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HYPOTHESES TESTING OF

FUNCTIONAL PRINCIPAL COMPONENTS

Zening Song1, Lijian Yang1∗, Yuanyuan Zhang2

1Tsinghua University, 2Soochow University

Abstract: We propose a test for the hypothesis that the standardized functional

principal components (FPCs) of a functional data equal a given set of orthonormal

basis (e.g., the Fourier basis). Using estimates of individual trajectories that

satisfy certain approximation conditions, a chi-square type statistic is constructed

and shown to be oracally efficient under the null hypothesis in the sense that its

limiting distribution is the same as an infeasible statistic using all trajectories,

known by “oracle”. The null limiting distribution is an infinite Gaussian

quadratic form, and a consistent estimator of its quantile is obtained. A test

statistic based on the chi-square type statistic and approximate quantile of

the Gaussian quadratic form is shown to be both of the nominal asymptotic

significance level and asymptotically correct. It is further shown that B-spline

trajectory estimates meet the required approximation conditions. Simulation

studies illustrate superior finite sample performance of the proposed testing

procedure. For the EEG (ElectroEncephalogram) data, the proposed procedure

has confirmed an interesting discovery that the centered EEG data is generated

from a small number of elements of the standard Fourier basis.
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1. Introduction

Functional data analysis (FDA) encompasses the analysis of data that

come in the form of functions, see Ramsay and Sliverman (2002, 2005)

for exploratory tools, Ferraty and Vieu (2006) for Banach/Hilbert space

approach to FDA, and Hsing and Eubank (2015) for data-driven theory

and methods of FDA.

A raw functional data set consists of observations {Yij, 1 ≤ i ≤ n, 1 ≤ j ≤ N},

where Yij is the observation at the j-th measurement point j/N of a random

curve ηi (·) with N → ∞. For the i-th subject, i = 1, 2, ..., n, its sample

path (Yij, j/N) , j = 1, · · · , N is a noisy realization of the latent continuous

time stochastic process ηi (·) in the sense that

Yij = ηi (j/N) + σi (j/N) εij, 1 ≤ i ≤ n, 1 ≤ j ≤ N.

The stochastic processes ηi (·) are called trajectories of the i-th subject, 1 ≤

i ≤ n, and are i.i.d. copies of a canonical stochastic process η (x) , x ∈ [0, 1]

which is square-integrable continuous, i.e., η (·) ∈ C [0, 1] almost surely and

E
∫
[0,1]

η2(x)dx < +∞. The terms σi (j/N) εij are measurement errors, in

which {εij}n,Ni=1,j=1 are i.i.d. noises with mean 0, variance 1, and σi (·) are
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standard deviation functions of i-th subject.

According to Bosq (2000), the C [0, 1]-valued random variable η (·) has

mean m (·) ∈ C [0, 1] and covariance G (·, ·) ∈ C [0, 1]2 where m (x) ≡

Eη (x) , x ∈ [0, 1] and G (x, x′) ≡ Cov {η (x) , η (x′)}, x, x′ ∈ [0, 1].

According to Mercer Lemma, there exist eigenvalues λ1 ≥ λ2 ≥ · · · ≥

0,
∑∞

k=1 λk < ∞, with corresponding eigenfunctions {ψk}
∞
k=1 of G (·, ·),

the latter being an orthonormal basis of L2[0, 1], such that G (x, x′) ≡∑∞
k=1 λkψk(x)ψk (x

′) and
∫
G (x, x′)ψk (x

′) dx′ = λkψk(x). For each k ∈

N+, let Ik = {k′ ∈ N+ |λk′ = λk }, then min Ik ≤ k ≤ max Ik. If λk > 0,

the cardinality # (Ik) = max Ik − min Ik + 1 of Ik is finite, since the

integral operator defined by G (x, x′) is compact. The linear space of

functions spanned by {ψk′}k′∈Ik is the eigen subspace Ψk with dimension

# (Ik), corresponding to eigenvalue λk of multiplicity # (Ik). The Mercer

expansion of G (·, ·) in terms of λk, ψk, k ∈ N+ is unique up to orthogonal

transformation of {ψk′ , k
′ ∈ Ik} within each eigenspace Ψk.

The standard process η (·) then allows the Karhunen-Loève (K-L)

expansion η (·) = m (·) +
∑∞

k=1 ξkϕk (·) according to Theorem 1.5 of Bosq

(2000), in which the rescaled eigenfunctions, {ϕk}
∞
k=1, called functional

principal components (FPCs) satisfy

ϕk (·) =
√
λkψk (·) , k ≥ 1, (1.1)
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and the random coefficients {ξk}
∞
k=1, uncorrelated with mean 0 and variance

1. The i-th trajectory ηi (·) is decomposed as

ηi (·) = m (·) + ξi (·) , ξi (·) =
∑∞

k=1
ξikϕk (·) , (1.2)

in which the C [0, 1]-valued random variable ξi (·) is a small-scale variation of

x with Eξi (·) ≡ 0 and covariance G (x, x′) ≡ E {ξi (x) ξi (x′)}, x, x′ ∈ [0, 1].

