validated in simulation experiments. The proposed SCRs are applied

to an Electroencephalogram (EEG) multivariate functional panel data set, vali-

dating multiple scientific facts.

Key words and phrases: B-spline, simultaneous confidence region, ElectroEn-
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cephalogram, moving average, oracle efficiency.

1. Introduction

Functional data analysis (FDA) has been an important area of statistics

research for more than two decades. Comprehensive introduction to FDA

can be found in Ramsay and Silverman (2005), Ferraty and Vieu (2006),

Hsing and Eubank (2015) and Kokoszka and Reimherr (2017).

A functional random variable is a square-integrable continuous stochas-

tic process: specifically, η (·) ∈ C[0, 1] almost surely, with E supx∈[0,1] η
2(x) <

∞. For such η(·), both mean function Eη (·) and covariance function

cov {η(x), η(x′)}, x, x′ ∈ [0, 1] exist and are continuous. A functional ran-

dom vector is a vector-valued functional random variable η(·) =
{
η(1)(·), . . . ,

η(L)(·)
}⊤ where each element is a square-integrable continuous stochastic

process. A functional data set in the abstract sense consists of repeated

observations {ηi (·)}ni=1 of a functional random variable η (·) or {ηi (·)}
n
i=1

of a functional random vector η(·).

As the essential first step in functional data analysis, estimation of the

population mean function Eη (·) was studied in Ma et al. (2012), Zheng

et al. (2014) for sparse longitudinal data, and Cao et al. (2012), Cao and

Wang (2018), Cai et al. (2020), Yu et al. (2021), Huang et al. (2022) for
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dense functional data, all with simultaneous confidence band (SCB). All of

these works are valid only for i.i.d. observations ηi (·) , 1 ≤ i ≤ n. More

recently, Li and Yang (2023) has extended SCB methodology for functional

mean to functional time series ηt (·) , 1 ≤ t ≤ T , while Zhong and Yang

(2023) has established simultaneous confidence region for auto covariance

function cov {ηt(x), ηt+h(x
′)}, x, x′ ∈ [0, 1], h ∈ N+ of functional time series.

See also Horváth et al. (2013) for related work on functional time series.

In contrast to i.i.d. functional observations or functional time series,

functional panel data combines both in a realistic and informative man-

ner. A functional panel data consists of stochastic processes {ηit(·)}
n,T
i=1,t=1

called trajectories, where for each fixed i ∈ {1, . . . , n}, {ηit(·)}
T
t=1 is a func-

tional time series of length T , and each {ηit(·)}
T
t=1 , 1 ≤ i ≤ n has the

same distribution of a standard functional time series {ηt(·)}
T
t=1. Within

the functional time series {ηt(·)}
T
t=1, each ηt(·), t ∈ 1, . . . , T has the same

distribution as η(·). Instead of functional random variables from C[0, 1],

functional random vectors η(·) taking values from (C[0, 1])L are investi-

gated in this paper to accommodate the multivariate circumstances. Those

multivariate trajectories are decomposed as ηit(·) = m(·) + ξit(·), where

m(·) =
{
m(1)(·), . . . ,m(L)(·)

}⊤ is the vector mean function of η(·), and cen-

tered trajectories ξit(·) =
{
ξ
(1)
it (·), . . . , ξ(L)it (·)

}⊤
are small-scale variations
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of x on the t-th trajectory of the i-th subject, being (C[0, 1])L random vari-

ables with mean Eξit(·) = 0L and matrix covariance function Eξit(·)ξit(·)⊤

of size L× L.

An example which motivates investigation of multivariate functional

panel data is the Electroencephalogram (EEG) signals for human sub-

jects during the task of surround suppression paradigm, studied in Langer

et al. (2017). Recorded at sample rate 500Hz (i.e., one recording per

0.002 second), the multichannel EEG series of n = 126 participants dur-

ing T = 63 consecutive trials constitute multivariate functional panel data,

{ηit(·)}
126,63
i=1,t=1, see Figure 1. For more details of this example, see Section 5,

and for EEG data as multivariate functional data, see Zhang et al. (2020).
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Figure 1: Plot of raw EEG signals on channels O1, O2, P3, P4, C3, F3 for

one subject during one trial, which can be regarded as a sample of multivariate

functional panel data.
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To model the distribution of the vector-valued functional time series

{ηit(·)}
T
t=1, the centered variations ξit(·) are embedded into a strictly sta-

tionary functional vector infinite moving average FVMA(∞),

ξit(·) =
∞∑

t′=0

At′ζi,t−t′(·), t = 0,±1,±2, . . . , 1 ≤ i ≤ n, (1.1)

where the operator At′ : {L2[0, 1]}L → {L2[0, 1]}L are bounded linear op-

erators playing the roles of coefficient matrices in vector moving average

models, see Lütkepohl (2005). The sequence of functional random vectors

{ζit(·)}t∈Z with ζit(·)⊤ =
{
ζ
(1)
it (·), . . . , ζ(L)it (·)

}
are multivariate analogs of

strong functional white noises in Definition 3.1 of Bosq (2000): they are

functional random vectors of which each element is an L2 continuous pro-

cess, i.i.d. over index t ∈ Z, with vector mean function Eζit(·) ≡ 0L and ma-

trix covariance function Gζ(x, x
′) =

{
G

(l,l′)
ζ (x, x′)

}L

l,l′=1
= Eζit(x)ζit (x′)

⊤.

Model (1.1) extends the FMA(∞) proposed in Li and Yang (2023).

For the univariate functional random variable ζ(l)it (·), 1 ≤ l ≤ L, the

l-th element of ζit(·), its covariance function G
(l,l)
ζ (x, x′) = Eζ(l)it (x)ζ

(l)
it (x

′)

is continuous, and Mercer Lemma (Lemma 1.3, Bosq (2000)) entails that

G
(l,l)
ζ (x, x′) ≡

∑∞
k=1 λ

(l)
k ψ

(l)
k (x)ψ

(l)
k (x′) with eigen values λ(l)1 ≥ λ

(l)
2 ≥ . . . ≥

0 and corresponding eigenfunctions
{
ψ

(l)
k

}∞

k=1
, the latter an orthonormal ba-
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sis of L2[0, 1], such that
∑∞

k=1 λ
(l)
k <∞,

{
ψ

(l)
k

}∞

k=1
⊂ C[0, 1] and

∫
G

(l,l)
ζ (x, x′)

