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AUTOMATIC SPARSE PCA

FOR HIGH-DIMENSIONAL DATA
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1University of Tsukuba

Abstract: Sparse principal component analysis (SPCA) methods have proven to

efficiently analyze high-dimensional data. Among them, threshold-based SPCA

(TSPCA) is computationally more cost-effective than regularized SPCA, based

on L1 penalties. We herein present an investigation of the efficacy of TSPCA for

high-dimensional data settings and illustrate that, for a suitable threshold value,

TSPCA achieves satisfactory performance for high-dimensional data. Thus, the

performance of the TSPCA depends heavily on the selected threshold value. To

this end, we propose a novel thresholding estimator to obtain the principal com-

ponent (PC) directions using a customized noise-reduction methodology. The

proposed technique is consistent under mild conditions, unaffected by threshold

values, and therefore yields more accurate results quickly at a lower computa-

tional cost. Furthermore, we explore the shrinkage PC directions and their appli-

cation in clustering high-dimensional data. Finally, we evaluate the performance

of the estimated shrinkage PC directions in actual data analyses.

Key words and phrases: Clustering, Large p small n, PCA consistency, Shrinkage
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PC directions, Thresholding.

1. Introduction

High-dimensional, low-sample-size (HDLSS) data scenarios exist in many

areas of modern science including genomics, medical imaging, text recogni-

tion, and finance. In recent years, substantial work has been conducted on

HDLSS asymptotic theory, wherein the sample size n is fixed or n/d → 0

is used as the data dimension d → ∞. For principal component analysis

(PCA), Jung and Marron (2009) and Yata and Aoshima (2009) investigated

inconsistency properties for both the eigenvalues and principal component

(PC) directions in a sample covariance matrix. Yata and Aoshima (2012)

developed a new PCA method called the noise-reduction methodology and

reported consistent estimators for both eigenvalues and PC directions in

addition with the PC scores using this method. Sparse PCA (SPCA) meth-

ods have been investigated in several studies. For example, Zou and Hastie

(2006), Shen and Huang (2008), and Lee, Huang and Hu (2010) considered a

regularized SPCA (RSPCA) based on L1 penalties under high-dimensional

settings. Johnstone and Lu (2009) proposed a thresholded SPCA (TSPCA)

and presented a consistency property of the TSPCA when n/d → 0. Fur-

ther, Shen, Shen and Marron (2013) showed that the PC directions obtained
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by RSPCA and TSPCA are consistent when d → ∞ while n is fixed. In ad-

dition, Paul and Johnstone (2007) developed an augmented SPCA method

and Ma (2013) proposed an iterative thresholding procedure for PC direc-

tions. In this study, we focused on TSPCA under high-dimensional settings.

Suppose that we have a d×n data matrix X = (x1, ..., xn), where xi =

(xi(1), ..., xi(d))
T , i = 1, ..., n, are independent and identically distributed

(i.i.d.) as a d-dimensional distribution with mean µ and (non-negative

definite) covariance matrix Σ. We express the eigen-decomposition of Σ

as Σ = HΛHT , where Λ represents a diagonal matrix of the eigenvalues,

λ1 ≥ · · · ≥ λd(≥ 0), and H = (h1, ..., hd) is an orthogonal matrix of

the corresponding eigenvectors. The sample covariance matrix is given by

S = (n−1)−1(X−X)(X−X)T = (n−1)−1
∑n

i=1(xi− x̄)(xi− x̄)T , where

x̄ = n−1
∑n

i=1 xi and X = x̄1T
n with 1n = (1, ..., 1)T . Let λ̂1 ≥ · · · ≥ λ̂d ≥

0 be the eigenvalues of S, and let ĥj, j = 1, ..., d be the corresponding

eigenvectors ĥ
T

j ĥj′ = δjj′ , where δjj′ is the Kronecker delta. Thus, the

eigen-decomposition of S is S =
∑d

s=1 λ̂sĥsĥ
T

s . We assume that hT
j ĥj ≥ 0

for all j without the loss of generality. We now consider the n × n dual-

sample covariance matrix defined by SD = (n − 1)−1(X − X)T (X − X).

Here, S and SD share nonzero eigenvalues. Let the eigen-decomposition of

SD be SD =
∑n−1

j=1 λ̂jûjû
T
j , where ûj denotes an eigenvector corresponding
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to λ̂j and ûT
j ûj′ = δjj′ . Furthermore, ĥj can be calculated as ĥj = {(n −

1)λ̂j}−1/2(X − X)ûj.

Johnstone (2001), Baik and Silverstein (2006), and Paul (2007) consid-

ered a spiked model for the eigenvalues.

λj (> κ), j = 1, ..., m, are fixed (not depending on d)

and λm+1 = · · · = λd = κ. (1.1)

Here, m represents a fixed positive integer and κ (> 0) represents a fixed

constant. Under (1.1), the asymptotic behavior of the eigenvalues of S

was studied when both d and n increased at the same rate, that is, from

n/d → γ > 0. Details under the Gaussian assumptions were reported

by Johnstone (2001), Johnstone and Lu (2009), and Paul (2007). Further,

Baik and Silverstein (2006) and Lee, Zou and Wright (2010) reported details

under the non-Gaussian but i.i.d. assumptions as in (2.4). For review, the

authors direct readers to Paul and Aue (2014). The condition λm+1 =

· · · = λd = κ is strict for the latter part of (1.1). Without assuming that

λm+1 = · · · = λd = κ in (1.1), Bai and Ding (2012) estimated the forward

eigenvalues. However, the former part of (1.1) is a strict condition because

the eigenvalues depend on d, and it is probable that λj → ∞ for the first
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several js when d → ∞. Details were provided by Fan, Liao and Mincheva

(2013), Jung and Marron (2009), Onatski (2012), Shen et al. (2016), Wang

and Fan (2017), and Yata and Aoshima (2012, 2013). They considered

spiked models such as

λj = κjd
αj (j = 1, ..., m) and λj = κj (j = m + 1, ..., d). (1.2)

Here, κj (> 0) and αj (α1 ≥ · · · ≥ αm > 0) are fixed constants preserving

the order that λ1 ≥ · · · ≥ λd. For example, Cai, Han and Pan (2020), Shen

et al. (2016), Wang and Fan (2017), and Yata and Aoshima (2012) showed

that

λ̂j/λj = 1 + δ/λj + oP (1) as d → ∞ and n → ∞ for j = 1, ..., m

under (1.2), d1−2αm/n = o(1), and (2.4), where δ =
∑d

s=m+1 λs/(n − 1).

Further details are provided in Appendix E in the online supplementary

material. Here, δ = O(d/n) for (1.2); if δ/λj → ∞, λ̂j is strongly inconsis-

tent in the sense that λj/λ̂j = oP (1). Jung and Marron (2009) and Yata

and Aoshima (2009) have reported on the concept of strong inconsistency.

