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Abstract: For a set of dependent random variables, without stationary or the

strong mixing assumptions, we derive the asymptotic independence between their

sums and maxima. Then we apply this result to high-dimensional testing prob-

lems, where we combine the sum-type and max-type tests and propose a novel

test procedure for the one-sample mean test, the two-sample mean test and the

regression coefficient test in high-dimensional setting. Based on the asymptotic

independence between sums and maxima, the asymptotic distributions of test

statistics are established. Simulation studies show that our proposed tests have

good performance regardless of data being sparse or not. Examples on real data

are also presented to demonstrate the advantages of our proposed methods.

Key words and phrases: Asymptotic normality; Asymptotic independence; Extreme-

value distribution; High-dimensional tests; Large p and small n
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1. Introduction

Statistical independence is a very simple structure and is convenient in sta-

tistical inference and applications. In this paper, we study the asymptotic

independence between two common statistics: the extreme-value statistic

Mp “ max1ďiďpXi and the sum Sp “
řp
i“1Xi, where tXiu

p
i“1 is a sequence

of dependent random variables. This theoretical results will be applied to

three high-dimensional testing problems with numerical examples.

1.1 Independence Between Sum and Maximum

In the past few decades, great efforts have been devoted in understanding

the asymptotic joint distribution of Mp and Sp. In an early research, Chow

and Teugels (1978) established the asymptotic independence between Mp

and Sp for independent and identically distributed random variables. To

overcome the limitation of the required assumptions, Anderson and Turk-

man (1991), Anderson and Turkman (1993), Anderson and Turkman (1995)

and Hsing (1995) generalized the asymptotic result to the case that tXiu
p
i“1

is strong mixing; for the concept “strong mixing” and its properties, see, for

example, the survey paper Bradley (2005) and the literature therein. In par-

ticular, Hsing (1995) showed that for a stationary sequence, strong mixing

property and asymptotic normality of Sp are basically enough to guaran-
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1.1 Independence Between Sum and Maximum

tee the asymptotic independence of the sum and maximum. However, it is

shown in Davis and Hsing (1995) that in the case of infinite variance, Mp

and Sp are not asymptotically independent because the asymptotic behav-

ior of Sp is dominated by that of the extreme order statistic. In addition, Ho

and Hsing (1996), Ho and McCormick (1999), McCormick and Qi (2000)

and Peng and Nadarajah (2003) considered the joint limit distribution of

the maximum and sum of stationary Gaussian sequence tXiu
p
i“1 in which

EpXiq “ 0, VarpXiq “ 1 and rppq “ EpXiXi`pq. Under different conditions

on rppq, the joint limiting distributions of maxima and sums are different.

Specifically, Ho and Hsing (1996) showed that Mp and Sp are asymptotically

independent as long as limpÑ8 rppq log p “ 0; the two statistics are not in-

dependent provided limpÑ8 rppq log p “ ρ P p0,8q. For the rest situations,

by assuming limpÑ8
log p
p

řp
i“1 |rpiq ´ rppq| “ 0, Ho and McCormick (1999)

and McCormick and Qi (2000) obtained the asymptotic independence of

Mp ´ pSp{nq and Sp.

All these results are based on the stationary assumption that the co-

variance structure among tXiu
p
i“1 has the property that EpXiXi`hq “

EpX1X1`hq for each integer h and i “ 1, ¨ ¨ ¨ , p ´ h. This is a common

assumption in research, however, it is not easy to be checked. Even though

it can be verified by hypothesis testing, the stationary property still may
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1.1 Independence Between Sum and Maximum

not hold up to certain statistical errors. In fact, in many scenarios this

assumption is not true. For example, for stock data of US S&P 500 index

in which stock returns are considered as variables, if stocks are ordered

alphabetically by names, the two stocks, such as AAPL and MSFT, may

have both far distance and strong correlation, which does not satisfy the

stationary assumption.

In this work, we study the asymptotic independence between S̃p “

řp
i“1 Z

2
i and M̃p “ max1ďiďp Z

2
i without stationary assumption. In our case

each Zi is marginally Np0, 1q and the covariance matrix of Zi’s, denoted by

Σp “ pσijq1ďi,jďp, satisfies certain conditions. Specifically, we first estab-

lish the asymptotically normality of S̃p if rtrpΣ2`δ
p qs2 ¨ rtrpΣ2

pqs
´2´δ Ñ 0

for some δ ą 0. Then, we show that the limit distribution of the max-

imum M̃p ´ 2 log p ` log log p is a Gumbel distribution under conditions

on the covariance matrix Σp. Finally, we prove the asymptotic indepen-

dence between S̃p and M̃p under the conditions max1ďiăjďp |σij| ď % and

max1ďiďp

řp
j“1 σ

2
ij ď plog pqC , together with two additional conditions on

the maximum and minimum eigenvalues of Σp. These theoretical results

are novel and essentially different from the existing ones in which the sta-

tionary property is required. Since these results are universal, they may

provide many useful implications. In this paper, we will apply the above
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1.2 High-Dimensional Hypothesis Testing

asymptotic independence results to three high-dimensional hypothesis test-

ing problems: one-sample mean test, two-sample mean test and the regres-

sion coefficient test.