ψ
(l)
k (x′)dx′ = λ

(l)
k ψ

(l)
k (x). The well-known Karhunen-Loève expansion fol-

lows: ζ
(l)
it (·) =

∑∞
k=1 ζ

(l)
itkϕ

(l)
k (·), in which the rescaled eigenfunctions, ϕ(l)

k ,

called functional principle components (FPCs), satisfy ϕ
(l)
k =

(
λ
(l)
k

)1/2
ψ

(l)
k

and
∫
ζ
(l)
it (x)ϕ

(l)
k (x)dx = λ

(l)
k ζ

(l)
itk, for k ≥ 1; the random coefficients ζ(l)itk’s,

called FPC scores, are therefore uncorrelated over k ∈ N+ with mean 0

and variance 1. It is assumed that
∑∞

k=1 ∥ϕ
(l)
k ∥∞ < ∞ (see Assumption

(A4)), thus the Karhunen-Loève series converges absolutely uniformly al-

most surely by Dominated Convergence Theorem. Denote

ψk =
(
ψ

(1)
k , . . . , ψ

(L)
k

)⊤
, ϕk =

(
ϕ
(1)
k , . . . , ϕ

(L)
k

)⊤
,

ζitk =
(
ζ
(1)
itk , . . . , ζ

(L)
itk

)⊤
, λk =

(
λ
(1)
k , . . . , λ

(L)
k

)⊤
,

where ψ(l)
k , ϕ(l)

k , ζ(l)itk and λ
(l)
k are respectively the k-th eigenfunction, FPC,

FPC score and eigenvalue for ζ(l)it (·), the l-th element of ζit(·). Denote by “◦”

the element-wise product of two matrices of the same dimension, specifically

{cll′}L,L
′

l,l′=1 ◦ {dll′}L,L
′

l,l′=1 = {cll′dll′}L,L
′

l,l′=1, then the matrix covariance function

Gζ(x, x
′) and the functional random vector ζit(·) are written as follows:

Gζ(x, x
′) =

∞∑
k=1

Σk,ζ ◦
{
ϕk (x)ϕk (x

′)
⊤
}
, (1.2)
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ζit(·) =
∞∑
k=1

ζitk ◦ ϕk(·), (1.3)

where Σk,ζ = cov (ζitk) is in fact a correlation matrix. Equations (1.2)

and (1.3) are vector analogs for functional random vector ζit(·) of Mercer

Lemma and the Karhunen-Loève expansion, with {ϕk(·)}k∈N+
called FPCs

and random coefficients {ζitk}k∈N+
called FPC scores for ζit(·), all vectors

of dimension L.

As in Zhong and Yang (2023), elements of the FVMA(∞) coefficient

operators At are defined relative to the orthonormal basis, then for any

t ∈ N, the operator At is defined via

At

{
∞∑
k=1

ck ◦ψk(·)

}
=

∞∑
k=1

atk ◦ ck ◦ψk(·), ck ∈ RL,
∞∑
k=1

∥ck∥22 <∞,

atk ∈ RL, ∥atk∥∞ < Caρ
t
a, Ca ∈ (0,∞), ρa ∈ (0, 1), k ∈ N+,

(1.4)

where for any vector c = (c1, . . . , cL)
⊤ ∈ RL, ∥c∥r = (|c1|r + . . .+ |cL|r)1/r,

1 ≤ r < ∞, ∥c∥∞ = max1≤l≤L (|c1|, . . . , |cL|). The constraints in (1.4) on

moving average coefficients atk are vector versions of constraints in Zhong

and Yang (2023).
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According to (1.1),

ξit(·) =
∞∑

t′=0

At′

{
∞∑
k=1

ζi,t−t′,k ◦ ϕk(·)

}
=

∞∑
k=1

ξitk ◦ ϕk(·),

where

ξitk =
∞∑

t′=0

at′k ◦ ζi,t−t′,k, t ∈ Z, k ∈ N+. (1.5)

Thus for each fixed i ∈ {1, . . . , n} , k ∈ N+, the vector time series {ξitk}t∈Z

with ξ⊤itk =
(
ξ
(1)
itk , . . . , ξ

(L)
itk

)
is an L-dimensional VMA(∞) series of {ζitk}t∈Z.

These VMA(∞) series are uncorrelated over k ∈ N+ and i.i.d. over i ∈

{1, . . . , n}. One notes that VMA(∞) is a sufficiently broad class which

includes the most common VARMA(p, q), see Lütkepohl (2005).

Assume for convenience that for each fixed k ∈ N+,
∑∞

t=0 atk◦atk = 1L,

then each element of ξitk are of mean 0 and variance 1 as well. Since

{ξitk}k∈N+
are uncorrelated over k ∈ N+, ξit(·) =

∑∞
k=1 ξitk ◦ ϕk(·) is also

the Karhunen-Loève expansion of functional random vector ξit(·), and ran-

dom coefficients {ξitk}k∈N+
are the corresponding FPC scores. The matrix

covariance function G (x, x′) =
{
G(l,l′) (x, x′)

}
1≤l,l′≤L

of ξit(·) has the fol-

lowing expression similar to Mercer Lemma

G(x, x′) =
∞∑
k=1

Σk,ξ ◦
{
ϕk (x)ϕk (x

′)
⊤
}
, (1.6)
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where Σk,ξ = cov (ξitk) = Σk,ζ◦
∑∞

t=0 atka
⊤
tk is actually a correlation matrix,

1 ≤ k <∞. When L = 1, Σk,ξ ≡ Σk,ζ ≡ 1.

In practice, however, trajectories {ηit(·)} are unknown, and the ob-

served multivariate functional panel data take the form of

Y itj =m(j/N) +
∞∑
k=1

ξitk ◦ ϕk(j/N) + σit(j/N) ◦ εitj , (1.7)

for 1 ≤ i ≤ n, 1 ≤ t ≤ T, 1 ≤ j ≤ N , with Y itj =
(
Y

(1)
itj , . . . , Y

(L)
itj

)⊤
, εitj =(

ε
(1)
itj , . . . , ε

(L)
itj

)⊤
, σit =

(
σ
(1)
it , . . . , σ

(L)
it

)⊤
, all vectors of L-dimension. The

terms σit(j/N) ◦ εitj represent measurement errors which occur with data

collection, εitj independent over i ≥ 1, t ≥ 1 and i.i.d. over j ≥ 1, with

covariance matrix Σit,ε, which is in fact a correlation matrix after normaliza-

tion, and elements of the vector standard deviation function σit(·) satisfying

Hölder continuity in Assumption (A2). B-spline is used to approximate the

vector-valued trajectories {ηit(·)} from observed vectors {Y itj}, and further

a two-step B-spline estimator for the vector mean function m(·) is built.

Unlike existing works Huang et al. (2022), Li and Yang (2023) and

Zhong and Yang (2023) using classic implicit Gaussian strong approxima-

tion of the kind in Einmahl (1989), this work uses explicit Gaussian strong

approximation result of Götze and Zaitsev (2010). As a consequence, fi-
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nite number of distinct distributions is no longer required of FPC scores

or measurement errors (see Lemma S.1 in the Supplement), significantly

broadening the applicability scope of the proposed method. Another note-

worthy feature of the asymptotic results is that only length T of the time

series needs to go to infinity, the number n of subjects can either be bounded

or go to infinity, see also Remark 4.

