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Abstract: We consider constrained sampling problems in paid research studies or

clinical trials. When qualified volunteers are more than the budget allowed, we

recommend a D-optimal sampling strategy based on the optimal design theory

and develop a constrained lift-one algorithm to find the optimal allocation. Unlike

the literature which mainly deals with linear models, our solution solves the

constrained sampling problem under fairly general statistical models, including

generalized linear models and multinomial logistic models, and with more general

constraints. We justify theoretically the optimality of our sampling strategy and

show by simulation studies and real-world examples the advantages over simple

random sampling and proportionally stratified sampling strategies.

Key words and phrases: Constrained sampling, D-optimal design, Generalized

linear model, Lift-one algorithm, Multinomial logistic model

1. Introduction

We consider a constrained sampling problem frequently arising in paid re-

search studies or clinical trials, especially when recruiting volunteers via the

Internet or emails, which could gather attention widely and quickly. For
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example, some investigators plan to conduct a research study to evaluate

the effect of a new treatment on anxiety. Besides the treatment cost, the

investigators also need to prepare certain compensation for participants’

time. Due to limited funding, the investigators could only support up to n

participants while there are N > n eligible volunteers. The question is how

they select n participants out of N to evaluate the treatment effect most

accurately. Noted that the goal of the sampling problem in this paper is

not the mean of response but the treatment effect or regression coefficients

of an underlying statistical model.

A straightforward approach is to use the simple random sampling with-

out replacement (SRSWOR, see, for example, Chapter 2 of Lohr (2019)),

which randomly chooses an index set 1 ≤ i1 < i2 < · · · < in ≤ N such that

each index set of n distinct subjects has the equal chance n!(N − n)!/N !

to be chosen. This can be applied if the investigators know nothing about

the volunteers except contact information, or the covariate information pro-

vided by the volunteers does not seem relevant to the treatment effect.

A more common practice is, however, that the investigators collect some

covariates information, such as gender and age, which may play some roles

in the treatment effect. Suppose there are d covariates and m distinct com-

binations of covariates under consideration. For example, d = 2 covariates,

gender (male or female), and age (18∼25, 26∼64, 65 and above), lead to
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m = 6 possible categories (combinations of covariates) of eligible volun-

teers, known as strata in the sampling theory (see, for example, Chapter 3

in Lohr (2019)). Suppose the frequencies of volunteers in the m categories

are N1, . . . , Nm, respectively. The question is how we determine ni ≤ Ni

such that n =
∑m

i=1 ni, known as the allocation of subjects to the categories

or strata. Once an allocation (n1, . . . , nm) is determined, ni subjects will be

chosen randomly from the ith category or stratum for each i, known as a

stratified (random) sampling. A commonly used stratified sampler chooses

ni ∝ Ni, known as the proportionally stratified sampler, which is expected

to produce a more accurate estimate for the mean response than SRSWOR

(Section 3.4.1 in Lohr (2019)).

Nevertheless, from an optimal design point of view (Fedorov, 1972;

Silvey, 1980; Pukelsheim, 1993; Atkinson et al., 2007; Fedorov and Leonov,

2014), we want to find ni’s such that the treatment effects or regression

coefficients can be estimated most accurately. When no prior knowledge

about the regression model is available, a uniform allocation, which assigns

roughly the same number of subjects to each category, is commonly used in

the practice of experimental design (see, for example, Yang et al. (2012)).

For the sampling problem under constraints ni ≤ Ni, i = 1, . . . ,m, we

recommend (constrained) uniformly stratified sampler, which chooses ni =

min{k,Ni} or min{k,Ni} + 1 with k satisfying
∑m

i=1min{k,Ni} ≤ n <

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing) 



∑m
i=1min{k + 1, Ni} (see Section 4).

If the investigators have some information about the regression coeffi-

cients from some pilot study or prior research, we propose optimal stratified

samplers based on the optimal design theory, which minimizes the variances

of the estimated regression coefficients instead of the estimated population

mean. According to different optimality criteria used (Fedorov, 1972; Atkin-

son et al., 2007; Stufken and Yang, 2012; Fedorov and Leonov, 2014), we

call the corresponding sampler D-optimal sampler, A-optimal sampler, etc.

In this paper, we focus on D-optimality, which is the most frequently used

(Zocchi and Atkinson, 1999; Atkinson et al., 2007; Yang et al., 2017).

In the statistical literature, optimal designs under constraints were con-

sidered mainly for linear models with the information Fi = h(xi)h(xi)
T

obtained at the ith experimental setting xi (see Section 2), where h(x) =

(h1(x), . . . , hp(x))
T are known predictor functions (see Elfving (1952); Lee

(1988); Cook and Fedorov (1995); Fedorov and Leonov (2014) and references

therein). Among them, Wynn (1977a,b, 1982) connected finite population

sampling with optimal designs under constraints ni ≤ Ni (Example 1); and

Welch (1982), Fedorov (1989), Pronzato (2004, 2006) developed algorithms

searching for “optimum submeasures” or “optimum bounded designs”. In

this paper, Fi could be much more complicated and depend on unknown

parameters θ, such as ν(h(xi)
Tθ)h(xi)h(xi)

T for generalized linear models
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(Section 4) or XT
i UiXi for multinomial logistic models (Section 5). More

than that, the design problem discussed here is under more general con-

straints including but not limited to ni ≤ Ni, ni + nj ≤ Nij (Example 2),

4ni ≥ nj (Example 3), where Nij is a pre-determined upper bound for the

ith and jth categories in total.

For unconstrained optimal design problems, many numerical algorithms

have been proposed using directional derivatives (Wynn, 1970; Fedorov,

1972; Atkinson et al., 2014; Fedorov and Leonov, 2014). Among them, the

lift-one algorithm (Yang et al., 2016; Yang and Mandal, 2015; Yang et al.,

2017; Bu et al., 2020) breaks the problem into univariate optimizations,

utilizes analytic solutions whenever possible, reduces unnecessary weights

to exact zeros, and works the same well for both local D-optimality and

EW D-optimality. A comprehensive numerical study by Yang et al. (2016,

Table 2) shows that the lift-one algorithm is more efficient than many other

commonly used optimization techniques and design algorithms for similar

purposes. Unfortunately, it does not work in general for our constrained

optimal design problems (see Subsection 3.1). The sequential number-

theoretic optimization (SNTO) algorithm (Fang and Wang, 1994; Gong

et al., 1999; Gao et al., 2022) may provide a solution for our constrained

optimization problems, which is, however, typically not as efficient as op-

timization algorithms based on directional derivatives when the objective
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function is differentiable and unimodal (Fang et al., 1994).

In this paper, we develop a new algorithm, called the constrained lift-

one algorithm, to find optimal allocations under fairly general constraints

and statistical models. While keeping the high efficiency of the original lift-

one algorithm, the proposed algorithm will check the optimality of the con-

verged allocation and utilize linear programming for adjusting the searching

direction when needed. We provide theoretical justifications for the opti-

mality of the allocation found by the proposed algorithm (Section 3). Our

simulation studies with generalized linear models (Section 4) and a real data

example with multinomial logistic models (Section 5) show that uniformly

stratified sampler usually works better than SRSWOR and proportionally

stratified sampler, and our designer’s choice, (locally) D-optimal and EW

D-optimal samplers can significantly improve the efficiency further when

some information about the regression coefficients is available.