1.2 High-Dimensional Hypothesis Testing

High-dimensional hypothesis testing is an important research area in mod-

ern statistics. It has been frequently used in many application fields, such as

genomics, medical imaging, risk management and web search. The motiva-

tion of studying high-dimensional test is that traditional tests, such as the

Hotelling T -squared test, do not work in general when the data dimension

is larger than the sample size due to the singularity of sample covariance

matrix. A nature way to amend this problem is replacing the sample co-

variance matrix appearing in the Hotelling T -squared test statistic with a

nonsingular matrix, such as the identity matrix and the diagonal matrix

of sample covariance matrix. In this way, for example, Srivastava (2009),

Park and Ayyala (2013), Wang et al. (2015), Feng et al. (2016), Feng et al.

(2015) and Feng et al. (2017) developed tests for one-sample mean prob-

lem, while Bai and Saranadasa (1996), Srivastava and Du (2008), Chen

and Qin (2010), and Gregory et al. (2015) developed tests for two-sample

mean problem. In addition, Goeman et al. (2006) and Lan et al. (2014),
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1.2 High-Dimensional Hypothesis Testing

for instance, considered testing regression coefficients in high-dimensional

linear models. All these tests are sum-type tests, based on the summation

of parameter estimators. It is well known that the sum-type tests generally

perform well as data are dense, i.e. most of the parameters are nonzero

under the local alternative. However, it may be inefficient when data are

sparse, where only a few parameters are nonzero under local alternative. To

establish high-dimensional tests for sparse data, Cai et al. (2014), Zhong

et al. (2013) and Chen et al. (2019) proposed some max-type tests, which

typically perform well on sparse data, but worse when the data become

dense.

In practice, it is often difficult to determine whether data are sparse or

not. Thus, many efforts have been devoted to develop tests with good and

robust performance under both data conditions. For example, Fan et al.

(2015) proposed a power enhancement procedure by a screening technique

for high-dimensional tests. They combined the power enhancement com-

ponent with an asymptotically pivotal statistic to strengthen powers under

sparse alternatives. Xu et al. (2016) initiated an adaptive test for high-

dimensional two-sample mean test. It combines information across a class

of sum-of-powers tests, including tests based on the sum-of-squares of the

mean differences and the supremum mean difference. Wu et al. (2019) ex-
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1.2 High-Dimensional Hypothesis Testing

tended the adaptive test to generalized linear models. In He et al. (2021),

the authors constructed U -statistics of different orders that are asymptoti-

cally independent of the max-type test statistics in high-dimensional tests,

upon which an adaptive testing procedure is proposed. However, these re-

sults are based on Hsing (1995), which require data to be sampled from

stationary and α-mixing random variables. In fact, the α-mixing property

is hardly checked in practice, which greatly limits the application of these

methods. In this paper, by using the novel asymptotic independence anal-

ysis between the sum and maximum aforementioned, we solve the problem

without the stationary assumption or the α-mixing property and propose a

series of high-dimensional tests including one-sample mean test, two-sample

mean test and the regression coefficient test. Numerical results demonstrate

strong robustness of the proposed tests regardless data being sparse or not.

The main contributions of this paper are listed as follows. (1) We es-

tablish the asymptotic distribution of the maximum of dependent Gaussian

random variables under a general assumption. (2) We prove the asymp-

totic independence between the sum and maximum of dependent Gaussian

random variables without the stationary or the α-mixing property. (3)

We propose three high-dimensional combo-type tests based on the above

asymptotic properties. They are one-sample mean test, two-sample mean
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test and the regression coefficient test. Numerical examples on simulated

and real-world data demonstrate strong robustness of our tests, on both

sparse and dense datasets.

The rest of the paper is organized as follows. In Section 2, we state

our theoretical results, including the asymptotic distributions of the sum

and maximum statistics, and the asymptotic independence between them.

In Section 3, we propose a series of tests for high-dimensional data based

on these theoretical results. Then, we demonstrate the simulation results

of the proposed tests in comparison with some existing ones in Section 4,

followed by application in Section 5. Finally, we present some concluding

remarks in Section 6, while providing some extended results and technical

proofs in the supplementary material.

2. Asymptotic Independence of Sum and Maximum of Depen-

dent Random Variables

First, in this section, we study the asymptotic normality of the sum of

dependent random variables. For each p ě 2, let Zp1, ¨ ¨ ¨ , Zpp be Np0, 1q-

distributed random variables with pˆp covariance matrix Σp. If there is no

danger of confusion, we simply write “Z1, ¨ ¨ ¨ , Zp” for “Zp1, ¨ ¨ ¨ , Zpp” and
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“Σ” for “Σp”. The following assumption is needed:

lim
pÑ8

rtrpΣ2`δqs2

rtrpΣ2qs2`δ
“ 0 for some δ ą 0. (2.1)

Assumption (2.1) with δ “ 2 is the same as condition (3.7) in Chen and

Qin (2010), and here we make it more general. Although in applications

the true covariance matrix Σ is usually unknown, this condition assures

the practitioners that our results would be applicable to a wide range of

problems. For instance, if all eigenvalues of Σ are bounded above and are

bounded below from zero, it is trivial to see that (2.1) holds.

THEOREM 1. Under Assumption (2.1),
Z2
1`¨¨¨`Z

2
p´p?

2trpΣ2q
Ñ Np0, 1q in distri-

bution as pÑ 8.

Theorem 1 shows that the sum of squares of the dependent Gaussian

random variables has the asymptotic normality if the covariance matrix

satisfies Assumption (2.1).