The random coefficients {ξik}
∞
k=1 , i = 1, ..., n, are i.i.d. copies of {ξk}

∞
k=1,

and are called FPC scores. The raw functional data can then be written as

Yij = m (j/N) +
∑∞

k=1
ξikϕk (j/N) + σi (j/N) εij, 1 ≤ i ≤ n, 1 ≤ j ≤ N,

(1.3)

where the infinite series converges absolutely almost surely. Denote also the

rescaled FPC scores

ζ ik =

∫
ξi (x)ψk (x) dx, (1.4)

which by (1.1) and (1.2) satisfy

ζ ik =

∫ (∑∞

k′=1
ξik′ϕk′ (x)

)
ψk (x) dx =

√
λkξik,

ζ ikψk (·) = ξikϕk (·) , 1 ≤ i ≤ n, k ∈ N+. (1.5)

For convenience, the orthonormal eigenfunctions {ψk (·)}
∞
k=1 are called

canonical FPCs.

Just as mathematical statistics textbooks treat extensively first and

second moments estimation, the estimation of mean function m (·) and
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covariance function G (·, ·) are also essential first steps of FDA, and have

been adequately addressed over the last decade. In particular, simultaneous

confidence regions are constructed for m (·) in Degras (2011), Cao et al.

(2012), Ma et al. (2012), Zheng et al. (2014), Gu et al. (2014), Cai et al.

(2020), Li and Yang (2023), Huang et al (2022); and for G (·, ·) in Cao et al.

(2016), Wang et al. (2020), Zhong and Yang (2023).

The covariance function G (x, x′) is intricately composed of eigenvalues

{λk}∞k=1 and FPCs {ϕk (·)}
∞
k=1, all of which are unknown parameters not

directly estimable. Likewise, the FPC scores {ξik, 1 ≤ i ≤ n, k ∈ N+} are

well-defined mathematical objects, but unobservable to the data-handling

statistician.

Data analytical tools for computing FPCs and FPC scores are collectively

referred to as Functional Principal Components Analysis (FPCA), a

simplifying preliminary step for many interesting applications involving

trajectories {ηi (·)}
n
i=1 as independent variables, see Hall and Hosseini-Nasab

(2006), Aue et al. (2015) and Shang (2017). Typically FPCA first estimates

FPCs and eigenvalues as eigenfunctions and eigenvalues of some estimated

G (·, ·), and subsequently FPC scores, see Ramsay and Sliverman (2005),

Horváth and Kokoszka (2012), Shang (2014), Zhang et al. (2020), and

Huang et al (2021). Rigorous inference for functional regression models
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remains difficult if FPC scores estimated from eigen equations are used as

predictor variables in place of the true ones, because the differences between

the true and estimated FPC scores are of order n−1/2 only implicitly.

Under the special circumstance that the FPCs are known a priori, we have

established in (S.20) explicit form of the differences between the true and

estimated FPC scores, which could be useful in developing inferential tools

for functional regression models.

If the canonical FPCs {ψk (·)}
∞
k=1 were “known” a priori as

{
ψ0,k (·)

}∞
k=1

,

then rescaled FPC scores {ζ ik, 1 ≤ i ≤ n, k ∈ N+} in (1.4) can be estimated

by method of moments as

ζ̂ ik =

∫
ξ̂i (x)ψ0,k (x) dx, 1 ≤ i ≤ n, 1 ≤ k <∞, (1.6)

where
{
ξ̂i (·)

}n

i=1
are some good estimators of centered trajectories {ξi (·)}

n
i=1.

Estimators of eigenvalues and covariance function are also explicit

λ̂k = n−1

n∑
i=1

ζ̂
2

ik, (1.7)

Ĝ (x, x′) = n−1

n∑
i=1

ξ̂i (x) ξ̂i (x
′) . (1.8)

As
{
ψ0,k (x)ψ0,k′ (x

′)
}∞
k,k′=1

is an orthonormal basis of L2 [0, 1]2, G (x, x′)
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has the following expansion with coordinates Ckk′ , k, k
′ ∈ N+

G (x, x′) ≡
∞∑

k,k′=1

Ckk′ψ0,k (x)ψ0,k′ (x
′) ,

Ckk′ ≡
∫
G (x, x′)ψ0,k (x)ψ0,k′ (x

′) dxdx′, k, k′ ∈ N+. (1.9)

If {ψk (·)}
∞
k=1 and

{
ψ0,k (·)

}∞
k=1

are the “same” set subject to permutation of

eigenspaces {Ψk}k∈N+
and orthogonal transformation within each eigenspace

Ψk, then exist λ0,k ≥ 0, k ∈ N+,
∑∞

k=1 λ0,k < ∞ such that G (x, x′) ≡∑∞
k=1 λ0,kψ0,k(x)ψ0,k (x

′), in other words, all off-diagonal coordinates Ckk′

(k ̸= k′) are 0. Since Ckk′ ≡ Ck′k, k, k
′ ∈ N+, one can test hypotheses

H0 : Ckk′ ≡ 0, ∀k < k′ ∈ N+

H1 : ∃k < k′ ∈ N+, Ckk′ ̸= 0 (1.10)

Formulation of (1.10) is motivated by studies of ElectroEncephalogram

(EEG) data in Li and Yang (2023) and Zhong and Yang (2023). Both

have observed trigonometric shape trajectories, with explicit and sparse

Fourier expansions of mean m (·) and covariance G (·, ·) accepted by using

simultaneous confidence regions. Similar phenomenon had also been noticed

in studies of Event Related Potentials (ERP) data. The present work goes

deeper to directly test canonical FPCs at the more fundamental level.