2. Constrained D-optimal Allocation

In general, we consider an experiment with m ≥ 2 pre-determined ex-

perimental settings or level combinations xi = (xi1, . . . , xid)
T ∈ Rd of d

covariates. Suppose we allocate ni ≥ 0 subjects to the ith experimental set-

ting xi, and the responses are independent and follow a parametric model

M(xi;θ) with unknown parameters θ ∈ Θ ⊆ Rp, p ≥ 2. Under regularity
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conditions, the Fisher information matrix of the sample can be written as

F =
∑m

i=1 niFi ∈ Rp×p, where Fi corresponds to the Fisher information at

xi and is a positive semi-definite matrix (see, for example, Section 1.5 in

Fedorov and Leonov (2014) and references therein).

In design theory, n = (n1, . . . , nm)
T is called an exact allocation of n =∑m

i=1 ni experimental units, while w = (w1, . . . , wm)
T = (n1/n, . . . , nm/n)

T

is called an approximate allocation, which is easier to be dealt with theoret-

ically. The constrained D-optimal design problem considered in this paper

is to find the approximate allocation w, which maximizes |F|, the deter-

minant of F, on a collection of feasible approximate allocations S ⊂ S0 :=

{(w1, . . . , wm)
T ∈ Rm | wi ≥ 0, i = 1, . . . ,m;

∑m
i=1 wi = 1}. We assume

that S is either a closed convex set itself or a finite (overlapped or disjoint)

union of closed convex sets. If S = ∪K
k=1Sk, where Sk’s are all closed convex

subsets of S0, we can always find an optimal allocation for each Sk and then

pick up the best one among the optimal allocations. Therefore, in theory,

we only need to solve the case when S itself is closed and convex.

Example 1. Consider a paid research study with N = 500 eligible volun-

teers. Suppose d = 2 covariates, gender (xi1 = 0 for female and 1 for male)

and age group (xi2 = 0 for 18 ∼ 25, 1 for 26 ∼ 64, and 2 for 65 or above),

are important factors. There are m = 6 categories with xi = (xi1, xi2)
T cor-

responds to (0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), respectively. Suppose the
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numbers of volunteers Ni in the ith category are 50, 40, 10, 200, 150, 50, re-

spectively. The budget can only support up to n = 200 participants who will

be under the same treatment. Their responses that will be recorded are bi-

nary, 0 for no effect, and 1 for effective. The goal is to study how the effective

rate changes along with gender and age group. The collection of feasible ap-

proximate allocations is S = {(w1, . . . , w6)
T ∈ S0 | nwi ≤ Ni, i = 1, . . . , 6},

which is closed and convex. □

Example 2. Chuang-Stein and Agresti (1997, Table V) provided a dataset

of N = 802 trauma patients, stratified according to the trauma sever-

ity at the time of study entry with 392 mild and 410 moderate/severe

patients enrolled. The study involved four treatment groups determined

by dose level, xi2 = 1 (Placebo), 2 (Low dose), 3 (Medium dose), and 4

(High dose). Combining with severity grade (xi1 = 0 for mild or 1 for

moderate/severe), there are m = 8 distinct experimental settings with

(xi1, xi2) = (0, 1), (0, 2), (0, 3), (0, 4), (1, 1), (1, 2), (1, 3), (1, 4), respectively.

The responses belong to five ordered categories, Death (1), Vegetative

state (2), Major disability (3), Minor disability (4) and Good recovery

(5), known as the Glasgow Outcome Scale (Jennett and Bond, 1975). Sup-

pose due to a limited budget, only n = 600 participants could be supported,

the collection of feasible approximate allocations is S = {(w1, . . . , w8)
T ∈

S0 | n(w1 + w2 + w3 + w4) ≤ 392, n(w5 + w6 + w7 + w8) ≤ 410}, which is
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closed and convex. □

In this paper, we adopt the D-optimality, which is to maximize the

objective function f(w) = |
∑m

i=1 wiFi|, w ∈ S. To avoid trivial cases,

we assume that f(w) > 0 for some w ∈ S. For statistical models under

our consideration, such as typical generalized linear models (see Section 4)

and multinomial logistic models (see Section 5), rank(Fi) < p for each

xi ∈ X , the collection of all feasible design points, known as the design

space. Although positive definite Fi exists for some special multinomial

logistic models, it is uncommon and out of the scope of this paper.

Lemma 1. Suppose rank(Fi) < p for each i. If f(w) > 0 for some w =

(w1, . . . , wm)
T ∈ S, then 0 ≤ wi < 1 for each i.

Theorem 1. Suppose S ⊆ S0 is closed and f(w) > 0 for some w ∈ S.

Then f(w) is an order-p homogeneous polynomial of w1, . . . , wm, and a

D-optimal allocation w∗ that maximizes f(w) on S must exist.

Lemma 1 and Theorem 1 confirm the existence of the constrained D-

optimal allocation. Their proofs, as well as proofs of all other lemmas and

theorems, are relegated to Section S6 in the Supplementary Material.

For nonlinear models (Fedorov and Leonov, 2014), generalized linear

models (Yang and Mandal, 2015), or multinomial logistic models (Bu et al.,

2020), F depends on the unknown parameters θ. We need an assumed θ
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to obtain a D-optimal allocation, known as a locally D-optimal allocation

(Chernoff, 1953). When the investigators only have a rough idea about

the parameters, with an assumed prior distribution on Θ, the parameter

space, Bayesian D-optimality (Chaloner and Verdinelli, 1995) maximizes

E(log |F|) and provides a more robust allocation. To overcome its compu-

tational intensity, an alternative solution, the EW D-optimality (Atkinson

et al., 2007; Yang et al., 2016), which maximizes log |E(F)| or |E(F)|, was

recommended by Yang et al. (2016, 2017) and Bu et al. (2020) for various

models. In this paper, we focus on local D-optimality and EW D-optimality.

3. Constrained Lift-one Algorithm

For readers’ reference, we provide the original lift-one algorithm for gen-

eral parametric models as Algorithm 3 in Section S1 of the Supplementary

Material. As mentioned in the Introduction section, the original lift-one

algorithm does not fit our needs for constrained optimal allocation. We

provide such an example (Example 3) in Subsection 3.1.

3.1 An illustrative example for the lift-one algorithm

In this section, we provide an example such that the allocation found by

the original lift-one algorithm is not D-optimal under constraints.

Example 3. Consider an experiment with the logistic regression model
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3.1 An illustrative example for the lift-one algorithm

g(µi) = log(µi/(1− µi)) = β0 + β1xi1 + β2xi2 with µi = E(Yi | xi) and xi =

(xi1, xi2)
T ∈ {(−1,−1), (−1,+1), (+1,−1)}. In this case, f(w) = w1w2w3

up to a constant C > 0 (see Section 4 for more details).