Yata and Aoshima (2012) proposed a noise-reduction (NR) methodology

that uses the geometric representation of high-dimensional eigenspaces to
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overcome the curse of dimensionality. If the NR method is used, λjs can be

estimated by

λ̃j = λ̂j −
tr(SD) −

∑j
s=1 λ̂s

n − j − 1
(j = 1, ..., n − 1). (1.3)

Yata and Aoshima (2012, 2013) showed the consistency as “λ̃j/λj = 1 +

oP (1)” even when δ/λj → ∞. Section 2.3 provides further details. For

PC direction ĥj, under (1.2) and some regularity conditions, Yata and

Aoshima (2012, 2013) and Shen et al. (2016) showed that Angle(ĥj,hj) =

Arccos{(1 + δ/λj)
−1/2} + oP (1) as d → ∞ and n → ∞ for j = 1, ..., m. If

δ/λj → ∞, ĥj is strongly inconsistent in that Angle(ĥj, hj) = π/2+ oP (1).

To overcome this inconvenience, Shen, Shen and Marron (2013) showed

that estimators of h1 given by TSPCA and RSPCA have a consistency

property and that they perform equivalently for high-dimensional data.

However, TSPCA is easier to handle as compared to RSPCA. Appendix C

in the online supplementary material provides further details in this regard.

TSPCA can be summarized as follows: Let ĥj = (ĥj(1), ..., ĥj(d))
T for all j.

Given a sequence of threshold values ζ > 0, we can define the thresholded
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entries as

ĥj∗(j′) =


ĥj(j′) if |ĥj(j′)| ≥ min{ζ, ĥj max},

0 otherwise

for j′ = 1, ..., d, (1.4)

where ĥj max = maxs=1,...,d |ĥj(s)|. Let ĥj∗ = (ĥj∗(1), ..., ĥj∗(d))
T . Then, the

thresholded estimator of hj is defined as

ĥj(ζ) = ĥj∗/∥ĥj∗∥, (1.5)

where ∥ · ∥ denotes the Euclidean norm. Shen, Shen and Marron (2013)

showed the consistency property

Angle(ĥ1(ζ), h1) = oP (1) as d → ∞ for some ζ

under (1.2), the Gaussian assumption, and some regularity conditions. Fur-

ther, they showed consistency even when δ/λj → ∞. However, this esti-

mator depends heavily on the choice of ζ.

We analyzed the microarray data given by Chiaretti et al. (2004) wherein

the dataset comprises 12625 (= d) genes. The dataset consists of two tu-

mor cellular subtypes: B-cell (33 samples) and T-cell (33 samples). B-cell
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(i) Conventional PCA (ii) TSPCA with ζ = 0.01 (iii) TSPCA with ζ = 0.05.

Figure 1: Scatter plots of the first two PC scores for (i) Conventional PCA,
(ii) TSPCA with ζ = 0.01, and (iii) TSPCA with ζ = 0.05.

originally contained 95 samples. We used only the first 33 samples to main-

tain balance in the sample sizes with the T-cell. For the 66 (= n) sam-

ples, the scatter plots of the first two PC scores are shown in Fig. 1 for

three PCAs: (i) Conventional PCA, (ii) TSPCA with ζ = 0.01, and (iii)

TSPCA with ζ = 0.05. We have that π/2−Angle(ĥ1(0.01), ĥ2(0.01)) = 0.154,

and π/2−Angle(ĥ1(0.05), ĥ2(0.05)) = 0.266. Further, we observed that the

conventional PCA effectively classifies the dataset into two groups using

the first PC score. The theoretical clarification was provided by Yata

and Aoshima (2020). The TSPCA with ζ = 0.05 separates them more

clearly than that when using the conventional PCA. However, this may

not hold consistency as “Angle
(
ĥj(ζ),hj

)
= oP (1) for j = 1, 2” because

π/2−Angle(ĥ1(0.05), ĥ2(0.05)) = 0.266. Thus, TSPCA provides preferable

performance if one chooses a suitable ζ, while it may be inconsistent.

In this study, we investigated TSPCA under high-dimensional settings.
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The contributions of this study are as follows. (I) We propose a new thresh-

olding estimator for PC directions and present its consistency property that

holds freely from threshold values. (II) We propose a shrinkage PC direction

and apply it to clustering.

The remainder of this paper is organized as follows. In Section 2, we

present the asymptotic properties of the NR method under certain condi-

tions. In Section 3, we modify the estimator of the PC directions derived

using the NR method and propose a new TSPCA method. In Section 4, we

investigate the performance of the proposed TSPCA through simulations.

In Section 5, we present the estimation of the shrinkage PC directions and

their application to clustering. In Section 6, we investigate the performance

of the estimated shrinkage PC directions in actual data analyses. In the

online supplementary material, we apply the proposed TSPCA to the esti-

mation of the intrinsic component of Σ.

2. Preliminary

In this section, we lay out basic conditions, assumptions, and asymptotics

for the construction of our PCA methods.
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2.1 Strongly spiked eigenstructures

2.1 Strongly spiked eigenstructures

Aoshima and Yata (2018) provided two disjointed high-dimensional models:

the strongly spiked eigenvalue (SSE) model defined as

lim inf
d→∞

λ2
1

tr(Σ2)
> 0 (2.1)

and the non-SSE (NSSE) model defined by

λ2
1

tr(Σ2)
→ 0 as d → ∞. (2.2)

Notably, (2.2) is equivalent to “tr(Σ4)/tr(Σ2)2 → 0 as d → ∞”. If α1 ≥ 0.5

in (1.2), then the SSE model (2.1) holds. In contrast, if α1 < 0.5 in (1.2),

the NSSE model (2.2) holds. We provide additional examples of the SSE

model in Remark 6 in Section 5.2 and Appendix D in the online supple-

mentary material. The two models are essential for statistical inference of

high-dimensional data. We emphasize that it is not possible to ensure the

accuracy of high-dimensional statistical inferences using the SSE model.

The work by Aoshima and Yata (2018) can be referred to for further de-

tails. Aoshima and Yata (2018, 2019) proposed data-transformation meth-

ods based on the strongly spiked eigenstructures to overcome this inconve-
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2.1 Strongly spiked eigenstructures

nience. Further, Yata and Aoshima (2020) considered clustering under the

SSE model. The key to these references is the estimation of the strongly

spiked eigenstructures. In this study, we focused on estimating the strongly

spiked eigenstructures.