The paper is organised as follows. Section 2 states main theoretical

results on a hypothesis test for the canonical FPCs, including asymptotic
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significance level and asymptotic correctness of chi-square type statistics,

both “infeasible”and two-step data-driven, and that all requirements for

these asymptotics to hold are met by B-spline trajectory estimates.

Procedures to implement the proposed test are given in Section 3. Section

4 contains some simulation findings and an empirical study of EEG data is

in Section 5. All technical proofs are in the Supplement.

2. Main Results

2.1 Asymptotic properties

To better formulate the hypotheses in (1.10), define the following Hilbert

space of infinite real matrices with the usual Frobenius norm

H =
{
(akk′)1≤k,k′<∞ , akk′ ∈ R :

∥∥∥(akk′)1≤k,k′<∞

∥∥∥
H
=

 ∑
1≤k,k′<∞

a2kk′

1/2

<∞

 .

A natural orthonormal basis ofH consists of coordinate vectors (ekk′)1≤k,k′<∞,

where ekk′ is a vector with akk′ = 1 and all other elements 0. Denote the

subspace of upper triangle matrices

HUT =
{
(akk′)1≤k,k′<∞ ∈ H : akk′ ≡ 0, 1 ≤ k′ ≤ k <∞

}
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2.1 Asymptotic properties

with corresponding orthogonal projection operator PUT:

PUT (akk′)1≤k,k′<∞ = (akk′)1≤k<k′<∞ . (2.11)

Relative to the orthonormal basis
{
ψ0,k (x)ψ0,k′ (x

′)
}∞
k,k′=1

of L2 [0, 1]2, there

is a natural isometry Π between H and L2 [0, 1]2:

Π
{
(akk′)1≤k,k′<∞

}
=

∑
1≤k,k′<∞

akk′ψ0,k (x)ψ0,k′ (x
′) , (akk′)1≤k,k′<∞ ∈ H

Π−1 (Θ) =

(∫
Θ(x, x′)ψ0,k (x)ψ0,k′ (x

′) dxdx′
)

1≤k,k′<∞
,Θ ∈ L2 [0, 1]2 .

(2.12)

As (1.9) entails that Π−1 (G) = (Ckk′)1≤k,k′<∞, so H0 in (1.10) is

equivalent to PUTΠ
−1 (G) = (0)1≤k<k′<∞. The hypotheses are therefore

reformulated in terms of the Hilbert space parameter PUTΠ
−1 (G), with

projection operator PUT and isometry Π−1 defined in (2.11)) and (2.12:

H0 : PUTΠ
−1 (G) = (0)1≤k<k′<∞ , or

∥∥PUTΠ
−1 (G)

∥∥2
H = 0,

H1 : PUTΠ
−1 (G) ̸= (0)1≤k<k′<∞ , or

∥∥PUTΠ
−1 (G)

∥∥2
H > 0. (2.13)

Under H0, by permuting eigen subspaces Ψk and applying orthogonal

transformations, one may assume that ψk (·) ≡ ψ0,k (·) , k ∈ N+.

An infeasible estimator of the covariance function G (x, x′) is

G̃ (x, x′) ≡ n−1

n∑
i=1

ξi (x) ξi (x
′) .
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2.1 Asymptotic properties

One may write by (1.2) and (1.5)

G̃ (x, x′) =
∑∞

k,k′=1
n−1

n∑
i=1

ζ ikζ ik′ψk (x)ψk′ (x
′) . (2.14)

The coordinates of G̃ (x, x′) relative to
{
ψ0,k (x)ψ0,k′ (x

′)
}∞
k,k′=1

are

Zkk′ = Zk′k =

∫
G̃ (x, x′)ψ0,k (x)ψ0,k′ (x

′) dxdx′

= n−1

n∑
i=1

∑∞

k1,k2=1
ζ ik1ζ ik2uk1k2,kk′ , k, k

′ ∈ N+, (2.15)

in which the inner products

uk1k2,kk′ =

∫
ψk1 (x)ψk2 (x

′)ψ0,k (x)ψ0,k′ (x
′) dxdx′, (2.16)

satisfy for k1, k2, k3, k4, k, k
′, k′′, k′′′ ∈ N+

∑∞

k1,k2=1
uk1k2,kk′uk1k2,k′′k′′′ =

⟨
ψ0,kψ0,k′ , ψ0,k′′ψ0,k′′′

⟩
= δkk′′δk′k′′′ ,∑∞

k,k′=1
uk1k2,kk′uk3k4,kk′ =

⟨
ψ0,k1ψ0,k2 , ψ0,k3ψ0,k4

⟩
= δk1k3δk2k4 ,(2.17)

where the Kronecker indices δkk′ = 1 for k = k′ and 0 for k ̸= k′. Thus if

one defines an operator U : H → H by

U (akk′)1≤k,k′<∞ =
(∑∞

1≤k,k′<∞
uk1k2,kk′akk′

)
1≤k1,k2<∞

, (2.18)

then U is unitary, its corresponding infinite orthogonal matrix transforms

orthonormal basis
{
ψk1 (x)ψk2 (x

′)
}∞
k1,k2=1

to
{
ψ0,k (x)ψ0,k′ (x

′)
}∞
k,k′=1

. Under

H0, U = I, the identity operator.
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2.1 Asymptotic properties