Next, for the same Gaussian random variables, we consider the asymp-

totic distribution of max1ďiďp Z
2
i . Let |A| denote the cardinality of the set

A. The following assumption will be imposed:

Let Σ “ pσijq1ďi,jďp. For some % P p0, 1q, assume |σij| ď % for all 1 ď i ă j ď p and

p ě 2. Suppose tδp; p ě 1u and tκp; p ě 1u are positive constants with δp “ op1{ log pq

and κ “ κp Ñ 0 as pÑ 8. For 1 ď i ď p, define Bp,i “
 

1 ď j ď p; |σij| ě δp
(
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and Cp “
 

1 ď i ď p; |Bp,i| ě pκ
(

. We assume that |Cp|{pÑ 0 as pÑ 8. (2.2)

THEOREM 2. Suppose Assumption (2.2) holds. Then max1ďiďp Z
2
i ´

2 log p`log log p converges to a Gumbel distribution with cdf F pxq “ expt´ 1?
π
e´x{2u

as pÑ 8.

REMARK 1. Cai et al. (2014) obtained the above limiting distribution of

max1ďiďp Z
2
i under the assumption that max1ďiďp

řp
j“1 σ

2
ij ď C0 for each

p ě 1, where C0 is a constant free of p. In the following we will see that

their result is a special case of Theorem 2. In fact, let δp “ plog pq´2 for

p ě ee, then for each 1 ď i ď p, δ2
p ¨ |Bp,i| ď

řp
j“1 σ

2
ij ď C0. Hence,

|Bp,i| ď C0 ¨ plog pq2 ă pκ where κ “ κp :“ 5plog log pq{ log p for large p. As

a result, |Cp| “ 0, which implies the results of Theorem 2.

A closely related but not exactly the same result by Fan and Jiang

(2019) shows that δp “ op1{ log pq in Assumption (2.2) can not be relaxed.

Their statistic is max1ďiďp Zi in contrast to max1ďiďp |Zi| here. We expect

that δp “ op1{ log pq is also the critical threshold for max1ďiďp |Zi|.

Theorem 2 is proved by using the spirit of the proof of Lemma 6 from

Cai et al. (2014). There are two purposes to derive the result. First, the

conditions imposed in our theorem is weaker than those required in Lemma

6 from Cai et al. (2014), which has been discussed in Remark 1. This
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allows us to apply this type of results to a more general covariance matrix

Σ. Secondly, part of the steps in the proof of Theorem 2 will also be used

in the proof of Theorem 3 stated next.

To proceed, we need more notations and an additional assumption. For

two sequences of numbers tap ě 0; p ě 1u and tbp ą 0; p ě 1u, we write

ap ! bp if limpÑ8
ap
bp
“ 0. The following assumption will be used:

There exist C ą 0 and % P p0, 1q so that max
1ďiăjďp

|σij| ď % and max
1ďiďp

p
ÿ

j“1

σ2
ij ď plog pqC

for all p ě 3; p´1{2
plog pqC ! λminpΣq ď λmaxpΣq !

?
pplog pq´1 and

λmaxpΣq{λminpΣq “ Oppτ q for some τ P p0, 1{4q. (2.3)

Assumption (2.3) is actually stronger than both (2.1) and (2.2). To see

this, assume (2.3) holds now. To derive (2.1), observe that trpΣ2`δq ď p ¨

λmaxpΣq
2`δ and trpΣ2q ě p¨λminpΣq

2. Then rtrpΣ2`δqs2

rtrpΣ2qs2`δ
ď 1

pδ
¨

´

λmaxpΣq
λminpΣq

¯4`2δ

“

O
´

1
pδ´p4`2δqτ

¯

Ñ 0 by choosing δ “ 2 and using the assumption τ P p0, 1{4q

stated in (2.3). We then get (2.1) with δ “ 2. To deduce (2.2), we replace

“C0” in Remark 1 with “plog pqC”. By the same argument as that in Re-

mark 1 and choosing δp “ plog pq´2, we see |Bp,i| ď C0 ¨ plog pqC`2 ă pκ,

where κ “ κp :“ pC ` 3qplog log pq{ log p for p ě ee. Hence, |Cp| “ 0 and

Assumption (2.2) holds.

THEOREM 3. Under Assumption (2.3), the following holds:
Z2
1`¨¨¨`Z

2
p´p?

2trpΣ2q
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and max1ďiďp Z
2
i ´ 2 log p` log log p are asymptotically independent as pÑ

8.

Importantly, notice that the above asymptotic independence result holds

without the stationary assumption or the α-mixing condition. Regarding

the assumption on the spectrum, in high-dimensional statistics literature,

it is common to assume rλminpΣq, λmaxpΣqs Ă ra, bs, with 0 ă a ă b ă 8.

Note that this is stronger than our assumption on the eigenvalues of Σ in

(2.3). In fact, Assumption (2.3) allows that the largest eigenvalue goes to

infinity and the smallest eigenvalue goes to zero. Thus, Theorem 3 provides

more general result and more freedom and practicality in application.