The paper is organized as follows. Section 2 proposes SCR for the vector

mean function and SCB for any linear combination of its elements built

from B-spline estimation, and establishes theoretical properties of them.

Implementation details of the proposed SCB and SCR are given in Section

3. Section 4 examines finite sample performance of the proposed methods in

simulation settings. An EEG data is studied in Section 5 with the new SCB

and SCR tools. All technical proofs are collected in the online Supplement.

2. Main results

2.1 Spline estimation of vector mean function

For simplicity of notations, one defines a bijective single rank over i and t,

r (i, t) = n(t − 1) + i, for 1 ≤ i ≤ n and −∞ ≤ t ≤ T , so that any double

summation
∑n

i=1

∑T
t=1 is converted to

∑nT
r(i,t)=1.

For sequence of real numbers an and bn, denote an ≍ bn if an = O(bn)
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2.1 Spline estimation of vector mean function

and bn = O(an), as n→ ∞. For any sequence c = (cn)n∈N+
∈ ℓp, denote the

norm ∥c∥p = (
∑

n∈N+
|cn|p)1/p. For any positive definite matrix H , denote

by λmax (H) and λmin (H) the maximal and minimal eigenvalues of H . For

any function f (·) ∈ C [0, 1], denote the norm ∥f∥∞ = supx∈[0,1] |f (x) |. For

functions f, g ∈ L2[0, 1], denote the inner product ⟨f, g⟩ =
∫
[0,1]

f(x)g(x)dx

with norm ∥f∥2 = {⟨f, f⟩}1/2. For any non-negative integer q and frac-

tion µ ∈ (0, 1], denote by C(q,µ) [0, 1] the space of functions with µ-Hölder

continuous q-th derivative, i.e.,

C(q,µ)[0, 1] =

{
φ : [0, 1] → R

∣∣∣∣∣∥φ∥q,µ = sup
x,y∈[0,1],x̸=y

∣∣∣∣φ(q) (x)− φ(q) (y)

|x− y|µ
∣∣∣∣ < +∞

}
.

Besides, for vector-valued function f =
(
f (1), . . . , f (L)

)⊤ ∈ (C[0, 1])L, de-

note

∥f∥∞ = max
1≤l≤L

∥∥f (l)
∥∥
∞ , ∥f∥q,µ = max

1≤l≤L

∥∥f (l)
∥∥
q,µ
, (2.8)

and for vector-valued functions f , g ∈ (L2[0, 1])
L with f =

(
f (1), . . . , f (L)

)⊤,

g =
(
g(1), . . . , g(L)

)⊤, denote ⟨f , g⟩ =
∑L

l=1⟨f (l), g(l)⟩, ∥f∥2 = {⟨f ,f⟩}1/2.

Since m(·) and ϕk(·) both belong to
(
C(q,µ) [0, 1]

)L under Assumptions

(A1) and (A4) below, ηit (·) can be regarded as a functional random vector

taking values from
(
C(q,µ) [0, 1]

)L. Had trajectories {ηit (·)}nTr(i,t)=1 been all

observed over the entire interval [0, 1], the population vector mean function
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2.1 Spline estimation of vector mean function

m (·) can be estimated by the sample mean

m̄ (·) = (nT )−1
nT∑

r(i,t)=1

ηit (·) . (2.9)

This “estimator” is infeasible as it makes use of unobservables. It however

serves as a benchmark.

To describe the spline functions, one denotes by {tℓ}Jsℓ=1 a sequence of

equally-spaced points, tℓ = ℓ/ (Js + 1), 0 ≤ ℓ ≤ Js + 1, 0 = t0 < t1 <

. . . < tJs < 1 = tJs+1, called interior knots, which divide the interval

[0, 1] into (Js + 1) equal subintervals Iℓ = [tℓ, tℓ+1), ℓ = 0, . . . , Js − 1 and

IJs = [tJs , 1]. Let H(p−2) = H(p−2) [0, 1] be the polynomial spline space of

order p on Iℓ, ℓ = 0, . . . , Js, which consists of all (p− 2) times continuously

differentiable functions on [0, 1] that are polynomials of degree (p− 1) on

subintervals Iℓ, ℓ = 0, . . . , Js. Then, we denote by {Bℓ,p(·), 1 ≤ ℓ ≤ Js + p}

the p-th order B-spline basis functions of H(p−2) (de Boor (2001)), hence

H(p−2) =
{∑Js+p

ℓ=1 λℓ,pBℓ,p(·)
∣∣∣λℓ,p ∈ R

}
.

Trajectories and their mean are estimated by spline regression

m̂(·) = (nT )−1

nT∑
r(i,t)=1

η̂it(·), η̂it(·) = argmin
g(·)∈(H(p−2))

L

N∑
j=1

∥Y itj − g(j/N)∥22 .

(2.10)
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2.2 Assumptions

2.2 Assumptions

We first list in order some constraints on constants

µ ∈ (0, 1], q ∈ N, p∗ = q + µ, ν ∈ (0, 1], (2.11)

θ ∈
(
0,min

{
2ν,

2p∗

p∗ + 1

})
, (2.12)

β2 ∈
(
0,min

{
1

2
, ν − θ

2
, 1− θ

2
− θ

2p∗

})
, (2.13)

r0 > max

{
4,

4θ

p∗(2− 2β2 − θ)− θ

}
, (2.14)

max

{
1− ν,

θ

p∗

(
1

2
+

2

r0

)}
< γ < 1− θ

2
− β2. (2.15)

Elementary algebra shows that (2.12) is needed for (2.13) to be solvable for

β2, (2.12) and (2.13) for (2.14) to be solvable for r0, and that (2.12), (2.13)

and (2.14) together ensure the existence of γ that satisfies (2.15).

The above constraints allow the following technical assumptions.

(A1) The vector mean function m (·) ∈
(
C(q,µ) [0, 1]

)L for the integer q,

constant µ and p∗ = q + µ in (2.11).

(A2) The vector standard deviation functions σit(·) ∈
(
C(0,ν) [0, 1]

)L for ν in

(2.11), and max1≤r(i,t)≤nT (∥σit∥∞ + ∥σit∥0,ν) ≤ Cσ for 0 < Cσ <∞.

(A3) As T → ∞, N = N (T ) → ∞, n× T = O
(
N θ
)

for the θ in (2.12).