The infeasible estimator then can be written as

G̃ (x, x′) =
∑∞

k,k′=1
Zkk′ψ0,k (x)ψ0,k′ (x

′) ,

(Zkk′)1≤k,k′<∞ = Π−1
(
G̃
)
, (Zkk′)1≤k<k′<∞ = PUTΠ

−1
(
G̃
)
, (2.19)

so to determine if ∥PUTΠ
−1 (G)∥2H = 0 as in H0 of (2.13), one defines the

following chi-square type statistic S̃n, the larger value of which favors H1:

S̃n = n
∑

1≤k<k′<∞

Z2
kk′ = n

∥∥∥PUTΠ
−1
(
G̃
)∥∥∥2

H
=

∥∥∥∥∥PUT

(
n−1/2

n∑
i=1

Xi

)∥∥∥∥∥
2

H

,

(2.20)

in which

(Zkk′)1≤k,k′<∞ = n−1

n∑
i=1

Xi, (2.21)

Xi =
(∑∞

k1,k2=1
ζ ik1ζ ik2uk1k2,kk′

)
1≤k,k′<∞

= U
(
ζ ik1ζ ik2

)
1≤k1,k2<∞ , 1 ≤ i ≤ n,

(2.22)

the infinite matrices Xi being i.i.d. H-valued with mean µX ∈ H given in

(2.26) of Theorem 1, and U being the unitary operator in (2.18). Denote

also i.i.d. variables

Yi =
(
ζ ik1ζ ik2 − λk1δk1k2

)
1≤k1,k2<∞ = U−1 (Xi − µX) , (2.23)

the covariance operator CY of Yi and CX of Xi satisfy

CY (x) = U−1CXU (x) , ∀x ∈ H. (2.24)
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2.1 Asymptotic properties

Finally, define an infinite Gaussian quadratic form

S =
∑

1≤k<k′<∞

λkλk′χ
2
kk′ (1) , (2.25)

where χ2
kk′ (1) are independent chi-square variables of degree of freedom

1. The infinite series in (2.25) converges absolutely almost surely since

ES =
∑

1≤k<k′<∞
λkλk′ <

( ∑
1≤k<∞

λk

)2

<∞.

The following assumption is needed for asymptotics of S̃n.

(A1) The FPC scores {ξik}i≥1,k≥1 are independent over k ≥ 1 and i.i.d.

over i ≥ 1. The number of distinct distributions for all FPC scores

{ξ1k}k≥1 is finite, and max1≤k<∞ Eξ41k <∞.

The independence condition in (A1) is common in existing works on

functional data analysis, see Cao et al. (2012), Ma et al. (2012), Gu et al.

(2014), Zheng et al. (2014), Wang et al. (2020). Each of the FPC scores

{ξ1k}k≥1 may have its own probability distribution, but the number of

distinct distributions must be finite. For example, ξ11, ξ13 ∼ N (0, 1),

ξ12 ∼ t(10)/
√
1.25, ξ14 ∼ U

(
−
√
3,
√
3
)

for Case 2 in Section 4, the

distributions of ξ1k, k > 4 can be all set to N (0, 1) as λk ≡ 0, k > 4.

Theorem 1. Under Assumption (A1), {Xi}ni=1 in (2.22) are i.i.d. H-
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2.1 Asymptotic properties

valued random variables, with

EXi = µX =
(∑∞

k1=1
λk1uk1k1,kk′

)
1≤k,k′<∞

, (2.26)

E ∥Xi∥2H =
∑∞

k=1
λ2k
(
Eξ4k − 1

)
+
(∑∞

k=1
λk

)2
<∞. (2.27)

As n→ ∞, there is an H-valued normal variable N such that

n1/2
{
(Zkk′)1≤k,k′<∞ − µX

}
= n−1/2

n∑
i=1

(Xi − µX)
D→ N ∼ N (0,CX) ,

(2.28)

which, under H0 in (2.13), becomes the following special case

n1/2 (Zkk − λk, Zkk′)1≤k ̸=k′<∞ = n−1/2

n∑
i=1

Yi
D→ N ∼ N (0,CY) , (2.29)

CY (ekk) = λ2k
(
Eξ4k − 1

)
ekk,CY (ekk′) = λkλk′ (ekk′ + ek′k) , 1 ≤ k ̸= k′ <∞.

(2.30)

Consequently, under H0, with S as in (2.25)

S̃n =

∥∥∥∥∥PUT

(
n−1/2

n∑
i=1

Yi

)∥∥∥∥∥
2

H

D→ ∥PUT (N )∥2H
D
= S.