3. Application: High-Dimensional Testing Problems

In this section, we will apply the theoretical results derived in Section 2

to three high-dimensional testing problems: one-sample mean test, two-

sample mean test and the regression coefficient test. The first test will

be presented in the following subsections, while two-sample mean test and

regression coefficient test will be presented in the supplementary material.
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3.1 One-Sample Mean Test

3.1 One-Sample Mean Test

AssumeX1, ¨ ¨ ¨ ,Xn are independent and identically distributed p-dimensional

random vectors from Npµ,Σq. The classical one-sample mean testing prob-

lem considers

H0 : µ “ 0 versus H1 : µ “ 0. (3.4)

In the traditional setting where p is fixed, this topic is covered in classic

textbooks on multivariate analysis such as in Anderson (2003), Eaton (1983)

and Muirhead (1982). Starting from this century, a tremendous effort has

been made for the test towards the high-dimensional setting, where both n

and p go to infinity. In the following we will highlight part of these work en

route to a problem we are interested in: the test (3.4) under the situation

n ď p. This is a typical problem of interest in high-dimensional statistics

with small n and large p.

Let X̄ “ 1
n

řn
i“1 Xi and Ŝ “ 1

n

řn
i“1pXi´ X̄qpXi´ X̄q

T be the sample

mean and the sample covariance matrix of X1, ¨ ¨ ¨ ,Xn, respectively. The

Hotelling T 2-statistic is defined by nX̄T Ŝ´1X̄; see Hotelling (1931). For the

case with n ą p, Bai and Saranadasa (1996) studied the Hotelling statistic.

When n ď p, however, the matrix Ŝ is no longer invertible, which motivates

the design of new statistics. By replacing Ŝ with its diagonal matrix in
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3.1 One-Sample Mean Test

the Hotelling T 2-statistic, Srivastava and Du (2008) and Srivastava (2009)

proposed a scale-invariant test for (3.4), defined by

T p1qsum “
nX̄T D̂´1X̄ ´ pn´ 1qp{pn´ 3q

b

2rtrpR̂2q ´ p2{pn´ 1qs
, (3.5)

where D̂ is the diagonal matrix of the sample covariance matrix Ŝ, and

R̂ “ D̂´1{2ŜD̂´1{2 is the sample correlation matrix. The major ingredient

of T
p1q
sum can be written as a sum of random variables, so we sometimes call

it a “sum-type” statistic. In general, the performance of sum-type statistics

are not ideal in sparse cases when only a few entries in µ in the sum are non-

zero; see Cai et al. (2014) for more detailed discussion. Zhong et al. (2013)

proposed two alternative tests by first thresholding two statistics based on

the sample means and then maximizing over a range of thresholding levels.

Denote X̄ “ pX̄1, ¨ ¨ ¨ , X̄pq
T . The L2-version of the thresholding statistic

is

THC2 “ max
sPS

T2npsq ´ µ̂psq

σ̂psq
, (3.6)

where S is a subset of the interval p0, 1q,

T2npsq “
p
ÿ

j“1

n
`

X̄j{σj
˘2
I
´

|X̄j| ě σj
a

λs{n
¯

,

µ̂psq “ p
 

2λ1{2
p psqφpλ

1{2
p psqq ` 2Φ̄pλ1{2

p psqq
(

,

σ̂2
psq “ p

 

2
“

λ3{2
p psq ` 3λ1{2

p psq
‰

φpλ1{2
p psqq ` 6Φ̄pλ1{2

p psqq
(

.
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3.1 One-Sample Mean Test

Here λsppq “ 2s log p, and φp¨q, Φ̄p¨q are the density and survival functions of

the standard normal distribution, respectively. Fan et al. (2015) proposed

a novel procedure by adding a power enhancement component which is

asymptotically zero under the null and diverges under some specific regions

of alternatives. Their test statistic is

J “ J0 ` J1, (3.7)

where the power enhancement component J0 is J0 “
?
p
řp
j“1 X̄

2
j σ̂
´2
j Ip|X̄j| ą

σ̂jδp,nq, and J1 is the standard Wald statistic J1 “
X̄T

yvar´1
pX̂qX̄´p

2
?
p

. Here σ̂2
j

is the sample variance of the jth coordinate of the population vector, δp,n

is a thresholding parameter and xvar´1
pX̂q is a consistent estimator of the

asymptotic inverse covariance matrix of X̄. However, the power enhance-

ment component would be negligible if the signal is not very strong. As we

mentioned before, Cai et al. (2014) showed that extreme-value statistics are

particularly powerful against sparse alternatives and possess certain optimal

properties. Hence, we propose a statistic by compromising the sum-type

statistic from (3.5) and an extreme-value statistic, based on our results in

Section 2, which will be compared with aforementioned baselines numeri-

cally in Section 4.1. As will be confirmed later, our method performs very

well regardless of the sparsity of the alternative hypothesis.
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3.1 One-Sample Mean Test

We now formally introduce our approach. Define

T p1qmax “ n ¨ max
1ďiďp

X̄2
i

σ̂2
ii

, (3.8)

where X̄i is the ith coordinate of X̄ “ 1
n
pX1 ` ¨ ¨ ¨Xnq P Rp and σ̂2

ii is the

sample variance of the ith coordinate of the population vector, that is, if

we write Xj “ px1j, ¨ ¨ ¨ , xpjq
T for each 1 ď j ď n, then σ̂2

ii is the sample

variance of the i.i.d. random variables xi1, xi2, ¨ ¨ ¨ , xin. Firstly, the asymp-

totic distribution of T
p1q
max will be presented which needs more notations. Let

R “ D´1{2ΣD´1{2 “ pρijq1ďi,jďp denote the population correlation matrix,

where D is the diagonal matrix of Σ. The following assumption will be

imposed:

There exists ε P
´1

2
, 1
ı

and K ą 1 such that K´1pε ď n ď Kpε and

sup
pě2

1

p
trpRi

q ă 8 for i “ 2, 3, 4. (3.9)

Note that (3.9) is the same as assumptions (3.1) and (3.2) from Srivastava

(2009). If the eigenvalues of the correlation matrix R are bounded, the

second condition of (3.9) will hold automatically. For rigor of mathematics,

we assume n depends on p and sometimes write np when there is a possible

confusion.