When there is no constraint, as a direct conclusion of the inequality

of arithmetic and geometric means, f(w) attains its global maximum at

wo = (1
3
, 1
3
, 1
3
)T ∈ S0 (see Figure 1 for a 2D display).

Suppose we consider a constrained D-optimal design problem with S =

{(w1, w2, w3)
T ∈ S0 | w1 ≤ 1

6
, w3 ≥ 8

15
, 4w1 ≥ w3}, which is a triangle with

vertices wa = (1
6
, 1
6
, 2
3
)T , wb = ( 2

15
, 1
3
, 8
15
)T and wd = (1

6
, 3
10
, 8
15
)T (see the

shaded region in Figure 1).

For illustrative purposes, we let the original lift-one algorithm (Algo-

rithm 3 in the Supplementary Material) start with wa ∈ S. With the order

{1, 3, 2} of i, we follow Steps 3◦ ∼ 5◦ of Algorithm 3 with the ranges of

z adjusted according to S (see also Steps 3◦ ∼ 5◦ of Algorithm 1 in Sub-

section 3.2). At i = 1, f1(z) = 4
25
z(1 − z)2 with z ∈ {1

6
}, which leads to

w
(1)
∗ = w1(

1
6
) = wa; at i = 3, f3(z) =

1
4
z(1− z)2 with z ∈ {2

3
}, which leads

to w
(3)
∗ = w3(

2
3
) = wa; and at i = 2, f2(z) =

4
25
z(1 − z)2 with z ∈ [1

6
, 1
3
],

which is maximized at z∗ = 1
3
and leads to w

(2)
∗ = w2(z∗) = wb. That is,

after the first round of iterations, wa is updated by wb.

We continue the lift-one iterations with wb. At wb, f1(z) =
40
169

z(1−z)2

with z ∈ { 2
15
}, which leads to w

(1)
∗ = w1(

2
15
) = wb; f3(z) =

10
49
z(1−z)2 with
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3.2 New algorithm for constrained D-optimal allocations

z ∈ { 8
15
}, which leads to w

(3)
∗ = w3(

8
15
) = wb; and f2(z) =

4
25
z(1− z)2 with

z ∈ [1
6
, 1
3
], which is maximized at z∗ = 1

3
and leads to w

(2)
∗ = w2(

1
3
) = wb.

That is, the lift-one algorithm converges at wb. However, instead of wb, wd

is the D-optimal allocation in S (see Example 4). □

w2 = (0, 1, 0) w1 = (1, 0, 0)

w3 = (0, 0, 1)

wa

wo

wb

wd

wc

Figure 1: 2D Display of Example 3

3.2 New algorithm for constrained D-optimal allocations

To find D-optimal allocations under constraints, we develop a new algo-

rithm, called the constrained lift-one algorithm, for finding D-optimal allo-

cations in a closed and convex S. If S itself is not convex but a finite union

∪K
k=1Sk of closed and convex Sk’s, the proposed algorithm can be applied

to each Sk and find the D-optimal allocation wk in Sk. Then the D-optimal

allocation in S is simply the best one among wk’s.

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing) 



3.2 New algorithm for constrained D-optimal allocations

Algorithm 1. Constrained lift-one algorithm under a general setup

1◦ Start with an arbitrary allocation wa = (w1, . . . , wm)
T ∈ S satisfying

f(wa) > 0 and 0 ≤ wi < 1, i = 1, . . . ,m.

2◦ Set up a random order of i going through {1, 2, . . . ,m}. For each i,

do steps 3◦ ∼ 5◦.

3◦ For z ∈ [0, 1], let wi(z) =
(

1−z
1−wi

w1, . . . ,
1−z
1−wi

wi−1, z,
1−z
1−wi

wi+1, . . . ,

1−z
1−wi

wm

)T

and fi(z) = f(wi(z)). Determine 0 ≤ ri1 ≤ ri2 ≤ 1, such

that, wi(z) ∈ S if and only if z ∈ [ri1, ri2].

4◦ Use an analytic solution or the quasi-Newton algorithm to find z∗

maximizing fi(z) with z ∈ [ri1, ri2]. Define w
(i)
∗ = wi(z∗). Note that

f(w
(i)
∗ ) = fi(z∗).

5◦ If f(w
(i)
∗ ) > f(wa), replace wa with w

(i)
∗ , and f (wa) with f(w

(i)
∗ ).

6◦ Repeat Steps 2◦ ∼ 5◦ until convergence, that is, f(w
(i)
∗ ) ≤ f(wa) for

each i. Denote w∗ = (w∗
1, . . . , w

∗
m)

T as the converged allocation.

7◦ Calculate f ′
i(w

∗
i ) for each i. If f ′

i(w
∗
i ) ≤ 0 for all i, then go to Step 10◦.

Otherwise, go to Step 8◦.

8◦ Find wo ∈ argmaxw∈Sg(w), where g(w) =
∑m

i=1 wi(1 − w∗
i )f

′
i(w

∗
i ) is

a linear function of w = (w1, . . . , wm)
T . If wo is not unique, choose

any of them. If g(wo) ≤ 0, go to Step 10◦. Otherwise, go to Step 9◦.
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3.2 New algorithm for constrained D-optimal allocations

9◦ Use an analytic solution or the quasi-Newton algorithm to find α∗

maximizing h(α) = f ((1− α)w∗ + αwo) with α ∈ [0, 1] (see Theo-

rem 6). Let wa = (1− α∗)w∗ + α∗wo and go back to Step 2◦.

10◦ Report w∗ as the D-optimal allocation.

Compared with the original lift-one algorithm, Steps 1◦ ∼ 6◦ in Algo-

rithm 1 are essentially the same except for the intervals [ri1, ri2] in Step 3◦

due to constraints. Steps 7◦ ∼ 9◦ in Algorithm 1 are new. Since the lift-one

algorithm utilizes the directional derivatives, the searches for optimal allo-

cations are restricted to the directions between the current allocation and

the vertices of S0. It works for unconstrained optimal design problems but

not for constrained ones, since the optimal allocation may not be covered

by the directions under constraints (see Example 3). In this case, Steps

7◦ and 8◦ check whether the current allocation is D-optimal. If not, we

use Step 9◦ to adjust the starting allocation and return searching. Theo-

retical justifications and more details about Steps 7◦ ∼ 9◦ can be found in

Sections 3.3∼3.5. □

To find ri1 and ri2 in Step 3◦ of Algorithm 1 in general, we suggest the

following procedure: (1) Suppose 0 ≤ wi < 1, we start with the interval

I0 = [0, 1] and the line segment L0 = {wi(z) | z ∈ I0} ⊂ S0; (2) since S

is closed and convex, then L0 ∩ S must be closed and convex as well and

remain a line segment in the form of Li = {wi(z) | z ∈ Ii} with a closed
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3.2 New algorithm for constrained D-optimal allocations

interval Ii ⊆ [0, 1]. Then [ri1, ri2] = Ii.