Lemma S.2 in Supplement stipulates that the distribution function

FS (q) = P [S ≤ q] of quadratic form S in (2.25) is continuous and strictly

increasing, so the inverse function F−1
S is well-defined. For any α ∈ (0, 1),

the (1− α)-th quantile Q1−α of S is the unique q that solves FS (q) = 1−α:

Q1−α = F−1
S (1− α) .
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2.1 Asymptotic properties

Under H0, Zkk′ in (2.15) and (2.21) has the following simpler expression

Zkk′ = n−1

n∑
i=1

ζ ikζ ik′ = n−1

n∑
i=1

√
λk
√
λk′ξikξik′ . (2.31)

Since {ζ ik, 1 ≤ i ≤ n, k ∈ N+} are unobservable, {Zkk′}k ̸=k′ and S̃n are

all “infeasible”. Substituting ζ ik with ζ̂ ik in (1.6), yields the following

feasible replicas of Zkk′ in (2.31):

Ẑkk′ = n−1

n∑
i=1

ζ̂ ikζ̂ ik′ ,
(
Ẑkk′

)
1≤k<k′<∞

= PUTΠ
−1
(
Ĝ
)
. (2.32)

Using Ẑkk′ in (2.32), a feasible statistic Ŝn is defined to mimic S̃n in (2.20)

Ŝn = n
∑

1≤k<k′≤κn

Ẑ2
kk′ , (2.33)

where truncation indices κn ∈ N+ satisfy

κn → ∞, κ2nn
−1/2 log3/2 n→ 0. (2.34)

In what follows, for function φ (·) defined on [0, 1], denote ∥φ∥∞ =

sup
x∈[0,1]

|φ (x)|, and φ(q) (·) its q-th order derivative if it exists. For q ∈ N, µ ∈

(0, 1], denote the (q, µ) Hölder seminorm of function φ as

∥φ∥q,µ = sup
x,x′∈[0,1],x̸=x′

∣∣∣∣φ(q) (x)− φ(q) (x′)

|x− x′|µ
∣∣∣∣

and the space of functions with finite (q, µ) Hölder seminorm as C(q,µ) [0, 1] ={
φ | ∥φ∥q,µ < +∞

}
. As a special case, C(0,1) [0, 1] is the space of Lipschitz

continuous functions.
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2.1 Asymptotic properties

(B1) The FPCs ϕk (·) ∈ C(0,1) [0, 1] with
∑∞

k=1 ∥ϕk∥∞+
∑∞

k=1 ∥ϕk∥0,1 < +∞.

(B2) The trajectory estimates
{
ξ̂i (·)

}n

i=1
used in (1.6) satisfy

max
1≤i≤n

∥∥∥∥∥ξ̂i (·)− ξi (·) + n−1

n∑
i′=1

ξi′ (·)

∥∥∥∥∥
∞

= Oa.s.

(
ρn,N

)
, (2.35)

where
{
ρn,N

}∞
n=1

are such that ρn,N > 0, κ2nn
1/2ρn,N log1/2 n → 0 as

n→ ∞ for some {κn}∞n=1 satisfying (2.34).

Collective boundedness and Lipschitz bounded smoothness of principal

components in Assumption (B1) are necessary for C [0, 1] Central Limit

Theorem of n−1
∑n

i′=1 ξi′ (·), see Lemma S.6 in Supplement.

Propositions 1 and 2 in Supplement lead to the following theorem.

Theorem 2. Under Assumptions (A1), (B1)-(B2) and H0 in (2.13), as

n→ ∞, Ŝn in (2.33) is oracally efficient, i.e., Ŝn − S̃n →p 0. Hence

sup
α∈(0,1)

∣∣∣P [S̃n > Q1−α

]
− α

∣∣∣→ 0, sup
α∈(0,1)

∣∣∣P [Ŝn > Q1−α

]
− α

∣∣∣→ 0.

Using eigenvalue estimates λ̂k in (1.7), define an approximation of S:

S̄n =
∑

1≤k<k′≤κn

λ̂kλ̂k′χ
2
kk′ (1) , (2.36)

with (1− α)-th quantile denoted as Q̂1−α. The following theorem provides

full justification to use Q̂1−α in place of Q1−α so one can define a test

statistic

Tn = I{Ŝn>Q̂1−α}, (2.37)

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing) 



2.1 Asymptotic properties

with the rule of rejecting H0 if and only if Tn = 1.

Theorem 3. Under Assumptions (A1), (B1)-(B2), and under H0 in (2.13),

as n → ∞, the finite approximation S̄n in (2.36) converges to S in

probability, i.e., S̄n − S = op (1). Consequently, for any α ∈ (0, 1),

Q̂1−α −Q1−α = op (1) and

P (Tn = 1) = P
(
Ŝn > Q̂1−α

)
→ α,P

(
S̃n > Q̂1−α

)
→ α.

Theorem 3 provides that the asymptotic significance level is α for

both the data-driven test Tn = I{Ŝn>Q̂1−α} and the infeasible I{S̃n>Q̂1−α},

Theorem 2 the other infeasible I{S̃n>Q1−α} and I{Ŝn>Q1−α}.

We establish next asymptotic consistency of test Tn in (2.37).

Theorem 4. Under Assumptions (A1), (B1)-(B2) and H1 in (2.13), there

exist k1 < k2 ∈ N+, Ck1k2 ̸= 0, where Ck1k2 is given in (1.9). As n→ ∞,

min
{
S̃n, Ŝn

}
≥ nẐ2

k1k2
= nC2

k1k2
+Op

(
n1/2

)
,

P (Tn = 1) = P
[
Ŝn > Q̂1−α

]
→ 1,

min
{
P
[
S̃n > Q1−α

]
,P
[
Ŝn > Q1−α

]
,P
[
S̃n > Q̂1−α

]}
→ 1.