THEOREM 4. Under the null hypothesis in (3.4), the following holds as

pÑ 8:
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3.1 One-Sample Mean Test

(i) If (3.9) holds, then T
p1q
sum Ñ Np0, 1q in distribution;

(ii) If (2.2) holds with “Σ” replaced by “R” and log p “ opn1{3q, then

T
p1q
max ´ 2 log p ` log log p converges weakly to a Gumbel distribution

with cdf F pxq “ expt´ 1?
π

expp´x{2qu;

(iii) Assume (3.9) is true. If (2.3) holds with “Σ” replaced by “R”, then

T
p1q
sum and T

p1q
max ´ 2 log p` log log p are asymptotically independent.

Part (i) of the above theorem is from Srivastava (2009), which is also

a corollary of the recent work by Jiang and Li (2021). For the sum-type

test, a level-α test will be performed through rejecting H0 when T
p1q
sum is

larger than the p1 ´ αq-quantile zα “ Φ´1p1 ´ αq where Φpyq is the cdf

of Np0, 1q. For the max-type test, a level-α test will then be performed

through rejecting H0 when T
p1q
max´2 log p`log log p is larger than the p1´αq-

quantile qα “ ´ log π ´ 2 log logp1´ αq´1 of the Gumbel distribution F pxq.

Based on Theorem 4, we propose a combo-type test statistic by com-

bining the max-type and the sum-type tests. It is defined by

T p1qcom “ mintP
p1q
S , P

p1q
M u, (3.10)

where P
p1q
S “ 1´Φ

!

T
p1q
sum

)

and P
p1q
M “ 1´F pT

p1q
max´2 log p` log log pq. Note

that P
p1q
S and P

p1q
M are the p-values for the tests by using statistics T

p1q
sum and

T
p1q
max, separately, and T

p1q
com is defined by the smaller one, whose asymptotic
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3.1 One-Sample Mean Test

distribution can be characterized by the minimum of two standard uniform

random variables.

COROLLARY 1. Assume the conditions in Theorem 4(iii) hold. Then

T
p1q
com from (3.10) converges weakly to a distribution with density Gpwq “

2p1´ wqIp0 ď w ď 1q as pÑ 8.

According to Corollary 1, the proposed combo-type test allows us to

perform a level-α test by rejecting the null hypothesis when T
p1q
com ă 1 ´

?
1´ α « α

2
as α is small. We now discuss the power functions. First, the

power function of our combo-type test is

β
p1q
C pµ, αq “ P

`

T p1qcom ă 1´
?

1´ α
˘

“ P
´

P
p1q
M ă 1´

?
1´ α or P

p1q
S ă 1´

?
1´ α

¯

ě max
!

P
´

P
p1q
S ă 1´

?
1´ α

¯

, P
´

P
p1q
M ă 1´

?
1´ α

¯)

« max
!

β
p1q
S pµ, α{2q, β

p1q
M pµ, α{2q

)

(3.11)

when α is small, where β
p1q
M pµ, αq and β

p1q
S pµ, αq are the power functions

of T
p1q
max and T

p1q
sum with significant level α, respectively. From Srivastava

(2009), the power function of T
p1q
sum is

β
p1q
S pµ, αq “ lim

pÑ8
Φ

˜

´zα `
nµTD´1µ
a

2trpR2q

¸

, (3.12)

where zα “ Φ´1p1´αq is the p1´αq-quantile of Np0, 1q. Due to (3.11), we

have β
p1q
C pµ, αq ě limpÑ8 Φ

ˆ

´zα{2 `
nµTD´1µ?

2trpR2q

˙

. Denote D “ diagpσ2
11, ¨ ¨ ¨ , σ

2
ppq.
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3.1 One-Sample Mean Test

By the same argument at that from Theorem 2 in Cai et al. (2014), the

asymptotic power of T
p1q
max converges to one if max1ďiďp |µi{σii| ě c

a

log p{n

for a certain constant c, and also the nonzero µi are randomly uniformly

sampled with sparsity level γ ă 1{4, i.e., the number of nonzero µi is less

than pγ, γ ă 1{4. Thus, according to (3.11), the power function of our pro-

posed test T
p1q
com also converges to one in this case. Similarly, according to

Theorem 3 in Cai et al. (2014), the condition max1ďiďp |µi{σii| ě c
a

log p{n

is minimax rate optimal for testing against sparse alternatives. If c is suf-

ficiently small, then any α-level test is unable to reject the null hypothesis

with probability tending to one. It is shown in Cai et al. (2014) that T
p1q
max

enjoys a certain optimality against sparse alternatives. By (3.11), our test

T
p1q
com also has this optimality.

In order to get a rough picture of the asymptotic power comparison

between T
p1q
sum, T

p1q
max and T

p1q
com, now we simply assume that Σ “ Ip. There

are m nonzeros µi and they are all equal to δ ‰ 0. Equation (3.12) gives

β
p1q
S pµ, αq “ limpÑ8 Φ

´

´zα `
nmδ2?