Let Σ = Σ1+Σ2, where Σ1 =
∑m

s=1 λshsh
T
s and Σ2 =

∑d
s=m+1 λshsh

T
s

with an unknown and positive fixed integer m (independent of d). Here,

Σ1 is considered an intrinsic part and Σ2, a noise component. We assume

the following model:

(C-i) λ1, ..., λm are distinct in that lim infd→∞(λj/λj′ −1) > 0 for 1 ≤ j <

j′ ≤ m when m ≥ 2 and λm and λm+1 satisfy

lim inf
d→∞

λ2
m

tr(Σ2
2)

> 0 and
λ2

m+1

tr(Σ2
2)

→ 0 as d → ∞.

Remark 1. (C-i) is an SSE model. The spiked model (1.2) with αm ≥ 0.5

and κj ̸= κj′ for 1 ≤ j ̸= j′ ≤ m satisfies (C-i). Aoshima and Yata (2018)

provided a method to check whether the SSE model holds or not. Aoshima

and Yata (2018) also provided a consistent estimator of m in (C-i).

Next, we consider a bounded condition for diagonal elements. Let σ(j) =

Var(xi(j)) for all j. Here, σ(j) represents the j-th diagonal element of Σ. Let

A1 =
∑m

s=1 hsh
T
s and A2 = Id − A1 =

∑d
s=m+1 hsh

T
s , where Id represents
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2.2 Assumptions of high-dimensional distributions

the d-dimensional identity matrix. Let xi,1 = (xi(1),1, ..., xi(d),1)
T = A1xi

and xi,2 = (xi(1),2, ..., xi(d),2)
T = A2xi for all i, Var(xi,s) = Σs for s = 1, 2.

Let σ(j),s = Var(xi(j),s), s = 1, 2, for all j. Notably, σ(j),2 ≤ σ(j),1 + σ(j),2 =

σ(j) for all j. We assume the following bounded condition, as necessary:

(C-ii) lim inf
d→∞

σ(j),2 > 0 and lim sup
d→∞

σ(j) < ∞ for all j.

The diagonal elements are typically bounded. Thus, (C-ii) generally

holds. Under (C-ii), σ(j),2 ∈ (0,∞) as d → ∞ for all j. Here, for func-

tion f(·), “f(d) ∈ (0,∞) as d → ∞” implies that lim infd→∞ f(d) > 0

and lim supd→∞ f(d) < ∞. Then, tr(Σ2
2)/d ≥

∑d
s=1 σ2

(s),2/d ∈ (0,∞) and

tr(Σ)/d ∈ (0,∞) as d → ∞ under (C-ii). Therefore, under (C-i) and (C-ii),

lim sup
p→∞

λj/d < ∞ and lim inf
p→∞

λj/d
1/2 > 0 for j = 1, ..., m. (2.3)

2.2 Assumptions of high-dimensional distributions

Let X −µ1T
n = HΛ1/2Z. Then, Z represents a d×n sphered data matrix

obtained from a distribution with an identity covariance matrix. Here, we

write Z = (z1, ..., zd)
T and zj = (z1j, ..., znj)

T , j = 1, ..., d. E(zijzij′) =

0 (j ̸= j′) and Var(zj) = In. For convenience, when λj = 0 for some j, we

assume Var(zj) = In. Let Mj = Var(z2
ij), j = 1, ..., d. If X is Gaussian,

zijs are i.i.d. as the standard normal distribution N(0, 1) and Mj = 2 for
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2.2 Assumptions of high-dimensional distributions

all j. We consider the following assumptions:

(A-i) E(z2
ij1

z2
ij2

) = 1, E(zij1zij2zij3) = 0, E(zij1zij2zij3zij4) = 0 for all j1 ̸=

j2, j3, j4; and lim sup
d→∞

Mj < ∞ for all j.

Here, (A-i) naturally holds when X is Gaussian. Another example sat-

isfying (A-i) is the case when X has a skew normal distribution (Remark

S4.1 in the work by Aoshima and Yata (2018)). This assumption was pro-

vided by Bai and Saranadasa (1996), Chen and Qin (2010), and Aoshima

and Yata (2011). In contrast, Baik and Silverstein (2006), Lee, Zou and

Wright (2010), and Yata and Aoshima (2012) considered the following as-

sumption:

zi1, ..., zid are independent (or i.i.d.). (2.4)

The first assumption in (A-i) is milder than (2.4).

Next, we consider a sub-exponential distribution. Let hj = (hj(1), ..., hj(d))
T

for all j. From xi(j),2 =
∑d

s=m+1 λ
1/2
s hs(j)zis, we note that Var(xi(j),2zij′) =

σ(j),2 under (A-i) for j = 1, ..., d; j′ = 1, ..., m. Under (C-ii), we consider

the following assumption:
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2.3 Estimation of eigenvalues and PC directions using the NR method

(A-ii) There exist positive (fixed) constants t1 and t2 such that

lim sup
d→∞

E
{

exp(tx2
i(j),2)

}
< ∞ for |t| ≤ t1 and all j; and

lim sup
d→∞

E
{

exp(txi(j),2zij′)
}

< ∞ for |t| ≤ t2, all j and j′ = 1, ...,m.

If X is Gaussian, xi(j),2/σ
1/2
(j),2 follows N(0, 1), and xi(j),2 and zij′ are in-

dependent for all j and j′ = 1, ..., m, so that E{exp(txi(j),2zij′)} ≤ E{exp(|t|x2
i(j),2+

|t|z2
ij′)} = E{exp(|σ(j),2t|x2

i(j),2/σ(j),2)}E{exp(|t|z2
ij′)} = (1−2|σ(j),2t|)−1/2(1−

2|t|)−1/2 if |t| < min{1/2, 1/(2σ(j),2)} for all j and j′ = 1, ...,m. Thus, when

X is Gaussian, (A-ii) holds under (C-ii). In Appendix B in the online

supplementary material, we consider a milder assumption than (A-ii).

2.3 Estimation of eigenvalues and PC directions using the NR

method

Eigenvalue estimation using the NR method is given by (1.3). The second

term in (1.3) is the estimator of δ.

Proposition 1 (Aoshima and Yata, 2018; Yata and Aoshima, 2013). As-

sume (A-i) and (C-i). Then, it holds for j = 1, ..., m that λ̃j/λj = 1 +
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2.3 Estimation of eigenvalues and PC directions using the NR method

OP (n−1/2) and

(n/Mj)
1/2

(
λ̃j/λj − 1

)
⇒ N(0, 1) if lim inf

d→∞
Mj > 0

as d → ∞ and n → ∞.

Notably, λ̃j is a consistent estimator of λj even when δ/λj → ∞. Thus,

we recommend using λ̃j instead of λ̂j for high-dimensional data. Wang

and Fan (2017) applied λ̃js in “Shrinkage Principal Orthogonal complE-

ment Thresholding” when d1/2 = o(λm). Anderson (1963) showed that

n1/2(λ̂j/λj − 1) ⇒ N(0, 2) as n → ∞ for Gaussian data when d is fixed.