Theorem 4 reveals that under alternative H1 in (2.13), the data-driven

test Tn in (2.37), is consistent, along with the infeasible I{S̃n>Q̂1−α}, I{S̃n>Q1−α}

and I{Ŝn>Q1−α}.
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2.2 B-spline estimation

2.2 B-spline estimation

Theorems 2, 3, and 4 depend on a high level Assumption (B2) involving

trajectory estimates
{
ξ̂i (·)

}n

i=1
in (1.6). In this section it is shown that

B-spline trajectory estimates meet Assumption (B2).

To define splines, the interval [0, 1] is divided into (Js + 1) equal

subintervals IJ = [Jh, (J + 1)h) , 0 ≤ J ≤ Js − 1, IJs = [Jsh, 1] with length

h = 1/ (Js + 1). For positive integer p, let H(p−2) = H(p−2) [0, 1] be the

space of functions that are (p−2) times continuously differentiable on [0, 1],

polynomials of degree (p − 1) on subintervals IJ , 0 ≤ J ≤ Js. Denote by

{BJ,p (·) , 1 ≤ J ≤ Js + p} the p-th order B-spline basis of H(p−2) (de Boor

(2001)), H(p−2) =
{∑Js+p

J=1 λJ,pBJ,p (·) | λJ,p ∈ R
}
.

Latent trajectories ηi (·) are estimated via B-spline for each subject i

η̂i (·) = argmin
g(·)∈H(p−2)

N∑
j=1

{Yij − g (j/N)}2 , 1 ≤ i ≤ n. (2.38)

B-spline estimates of mean m (·) and centered trajectories ξi (·) are:

m̂ (·) = n−1

n∑
i=1

η̂i (·) , (2.39)

ξ̂i (·) = η̂i (·)− m̂ (·) , 1 ≤ i ≤ n, (2.40)

with η̂i (·) defined in (2.38). The B-spline estimates ξ̂i (·) in (2.40) is then

used for estimating rescaled FPC scores in (1.6), as well as covariance

function in (1.8).
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2.2 B-spline estimation

The following constraints are listed as constants ν, q, µ, etc., appear

sequentially in Assumptions (C1)-(C5)

ν ∈ (0, 1] , q ∈ N+, µ ∈ (0, 1] , p∗ = q + µ, (2.41)

θ ∈
(
0,min

(
2p∗

2p∗ + 1
, ν

))
, (2.42)

β2 ∈
(
0,min

{
1

2
, ν − θ

2
, 1− θ (p∗ + 1)

2p∗

})
, (2.43)

r1 > max

(
6,

4θ

2p∗ (1− θ)− θ
,

4θ

2p∗ (1− β2 − θ/2)− θ

)
, (2.44)

max

(
1− ν,

(
2

r1
+

1

2

)
θ

p∗

)
< γ < min

(
1− θ, 1− β2 −

θ

2

)
. (2.45)

Elementary algebra shows that (2.42) is needed for (2.43) to hold, while

both (2.42) and (2.43) are needed for (2.44). One also verifies that (2.42),

(2.43) and (2.44) together ensure the existence of γ that satisfies (2.45).

The above (2.42), (2.43), (2.44), (2.45) enable the following assumptions.

(C1) The standard deviation functions σi (·) ∈ C(0,ν) [0, 1] for ν in (2.41),

max1≤i≤n ∥σi∥∞ ≤ Cσ, max1≤i≤n ∥σi∥0,ν ≤ Cσ for 0 < Cσ <∞.

(C2) The FPCs ϕk (·) ∈ C(q,µ) [0, 1] for integer q and constant µ in (2.41)

with
∑∞

k=1 ∥ϕk∥q,µ < +∞.

(C3) As n→ ∞, N = N (n) → ∞, n = O(N θ) for θ in (2.42).

(C4) The i.i.d. noises {εij}i≥1,j≥1 satisfy Eε
2
11 <∞. There are i.i.d. N (0, 1)
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2.2 B-spline estimation

variables {Uij,ε}n,Ni=1,j=1 such that

P

{
max
1≤i≤n

max
1≤t≤N

∣∣∣∣∣
t∑

j=1

εij −
t∑

j=1

Uij,ε

∣∣∣∣∣ > Nβ2

}
< CεN

−γ2

for constants Cε ∈ (0,+∞) , γ2 ∈ (1,+∞) and β2 in (2.43). For r1 in

(2.44), max1≤k<∞ E |ξ1k|
r1 <∞.

(C5) The spline order p ≥ p∗, the number of interior knots Js = NγdN with

γ in (2.45) and dN + d−1
N = O (logτ N) as N → ∞ for some τ > 0.

Uniform boundedness and Hölder continuity for the standard deviation

functions σi (·) in Assumption (C1) are both common for spline smoothing,

see Wang et al. (2020), Li and Yang (2023) and Zhong and Yang (2023).

Allowing σi (·) for each subject i and not imposing any smoothness

condition on the mean function m (·) are new features which substantially

enhance applicability of our proposed method. The collective (q, µ)-Hölder

bounded smoothness of principal components in Assumption (C2) is for bias

reduction. Assumption (C3) requires that the number N of observations

per curve grows in sync with the sample size n, not slower than n1/θ.