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



2.2 Assumptions

(A4) There exists cφ > 0 such that Gφ (x, x) ≥ cφIL, ∀x ∈ [0, 1] with

Gφ (x, x) defined in (2.16). The rescaled FPCs ϕk (·) ∈
(
C(q,µ) [0, 1]

)L
with

∑∞
k=1 ∥ϕk∥0,µ+

∑∞
k=1 ∥ϕk∥q,µ+

∑∞
k=1 ∥ϕk∥∞ <∞ with the norm

defined in (2.8).

(A5) On the probability space (Ω,A,P) are FPC scores {ζitk}r(i,t)∈Z,k≥1 in-

dependent over k ≥ 1 and i.i.d. over r(i, t) ∈ Z with supk≥1 E ∥ζ11k∥
r0
2 <

∞ for r0 in (2.14), measurement errors {εitj}r(i,t)≥1,j≥1 independent

over r(i, t) ≥ 1 and i.i.d. over j ≥ 1, and {ζitk}r(i,t)∈Z,k≥1 independent

of {εitj}r(i,t)≥1,j≥1, with covariance matrices Σk,ζ = cov
(
ζ11,k

)
,Σit,ε =

cov (εit,1). There exist i.i.d. N (0L,Σk,ζ) random vectors {Zitk,ζ}nTr(i,t)=1−nInT

for 1 ≤ k ≤ knT , and i.i.d N(0L,Σit,ε) random vectors {Zitj,ε}Nj=1 for

1 ≤ r(i, t) ≤ nT on a new probability space
(
Ω̃, Ã, P̃

)
, C1, C2 ∈

(0,+∞), γ1, γ2 ∈ (1,+∞), β1 ∈ (0, 1/2), β2 in (2.13), such that

P

 max
1≤k≤knT

max
1−nInT≤τ≤nT

∥∥∥∥∥∥
τ∑

r(i,t)=1−nInT

(ζitk −Zitk,ζ)

∥∥∥∥∥∥
2

> (nT )β1

 < C1 (nT )
−γ1 ,

P

 max
1≤r(i,t)≤nT

max
1≤τ≤N

∥∥∥∥∥
τ∑

j=1

(εitj −Zitj,ε)

∥∥∥∥∥
2

> Nβ2

 < C2N
−γ2 ,

where positive integers knT = O{(nT )ω} for some ω > 0, InT >

−10 log(nT )/ log ρa, InT ≍ log (nT ) and ρa the geometric decay rate
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2.2 Assumptions

in (1.4). To avoid complex notations, {ζitk}
nT,knT

r(i,t)=1−nInT ,k=1, {εitj}
nT,N
r(i,t)=1,j=1

are used to represent random variables on
(
Ω̃, Ã, P̃

)
with the same

joint distribution, and P to represent P̃.

(A6) The spline order p ≥ p∗, the number of interior knots Js = NγdN for

γ in (2.15), dN + d−1
N = O

(
logθN

)
for θ in (2.12), as N → ∞.

(A5’) The FPC scores {ζitk}r(i,t)∈Z,k≥1 are independent over k ≥ 1 and

i.i.d. over r(i, t) ∈ Z, the measurement errors {εitj}r(i,t)≥1,j≥1 are

independent over r(i, t) ≥ 1 and i.i.d. over j ≥ 1, and {εitj}r(i,t)≥1,j≥1

are independent of {ζitk}r(i,t)∈Z,k≥1. There exist constants r1 > 4+2ω,

r2 > (2+θ)/β2, for some ω > 0, θ in (2.12) and β2 in (2.13), such that

supk≥1 E∥ζ11,k∥r12 +supr(i,t)≥1 E∥εit,1∥r22 <∞. For covariance matrices

Σk,ζ = cov
(
ζ11,k

)
,Σit,ε = cov (εit,1), there exists a constant cλ >

0, such that λmax (Σk,ζ) /λmin (Σk,ζ) < cλ, λmax (Σit,ε) /λmin (Σit,ε) <

cλ, ∀k, i, t ∈ N+.

Assumptions (A1) and (A2) are typical for spline smoothing. In par-

ticular, (A1) controls the size of the bias of the spline smoother for m (·)

and (A2) requires that the variance function is uniformly bounded on its

domain. Assumption (A3) restricts that total sample size n × T increases

by a fractional power θ of N , the number of observations for each tra-
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2.2 Assumptions

jectory. The collective bounded smoothness of the principal components

is stated in Assumption (A4). Assumption (A5) provides the Gaussian

strong approximation of estimation errors as well as the FPC score innova-

tions {ζitk}
∞,∞,∞
i=1,t=−∞,k=1. The “high level” Assumption (A5) can be ensured

by an elementary Assumption (A5’). Assumption (A6) makes constraints

on the number of interior knots Js and the measurement times N .

Remark 1. The assumptions above are quite mild and easily satisfied.

Default values for q, µ, θ, p, γ are q + µ = p∗ = 4, ν = 1, θ = 1, p = 4

(cubic spline), γ = 3/8, dN ≍ log logN are used for simulation in Section 4.

The choice of q = 0, µ = 1/2, p∗ = 1/2, ν = 1/2, θ = 3/5, p = 1 (constant

spline), γ = 16/25, dN ≍ log logN also satisfies all assumptions and allows

for non differentiable trajectories, as in Mohammadi and Panaretos (2023).

Remark 2. The Gaussian process φ(·) of Theorem 1 is L-dimensional

according to definition in (2.19). This rules out the possibility of dimension

L→ ∞, since as a weak limit, φ(·) is fixed.

Remark 3. We concur with one Referee that it is feasible to allow time

dependent measurement errors {εitj}r(i,t)≥1,j≥1, making use of techniques in

Huang et al. (2022). This has been omitted due to space constraint.

Remark 4. A Referee has observed that the number n of subjects does
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2.3 Asymptotic properties of the infeasible estimator

not have to diverge hence it is feasible to make inference on each subject’s

vector mean function as long as T goes to infinity.

Remark 5. The independence of FPC scores {ζitk}r(i,t)∈Z,k≥1 over k ≥ 1 is

presumed in most existing literature, and is needed to combine strong Gaus-

sian approximation of {ζitk}r(i,t)∈Z for all k ≥ 1 in one common probability

space, see Lemma S.5 in the Supplement.

2.3 Asymptotic properties of the infeasible estimator

The infeasible estimator m̄(·) is examined in this subsection.

Define a limiting matrix covariance function

Gφ(x, x
′) =

∞∑
k=1

∆k ◦
{
ϕk(x)ϕk (x

′)
⊤
}
, (2.16)

where ∆k is the long-run covariance matrix of the vector series {ξitk}t∈Z:

∆k =
+∞∑

h=−∞

Eξitkξ⊤i,t+h,k =

(
∞∑
t=0

atka
⊤
tk + 2

∞∑
t=0

∞∑
h=1

atka
⊤
t+h,k

)
◦Σk,ζ .