Thus, λ̃j has the same limiting distribution as in Proposition 1 for the

Gaussian data.

When applying the NR method to the PC direction vector, we obtain

h̃j = {(n − 1)λ̃j}−1/2(X − X)ûj for j = 1, ..., n − 1.

Notably, h̃j = (λ̂j/λ̃j)
1/2ĥj. From Aoshima and Yata (2018), we obtain the

following result.

Proposition 2 (Aoshima and Yata, 2018). Assume (A-i) and (C-i). Then,

it holds for j = 1, ...,m that h̃
T

j hj = 1 + OP (n−1) as d → ∞ and n → ∞.
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2.3 Estimation of eigenvalues and PC directions using the NR method

Aoshima and Yata (2018, 2019) used h̃j to develop a data transfor-

mation method under the SSE model in the two-sample test and high-

dimensional classification. Here, h̃j is not a unit vector and ∥h̃j∥2 = λ̂j/λ̃j.

Further, Angle(h̃j, ĥj) = 0, and therefore, Angle(h̃j, hj) = Angle(ĥj, hj).

From Propositions 2, E.1 in Appendix E, and (G.1) in Appendix G in the on-

line supplementary material, under (A-i) and (C-i), it holds for j = 1, ..., m

that

∥h̃j∥2 = 1 + (δ/λj){1 + OP (n−1/2)} + OP (n−1) and (2.5)

∥h̃j − hj∥2 = (δ/λj){1 + OP (n−1/2)} + OP (n−1)

as d → ∞ and n → ∞. Considering Remark E.1 in Appendix E by noting

that 2{1 − (1 + δ/λj)
−1/2} < δ/λj, the norm loss of h̃j is larger than that

of ĥj. However, from Proposition 2, h̃j represents a consistent estimator

of hj considering the inner product even when δ/λj → ∞. Further, from

Propositions 2 and (2.5), under (A-i) and (C-i), there exists a random d-

dimensional vector ṽj such that hT
j ṽj = 0,

h̃j = {1 + OP (n−1)}hj + ṽj and ∥ṽj∥2 = (δ/λj){1 + OP (n−1/2)} + OP (n−1)

(2.6)
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2.3 Estimation of eigenvalues and PC directions using the NR method

for j = 1, ..., m. The coefficient of hj in h̃j is asymptotically 1. In contrast,

from (2.6), Proposition 1, and Preposition E.1, it holds that

ĥj = (1 + δ/λj)
−1/2{1 + oP (1)}h̃j = (1 + δ/λj)

−1/2{1 + oP (1)}(hj + ṽj).

(2.7)

The coefficient of hj in ĥj depends on noise δ. The NR estimator h̃j has

an advantage over ĥj by applying the two steps described in (1.4) and (1.5)

to the threshold estimation of PC directions.

We consider the following divergence conditions for d and n:

(⋆)
log d

n
= o(1) as d → ∞ and n → ∞.

Notably, (⋆) holds even when d/n → ∞. Let h̃j = (h̃j(1), ..., h̃j(d))
T for all

j.

Lemma 1. Assume (A-i), (A-ii), (C-i), and (C-ii). Under (⋆), it holds for

j = 1, ..., m and j′ = 1, ..., d that

h̃j(j′) = hj(j′) + OP

(
(λ−1

j n−1 log d)1/2
)

as d → ∞ and n → ∞.

Thus, under the conditions in Lemma 1, we have consistency in the

sense that h̃j(j′) = hj(j′){1+oP (1)} for j′ satisfying (nλjh
2
j(j′))

−1 log d = o(1).
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From (2.7), the elements in ĥj are not consistent unless δ/λj = o(1).

3. Automatic sparse PCA methodology

In this section, we propose a thresholded estimator of the PC directions

by using the NR method. We emphasize that consistency properties of the

SPCA methods heavily depend on threshold (tuning) values. To overcome

the inconvenience, we propose an SPCA method from (2.5) and (2.6).

3.1 Thresholded estimator of PC directions using the NR method

For the PC direction hj = (hj(1), ..., hj(d))
T , we arrange the elements hj(1), ..., hj(d)

in the descending order as

|hoj(1)| ≥ · · · ≥ |hoj(d)|. (3.1)

Further,
∑d

s=1 h2
oj(s) = 1. Under (C-i), we assume the following condition

for the PC direction as necessary:

(C-iii) For j = 1, ...,m, there exists an integer kj∗ (which may depend on
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3.1 Thresholded estimator of PC directions using the NR method

d), such that

kj∗∑
s=1

h2
oj(s) → 1 as d → ∞, lim inf

d→∞
λjh

2
oj(kj∗) > 0; and

lim sup
d→∞

|hoj(kj∗+1)|
|hoj(kj∗)|

< 1 when kj∗ ≤ d − 1.

Remark 2. When Σ = Γd, h1 is 1d/d
1/2, where Γd is given by (D.1) in

Appendix D in the online supplementary material. Then, (C-iii) holds with

k1∗ = d and m = 1.

Remark 6 in Section 5.2 and Appendix D present some models that

satisfy (C-i) and (C-iii). From (G.15) in Appendix G in the online supple-

mentary material, under (C-i) through (C-iii), we note that kj∗ → ∞ and

kj∗/λj ∈ (0,∞) as d → ∞ for j = 1, ..., m. Now, we consider removing ṽj

from h̃j in (2.6) for each j (= 1, ..., m). Notably, ∥ṽj∥ ≈ δ/λj from (2.5).

For h̃j = (h̃j(1), ..., h̃j(d))
T by the NR method, we arrange the elements

h̃j(1), ..., h̃j(d) in the descending order as h̃oj(1), ..., h̃oj(d), where

|h̃oj(1)| ≥ · · · ≥ |h̃oj(d)|.
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3.1 Thresholded estimator of PC directions using the NR method

Further,
∑d

s=1 h̃2
oj(s) = ∥h̃j∥2. We consider the following thresholded esti-

mator for an integer k ∈ [1, d] as

h̃oj(k) = (h̃oj(1), ..., h̃oj(k), 0, ..., 0)T

whose last d − k elements are zero; that is, we replace h̃oj(k+1), ..., h̃oj(d) in

(h̃oj(1), ..., h̃oj(d))
T with 0. Here, we provide the optimal integer k from (2.5)

and (2.6). From ∥h̃j∥ ≥ 1 w.p.1, there exists a unique integer k̃j ∈ [1, d]

such that

k̃j−1∑
s=1

h̃2
oj(s) < 1 and

k̃j∑
s=1

h̃2
oj(s) ≥ 1. (3.2)