The probability inequalities in Assumption (C4) provides Gaussian partial

sum strong approximation of measurement errors {εij}i≥1,j≥1. The high

level Assumption (C4) can be ensured by the elementary Assumption

(C4’) below together with Assumption (C3), the proof of which is in the
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Supplement. The requirement for the number of knots of the splines is

stated in Assumption (C5), which aims to modulate smoothness of B-spline

estimator by that of FPCs.

(C4’) There exist r2 > (2 + θ) /β2 for θ in (2.42) and β2 in (2.43), such that

E |ε11|r2 <∞. For r1 in (2.44), max1≤k<∞ E |ξ1k|
r1 <∞.

Remark 1. The above assumptions are mild and are satisfied in various

practical situations. One simple and reasonable setting for parameters

q, µ, ν, θ, p, γ can be the following: q+µ = p∗ = 4, ν = 1, θ < 8/9 (e.g., 0.6),

p = 4 (cubic spline), γ = 0.2. These constants are used as implementation

defaults in Section 3, together with dN ≍ log logN .

The next crucial theorem ensures the feasibility of Assumption (B2).

Theorem 5. Under Assumptions (A1), (B1), (C1)-(C5), the B-spline

trajectory estimates
{
ξ̂i (·)

}n

i=1
in (2.40) satisfy Assumption (B2) with

ρn,N = J−p∗

s (n log n)2/r1 +N−1/2J1/2
s log1/2N + JsN

β2−1. (2.46)

3. Implementation

This section details how the test is performed. All trajectories are estimated

by cubic splines, i.e., p = 4. The smoothness order (q, µ) of eigenfunctions
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ϕk (·) is taken as (3, 1) or (4, 0) by default. The number of knots for B-spline

smoothing Js = [cNγ log logN ] is recommended with constant c, where [a]

denotes the integer part of a. The default values γ = 0.2 and c = 2 are

adequate. These B-spline trajectory estimates satisfy Assumption (B2) if

one takes the number of FPCs for test statistic κn = [c1 log n] + c2, the

default values are c1 = 3/2, c2 = 0. Then Ŝn is computed according to

(2.33) and Tn (2.37).

To obtain Q̂1−α, one generates τ̂ b =
∑

1≤k<k′≤κn

λ̂kλ̂k′χkk′,b where χkk′,b are

i.i.d. central chi-square variables with degree of freedom 1, 1 ≤ k < k′ < κn,

b = 1, . . . , bM , bM is a preset large integer with default value 1000. Then

Q̂1−α is taken as (1− α)-th sample quantile of {τ̂ b}bMb=1.

4. Simulation

Two candidate sets
{
ψ0,k (·)

}∞
k=1

of canonical FPCs are used in this section:

(a) FPCs of Ornstein-Uhlenbeck (O-U) process: for k ∈ N+,

ψOU,k (x) =
{
1/2 +

(
1 + ω2

k

)−1
}−1/2

sin {ωk (x− 1/2) + kπ/2} , (4.47)

where the ωk’s are the positive roots of tanω = −2ω (1− ω2)
−1

arranged in ascending order;
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(b) the Fourier basis: for l ∈ N+,

ψF,1 (x) ≡ 1, ψF,2l (x) ≡
√
2 cos (2lπx) , ψF,2l+1 (x) ≡

√
2 sin (2lπx) . (4.48)

Data are generated from model

Yij = m

(
j

N

)
+

κ∑
k=1

ξik
√
λkψk

(
j

N

)
+ σϵij, 1 ≤ j ≤ N, 1 ≤ i ≤ n,

with σ = 0.3, n = 150, 250, 400, 600, N = 200, 500, 1000, 2000, α =

0.01, 0.05, 0.1, 0.2. Noises ϵij ∼ N (0, 1) , i, j ∈ N+. Each combination of

(n,N, α) is replicated 1000 times.

Case 1: m (x) = 10 − sin (2πx) , κ = 2, (λ1, λ2) = (2, 1/2),

ψ1 (x) = ψOU,1 (x), ψ2 (x) = ψOU,2 (x). FPC scores ξi1 ∼ N (0, 1) , ξi2 ∼

t(10)/
√
1.25, i ∈ N+.

Case 2: m (x) = 10 + sin (3πx), κ = 4, (λ1, λ2, λ3, λ4) = (4, 2, 1, 1/2),

ψ1 (x) = ψF,3 (x) , ψ2 (x) = ψF,2 (x) , ψ3 (x) = ψF,5 (x) , ψ4 (x) = ψF,8 (x).

ξi1, ξi3 ∼ N (0, 1), ξi2 ∼ t(10)/
√
1.25, ξi4 ∼ U

(
−
√
3,
√
3
)
, i ∈ N+.

Under the null hypothesis, i.e., (a) for Case 1 and (b) for Case 2, Table

1 shows that the rejection frequency approaches the nominal significance

level α as n increases. Under the alternative hypothesis, i.e, (a) for Case

2 and (b) for Case 1, the rejection frequency is found to equal 1 for all

combinations, thus the test is clearly consistent.