Noting that all elements of ∆k are uniformly bounded for k ∈ N+, one can

find a sequence of independent Gaussian vectors {U k}k∈N+
of L-dimension
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2.3 Asymptotic properties of the infeasible estimator

with EU k = 0L and EU kU
⊤
k = ∆k. Define

U =

{(
λ

1/2
1 ◦U 1

)⊤
,
(
λ

1/2
2 ◦U 2

)⊤
, . . .

}⊤

, (2.17)

where λ1/2
k , k ≥ 1 denote the element-wise square-root of the vector, then

E ∥U∥22 ≤ C
∑∞

k=1 ∥λk∥1 < ∞, thus U ∈ ℓ2 a.s.. In fact, U is a Gaussian

ℓ2-random variable since u∗(U) is Gaussian for all u∗ ∈ (ℓ2)
∗. For any

u =
(
u⊤

1 ,u
⊤
2 , . . .

)⊤ ∈ ℓ2, where {uk}k∈N+
are vectors of length L, consider

a map Π : ℓ2 → (L2[0, 1])
L defined as Π(u)(·) =

∑∞
k=1 uk ◦ψk(·), then Π is

isometric, which yields a Gaussian (L2[0, 1])
L-random variable

Π(U)(·) =
∞∑
k=1

λ
1/2
k ◦U k ◦ψk(·) =

∞∑
k=1

U k ◦ ϕk(·) (2.18)

with matrix covariance function Gφ.

One defines next several rescaled Gaussian processes derived from Π(U)(·)

φ(·) = G−1/2
φ (·, ·)Π(U)(·), (2.19)

φL(·) = [diag {Gφ(·, ·)}]−1/2G1/2
φ (·, ·)φ(·), (2.20)

φb(·) =
{
b⊤Gφ(·, ·)b

}−1/2
b⊤G1/2

φ (·, ·)φ(·), (2.21)

where b ∈ RL/ {0L} and the diag(A) sets all off-diagonal elements of a
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2.3 Asymptotic properties of the infeasible estimator

square matrix A to zero. They are respectively (L2[0, 1])
L, (L2[0, 1])

L and

L2[0, 1] Gaussian random variables, with matrix covariance functions

Eφ (x)φ(x′)⊤ = G−1/2
φ (x, x)Gφ (x, x

′)G−1/2
φ (x′, x′) ,

EφL(x)φL(x
′)⊤ = [diag {Gφ(x, x)}]−1/2Gφ(x, x

′) [diag {Gφ(x
′, x′)}]−1/2

,

Eφb(x)φb(x
′) = b⊤Gφ(x, x

′)b
{
b⊤Gφ(x, x)bb

⊤Gφ(x
′, x′)b

}−1/2
, x, x′ ∈ [0, 1] .

Weak convergence of the infeasible estimator m̄ (·) follows.

Theorem 1. Under Assumptions (A1), (A4) and (A5), as T → ∞, the

infeasible estimator m̄(·) converges at the (nT )1/2 rate to m(·) with asymp-

totic matrix covariance function Gφ (x, x
′), i.e.,

(nT )1/2G−1/2
φ (·, ·) {m̄ (·)−m (·)} ⇒ φ (·) .

Consequently, (2.20) and (2.21) imply that

(nT )1/2 [diag {Gφ(·, ·)}]−1/2 {m̄ (·)−m (·)} ⇒ φL (·) ,

(nT )1/2
{
b⊤Gφ(·, ·)b

}−1/2
b⊤ {m̄ (·)−m (·)} ⇒ φb (·) .

For any α ∈ (0, 1), denote by Qb,1−α and QL,1−α respectively the 100(1−

α)-th percentile of the absolute maxima distribution of φb(x) and ∥φL(x)∥∞
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2.4 Oracle efficiency

over x ∈ [0, 1], i.e.,

P

{
sup

x∈[0,1]
|φb(x)| ≤ Qb,1−α

}
= 1− α, b ∈ RL/ {0L} ,

P

{
sup

x∈[0,1]
∥φL(x)∥∞ ≤ QL,1−α

}
= 1− α.

(2.22)

Corollary 1. Under Assumptions (A1), (A3)-(A5), as T → ∞, one has

P

[
sup

x∈[0,1]
(nT )1/2

∣∣∣{b⊤Gφ(x, x)b
}−1/2

b⊤ {m̄(x)−m(x)}
∣∣∣ ≤ Qb,1−α

]
→ 1− α,

P

[
sup

x∈[0,1]
(nT )1/2

∥∥∥[diag {Gφ(x, x)}]−1/2 {m̄(x)−m(x)}
∥∥∥
∞

≤ QL,1−α

]
→ 1− α,

(2.23)

where b ∈ RL/ {0L}.

To construct SCBs for m(·), one shows next that the spline estimator

m̂ (·) in (2.10) is a good substitute of the infeasible estimator m̄ (·).

2.4 Oracle efficiency

The next Theorem states that up to order Op

{
(nT )−1/2

}
, the proposed

two-step spline estimator m̂(·) is oracally efficient, i.e., it is asymptoti-

cally equivalent to, or as efficient as the infeasible estimator m̄(·) with all

trajectories ηit(·) fully known by “oracle”. Thus m̂(·) enjoys all the same

asymptotic properties as m̄(·).
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2.5 Multiple comparison

Theorem 2. Under Assumptions (A1)–(A6), the B-spline estimator m̂ (·)

is oracally efficient, i.e. as T → ∞,

sup
x∈[0,1]

(nT )1/2 ∥m̄ (x)− m̂ (x)∥∞ = Op (1) .

Corollary 2. Under Assumptions (A1)-(A6), for any α ∈ (0, 1), as T →

∞, an asymptotic 100(1 − α)% correct SCB for any linear combination

b⊤m(·) of m(·), is given by

b⊤m̂(·)±
{
b⊤Gφ(·, ·)b

}1/2
Qb,1−α (nT )

−1/2 , b ∈ RL/ {0L} ,

and an asymptotic 100(1− α)% correct SCR for m(·) is given by

m̂(·)± [diag {Gφ(·, ·)}]1/2 1LQL,1−α (nT )
−1/2 .

2.5 Multiple comparison

This subsection concerns simultaneous comparison of vector mean functions

from multiple samples.

Suppose for each s = 1, . . . , S an independent set of functional panel

data of size ns and time length T is recorded, for which Assumptions (A1)–
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2.5 Multiple comparison

(A6) are satisfied, then as T → ∞,

(nsT )
1/2 [diag {Gφ,s (·, ·)}]−1/2 {m̂s(·)−ms(·)} ⇒ φL,s(·),

where φL,s(·), s = 1, . . . , S are independent (L2[0, 1])
L-Gaussian processes.