For a sequence {As}, we define
∑0

s=1 As = 0 for convenience, so that

k̃j = 1 if h̃2
oj(1) ≥ 1. Notably, ∥h̃oj(k̃j)∥ ≈ 1 and

∑d
s=k̃j+1 h̃2

oj(s) ≈ δ/λj

for a sufficiently large d. Thus, we can remove ṽj from h̃j in (2.6) to ob-

tain the following result. We write the elements of h̃oj(k̃j) as h̃oj(k̃j) =

(h̃oj∗(1), ..., h̃oj∗(d))
T . Further, we adjust the subscript j′ of h̃oj∗(j′) as h̃j∗(j′′)

corresponding to the order of elements in h̃j. Let h̃j∗ = (h̃j∗(1), ...., h̃j∗(d))
T

for all j. Let ηj =
∑d

s=kj∗+1 h2
oj(s) for j = 1, ...,m. Notably, ηj → 0 as

d → ∞ in (C-iii).
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3.1 Thresholded estimator of PC directions using the NR method

Theorem 1. Assume (A-i), (A-ii), and (C-i) through (C-iii). Under (⋆),

it holds for j = 1, ..., m that ∥h̃j∗∥2 = 1 + OP (ηj + n−1) = 1 + oP (1) and

h̃
T

j∗hj = 1 + OP (ηj + n−1) = 1 + oP (1) as d → ∞ and n → ∞.

From Theorem 1, we have the following result.

Corollary 1. Assume (A-i), (A-ii), and (C-i) through (C-iii). Under (⋆),

it holds that

∥h̃j∗ − hj∥2 = OP

(
ηj + n−1

)
= oP (1) for j = 1, ..., m;

h̃
T

j∗hj′ = OP

(
η

1/2
j + n−1/2 min{1, λ1/2

j /λ
1/2
j′ }

)
= oP (1) and

h̃
T

j∗h̃j′∗ = OP

(
η

1/2
j + η

1/2
j′ + n−1/2

)
= oP (1)

when m ≥ 2 for j, j′ ≤ m; j ̸= j′

as d → ∞ and n → ∞.

Thus, h̃j∗ has the aforementioned consistency properties even when

δ/λj → ∞ without threshold (tuning) values such as ζ in (1.4). From The-

orem 1, we have Angle(h̃j∗, hj) = oP (1) under the conditions in Corollary

1.

Proposition 3. Assume (A-i) and (C-i). Then, it holds that h̃
T

j hj′ =

OP (n−1/2 min{1, λ1/2
j /λ

1/2
j′ }) as d → ∞ and n → ∞ when m ≥ 2 for j, j′ ≤
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3.2 Automatic SPCA

m; j ̸= j′.

From Proposition 3, h̃
T

j∗hj′ and h̃
T

j hj′ are of the same order for j, j′ ≤

m; j ̸= j′ if ηj = O(n−1/2 min{1, λ1/2
j /λ

1/2
j′ }) as d → ∞ and n → ∞.

Remark 3. We assume that |h̃oj(k̃j)
| > |h̃oj(k̃j+1)|, j = 1, ...,m for the sake

of simplicity. Then, we can simply obtain h̃j∗(j′) by

h̃j∗(j′) =


h̃j(j′) if |h̃j(j′)| ≥ |h̃oj(k̃j)

| ,

0 otherwise

for j′ = 1, ..., d.

3.2 Automatic SPCA

The computational cost of the SPCA method is high because it heavily

depends on threshold (tuning) values determined by some cross-validation

or information criteria. One can automatically yield the threshold estima-

tion with a low computational cost because h̃j∗ does not depend on any

threshold (tuning) values such as ζ in (1.4).

We call the new PCA method that uses λ̃js and h̃j∗s as the “automatic

SPCA (A-SPCA)”. Proposition 1 provides the details of λ̃j. λ̃js have the

consistency as “λ̃j/λj = 1 + oP (1)” even when n/d → 0. The A-SPCA

algorithm is given as

[Automatic SPCA (A-SPCA)]
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3.2 Automatic SPCA

(Step 1) Set the dual-sample covariance matrix defined by SD = (n −

1)−1(X − X)T (X − X).

(Step 2) Find the eigenvalues λ̂j, and the eigenvectors ûj of SD.

(Step 3) Calculate λ̃j = λ̂j − {tr(SD) −
∑j

s=1 λ̂s}/(n − j − 1) and h̃j =

{(n − 1)λ̃j}−1/2(X − X)ûj for each j. Estimate the j-th eigenvalue

by λ̃j.

(Step 4) Arrange the elements of h̃j = (h̃j(1), ..., h̃j(d))
T in the descend-

ing order as |h̃oj(1)| ≥ · · · ≥ |h̃oj(d)|. Find the integer k̃j such that∑k̃j−1
s=1 h̃2

oj(s) < 1 and
∑k̃j

s=1 h̃2
oj(s) ≥ 1.

(Step 5) Define h̃j∗ = (h̃j∗(1), ..., h̃j∗(d))
T by

h̃j∗(j′) =


h̃j(j′) if |h̃j(j′)| ≥ |h̃oj(k̃j)

| ,

0 otherwise

for j′ = 1, ..., d.

Estimate the j-th PC direction using h̃j∗ for each j.

In Appendix A in the online supplementary material, we describe the

application of A-SPCA to estimate Σ1. Appendix F presents an R code for

A-SPCA.

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing) 



Remark 4. Aoshima and Yata (2018) created a data-transformation method

based on the strongly spiked eigenstructures and proposed a high-dimensional

two-sample test using data transformation. Aoshima and Yata (2019); Ishii,

Yata and Aoshima (2022) proposed high-dimensional classifiers using data

transformation. The key to these inferences is the estimation of the strongly

spiked eigenstructures. In future, we apply A-SPCA to these inferences for

high-dimensional data.

4. Simulation

In this section, we compare the performance of A-SPCA with the conven-

tional PCA and TSPCA given by (1.5).

First, we set d = 2s, s = 6, ..., 12 and n = ⌈d1/2⌉, where ⌈x⌉ denotes

the smallest integer ≥ x. We generate xi, i = 1, 2, ... independently from

Nd(0,Σ). Then, we consider the following two cases:

(S-i) Σ is given by λ1 = d2/3, λ2 = d1/2 and λ3 = · · · = λd = 1 together

with h1 = (1, 0, ..., 0)T and h2 = (0, 1, 0, ..., 0)T ;

(S-ii) Σ is given by (D.2) in Appendix D in the online supplementary

material with α = 0.5, β = 2, d1 = ⌈d2/3⌉, d2 = ⌈d1/2⌉ and Ωd−d1−d2 =

Id−d1−d2 .
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(S-i) satisfies (C-i) and (C-iii) when m = 2 and k1∗ = k2∗ = 1, and

(S-ii) satisfies (C-i) and (C-iii) when m = 2, k1∗ = d1 and k2∗ = d2. (S-i)

does not satisfy (C-ii) because σ(1) ≥ λ1h
2
1(1) → ∞. We considered (S-i) to

handle a considerably sparse PC direction.