2p

¯

.

We consider two special cases:

(1) Dense case: δ “ Opn´ξq andm “ Opp1{2n2ξ´1q with ξ P p1{2, 5{6s. We

also assume log p “ opnξ´
1
2 q, hence log p “ opn1{3q. As a consequence,

the requirement on p vs n imposed in Theorem 4(ii) is fulfilled. Obvi-

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing) 



3.1 One-Sample Mean Test

ously, the number of nonzero µi goes to infinity. The power function

for T
p1q
max is given by β

p1q
M pµ, αq “ P

´

T
p1q
max ´ 2 log p` 2 log log p ą qα

¯

.

In this case, we will show in Section S3.4 of the supplementary ma-

terial that β
p1q
M pµ, αq « α, which means that T

p1q
max is not effective

or useful. Consequently, we have β
p1q
C pµ, αq « β

p1q
S pµ, α{2q. When

the significant level α is small, the difference between β
p1q
S pµ, αq and

β
p1q
S pµ, α{2q is negligible. So our proposed test T

p1q
com has similar per-

formance as T
p1q
sum in this dense case.

(2) Sparse case: δ “ c
a

log p{n for sufficient large constant c and m “

opplog pq´1p1{2q. Here the value of m is much smaller than that in (1)

and hence confirms the notion of “sparse”. In this case, nmδ2?
2p
Ñ 0, so

β
p1q
S pµ, αq « α and T

p1q
sum is not effective or useful. Yet, β

p1q
M pµ, αq Ñ 1

by an argument similar to Theorem 2 from Cai et al. (2014) as

discussed above, which also leads to β
p1q
C pµ, αq Ñ 1 in this sparse

case. Additionally, in Fan et al. (2015) the quantity δp,n is cho-

sen to be log log n
a

log p{n, which implies that the screening set

ti :
?
n|X̄i| ą log log n

?
log pu would be empty as probability tending

to one. Thus, the power enhancement component of Fan et al. (2015)

would be negligible in this case, which makes the standardized Wald

test statistic the same as T
p1q
sum since Σ “ Ip. That is, their test is also
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ineffective in this sparse case.

The above theoretical results and analysis, together with the simulation

in the next section, indicate that our proposed test T
p1q
com performs very

well regardless of the sparsity of the alternative hypothesis, which is more

convenient to use in various practical scenarios.

Due to space limitation, we will present the combo-type two-sample

mean test and regression coefficient test as well as their simulation results

in the supplementary material.

4. Simulation Results

In this section, we carry out a series of simulation study on the testing

problems studied in the previous section, to compare different test statistics

and validate the advantage of the proposed combo-type tests.

4.1 One-Sample Test Problem

Firstly, we conduct numerical examples on the one-sample test problem. We

compare our combo-type test Tcom in (3.10) (abbreviated as COM) with the

sum-type test T
p1q
sum in (3.5) by Srivastava (2009) (abbreviated as SUM), the

max-type test T
p1q
max in (3.8) (abbreviated as MAX), the Higher Criticism

test THC2 from (3.6) by Zhong et al. (2013) (abbreviated as HC2) and the
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4.1 One-Sample Test Problem

power enhancement test J from (3.7) by Fan et al. (2015) (abbreviated as

FLY). The dataset is simulated as follows.

EXAMPLE 1. We consider Xi “ µ ` Σ1{2zi for i “ 1 ¨ ¨ ¨ , n, and each

component of zi is independently generated from three distributions: (1) the

normal distribution Np0, 1q; (2) the t distribution tp3q{
?

3; (3) the mixture

normal random variable V {
?

1.8, where V has density function 0.1f1pxq `

0.9f2pxq with f1pxq and f2pxq being the densities of Np0, 9q and Np0, 1q,

respectively. We will work on two different sample sizes with n “ 100, 200

and three different dimensions with p “ 200, 400, 600. Under the null hy-

pothesis, we set µ “ 0 and the significance level α “ 0.05. The following

three scenarios of covariance matrices will be considered.

(I) AR(1) model: Σ “ p0.5|i´j|q1ďi,jďp.

(II) Σ “ D1{2RD1{2 with D “ diagpσ2
1, ¨ ¨ ¨ , σ

2
pq and R “ Ip ` bb

T ´

B̌, where σ2
i are generated independently from Uniformp1, 2q, b “

pb1, ¨ ¨ ¨ , bpq
T and B̌ “ diagpb2

1, ¨ ¨ ¨ , b
2
pq. The first rp0.3s entries of b are

independently sampled from Uniformp0.7, 0.9q, and the remaining

entries are set to be zero, where r¨s denotes taking integer part.

(III) Σ “ γγT`pIp´ρεW q´1pIp´ρεW
T q´1, where γ “ pγ1, ¨ ¨ ¨ , γrpδγ s, 0, 0, ¨ ¨ ¨ , 0q

T .

Here γi with i “ 1, ¨ ¨ ¨ , rpδγ s are generated independently from Uniformp0.7, 0.9q.
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4.1 One-Sample Test Problem

Table 1: Sizes of tests for Example 1 with Scenario (I), α “ 0.05.