A special case is that, as all the examples provided in this paper, S

can be written in the form of {w ∈ S0 | aT
λw ≤ bλ, λ ∈ Λ} with aλ ∈ Rm

and bλ ∈ R. For each λ ∈ Λ, aT
λwi(z) ≤ bλ with z ∈ [0, 1] implies {wi(z) |

z ∈ Iλ} with some interval Iλ ⊆ [0, 1]. Then [ri1, ri2] = ∩λ∈ΛIλ, which is

nonempty (see Examples 9 and 10 in the Supplementary Material).

Example 4. Example 3 is considered here again. Recall that wb = ( 2
15
, 1
3
,

8
15
)T is reported as the converged allocation in Step 6◦ of Algorithm 3 (or

Algorithm 1). To check the conditions in Step 7◦ of Algorithm 1 for wb, we

obtain f ′
1(

2
15
) = 8

65
> 0, f ′

2(
1
3
) = 0, and f ′

3(
8
15
) = − 2

35
< 0. We then go to

Step 8◦ with g(w) = 2
75
(4w1 − w3). Since S is the convex hull of its vertex

set {wa,wb,wd}, it can be verified that (see Theorem 4 in Subsection 3.4)

wd = (1
6
, 3
10
, 8
15
)T maximizes g(w), w ∈ S. Since g(wd) =

4
1125

> 0, we go to

Step 9◦ and define h(α) = f((1−α)wb +αwd) =
2

153
(4 +α)(10−α). Since

h′(α) = 4
153

(3 − α) > 0 for all α ∈ [0, 1], then α∗ = argmaxα∈[0,1]h(α) = 1.

We letw
(1)
a = (1−α∗)wb+α∗wd = wd and go back to Step 2◦ of Algorithm 1.

First of all, wd is a converged allocation in Step 6◦. Actually, f1(z) =

144
625

z(1−z)2 with z ∈ [ 4
29
, 1
6
] and is maximized at z∗ =

1
6
; f2(z) =

80
441

z(1−z)2

with z ∈ { 3
10
} and thus is maximized at z∗ =

3
10
; and f3(z) =

45
196

z(1 − z)2

with z ∈ [ 8
15
, 10
17
] and is maximized at z∗ = 8

15
. Secondly, since f ′

1(
1
6
) =

12
125

> 0, f ′
2(

3
10
) = 4

315
> 0, and f ′

3(
8
15
) = − 9

140
< 0, we go to Step 8◦. Since
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3.2 New algorithm for constrained D-optimal allocations

g(w) = 2
25
(w1 +

w2

9
− 3

8
w3) is maximized at wd (see Theorem 4 again) and

g(wd) = 0, we go to Step 10◦ and report wd as the D-optimal allocation. □

Given an approximate allocation w = (w1, . . . , wm)
T ∈ S, if all addi-

tional constraints for S take the form of
∑m

i=1 aiwi ≤ c with ai ≥ 0 and

c > 0 such as in Examples 1 and 2, we develop the following constrained

round-off algorithm to obtain an exact allocation n = (n1, . . . , nm)
T satis-

fying n/n ∈ S and
∑m

i=1 ni ≤ n.

Algorithm 2. Constrained round-off algorithm for obtaining a fea-

sible exact allocation

1◦ First let ni = ⌊nwi⌋, the largest integer no more than nwi, i =

1, . . . ,m, and k = n −
∑m

i=1 ni. Denote I = {i ∈ {1, . . . ,m} | wi >

0, (n1, . . . , ni−1, ni + 1, ni+1, . . . , nm)/n ∈ S}.

2◦ While k > 0 and I ̸= ∅, do

2.1 For i ∈ I, calculate di = f(n1, . . . , ni−1, ni + 1, ni+1, . . . , nm).

2.2 Pick up any i∗ ∈ argmaxi∈Idi.

2.3 Let ni∗ ← ni∗ + 1 and k ← k − 1.

2.4 If (n1, . . . , ni∗−1, ni∗ +1, ni∗+1, . . . , nm)/n /∈ S, then I ← I \{i∗}.

3◦ Output n = (n1, . . . , nm)
T .
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3.3 D-optimality of Algorithm 1

The allocation obtained by Algorithm 1 with f(w) = |
∑m

i=1wiFi| is

known as a locally D-optimal allocation since it may require assumed values

of θ. With a specified prior distribution h(θ) on the parameter space Θ, we

may replace f(w) with fEW(w) = |
∑m

i=1 wiE(Fi)| and the obtained alloca-

tion by Algorithm 1 is called an EW D-optimal allocation (see Section 2).

3.3 D-optimality of Algorithm 1

In this section, we show that the allocation reported by Algorithm 1 is D-

optimal. Throughout this section, we assume that S is closed and convex.

Lemma 2. Suppose f(wa) > 0 for some wa = (w1, . . . , wm)
T ∈ S with

0 ≤ wi < 1, i = 1, . . . ,m. Let fi(z) = f(wi(z)) as defined in Algorithm 1.

Then log fi(z) is a concave function on [ri1, ri2]. Furthermore, suppose z∗

maximizes fi(z) on [ri1, ri2]. Then (1) if z∗ = ri1 < ri2, then f ′
i(z∗) ≤ 0; (2)

if z∗ = ri2 > ri1, then f ′
i(z∗) ≥ 0; and (3) if z∗ ∈ (ri1, ri2), then f ′

i(z∗) = 0.

Theorem 2. Suppose f(w) > 0 for some w ∈ S. Let w∗ = (w∗
1, . . . , w

∗
m)

T

∈ S be a converged allocation in Step 6◦ of Algorithm 1 with 0 ≤ w∗
i < 1,

i = 1, . . . ,m. If f ′
i(w

∗
i ) ≤ 0 for each i, then w∗ must be D-optimal in S.

Using Lemma 2, Theorem 2 and the following corollary, the D-optimality

of the converged allocation w∗ under some conditions can be easily justified.

Corollary 1. Suppose rank(Fi) < p for each i and f(w) > 0 for some
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3.4 Maximization of g(w) in Step 8◦ of Algorithm 1

w ∈ S. Let w∗ ∈ S be a converged allocation in Step 6◦ of Algorithm 1. If

w∗
i < ri2 for each i, then w∗ must be D-optimal in S.

Remark 1. If S = S0, then [ri1, ri2] in Step 3◦ of Algorithm 1 is [0, 1] for

each i. Let w∗ = (w∗
1, . . . , w

∗
m)

T ∈ S0 be a converged allocation in Step 6◦

of Algorithm 1. If rank(Fi) < p for each i and f(w) > 0 for some w ∈ S,

then w∗
i < ri2 = 1 for each i. According to Corollary 1, w∗ must be D-

optimal in S0. That is, the original lift-one algorithm (Algorithm 3 in the

Supplementary Material) still works for the case S = S0. □

Theorem 3. Suppose rank(Fi) < p for each i and f(w) > 0 for some

w ∈ S. Then w∗ reported in Step 10◦ of Algorithm 1 is D-optimal in S.