Next, we set n = 10s, s = 2, ..., 10 and d = 1000. We generated xi,

i = 1, 2, ... independently from the mixture model (5.4) with g = 2 and

ε1 = ε2 = 1/2 as follows:

(S-iii) For i = 1, 2, fi(x; µi,Ψi) is the probability density function of

Nd(µi,Ψi), where µ1 = (1, ..., 1, 0, ..., 0)T the first ⌈d2/3⌉ elements are

1, µ2 = −µ1, Ψ1 = (0.3|i−j|1/3
) and Ψ2 = (0.4|i−j|1/3

).

Further, λ1 ≈ d2/3 and h1 ≈ µ1/d
1/3 in (S-iii). (S-iii) satisfies (C-i) and

(C-iii) when m = 1. Details are provided in Remark 6 in Section 5.2. (S-iii)

does not satisfy (A-i). Further details can be found in Section 4.1.1 in the

work by Qiao et al. (2010).

Finally, we set d = 2s, s = 6, ..., 12 and n = ⌈d1/2⌉. We consider a

considerably non-sparse and non-Gaussian case for the first PC direction

as follows:

(S-iv) We generated xi = HΛ1/2zi, i = 1, 2, ... independently from zij =

(yij − 5)/101/2 (j = 1, ..., d) where yijs are i.i.d. as the chi-squared
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distribution with 5 degrees of freedom. We set Σ = Γd where α = 0.5

and β = 1, and Γd is given by (D.1) in Appendix D.

λ1 = 0.5d + 0.5 and h1 = d−1/21d in (S-iv). Further, (S-iv) satisfies

(A-i), (C-i), and (C-iii) when m = 1 and k1∗ = d. However, (S-iv) does not

satisfy (A-ii). Here, h1 appears to be a non-sparse vector in the sense that

all elements of h1 are nonzero.

We set ζ = 0.01, 0.05 and 0.1 for TSPCA using (1.5) in (S-i) to (S-iii).

Further, ζ = 0.01 is a soft threshold and ζ = 0.1 is a hard threshold. In

(S-iv), we set ζ = 0.01, 0.015 and 0.02 for TSPCA because all elements

of h1 are nonzero and small. Thus, ĥj(ζ) with a hard threshold results

in a considerably poor performance in (S-iv). We considered the mean-

squared error MSE(ĥj) = ∥ĥj −hj∥2 (j = 1, ..., m) and took the average of

its outcomes from 2000 independent replications. Similar procedures were

performed for MSE(h̃j∗) and MSE(ĥj(ζ)). We summarized the results in

Figs. 2 and 3.

As expected, we observed that A-SPCA achieved preferable perfor-

mances in (S-i) to (S-iii). For (S-iv), the conventional PCA or TSPCA

with ζ = 0.01 performed better than A-SPCA because all elements of h1

are nonzero. In addition, λ1 is considerably large because λ1 = O(d). λ̂1

is consistent in the sense that λ̂1/λ1 = 1 + oP (1) (see Appendix E in the

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing) 



0.7

0.6

0.5

0.4

0.3

0.2

0.1

6 7 8 9 10 11 12
log

2
d

h
1

h
1*

h
1
(0.01)

h
1
(0.05)

h
1
(0.1)

MSE

1.2

1.0

0.8

0.6

0.4

0.2

6 7 8 9 10 11 12
log

2
d

MSE

͂

̭

̭

̭

̭

h
2

h
2*

h
2
(0.01)

h
2
(0.05)

h
2
(0.1)

͂

̭

̭

̭

̭

(S-i) Nd(0,Σ), d = 2s (s = 6, ..., 12), where Σ has λ1 = d2/3, λ2 = d1/2, and
λ3 = · · · = λd = 1 together with h1 = (1, 0, ..., 0)T and h2 = (0, 1, 0, ..., 0)T .
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(S-ii) Nd(0,Σ), d = 2s (s = 6, ..., 12), where Σ has λ1 ≈ d2/3 and λ2 ≈ d1/2

together with h1 = (1, ..., 1, ..., 0)T whose ⌈d2/3⌉ elements are 1 and
h2 = (0, ..., 0, 1, ..., 1, 0, ..., 0)T , whose ⌈d1/2⌉ elements are 1.

Figure 2: Average mean-squared errors for PC directions in (S-i) and (S-ii).

online supplementary material). However, A-SPCA performed preferably

as d increased, even for the non-sparse case. TSPCA with ζ = 0.015 and

ζ = 0.02 exhibited poor performances when d is large. This is because all

elements of h1 = (1/d1/2, ..., 1/d1/2)T in (S-iv) become close to zero with an

increase in d.

Throughout the simulations, TSPCA depended heavily on the thresh-

old value. In contrast, A-SPCA performed preferably without using any
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(S-iii) (S-iv)
(S-iii) Mixture model (5.4) with g = 2, d = 1000, n = 10s (s = 2, ..., 10),
λ1 ≈ d2/3 and h1 ≈ d−1/3(1, ..., 1, 0, ..., 0)T whose first ⌈d2/3⌉ elements are

d−2/3.
(S-iv) xi = HΛ1/2zi; zij = (yij − 5)/101/2 (j = 1, ..., d) in which yijs are

i.i.d. as the chi-squared distribution with 5 degrees of freedom,
d = 2s (s = 6, ..., 12), λ1 = 0.5d + 0.5, and h1 = d−1/21d.

Figure 3: Average mean-squared errors for the first PC direction in (S-iii)
and (S-iv). In the left panel, MSE(ĥ1(0.1)) is too high to describe when n
is small.

threshold values.

5. Shrinkage PC directions and its application to clustering

We consider the shrinkage PC directions using A-SPCA, and we apply them

to clustering. Fig. 1 shows that the TSPCA yields a preferable performance

even though it may not hold the consistency as in Corollary 1. Further, we

show that PCA in the shrinkage PC direction is effective for clustering high-

dimensional data. We emphasize that the shrinkage PC directions depend

on a parameter unlike in A-SPCA.
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5.1 Shrinkage PC directions

5.1 Shrinkage PC directions

For a given constant ωj ∈ (0, 1] for each j (= 1, ..., m), we consider the PC

shrinkage directions with a cumulative contribution ratio greater than or

equal to ωj. For each j (= 1, ..., m), there exists a unique integer kjω ∈ [1, d]

such that
kjω−1∑
s=1

h2
oj(s) < ωj and

kjω∑
s=1

h2
oj(s) ≥ ωj, (5.1)

where hoj(s) are given in (3.1). We assume that |hoj(kjω)| > |hoj(kjω+1)| for

simplicity. We define

hjω(j′) =


hj(j′) if |hj(j′)| ≥ |hoj(kjω)| ,

0 otherwise

for j′ = 1, ..., d.