For 1 ≤ s < s′ ≤ S, denote sample ratios τss′ = limT→∞ ns/ns′ , which

satisfy τss′ ∈ [cτ , Cτ ] for some constants 0 < cτ < Cτ < ∞. For 1 ≤ s <

s′ ≤ S, define (L2[0, 1])
L-Gaussian processes

φL,ss′(·) = [diag {Gφ,s(·, ·)}]1/2φL,s(·) + [τss′diag {Gφ,s′ (·, ·)}]1/2φL,s′(·),

which is of zero mean and covariance function Gss′ (x, x
′) = Gφ,s (x, x

′) +

τss′Gφ,s′ (x, x
′), and percentiles Q(s,s′)

1−α , Q(max)
1−α satisfying

P

{
sup

x∈[0,1]

∥∥∥[diag {Gss′(x, x)}]−1/2φL,ss′(x)
∥∥∥
∞

≤ Q
(s,s′)
1−α

}
= 1− α,

P

{
sup

x∈[0,1]
max

1≤s<s′≤S

∥∥∥[diag {Gss′(x, x)}]−1/2φL,ss′(x)
∥∥∥
∞

≤ Q
(max)
1−α

}
= 1− α.

Denote difference of vector mean functions dss′(·) = ms(·) −ms′(·) with

estimate d̂ss′(·) = m̂s(·)− m̂s′(·).
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Corollary 3. As T → ∞,

P

[
sup

x∈[0,1]
(nsT )

1/2
∥∥∥[diag {Gss′(x, x)}]−1/2

{
d̂ss′(x)− dss′(x)

}∥∥∥
∞

≤ Q
(s,s′)
1−α

]
→ 1− α,

P

[
sup

x∈[0,1]
max

1≤s<s′≤S
(nsT )

1/2
∥∥∥[diag {Gss′(x, x)}]−1/2

{
d̂ss′(x)− dss′(x)

}∥∥∥
∞

≤ Q
(max)
1−α

]

→ 1− α.

Consequently, a multiple SCR for dss′ (·) , 1 ≤ s < s′ ≤ S is

d̂ss′ (x)± [diag {Gss′(x, x)}]1/2 1LQ
(max)
1−α (nsT )

−1/2 , 1 ≤ s < s′ ≤ S.

3. Implementation

This section describes implementation of the SCB and SCR in Corollary 2.

3.1 Knot selection

The number of knots Js for spline smoothing is selected subject to the

constraints of Assumption (A6). The smoothness order (q, µ) of vector

mean function m (·) and eigenfunctions {ϕk}k∈N+
is taken as (3, 1) or (4, 0)

by default with a matching spline order p = 4 (cubic spline). Therefore,

Js = [cNγ log logN ] is recommended with constant c, where [a] denotes the
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3.2 Estimation of matrix covariance function

integer part of a. The default values of parameters γ = 3/8 and c = 1 are

found to be adequate in the simulation study.

3.2 Estimation of matrix covariance function

Recall that the matrix covariance function of ξit(·) isG(x, x′) = Eξit(x)ξ⊤it(x′),

which is well approximated by the sample version Ḡ (x, x′) = (nT )−1
∑nT

r(i,t)=1

ξit(x)ξ
⊤
it(x

′). Since trajectories {ξit(·)} are unobservable, Ḡ(x, x′) is infea-

sible. Yet it suggests to use the plug-in sample covariance

Ĝ (x, x′) =
{
Ĝ(l,l′) (x, x′)

}
1≤l,l′≤L

= (nT )−1

nT∑
r(i,t)=1

ξ̂it(x)ξ̂
⊤
it(x

′), (3.24)

where ξ̂it(·) = η̂it(·)− m̂(·). It is feasible to show that

max
1≤l,l′≤L

sup
(x,x′)∈[0,1]2

(nT )1/2
∣∣∣Ĝ(l,l′) (x, x′)−G(l,l′) (x, x′)

∣∣∣ = Op(1).

The limiting matrix long-run covariance function Gφ(·, ·) of ξit(·) is

essential to construct the SCB and SCR. Note that

Gφ (x, x
′) = lim

T→∞
nT E {m̄ (x)−m (x)} {m̄(x′)−m(x′)}⊤

= lim
T→∞

E
1√
T

T∑
t=1

{η1t (x)−m (x)} 1√
T

T∑
t=1

{η1t(x
′)−m(x′)}⊤ .
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3.3 FPC analysis

One defines

δ̂ij (·) =
1√
B

jB∑
t=(j−1)B+1

{η̂it (·)− m̂ (·)} ,

for i = 1, . . . , n, j = 1, . . . , [T/B], where B → ∞ and B = O (T ) as T → ∞,

one would then use the following estimator of Gφ (x, x
′)

Ĝφ (x, x
′) =

1

n [T/B]

n∑
i=1

[T/B]∑
j=1

δ̂ij (x) δ̂ij (x
′)
⊤
, (x, x′) ∈ [0, 1]2 . (3.25)

3.3 FPC analysis

For functional random variable ξ(l)it (·), the l-th element of functional random

vector ξit(·), its covariance function is the l-th diagonal element of the

matrix covariance function G(x, x), with

∫
[0,1]

G(l,l) (x, x′)ψ
(l)
k (x′)dx′ = λ

(l)
k ψ

(l)
k (x) ,

∫
[0,1]

{
ψ

(l)
k (x)

}2

dx = 1. (3.26)

The eigenvalues and eigenfunctions for G(l,l)(·, ·) are approximated as

{
ψ̂

(l)
k (·) ∈ H(p−2), λ

(l)
1 ≥ λ

(l)
2 ≥ . . . ≥ 0, k = 1, . . . , Js + p :

∫
Ĝ(l,l) (x, x′) ψ̂

(l)
k (x′) dx′ = λ̂

(l)
k ψ̂

(l)
k (x),

∫ [
ψ̂

(l)
k (x)

]2
dx = 1

}
.

Linear algebra shows that ψ̂(l)
k and λ̂

(l)
k are well defined.
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3.4 Estimating the percentiles

Next, the number of eigenvalues to select is κ = max
{
κ(l), l = 1, . . . , L

}
,

where κ(l) = argmin1≤κ′≤Js+p

{∑κ′

k=1 λ̂
(l)
k /
∑Js+p

k=1 λ̂
(l)
k > 0.95

}
. Note that{

λ̂
(l)
k , k = 1, . . . , Js + p

}
are the complete set of eigenvalues of Ĝ(l,l)(·, ·),

which are non-negative since the integral operator defined by function Ĝ(l,l)(·, ·)

is non-negative definite.