3.4 Maximization of g(w) in Step 8◦ of Algorithm 1

In this section, we provide the solutions maximizing g(w) =
∑m

i=1wi(1 −

w∗
i )f

′
i(w

∗
i ) with w = (w1, . . . , wm)

T ∈ S, where S ⊆ S0 is closed and convex.

By letting ai = (1 − w∗
i )f

′
i(w

∗
i ) and a = (a1, . . . , am)

T , g(w) = aTw is a

linear function of w ∈ S.

For many applications including all the examples considered in this

paper, S is determined by linear conditions or constraints and the maxi-

mization of g(w) can be written as:

Max aTw

subject to Gw ⪯ h, Aw = b

(3.1)
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3.4 Maximization of g(w) in Step 8◦ of Algorithm 1

where G ∈ Rr×m, h ∈ Rr, A ∈ Rs×m, b ∈ Rs are known matrices or

vectors, and “⪯” is componentwise “≤”. It is known as a linear program

(LP) problem (see, for example, Section 4.3 in Boyd and Vandenberghe

(2004)) and can be efficiently solved by using, for example, R function lp

in Package lpSolve.

For general cases, S ⊆ S0 is closed and convex. Since S0 ⊂ Rm is

bounded, S is bounded and thus compact. According to Theorem 5.6 in

Lay (1982), S is the convex hull of its profile E, the set consisting of all

extreme points of S. Since g(w) is linear on S which depends on w∗,

according to Theorem 5.7 in Lay (1982), there exists a wo ∈ E such that

wo ∈ argmaxw∈Eg(w) = argmaxw∈Sg(w)

In other words, we only need to searchwo among the profile E of S, which is

only a subset of the boundary of S. According to the proof of Theorem 2, if

we can find awc ∈ S such that f(wc) > f(w∗), then g(wc) > 0. Since g(wc)

is the directional derivative of f(w) along wc −w∗, g(wc) > 0 implies that

there exists at least one point along the direction with higher f(w) value,

which is not necessary to be f(wc). Following the proof of Theorem 5.7 in

Lay (1982), we obtain the following convenient results for special cases:

Theorem 4. If there exists a V = {w1, . . . ,wk} ⊂ S, such that, S can be

rewritten as {b1w1 + · · · + bkwk | b1 ≥ 0, . . . , bk ≥ 0,
∑k

i=1 bi = 1}, then

wo ∈ argmaxw∈V g(w) maximizes g(w) on S.
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3.4 Maximization of g(w) in Step 8◦ of Algorithm 1

In other words, if S is the convex hull of a finite set V (such an S

is called a polytope or convex polytope in the literature; see, for example,

Definition 2.24 in Lay (1982)), we only need to search wo among the finite

set V . Note that the V , known as the vertex set, may not be unique and

may not be the profile of S.

Given ai = (1−w∗
i )f

′
i(w

∗
i ), i = 1, . . . ,m, we call r1, . . . , rm the ranks of

them, if {r1, . . . , rm} = {1, . . . ,m} and ar1 ≥ ar2 ≥ · · · ≥ arm . For S taking

the form as in Example 1, we have an analytic solution for wo:

Theorem 5. Suppose S = {w ∈ S0 | wi ≤ ci, i = 1, . . . ,m} with 0 < ci ≤ 1,

i = 1, . . . ,m and
∑m

i=1 ci ≥ 1. Then a wo = (wo
1, . . . , w

o
m)

T maximizing

g(w) =
∑m

i=1 aiwi can be obtained as follows: (i) if
∑m

i=1 ci = 1, wo =

(c1, . . . , cm)
T ; (ii) if

∑m
i=1 ci > 1, then wo

i = ci if i ∈ {r1, . . . , rk}; 1 −∑k
l=1 crl if i = rk+1; and 0 otherwise, where r1, . . . , rm are the ranks of

a1, . . . , am and k ∈ {1, . . . ,m− 1} satisfying
∑k

l=1 crl ≤ 1 <
∑k+1

l=1 crl.

Example 5. Example 3 is considered here again. In this case, S = {(w1, w2,

w3)
T ∈ S0 | w1 ≤ 1

6
, w3 ≥ 8

15
, 4w1 ≥ w3} with its vertex set V =

{wa,wb,wd} (see Figure 1). As mentioned in Example 4, g(w) defined

with both wb and wd is maximized in S at wd, one of the three vertices. □
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3.5 Maximization of h(α) in Step 9◦ of Algorithm 1

3.5 Maximization of h(α) in Step 9◦ of Algorithm 1

Suppose w∗ = (w∗
1, . . . , w

∗
m)

T ∈ S, 0 ≤ w∗
i < 1 for all i, is a converged

allocation in Step 6◦ of Algorithm 1, and wo = (wo
1, . . . , w

o
m)

T ∈ S is ob-

tained in Step 8◦ with g(wo) > 0. We provide the following results to find

α∗ maximizing h(α) = f ((1− α)w∗ + αwo) in Step 9◦.

Lemma 3. The function h(α) in Step 9◦ of Algorithm 1 can be written as

h(α) = c0 + c1α + · · ·+ cp−1α
p−1 + cpα

p (3.2)

where c0 = f(w∗), (c1, . . . , cp)
T = B−1

p (h(1
p
)−c0, . . . , h(p−1

p
)−c0, h(1)−c0)T ,

and Bp is a p× p matrix with its (s, t)th entry ( s
p
)t.

Based on Lemma 3, we can determine the coefficients of h(α) with

h(1
p
), . . . , h(p−1

p
), and h(1) = f(wo), and then calculate h′(α) by

h′(α) = c1 + 2c2α + · · ·+ (p− 1)cp−1α
p−2 + pcpα

p−1 (3.3)

Theorem 6. Suppose f(w∗) > 0, g(wo) =
∑m

i=1w
o
i (1 − w∗

i )f
′
i(w

∗
i ) > 0,

h(α) = f((1− α)w∗ + αwo), and α∗ maximizes h(α) on [0, 1] as defined in

Step 9◦ of Algorithm 1. Then (i) h(α) > 0 for all α ∈ [0, 1); (ii) h′(0) > 0;

(iii) if h(1) > 0 and h′(1) ≥ 0, then α∗ = 1; (iv) if h(1) > 0 and h′(1) < 0,

or h(1) = 0, then there exists a unique α0 ∈ (0, 1) such that h′(α0) = 0,

which implies α∗ = α0. By combining (iii) and (iv), we know that α∗ always

exists and is unique.
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Based on Theorem 6 and Equation (3.3), if h′(1) < 0, one may use, for

example, the R function uniroot, to find α∗ ∈ (0, 1) numerically. To avoid

numerical errors, we need to double check α∗ ̸= 1 when f(wo) < f(w∗).

In Step 9◦ of Algorithm 1, we let wa = (1− α∗)w∗ + α∗wo. According

to Theorem 6 (ii), h′(0) > 0, which implies f(wa) = h(α∗) > f(w∗).

Nevertheless, it does not mean that wa is D-optimal already.