Distribution (1) (2) (3)

p 200 400 600 200 400 600 200 400 600

n “ 100 MAX 0.053 0.062 0.082 0.026 0.052 0.045 0.044 0.039 0.061

SUM 0.064 0.064 0.060 0.052 0.050 0.059 0.063 0.058 0.064

COM 0.063 0.069 0.059 0.040 0.059 0.055 0.056 0.047 0.061

HC2 0.028 0.044 0.034 0.033 0.029 0.032 0.038 0.025 0.044

FLY 0.014 0.009 0.004 0.003 0.003 0.002 0.025 0.018 0.014

n “ 200 MAX 0.046 0.060 0.049 0.045 0.041 0.045 0.042 0.045 0.032

SUM 0.065 0.068 0.058 0.053 0.057 0.062 0.056 0.054 0.056

COM 0.056 0.068 0.048 0.042 0.047 0.052 0.043 0.050 0.039

HC2 0.019 0.027 0.030 0.031 0.024 0.023 0.029 0.020 0.029

FLY 0.005 0.000 0.000 0.003 0.000 0.000 0.017 0.012 0.005

Let ρε “ 0.5 and δγ “ 0.3. Let W “ pwi1i2q1ďi1,i2ďp have a so-called

rook form, i.e., all elements of W are zero except that wi1`1,i1 “

wi2´1,i2 “ 0.5 for i1 “ 1, ¨ ¨ ¨ , p ´ 2 and i2 “ 3, ¨ ¨ ¨ , p, and w1,2 “

wp,p´1 “ 1.

Tables 1, 2, 3 report the empirical sizes of the five tests. SUM, MAX

and COM can control the empirical sizes very well in most cases. However,

the empirical sizes of HC2 and FLY can be much smaller than the nominal

level in some cases.
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4.1 One-Sample Test Problem

Table 2: Sizes of tests for Example 1 with Scenario (II), α “ 0.05.

Distribution (1) (2) (3)

p 200 400 600 200 400 600 200 400 600

n “ 100 MAX 0.058 0.070 0.065 0.044 0.037 0.039 0.048 0.042 0.047

SUM 0.053 0.067 0.056 0.054 0.052 0.048 0.054 0.055 0.045

COM 0.055 0.057 0.061 0.054 0.044 0.040 0.043 0.047 0.047

HC2 0.022 0.011 0.013 0.005 0.015 0.005 0.011 0.011 0.006

FLY 0.022 0.011 0.011 0.013 0.010 0.006 0.024 0.015 0.007

n “ 200 MAX 0.053 0.054 0.076 0.025 0.042 0.025 0.044 0.040 0.041

SUM 0.053 0.057 0.060 0.053 0.051 0.052 0.055 0.065 0.060

COM 0.058 0.061 0.066 0.037 0.045 0.044 0.043 0.053 0.055

HC2 0.003 0.011 0.006 0.010 0.006 0.003 0.004 0.005 0.008

FLY 0.037 0.033 0.025 0.030 0.022 0.011 0.032 0.026 0.015

Next, we examine the power of each test. Our simulation shows that

the power comparisons are similar for any combination of pn, pq with n “

100, 200 and p “ 200, 400, 600. Hence, we present the case n “ 100 and

p “ 200 for conciseness. Define µ “ pµ1, ¨ ¨ ¨ , µpq
T . For different number of

nonzero-mean variables m “ 1, ¨ ¨ ¨ , 20, we consider µj “ δ for 0 ă j ď m

and µj “ 0 for j ą m. The parameter δ is chosen as ||µ||2 “ mδ2 “ 0.5.

Figure 1 reports the power of the five tests. The power of MAX decreases

as the number of nonzero-mean variables increases, which is as expected
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4.1 One-Sample Test Problem

Table 3: Sizes of tests for Example 1 with Scenario (III), α “ 0.05.

Distribution (1) (2) (3)

p 200 400 600 200 400 600 200 400 600

n “ 100 MAX 0.054 0.066 0.059 0.053 0.040 0.033 0.049 0.039 0.043

SUM 0.052 0.055 0.059 0.053 0.048 0.060 0.059 0.064 0.061

COM 0.053 0.066 0.059 0.053 0.050 0.040 0.062 0.046 0.051

HC2 0.034 0.038 0.035 0.032 0.030 0.025 0.036 0.030 0.030

FLY 0.013 0.003 0.005 0.013 0.001 0.000 0.020 0.013 0.010

n “ 200 MAX 0.053 0.058 0.063 0.034 0.027 0.038 0.049 0.039 0.050

SUM 0.061 0.065 0.062 0.044 0.058 0.068 0.063 0.058 0.057

COM 0.065 0.075 0.069 0.033 0.048 0.047 0.059 0.051 0.053

HC2 0.035 0.032 0.032 0.019 0.029 0.019 0.029 0.023 0.024

FLY 0.001 0.001 0.000 0.004 0.001 0.000 0.016 0.011 0.002

because, generally speaking, the max-type test is more powerful in sparse

case and less powerful in non-sparse case. The power of SUM slightly

increases with m and is higher than the power of HC2 and FLY in all cases.

The proposed COM is as powerful as MAX when the number of variables

with nonzero means is small (sparse case), and almost has the same power as

SUM when the number of variables with nonzero means grows. In general,

COM possesses the advantages of both MAX (in sparse case) and SUM (in

non-sparse case), and outperforms HC2 and FLY in all scenarios. Observe
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4.1 One-Sample Test Problem

that all the tests, except for COM, favor either the sparse or non-sparse

case. Since in practice it is hard to justify whether the true underlying

model is sparse or not, our proposed COM test, with its strong robustness,

should be a more favorable choice over the competing approaches.