3.4 Estimating the percentiles

Define Π̂(u)(·) =
∑Js+p

k=1 uk ◦ ψ̂k(·) for u =
(
u⊤

1 , . . . ,u
⊤
Js+p

)⊤, where uk ∈

RL, ψ̂k =
{
ψ̂

(1)
k , . . . , ψ̂

(L)
k

}⊤
. Noting that

{
ψ̂

(l)
k , 1 ≤ k ≤ Js + p

}
is or-

thonormal basis of H(p−2), Π̂ : RL(Js+p) →
{
H(p−2)

}L is isometric. Define

Û as an L(Js + p)-dimensional random vector by

Û =

{(
λ̂

1/2

1 ◦ Û 1

)⊤
, . . . ,

(
λ̂

1/2

Js+p ◦ ÛJs+p

)⊤}⊤

, Û k ∼ N(0L, ∆̂k),

where

∆̂k =

∫
[0,1]

∫
[0,1]

{
λ̂

−1/2

k ◦ ψ̂k(x)
}{
λ̂

−1/2

k ◦ ψ̂k(x)
}⊤

◦ Ĝφ (x, x
′) dxdx′,

λ̂k =
(
λ̂
(1)
k , . . . , λ̂

(L)
k

)⊤
, 1 ≤ k ≤ Js+p, and λ̂1/2

k , λ̂
−1/2

k denote the element-

wise square-root and inverse of square-root of vector λ̂k, then Û is a data

version of the ℓ2-random variable U in (2.17). For a large integer sM , gen-
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erate Gaussian random vectors
{
Ûs

}
1≤s≤sM

distributed as Û , and denote

Gaussian functional random vector φ̂L,s(·) and Gaussian functional random

variable φ̂b,s(·) by

φ̂L,s(·) =
[
diag

{
Ĝφ(·, ·)

}]−1/2

Π̂(Ûs)(·),

φ̂b,s(·) =
{
b⊤Ĝφ(·, ·)b

}−1/2

b⊤Π̂(Ûs)(·), s = 1, . . . , sM .

One takes respectively the empirical quantiles Q̂b,1−α of
{
supx∈[0,1] |φ̂b,s(x)|

}sM
s=1

and Q̂L,1−α of
{
supx∈[0,1]

∥∥φ̂L,s(x)
∥∥
∞

}sM
s=1

as estimates of Qb,1−α and QL,1−α.

For any vector b ∈ RL/ {0L}, the SCB for b⊤m(·) is given by

b⊤m̂(·)±
{
b⊤Ĝφ(·, ·)b

}1/2

Q̂b,1−α (nT )
−1/2 , (3.27)

and the SCR for m(·) =
{
m(1)(·), . . . ,m(L)(·)

}⊤ is given by

m̂(·)±
[
diag

{
Ĝφ(·, ·)

}]1/2
1LQ̂L,1−α (nT )

−1/2 . (3.28)

4. Simulation

In this section, one examines finite-sample performance of the proposed

SCB and SCR. The data are generated from the following model: Y itj =

m (j/N)+
∑7

k=1 ξitk ◦ϕk (j/N)+σit (j/N) ◦εitj, for 1 ≤ i ≤ n, 1 ≤ t ≤ T ,
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1 ≤ j ≤ N , with L = 3. Mean functions m(1) (x) = 5 + 2 sin {4π(0.5− x)},

m(2) (x) = 5+2 sin {4π(0.5− x)}, m(3) (x) = 5+sin {4π(0.5− x)}, x ∈ [0, 1],

and FPC components

ϕ1 (x) =
√
2 sin(2πx)(

√
4,
√
3,
√
2)⊤,ϕ2 (x) =

√
2 cos(2πx)(

√
2,
√
2,
√
1)⊤,

ϕ3 (x) =
√
2 sin(4πx)(

√
0.5,

√
1,
√
1)⊤,ϕ4 (x) =

√
2 cos(4πx)(

√
0.5,

√
0.25,

√
0.5)⊤,

ϕ5 (x) =
√
2 sin(6πx)(

√
0.25,

√
0.5,

√
0.25)⊤,

ϕ6 (x) =
√
2 cos(6πx)(

√
0.25,

√
0.16,

√
0.25)⊤,

ϕ7 (x) =
√
2 sin(8πx)(

√
0.09,

√
0.09,

√
0.16)⊤,

ϕk (·) ≡ 0 for all k ≥ 8. FPC scores ξitk =
∑∞

t′=0′ at′k ◦ ζi,t−t′,k with

a0k = 0.813, a1k = a2k = 0.413, a3k = −0.213, atk = 03, ∀t ≥ 4, k =

1, . . . , 7. For all 1 ≤ i ≤ n, 1 ≤ t ≤ T , 1 ≤ k ≤ 7, 1 ≤ j ≤ N , ζitk

and εitj are mutually independent and identically distributed. Elements

of εitj =
(
ε
(1)
itj , . . . , ε

(L)
itj

)⊤
are independent and distributed as N(0, 1) or

U(−
√
3,
√
3). Multivariate normal distribution and t-distribution are con-

sidered for ζitk, both distributions with two forms of covariance matrix

Σk,ζ =
{
Σ

(l,l′)
k,ζ

}L

l,l′=1
:

Case 1. Autoregressive (AR-1): Σ
(l,l′)
k,ζ = 0.15|l−l′|

Case 2. Toeplitz (TOEP): Σ(l,l′)
k,ζ = 1(l = l′) +

(
0.05 + 0.1|l−l′|)1(l ̸= l′).
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The homoscedastic and strongly heteroscedastic deviation function, set

respectively as σit(·) ≡ σhomo(·) ≡ 0.513 and σit (x) ≡ σhetero(x) ≡ 0.5 {5−

exp(−x)} / {5 + exp(−x)}13 are both considered. The number N of obser-

vations per curve is taken to be 900 and 1600. The population size and the

number of curve segments for per individual are respectively n = [4 logN ]

and T = [0.25N0.8]. Cubic spline is used, i.e. p = 4, and number of knots

is taken as Js =
[
N3/8 log logN

]
.

Table 1 displays the empirical coverage frequencies of proposed SCB of

b⊤m (·), namely the percentage out of 1000 replications of the true curve

b⊤m (·) being covered by the cubic spline SCB (3.27) at the N points

{1/N, . . . , N/N}, in which constant vector b is taken as (1,−1, 0)⊤. Similar

results for b = (1, 0, 0)⊤ are given in Table S.1 of the Supplement. Table

2 displays the empirical coverage frequencies of the SCR of m(·). Overall,

the empirical coverage frequency approaches the nominal confidence level

as N increases.