4. D-optimal Samplers for Generalized Linear Models

In this section, we utilize local and EW D-optimal samplers for univariate

responses, such as in Example 1. Recall that we assign ni participants to

the ith category. We let Yij stand for the univariate response of the jth

participant of the ith category. Generalized linear models (McCullagh and

Nelder, 1989; Dobson and Barnett, 2018)

E(Yij | xi) = µi and g(µi) = ηi = h(xi)
Tθ (4.4)

have been widely used, where i = 1, . . . ,m; j = 1, . . . , ni; g is a given (link)

function; ηi is known as a linear predictor; h(xi) = (h1(xi), . . . , hp(xi))
T

are p given predictor functions; and θ = (θ1, . . . , θp)
T are the regression

coefficients. Commonly used generalized linear models (GLM, see Table 5

in the Supplementary Material) cover Gaussian response (that is, linear

models), binary response (Bernoulli, such as Example 1), count response

(Poisson), and real positive response (Gamma, Inverse Gaussian).
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Assuming that Yij’s are independent, the Fisher information matrix

(see, for example, Yang and Mandal (2015))

F(w) = n
m∑
i=1

wiFi = n

m∑
i=1

wiνih(xi)h(xi)
T = nXTWX

where w = (w1, . . . , wm)
T , wi = ni/n, X = (h(x1), . . . ,h(xm))

T is an m×p

matrix, W = diag{w1ν1, . . . , wmνm}, and νi = ν(ηi) = (∂µi/∂ηi)
2/Var(Yij),

i = 1, . . . ,m. We provide examples of ν(ηi) for commonly used GLMs in

Table 5 of the Supplementary Material. For GLMs, f(w) = |XTWX| and

fEW(w) = |XTE(W)X| (see Section 2).

According to Lemma 4.1 in Yang and Mandal (2015), fi(z) = az(1 −

z)p−1 + b(1− z)p, where b = fi(0), a = [f(w)− b(1− wi)
p]/[wi(1− wi)

p−1]

if wi > 0; and b = f(w), a = fi(1/2)2
p − b otherwise. In both cases, a ≥ 0,

b ≥ 0, and a+ b > 0. To implement Step 7◦ of Algorithm 1, we need

f ′
i(z) = [a− bp+ (b− a)pz](1− z)p−2 (4.5)

Here m ≥ p ≥ 2. Similar to Lemma 4.2 in Yang and Mandal (2015), we

provide the following lemma for maximizing fi(z) with constraints:

Lemma 4. Denote l(x) = ax(1− x)p−1 + b(1− x)p with a ≥ 0, b ≥ 0 and

a+ b > 0. Let δ = (a− bp)/[(a− b)p] when a ̸= b. Then

x∗ =


δ, if a > bp and r1 ≤ δ ≤ r2;

r2, if a > bp and δ > r2;

r1, otherwise .

(4.6)
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maximizes l(x) with constraints 0 ≤ r1 ≤ x ≤ r2 ≤ 1.

Example 6. Example 1 is considered here again. In this case, N = 500

eligible volunteers are available for m = 6 categories with frequencies

(N1, N2, . . . , N6) = (50, 40, 10, 200, 150, 50). For illustration purposes, we

consider a logistic regression model (GLM with Bernoulli(µi) and logit link):

logit(P (Yij = 1 | xi1, xi2)) = β0 + β1xi1 + β211{xi2=1} + β221{xi2=2} (4.7)

where i = 1, . . . , 6; j = 1, . . . , ni; and logit(µ) = log(µ/(1−µ)). Model (4.7)

is a main-effects model with gender and age group as factors.

To sample n = 200 from m = 6 categories or strata, the propor-

tionally stratified allocation is wp = (0.10, 0.08, 0.02, 0.40, 0.30, 0.10)T or

np = (20, 16, 4, 80, 60, 20)T , while the (constrained) uniformly stratified al-

location is wu = (0.19, 0.19, 0.05, 0.19, 0.19, 0.19)T or nu = (38, 38, 10, 38,

38, 38)T . By implementing Algorithms 1 and 2 in R with assumed β =

(β0, β1, β21, β22)
T = (0, 3, 3, 3)T , we obtain the (locally) D-optimal allocation

wo = (0.25, 0.20, 0.05, 0.50, 0, 0)T or no = (50, 40, 10, 100, 0, 0)T . Compared

with wo, the relative efficiency of wp is (|F(wp)|/|F(wo)|)1/p = 53.93%

with the number of parameters p = 4, and the relative efficiency of wu is

(|F(wu)|/|F(wo)|)1/p = 78.99%. Both are much less efficient than wo.

We also look into the robustness of our optimal allocations to model

misspecification. Assuming that the true link in this study is not the as-

sumed logit link but probit, complementary log-log, or log-log link (see
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Table 5 in the Supplementary Material), we check the relative efficiency of

the allocation obtained under logit to the D-optimal allocations based on

the true link. Notice that the log-log link shares the same W matrix as the

complementary log-log link. Since β = (0, 3, 3, 3) satisfies the conditions of

Theorem 3.2 in Yang and Mandal (2015), the D-optimal designs are satu-

rated and different links lead to the same D-optimal allocation. Therefore,

the relative efficiency of our proposed allocation under logit remains 100%

with respect to link misspecifications. In Section S4 of the Supplementary

Material, we provide an example with different assumed parameter values,

which still have 99% relative efficiencies with link misspecifications. We

also provide the results based on the root mean squared errors (RMSE) in

Table 6 in the Supplementary Material, which is consistent with the relative

efficiency result and confirms the robustness of our proposed allocations.

To compare the accuracy of the estimated regression coefficients based

on different samplers, we use the RMSE ([
∑

i∈I(β̂i − βi)
2/|I|]1/2 given an

index set I). For illustration purposes, we assume that the true parameters

are (β0, β1, β21, β22) = (0, 3, 3, 3) and run 100 simulations. In each simula-

tion, we generate N = 500 independent observations based on Model (4.7)

and use SRSWOR, proportionally stratified sampler, uniformly stratified

sampler, and D-optimal sampler, respectively, to sample n = 200 observa-

tions out of 500. We then fit Model (4.7) using the n = 200 observations to

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing) 



get the estimated parameters (β̂0, β̂1, β̂21, β̂22). The average and standard

deviation (sd) of RMSEs across 100 simulations are listed in Table 1. Ac-

cording to the RMSE with index set I = {1, 21, 22} (column “all except β0”

in Table 1), SRSWOR is the least accurate, proportional stratified sampler

is a little better, uniformly stratified sampler is much better, and locally D-

optimal sampler is the best, which is much closer to the full data estimates.

For readers’ reference, we also list the RMSEs for individual βi’s.