Let hjω = (hjω(1), ..., hjω(d))
T for j = 1, ..., m. Further, ∥hjω∥2 =

∑kjω

s=1 h2
oj(s)

(≥ ωj) if |hoj(kjω)| > |hoj(kjω+1)|. We seek to estimate the shrinkage PC

direction hjω.

As in (3.2), there exists a unique integer k̃jω ∈ [1, d] such that

k̃jω−1∑
s=1

h̃2
oj(s) < ωj and

k̃jω∑
s=1

h̃2
oj(s) ≥ ωj. (5.2)
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5.1 Shrinkage PC directions

We assume that |h̃oj(k̃jω)| > |h̃oj(k̃jω+1)| for simplicity. We define that

h̃jω(j′) =


h̃j(j′) if |h̃j(j′)| ≥ |h̃oj(k̃jω)| ,

0 otherwise

for j′ = 1, ..., d.

Let h̃jω = (h̃jω(1), ..., h̃jω(d))
T for j = 1, ...,m. Notably, h̃jω = h̃j∗ when

ωj = 1. Under (C-i), we assume the following conditions:

(C-iii’) For some fixed integers rj (≥ 0), lim sup
d→∞

|hoj(kjω+rj+1)|
|hoj(kjω+rj)|

< 1 and

lim inf
d→∞

λjh
2
oj(kjω+rj)

> 0, and ωjλj → ∞ as d → ∞ for j = 1, ..., m.

From (G.47) in Appendix G in the online supplementary material, under

(C-i), (C-ii), and (C-iii’), we note that kjω → ∞ and kjω/(ωjλj) ∈ (0,∞)

as d → ∞ for j = 1, ..., m.

Theorem 2. Assume (A-i), (A-ii), (C-i), (C-ii), and (C-iii’). Under (⋆),

it holds for j = 1, ..., m that ∥h̃jω −hjω∥2 = OP{ωj(k
−1
jω +n−1/2)} = oP (ωj)

as d → ∞ and n → ∞.

Thus, h̃jω is consistent even when δ/λj → ∞. However, we cannot

construct a consistent estimator of hjω using ĥj unless δ/λj = o(1). The

reason is explained in (2.7).

We propose shrinkage PC (SH-PC) scores using the shrinkage PC di-
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5.2 Application to clustering

rections as

(xi − x̄)T h̃jω, i = 1, ..., n (5.3)

for each j. In Section 6, we investigated the performance of SH-PC scores

for real datasets.

Remark 5. One can use a normalized shrinkage PC direction h̃jω/∥h̃jω∥

in (5.3).

5.2 Application to clustering

For the population distribution of xi, we consider a g (≥ 2)-class mixture

model whose probability density function is given by

f(xi) =

g∑
s=1

εsfs(xi; µs,Ψs), (5.4)

where εs ∈ (0, 1), s = 1, ..., g,
∑g

s=1 εs = 1 and fs(xi; µs,Ψs) represents

the probability density function of a d-variate population Πs with mean µs

and covariance matrix Ψs.

E(xi) (= µ) =
∑g

s=1 εsµs and Var(xi) =
∑g−1

s=1

∑g
s′=s+1 εsεs′(µs −

µs′)(µs − µs′)
T +

∑g
s=1 εsΨs (= Σ).
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5.2 Application to clustering

[Two-class mixture model]

We assume g = 2. Let µ12 = µ1 − µ2 and ∆12 = ∥µ12∥2. Then, the

covariance matrix of the mixture model is given by Σ = ε1ε2µ12µ
T
12 +

ε1Ψ1 + ε2Ψ2. We assume hT
1 µ12 ≥ 0 without loss of generality. If

λmax(Ψs)/∆12 → 0 as d → ∞ for s = 1, 2, (5.5)

it holds that

λ1/(ε1ε2∆12) → 1 and Angle(h1, µ12) → 0 as d → ∞, (5.6)

where λmax(M) denotes the largest eigenvalue of any positive-semidefinite

matrix M . Thus, we can obtain a threshold estimation of µ12/∆
1/2
12 using

A-SPCA. Furthermore, for the first (true) PC score, it follows that

hT
1 (xi − µ) =


λ

1/2
1 {(ε2/ε1)

1/2 + oP (1)} when xi ∈ Π1,

−λ
1/2
1 {(ε1/ε2)

1/2 + oP (1)} when xi ∈ Π2

(5.7)

as d → ∞ under (5.5). Hence, one can cluster xis into two groups based on

the sign of the estimated first PC scores, as shown in Fig. 1 (i). Sections 2

and 3 in the work by Yata and Aoshima (2020) provide further details on
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5.2 Application to clustering

(5.6) and (5.7).

Let µ12 = (µ(1), ..., µ(d))
T . We assume |µ(1)| ≥ · · · ≥ |µ(d)| without loss

of generality.

Remark 6. If it holds that

µ(k+1) = · · · = µ(d) = 0, lim inf
d→∞

|µ(k)| > 0 and k ≥ d1/2 for some integer k,

(C-i) and (C-iii) with m = 1 are satisfied when maxs=1,2 tr(Ψ2
s) = O(d) and

Ψss have NSSE models.

For an integer k, we write xi(k) = (xi(1), ..., xi(k))
T for all i, Var(xi(k)) =

Σ(k), and Var(xi(k)) = Ψs(k) when xi ∈ Πs. Let h1(k) = (h1(1), ...., h1(k))
T ,

µ12(k) = (µ(1), ..., µ(k))
T , and ∆12(k) = ∥µ12(k)∥2. As in (5.6)–(5.7), under

the condition that

λmax(Ψs(k))/∆12(k) → 0 as d → ∞ for s = 1, 2, (5.8)

the following holds: Angle(h1(k),µ12(k)) → 0 as d → ∞. Furthermore, for
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5.2 Application to clustering

the first PC score, it follows that as d → ∞

hT
1(k)(xi − µ) =


{λmax(Σ(k))}1/2{(ε2/ε1)

1/2 + oP (1)} when xi ∈ Π1,

−{λmax(Σ(k))}1/2{(ε1/ε2)
1/2 + oP (1)} when xi ∈ Π2.

Thus, the shrinkage (true) scores were consistent with those under (5.8).

If

lim inf
d→∞

∆12(k)/∆12 > 0 and λmax(Ψs(k)) = o{λmax(Ψs)}, (5.9)

(5.8) is milder than that in (5.5). The second condition in (5.9) often holds

when k ≪ d. Further, from (5.6), it holds that h1(k) ≈ µ12(k)/∆
1/2
12 , so that

∆12(k)

∆12

≈ ∥h1(k)∥2 =
k∑

s=1

h2
oj(s).