Figure 2 depicts the SCB for m(1) (·) = (1, 0, 0)⊤m (·), with SCR of

m(·) =
{
m(l)(·)

}L
l=1

for l = 1 also displayed. The SCRs are wider than

SCBs which are based on linear projection of m(·), and as expected, the

SCBs and SCRs become narrower as N increases (thus n (N) and T (N)

increase). Figure S.1 of the Supplement shows the cubic spline estimator
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Figure 2: Plots of the true m(1)(·) (solid) and cubic spline estimator m̂(1) (·)

(dashed), with 95% SCB (dotted) and SCR (dot-dashed). The number N of

observations in (a) and (b) are 900 and 1600 respectively.

and SCB for (1,−1, 0)⊤m (·) = m(1)(·)−m(2)(·) ≡ 0, by which one can test

H0 : m
(1)(·) ≡ m(2)(·). Since the constant function 0 is entirely covered by

the SCB, one retains the null hypothesis, which is consistent with the fact.

5. Real data analysis

We apply the proposed method to a data set under Multimodal Resource for

Studying Information Processing in the Developing Brain (MIPDB) project

of Child Mind Institute. The data were presented as a resource for the

investigation of information processing in the developing brain, including

EEG, eye tracking and cognitive and behavior data collected from 126 in-

dividuals aged 6-44. EEG data were recorded at a sampling rate of 500Hz

on 128 channels of HydrocCel Geodesic Sensor Net. 126 individuals were
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divided into 6 groups according to their ages and accordingly cognitive de-

veloping stages, groups 1-6 indicating young to old. We focus on analyzing

EEG during the task of surround suppression paradigm, see Langer et al.

(2017) for more details.

In the task of surround suppression paradigm, each trial began with the

presentation of the fixation spot for 500 ms, after which four circular stimuli

were flickered on-and-off at 25Hz for 2,400 ms on a plain background. Then

the following trial was initiated after an inter-trial interval of 500 ms. The

task consisted of 63 complete trials. In our study, multichannel EEG signals

during each trial are extracted as trajectories, which constitute multivariate

functional panel data, with N = 2.9 × 500 = 1450, T = 63 for n1 = 18,

n2 = 17, n3 = 18, n4 = 22, n5 = 13, and n6 = 17 respectively in S = 6

groups (some individuals with incomplete data records are deleted).

Our study focuses on signals from 6 channels, namely O1, O2 over occip-

ital, P3, P4 over parietal, C3 over central scalp and F3 over frontal (named

by E70, E83, E52, E92, E36, E24 in 128-HydrocCel Geodesic Sensor Net re-

spectively). Hence in fact L = 6 andm (·) =
{
m(O1) (·) ,m(O2) (·) ,m(P3) (·) ,

m(P4) (·) ,m(C3) (·) ,m(F3) (·)
}⊤ is the vector mean function on 6 channels.

Cubic spline estimators for mean functions of group 1 with 95% SCB of

the each selected channels and 95% SCR of all selected channels are depicted
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in Figures S.2 and S.3 of the Supplement respectively. Mean functions

at O1, O2, P3 and P4 show similar fluctuating patterns, which is quite

reasonable since occipital O1 and O2 reflect visual processing and parietal

P3 and P4 sensory and visual functions. Figure 3 displays the SCBs for

testing

H0 : m
(l) (·) ≡ m(l′) (·) versus H1 : m

(l) (x) ̸= m(l′) (x) for some x ∈ [0, 1] ,

with significance level α = 0.05 for (l, l′) = (1, 2), (3, 4), (1, 3), (1, 5), (1, 6), (3, 5)

respectively, in which l ̸= l′ ∈ {1, 2, 3, 4, 5, 6} correspond to {O1, O2, P3, P4, C3,

F3}, so for instance, m(O1) (·) ≡ m(1) (·) ,m(C3) (·) ≡ m(5) (·). The constant

function 0 is entirely covered by the SCB in subfigures (a) and (b), indicat-

ing that difference between O1 and O2, as well as between P3 and P4 are

negligible. Subfigures (d)-(f) show however, that constant function 0 is not

entirely covered by SCB, rejecting hypotheses, H0 : m(O1) (·) ≡ m(C3) (·),

H0 : m(O1) (·) ≡ m(F3) (·) and H0 : m(P3) (·) ≡ m(C3) (·), thus quantita-

tively validates that the flickering stimuli elicit visual evoked potentials of

higher amplitudes over posterior scalp (where O1, O2, P3, P4 lie), which is

also found by Langer et al. (2017). Subfigure (c) implies the rejection of

H0 : m
(O1) (·) ≡ m(P3) (·), suggesting that O1 is evoked of higher potential
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amplitudes and more sensible to visual stimuli than P3.

Based on Corollary 3, vector mean functions of the six groups are com-

pared by testing the hypothesis that they are all equal, i.e.,

H0 :m1 (·) ≡m2 (·) =m3 (·) ≡m4 (·) =m5 (·) ≡m6 (·) , (5.29)

vs. H1 :ms (x) ̸=ms′ (x) , for some 1 ≤ s < s′ ≤ S = 6, x ∈ [0, 1] .

The p-value is < 10−4 (i.e., a confidence level of > 99.99% is needed for the

multiple SCR in Corollary 3 to contain dss′ ≡ 0 for all pairs 1 ≤ s < s′ ≤

S = 6), providing strong evidence against H0. Thus one tests

H0 :ms (·) ≡ms′ (·) , vs. H1 :ms (x) ̸=ms′ (x) , for some x ∈ [0, 1] .

(5.30)

for all pairs (s, s′) to further probe. Figure 4 depicts the p-values, showing

no strong evidence against the null for (s, s′) = (1, 2), (2, 3), (4, 5), (5, 6),

while for other pairs (s, s′) the p-values are all < 0.019. These findings sug-

gest that significance of EEG mean difference between groups is positively

related to age gap of the groups. This fact points to further investigation

into the basic sensory excitation by visual stimuli in the brain development.
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6. Conclusions

A computationally efficient B-spline estimator is proposed for the mean

estimation in multivariate functional panel data. Asymptotic properties

of the estimator are established with simultaneous confidence band (SCB)

and simultaneous confidence region (SCR) as byproducts, which are ver-

satile inference tools. The SCBs and SCRs have satisfactory performance

in simulation studies, and have uncovered illuminating phenomena about

Electroencephalogram (EEG) data. The methodology is expected to find

wide applications on other physiological data such as event related potential

(ERP) and Electrocardiogram (ECG).

Supplementary Materials

The online Supplement provides technical lemmas, detailed proofs of the

theorems, and additional figures and tables.
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Figure 3: Plots of cubic spline estimator (solid) and 95% SCB (dotted) for

b⊤m (·) of group 1, with reference constant function 0 (dot-dashed), (a)-(f) corre-

spond to b⊤m(·) = m(O1) (·)−m(O2) (·), m(P3) (·)−m(P4) (·), m(O1) (·)−m(P3) (·),

m(O1) (·)−m(C3) (·), m(O1) (·)−m(F3) (·) and m(P3) (·)−m(C3) (·) respectively.
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