If we know something about θ but not their exact values, we recom-

mend EW D-optimal samplers instead (see also Section 2). For illustration

purposes, we consider three different prior distributions: (i) uniform prior:

θ ∼ Unif(−2, 2) × Unif(−1, 5) × Unif(−1, 5) × Unif(−1, 5); (ii) normal

prior: h(θ) = ϕ
(
β0

0.5

)
× ϕ

(
β1−2
0.5

)
× ϕ

(
β21−2
0.5

)
× ϕ

(
β22−2
0.5

)
; (iii) Gamma prior:

θ ∼ N(0, 1)×Gamma(1, 2) ×Gamma(1, 2)×Gamma(1, 2). The relevant ex-

pectations E
[
ν(hT (xi)θ)

]
can be numerically computed using, for example,

R function hcubature in package cubature. Compared with the locally D-

optimal allocation wo which samples only from four categories, EW alloca-

tions are not so extreme, such as wuEW = (0.240, 0.200, 0.050, 0.211, 0.101,

0.198)T with uniform prior, wnEW = (0.250, 0.200, 0.050, 0.334, 0, 0.166)T

with normal prior, and wgEW = (0.240, 0.200, 0.050, 0.214, 0.096, 0.200)T

with gamma prior. Compared withwo, their relative efficiencies are 85.90%,

94.96%, and 86.32%, respectively, which are still much better than SR-
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SWOR, proportionally stratified and uniformly stratified samplers. In terms

of RMSE (see Table 1), the conclusions are consistent. □

Table 1: Average (sd) of RMSE over 100 Simulations under Model (4.7)

Sampler
Average (sd) of RMSE

β0 all except β0 β1 β21 β22

Full Data 0.195(0.145) 6.317(4.070) 0.363(0.289) 2.751(5.468) 9.098(7.018)

SRSWOR 0.314(0.216) 9.984(3.226) 0.917(2.543) 8.098(7.885) 12.976(5.245)

Proportionally Stratified 0.412(0.304) 9.496(3.682) 1.016(2.545) 7.311(7.942) 12.469(5.682)

Uniformly Stratified 0.235(0.193) 7.967(4.659) 3.855(6.673) 3.353(6.254) 9.657(7.297)

Locally D-opt 0.202(0.150) 7.103(4.098) 0.485(0.438) 3.890(6.507) 9.883(6.821)

Unif EW D-opt 0.201(0.145) 7.556(4.653) 1.538(3.942) 3.920(6.561) 9.273(7.151)

Normal EW D-opt 0.202(0.147) 7.252(4.407) 1.347(3.664) 3.982(6.687) 9.302(7.150)

Gamma EW D-opt 0.205(0.153) 7.718(4.476) 1.535(4.008) 3.955(6.652) 9.585(7.080)

Known as the uniform allocation, w = (1/m, . . . , 1/m)T has a special

role in optimal design theory, which is recommended for linear models or

as a robust design (see, for example, Yang et al. (2012)). In this paper, we

introduce constrained uniform allocations such as wu in Example 1. They

are D-optimal for saturated cases (that is, m = p).

Lemma 5. Suppose w∗ = (w∗
1, . . . , w

∗
m)

T maximizes f(w) =
∏m

i=1wi under

the constraints 0 ≤ wi ≤ ci, i = 1, . . . ,m and
∑m

i=1wi = 1, where 0 <

ci ≤ 1, i = 1, . . . ,m and
∑m

i=1 ci ≥ 1. Then (i) if min1≤i≤m ci ≥ 1/m, then

w∗ = (1/m, . . . , 1/m)T ; (ii) if 0 ≤ min1≤i≤m ci < 1/m and
∑m

i=1 ci > 1,
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then there exists 1 ≤ k ≤ m − 1 and c(k) ≤ u < c(k+1), such that, w∗
i = ci

if ci ≤ u, and w∗
i = u if ci > u, where 0 < c(1) ≤ c(2) ≤ · · · ≤ c(m) ≤ 1 are

order statistics of c1, . . . , cm; (iii) if
∑m

i=1 ci = 1, then w∗
i = ci, i = 1, . . . ,m.

We call the w∗ described in Lemma 5 a constrained uniform allocation

and the corresponding sampler a (constrained) uniformly stratified sampler.

Theorem 7. For GLM (4.4) with m = p, if S = {w ∈ S0 | wi ≤ ci, i =

1, . . . ,m} with 0 < ci ≤ 1, i = 1, . . . ,m and
∑m

i=1 ci ≥ 1, then the con-

strained uniform allocation described in Lemma 5 is both D-optimal and

EW D-optimal.

Example 7. Example 1 continues here. If we consider another logistic

regression model

logit(P (Yij = 1 | xi1, xi2)) = β0 + β1xi1 + β211{xi2=1} + β221{xi2=2}

+ β121xi11{xi2=1} + β122xi11{xi2=2} (4.8)

for Example 1, which adds two order-2 interactions to Model (4.7). Then

m = p = 6. According to Theorem 7, the constrained uniform alloca-

tion wu = (0.19, 0.19, 0.05, 0.19, 0.19, 0.19)T is both D-optimal and EW

D-optimal. In this case, the uniformly stratified sampler is the same as the

D-optimal and EW D-optimal samplers.

To compare the SRSWOR, proportionally stratified, uniformly strati-

fied/locally D-optimal/EW D-optimal samplers, for illustration purposes,

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing) 



we assume that the true parameters are (β0, β1, β21, β22, β121, β122) = (0,−0.1,

−0.5,−2,−0.5,−1). We run 100 simulations using Model (4.8). In this sce-

nario, the proportionally stratified allocation wp and the uniformly strat-

ified allocation wu are the same as in Example 1, and the D-optimal al-

location wo = wu. The relative efficiencies of wp and wu compared with

wo are 73.30% and 100%, respectively. In terms of robustness to model

misspecifications, the relative efficiencies with true links as the probit, log-

log, and complementary log-log are again 100% due to Theorem 7. The

average and standard deviation of the 100 RMSEs are reported in Table 2.

Again, the D-optimal sampler (same as the uniformly stratified sampler in

this scenario) significantly reduces the RMSEs based on SRSWOR or the

proportionally stratified sampler. □

Table 2: Average (sd) of RMSE over 100 Simulations under Model (4.8)

Sampler
Average (sd) of RMSEs

β0 all except β0 β1 β21 β22 β121 β122

Full Data 0.240(0.206) 3.753(3.752) 0.285(0.230) 0.350(0.263) 4.622(6.406) 0.403(0.319) 5.004(6.343)

SRSWOR 0.340(0.268) 6.230(3.348) 0.386(0.290) 0.552(0.398) 9.005(6.826) 0.613(0.508) 7.184(6.845)

Proportionally Stratified 0.379(0.316) 6.347(3.267) 0.459(0.369) 0.593(0.512) 9.400(6.877) 0.742(0.568) 6.757(6.904)

Uniformly/D-opt/EW D-opt 0.267(0.203) 4.186(3.944) 0.425(0.304) 0.367(0.272) 4.973(6.936) 0.602(0.497) 5.485(6.887)

5. D-optimal Samplers for Multinomial Logit Models

In this section, we utilize D-optimal samplers for categorical responses as in

Example 2. For the ith experimental setting xi = (xi1, . . . , xid)
T , ni cate-
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gorical responses are collected i.i.d. from a discrete distribution with J ≥ 2

categories, i = 1, . . . ,m. The summary statistics Yi = (Yi1, · · · , YiJ)
T ∼

Multinomial(ni; πi1, · · · , πiJ), where Yij is the number of responses of the

jth category, πij is the probability that the response falls into the jth cat-

egory at xi. Assuming πij > 0 for all i = 1, . . . ,m and j = 1, . . . , J , multi-

nomial logit models have been widely used in the literature (see Bu et al.