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing) 



Table 1: Rejection frequency under null hypothesis

(a) for Case 1 (b) for Case 2

(n,N) α = 0.01 α = 0.05 α = 0.10 α = 0.20 α = 0.01 α = 0.05 α = 0.10 α = 0.20

(150, 200) 0.015 0.059 0.111 0.216 0.015 0.056 0.105 0.209

(250, 500) 0.009 0.056 0.105 0.207 0.008 0.046 0.104 0.197

(400, 1000) 0.007 0.053 0.109 0.196 0.008 0.052 0.098 0.203

(600, 2000) 0.011 0.050 0.099 0.197 0.012 0.051 0.102 0.201

5. Real Data Analysis

To further illustrate the testing procedure, an ElectroEncephalogram

(EEG) data is studied. EEG is known for containing a great deal of

information about the function of the brain. The data used consists of

142 people with EEG signals recorded from 32 scalp locations at 1000Hz

sample rate. The mid 200 signals of each person at the 10-th scalp location

are used, so the data is functional of form (1.3), with n = 142, N = 200.

The null hypothesis is that the canonical FPCs of this EEG data are a finite

subset of standard Fourier basis in (4.48) subject to permutation.

The default κn = [c1 log n]+c2 with c1 = 3/2, c2 = 0 has yielded κn = 7.

For Ĝ (x, x′) defined in (1.8), the largest κn estimated eigenvalues are

(
λ̂k

)
1≤k≤7

= (40.658, 9.049, 7.023, 4.482, 2.468, 1.331, 0.990) ,
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with corresponding canonical FPCs
{
ψ0,k (x)

}
1≤k≤7

1,
√
2 sin (4πx) ,

√
2 cos (4πx) ,

√
2 sin (2πx) ,

√
2 cos (2πx) ,

√
2 sin (6πx) ,

√
2 sin (8πx) .

One then obtains Ŝn = 754.778 according to (2.33), and the lowest

confidence level empirical quantile Q̂1−α greater than Ŝn is Q̂0.2552 =

754.930. So the null hypothesis is retained with p-value = 0.7448.

The estimated covariance function Ĝ (x, x′) defined by (1.8) is in fact

well approximated by Ĝ0 (x, x
′) ≡

∑7
k=1 λ̂kψ0,k (x)ψ0,k (x

′), with coefficient

of determination R2 = 0.892. Graphically, Figure 1 (a) depicts Ĝ0 (x, x
′),

which appears to be a faithful representation of the estimated covariance

function Ĝ (x, x′) in Figure 1 (b).

Figure 2 shows for 4 randomly selected participants the raw EEG data

Yij, 1 ≤ j ≤ 200 (crosses), spline estimated trajectories η̂i (j/200) , 1 ≤

j ≤ 200 (solid), and null trajectories m̂ (j/200)+
∑7

k=1 ζ̂ ikψ0,k (j/200) , 1 ≤

j ≤ 200 (dashed). The coefficients of determination of spline trajectories

and null hypothesis trajectories against the 4 raw data segments are

(0.992, 0.911), (0.983, 0.919), (0.982, 0.927) and (0.994, 0.931) respectively.

This further validates that for this particular EEG data, the Fourier

canonical FPCs are rather appropriate.

We have also tested the EEG data against the O-U FPCs in (4.47) as
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(a) (b)

Figure 1: (a) The covariance function Ĝ0 (x, x
′) under null hypothesis in

Section 5; (b) the estimated covariance function Ĝ (x, x′) defined in (1.8).

canonical FPCs. Having obtained Ŝn = 2687.381 and Q̂0.95 = 2588.731, the

null hypothesis is rejected with p-value< 0.05.

6. Conclusions

A chi-square type statistic is constructed via estimates of individual

trajectories to test specifications of FPCs in functional data. Limiting

distribution of the statistic under the null hypothesis equals an infinite

Gaussian quadratic form whose quantiles are estimated consistently. The

data-driven test has correct significance level under null hypothesis and is

consistent under alternative if trajectory estimates satisfy some constraints,

which are met by B-spline estimates. Numerical experiments demonstrate

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing) 



0.0 0.2 0.4 0.6 0.8 1.0

−
15

−
5

0
5

10
15

20

(a)

0.0 0.2 0.4 0.6 0.8 1.0

−
15

−
5

0
5

10
15

20

(b)

0.0 0.2 0.4 0.6 0.8 1.0

−
15

−
5

0
5

10
15

20

(c)

0.0 0.2 0.4 0.6 0.8 1.0

−
15

−
5

0
5

10
15

20

(d)

Figure 2: Randomly selected segments of raw EEG data (crosses), spline

estimated trajectories (solid) and null hypothesis trajectories (dashed).

excellent performance of the test corroborating the asymptotic theory. For

one EEG data, strong evidence points to canonical FPCs as a small set

of standard Fourier basis. The proposed test is expected to be widely

applicable in various scientific fields by simplifying functional data models

with validated simple sets of FPCs.

Further research may reveal that other trajectory estimates based on
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REFERENCES

wavelet or local polynomial also satisfy Assumption (B2), and can be used

to formulate tests with desirable properties in Theorems 3 and 4. It is

also feasible to extend our results to functional data recorded over irregular

grid, albeit with messier algebra. Similar tests may also be constructed

for temporally dependent functional data, such as the functional moving

average (FMA) in Li and Yang (2023) and Zhong and Yang (2023).

Supplementary Materials

The online supplement contains detailed proofs of technical results.
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