On the basis of (5.1) and (5.9), if lim infd→∞ ωj > 0, the SH-PC scores

were consistent under milder conditions than those for the PC scores. The

SH-PC scores by h̃jω effectively cluster xis into two groups (see Fig. 1 (iii)

and Section 6.1).

[g (≥ 3)-class mixture model]

Let µ23 = µ2 − µ3. When g = 3, from Theorem 2 and Lemma 2 in

Yata and Aoshima (2020), under certain regularity conditions, it holds that
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5.2 Application to clustering

Angle(h1,µ12) → 0 and Angle(h2,µ23) → 0 as d → ∞. Furthermore, for

(true) PC scores, it follows that

hT
1 (xi − µ) =


λ

1/2
1

[
{(1 − ε1)/ε1}1/2 + oP (1)

]
when xi ∈ Π1,

−λ
1/2
1

[
{ε1/(1 − ε1)}1/2 + oP (1)

]
otherwise

(5.10)

and

hT
2 (xi − µ) =



oP (λ
1/2
2 ) when xi ∈ Π1,

λ
1/2
2

[
[ε3/{ε2(1 − ε1)}]1/2 + oP (1)

]
when xi ∈ Π2,

−λ
1/2
2

[
[ε2/{ε3(1 − ε1)}]1/2 + oP (1)

]
when xi ∈ Π3

(5.11)

for i = 1, ..., n. Thus, as in the case of g = 2, the SH-PC scores by h̃jω with

lim infd→∞ ωj > 0 can effectively cluster xis into three groups (see Section

6.2).

When g ≥ 4, Yata and Aoshima (2020) provided the consistency prop-

erties of the PC scores.
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6. Example: Clustering

We assess the performance of clustering based on SH-PC scores using (5.3).

We choose ω1 = ω2 (= ω, say) in (5.2) as ω = 0.1, 0.2 and 0.5.

6.1 Two-class mixture model

We used microarray data provided by Chiaretti et al. (2004) with d = 12625

(see Fig 1). We consider a dataset consisting of 33 samples from Π1: B-cell

and 33 samples from Π2: T-cell. For the mixed 66 samples, we calculated

the first two PC scores using PCA, A-SPCA, and SH-PC with ω = 0.1, 0.2,

and 0.5. We have that (k̃1ω, k̃2ω) = (17, 50), (k̃1ω, k̃2ω) = (52, 134) and

(k̃1ω, k̃2ω) = (381, 640) for ω = 0.1, 0.2 and 0.5, respectively. Fig. 4 depicts

the scatter plots of the PC scores. We observed that the 66 samples were

perfectly classified into two groups based on the sign of the first PC scores

even when the cumulative contribution ratio ω is as small as ω = 0.1.

These data can be clustered using the SH-PC score with only 17 significant

variables. Details are provided in Section 5.2.

Next, we consider an unbalanced case. The B-cells originally contained

95 samples. We set Π1: B-cell with 95 samples and Π2: T-cell with 33

samples. As in Fig. 4, we present the scatter plots of the PC scores in

Fig. 5. The following hold: (k̃1ω, k̃2ω) = (88, 13), (k̃1ω, k̃2ω) = (229, 35),
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6.1 Two-class mixture model
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Figure 4: Scatter plots of the first two PC scores for the dataset comprising
Π1: B-cell with 33 samples and Π2: T-cell with 33 samples.

and (k̃1ω, k̃2ω) = (977, 223) for ω = 0.1, 0.2, and 0.5, respectively. The

128 samples were effectively classified into two groups based on the sign

of the second SH-PC score; this figure is remarkably different from Fig. 4.

Further, ε1ε2(µ1−µ2)(µ1−µ2)
T becomes small in such an imbalanced case,

and therefore, λmax(Σ1) or λmax(Σ2) is probably the largest eigenvalue of

Σ because Σ = ε1ε2(µ1 − µ2)(µ1 − µ2)
T + ε1Σ1 + ε2Σ2. The second PC

direction is probably (µ1−µ2)/∆
1/2. Thus, 128 samples were classified into

two groups according to the sign of the second SH-PC scores. Section 4.3

in the work by Yata and Aoshima (2020) for further details.
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6.2 Three-class mixture model
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Figure 5: Scatter plots of the first two PC scores for the dataset that
comprises Π1: B-cell with 95 samples and Π2: T-cell with 33 samples.

6.2 Three-class mixture model

We analyzed microarray data from Bhattacharjee et al. (2001) in which

the dataset comprised five lung carcinoma types with d = 3312. We used

only three classes: Π1 : pulmonary carcinoids with 20 samples; Π2 : normal

lung with 17 samples; and Π3 : squamous cell lung carcinoma with 21

samples. As in Fig. 4, we present the scatter plots of the PC scores in

Fig. 6. The following hold: (k̃1ω, k̃2ω) = (17, 16), (k̃1ω, k̃2ω) = (44, 41), and

(k̃1ω, k̃2ω) = (195, 171) for ω = 0.1, 0.2 and 0.5, respectively.

We observed that all samples were effectively classified into three groups

based on the first two PC scores. Further details are provided in (5.10) and
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Figure 6: Scatter plots of the first two PC scores for the dataset that
comprises Π1 : pulmonary carcinoids with 20 samples; Π2 : normal lung
with 17 samples; and Π3 : squamous cell lung carcinomas with 21 samples.

(5.11). Fig. 6 (v) shows that these data can be clustered using the SH-PC

score with (k̃1ω, k̃2ω) = (17, 16). Here, the 17 variables in h1ω and the 16

variables in h2ω were all different. Therefore, these data can be clustered

using the first two SH-PC scores with only 33 significant variables.

7. Conclusion

In this study, we investigated TSPCA in high-dimensional settings. We

proposed a new TSPCA method called automatic SPCA (A-SPCA) and

demonstrated that it exhibits the consistency property under mild condi-

tions free from any threshold values. Therefore, we can quickly obtain a
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more accurate result at a lower computational cost. Further, we proposed

shrinkage PC directions and applied them to the clustering. We demon-

strated the performance of clustering based on the shrinkage PC directions.

We demonstrated that the datasets could be clustered using a set of signif-

icant variables.

Supplementary Materials

We give an estimate of the intrinsic part in Σ using A-SPCA, examples of

the strongly spiked eigenstructures, asymptotic results for A-SPCA under a

milder assumption than (A-ii), comparisons between TSPCA and RSPCA,

asymptotic properties of the conventional PCA, an R code for A-SPCA and

proofs of the theoretical results in the online supplementary material.
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