(2020) and references therein), including commonly used baseline-category,

cumulative, adjacent-categories, and continuation-ratio logit models.

Example 8. Example 2 is considered here again. In this case, the re-

sponse has J = 5 categories, and there are m = 8 distinct experimental

settings determined by d = 2 factors, severity (xi1 ∈ {0, 1}) and dose

(xi2 ∈ {1, 2, 3, 4}). For illustration purposes, we first fit the original data

using the four different multinomial logit models with main effects, each

with proportional odds (po) or nonproportional odds (npo) assumptions

(Bu et al., 2020). According to the Akaike information criterion (AIC,

Hirotsugu (1973)), we choose the cumulative logit model with npo:

log

(
πi1 + · · ·+ πij

πi,j+1 + · · ·+ πi5

)
= βj1 + βj2xi1 + βj3xi2

with i = 1, . . . , 8 and j = 1, 2, 3, 4.

The fitted parameters θ̂ = (β̂11, β̂21, β̂31, β̂41, β̂12, β̂22, β̂32, β̂42, β̂13, β̂23,

β̂33, β̂43)
T = (−4.047,−2.225,−0.302, 1.386, 4.214, 3.519, 2.420, 1.284,−0.131,
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−0.376, −0.237, −0.120)T is used for finding the locally D-optimal alloca-

tion wo and no for choosing n = 600 participants. Since we do not have

true parameter values for real data, in order to design EW D-optimal sam-

pler, following Example 5.2 in Bu et al. (2020), we extract B = 1, 000

bootstrapped samples from the original data and fit the cumulative npo

model with bootstrapped samples to obtain randomized parameter vec-

tors θ̂(1), . . . , θ̂(B) serving as an empirical distribution of θ. Among the

fitted parameters by SAS PROC LOGISTIC command, 956 parameter

vectors are feasible, that is, in the parameter space Θ = {θ ∈ R12 |

βj1+βj2xi1+βj3xi2 < βj+1,1+βj+1,2xi1+βj+1,3xi2, j = 1, 2, 3; i = 1, . . . , 8} of

cumulative logit model (see Section 5.1 in Bu et al. (2020)). We denote them

by θi, i = 1, . . . , 956. Then we replace Fi with Ê(Fi) =
∑956

i=1Fi(θi)/956

to obtain the EW D-optimal allocation wEW and nEW, which maximizes

|
∑8

i=1 wiÊ(Fi) |. The corresponding allocations are listed in Table 3. In

Table 4, we list the quantiles of relative efficiencies of SRSWOR (realized

allocations after sampling), proportionally stratified, uniformly stratified,

and EW D-optimal allocations with respect to the locally D-optimal allo-

cations based on θ1, . . . ,θ956, respectively. From Table 4, we conclude that

in this case, the EW D-optimal sampler is highly efficient compared with

the locally D-optimal sampler, and both of them are much more efficient

than SRSWOR, proportionally or uniformly stratified sampler. □
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According to Table 4, the two additional constraints in Example 2,

n(w1 + w2 + w3 + w4) ≤ 392 and n(w5 + w6 + w7 + w8) ≤ 410, are not

attained for locally D-optimal and EW D-optimal allocations. In other

words, the constrained D-optimal allocations in Example 8 are the same

as unconstrained ones in this case. In Example 12 of the Supplementary

Material, we provide another example of the sampling problems with the

trauma clinical study where the constraints make a difference.

Table 3: Allocations (Proportions) for Stratified Samplers in Example 8

Severity Mild Severe

Dose 1 2 3 4 1 2 3 4

Proportional

78

(0.130)

70

(0.117)

75

(0.125)

72

(0.120)

79

(0.132)

72

(0.120)

80

(0.133)

74

(0.123)

Uniform

75

(0.125)

75

(0.125)

75

(0.125)

75

(0.125)

75

(0.125)

75

(0.125)

75

(0.125)

75

(0.125)

Locally D-opt (θ̂)

155

(0.258)

0

(0)

0

(0)

100

(0.167)

168

(0.280)

0

(0)

0

(0)

177

(0.295)

EW D-opt

147

(0.245)

0

(0)

0

(0)

109

(0.182)

168

(0.280)

0

(0)

0

(0)

176

(0.293)
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Table 4: Quantiles of Relative Efficiencies in Example 8

Sampler Minimum 1st Quartile Median 3rd Quartile Maximum

SRSWOR 76.23% 80.16% 80.65% 81.15% 84.11%

Proportional 77.32% 80.33% 80.66% 80.97% 83.39%

Uniform 77.23% 80.05% 80.40% 80.71% 83.13%

EW D-opt 98.91% 99.80% 99.90% 99.96% 100%

6. Conclusion

In this paper, we consider the constrained subsampling problem for paid re-

search studies or clinical trials to estimate the treatment effects or regression

coefficients as accurately as possible. Typically we have some covariates,

such as gender and age, collected along with candidates, which are known

to have some influences on the treatment effects. If we do not have any

idea about the regression coefficients associated with the covariates, we rec-

ommend (constrained) uniformly stratified sampler (see Lemma 5); if we

have some information about the regression coefficients, such as their signs

or ranges, we recommend EW D-optimal sampler; if we have a good idea

about the regression coefficients such as estimates from a pilot study, we

recommend (locally) D-optimal sampler. We use two examples, one with bi-
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nary responses and generalized linear models, and the other with 5-category

responses and multinomial logistic models, to show our recommended sam-

plers can be much more efficient than classical samplers for paid research

studies or clinical trials. The recommended samplers are fairly robust un-

der model misspecification. We also show that under some circumstances,

the constrained uniform sampler is optimal from an experimental design’s

perspective and can be used as a robust sampling strategy in paid research

studies if little information is known about the effects of the covariates.

To find an EW D-optimal sampler or locally D-optimal sampler un-

der constraints, we propose a new algorithm called the constrained lift-one

algorithm. While keeping the high efficiency of lift-one algorithms, the

proposed algorithm corrects the original lift-one algorithm when additional

constraints are added to the design space S. Compared with the constrained

optimal designs in the literature, our algorithm can provide highly efficient

results for more general statistical models under more general constraints

including but not limited to ni ≤ Ni.

Supplementary Materials

S1 General lift-one algorithm (without constraints): The lift-one al-

gorithm for general parametric models without constraints; S2 Commonly

used GLM models: A table that lists commonly used GLM models, the
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corresponding link functions, and ν functions; S3 Two examples of find-

ing ri1 and ri2 in Algorithm 1: Two examples with details in finding

ri1 and ri2; S4 Another example of robustness under GLM mod-

els: An example assuming different parameter values from Example 6’s for

robustness with respect to model misspecification; S5 Another example

of trauma clinical study: An example that the D-optimal allocations

attain one of the constraints; S6 Proofs: Proofs for lemmas and theorems

in this paper.
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