Figure 1: Power vs. number of variables with nonzero means for Example

4.1. The x-lab m denotes the number of variables with non-zero means; the

y-lab is the empirical power.
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5. Real Data Application

In this section, we further apply the results and test statistics obtained in

Section 3 to two real data: a US stock data (dense model) and a search

engine data (sparse model) in the supplementary material. As will be seen,

the proposed combo-type test, COM, performs well on both datasets. Thus,

it could serve as a “universal” test in practice no matter the true model is

sparse or not.

5.1 US Stock Data

We apply the methods developed for one-sample mean test in Section 3.1

to a pricing problem in finance. Specifically, we investigate how financial

returns of assets are related to their risk-free returns. Let Xij “ Rij ´ rfi

denote the excess return of the jth asset at time i for i “ 1, ¨ ¨ ¨ , n and

j “ 1, ¨ ¨ ¨ , p, where Rij is the return on asset j during period i and rfi is

the risk-free return rate of all assets during period i. We study the following

pricing model

Xij “ µj ` ξij, (5.13)

for i “ 1, ¨ ¨ ¨ , n and j “ 1, ¨ ¨ ¨ , p, or, in vector form, Xi “ µ ` ξi, where

Xi “ pXi1, . . . , Xipq
T , µ “ pµ1, . . . , µpq

T , and ξi “ pξi1, . . . , ξipq
T is the
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5.1 US Stock Data

zero-mean error vector. The pricing model in (5.13) is the zero-factor model

within the well known Arbitrage Pricing Theory (Ross, 1976), where “zero-

factor” means that no additional factor is used to model the price. A

common null hypothesis to be considered under the pricing model (5.13)

is H0 : µ “ 0, which means that the excess return of any asset is zero on

average, i.e. the return rate of any asset Rij is equal to the risk-free return

rate rfi on average.

We consider the monthly return rates of the stocks that constitute the

S&P 500 index over the period from January 2005 to November 2018. Since

the stocks that made up the index changed over time and some stocks were

created during this period, we only consider a total of 374 stocks that were

included in the index during the entire time range. Figure 2 shows the

sample mean of each stock in this period. We observe that most average

returns are positive. In fact, as we enlarge the time range (increasing sample

size n), the p-values of MAX, SUM and COM are eventually smaller than

0.05. These results suggest rejection of the null that the asset return does

not only comes from the risk-free rates (on average), which is consistent

with the views of many economists (Fama and French, 1993, 2015).

We further evaluate the tests by a random sampling procedure. Specif-

ically, we randomly choose n samples from the whole dataset and apply
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5.1 US Stock Data

Figure 2: Histogram of sample means of stock monthly return rates in S&P

500.

Table 4: Rejecting rates of each test in US stock Data.

MAX SUM COM

n “ 30 0.35 0.39 0.40

n “ 50 0.40 0.51 0.51

n “ 70 0.44 0.67 0.62

n “ 100 0.52 0.86 0.83

MAX, SUM and COM on this new sample. For each n, we repeat this

experiment for 1000 times. Table 4 reports the rejecting rates for each

method with different n. From Table 4, we observe that SUM outperforms

MAX in all cases by providing higher rejection rates. This is not surprising
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because for this data, the number of variables with nonzero means (assets

with non-zero expected excess return) might be large, which is the case

where sum-type tests could typically perform better than max-type tests.

On the other hand, the combo-type test COM performs similarly as SUM

overall. Therefore, COM does not lose efficiency in this problem.

6. Concluding Remarks

In this paper, we prove the asymptotic independence between the sum and

maximum of dependent random variables without stationary assumptions

or strong mixing conditions. Then we apply our results to high-dimensional

testing problems. Our proposed combo-type tests perform well regardless

data being sparse or not. Now we make some comments.

1. The normal assumption is essential in the proof of asymptotic

independence. Hence, we assume the Gaussian assumption in the high-

dimensional test problems. In some recent studies, such as Liang et al.

(2019) and Chen and Xia (2021), some high-dimensional normality tests

have been developed to check whether a p-dimensional random vector with

large p is a Gaussian vector. In literature, we may not need the Gaus-

sian assumption to analyze the asymptotic distribution of the sum-type

and max-type test statistics, e.g., Cai et al. (2014); Chen and Qin (2010).
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To prove the asymptotic independence between the sum and maximum of

non-normal dependent random variables deserves further investigation.

2. To obtain the asymptotic distribution of the sum and maximum of

dependent random variables, we assume the correlations between the ran-

dom variables are not very strong. Recently, there has been much literature

that consider high-dimensional testing problems without the weak correla-

tion assumption, such as Wang and Xu (2021); Zhang et al. (2020). The

analogue of our asymptotic independence result between the sum and max-

imum of dependent random variables with arbitrary covariance structures

is also a very interesting and challenging problem.

3. The asymptotic independence results in Theorem 3 is universal. We

believe it can be generalized and applied to many other applications, such

as change point detection and statistical process controls.

Supplementary Materials

In the supplementary material, we propose the combo-type two-sample

mean test and regression coefficient test and present corresponding sim-

ulation results to demonstrate the advantages of our proposed tests. The

supplemental file also includes the technical proofs of our theoretical results.
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