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Abstract: We present a method for producing unbiased parameter estimates and

valid confidence regions/intervals under the constraints of differential privacy,

a formal framework for limiting individual information leakage from sensitive

data. Prior work in this area is limited in that it is tailored to calculating con-

fidence intervals for specific statistical procedures, such as mean estimation or

simple linear regression. While other recent work can produce confidence inter-

vals for more general sets of procedures, they either yield only approximately

unbiased estimates, are designed for one-dimensional outputs, or assume signifi-

cant user knowledge about the data-generating distribution. Our method induces

distributions of mean and covariance estimates via the bag of little bootstraps

(BLB) (Kleiner et al., 2014) and uses them to privately estimate the parame-

ters’ sampling distribution via a generalized version of the CoinPress estimation

algorithm (Biswas et al., 2020). If the user can bound the parameters of the

BLB-induced parameters and provide heavier-tailed families, the algorithm pro-

duces unbiased parameter estimates and valid confidence intervals which hold
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with arbitrarily high probability. These results hold in high dimensions and for

any estimation procedure which behaves nicely under the bootstrap.

Key words and phrases: Differential privacy

1. Introduction

1.1 Overview

The dramatic expansion of data collection and analysis has led to growing

concerns around the role of privacy and security in the modern world. Our

particular focus will be on statistical analysis and how it can leak informa-

tion about individuals in a data set being analyzed.

Statistical agencies, in particular, have been concerned with statistical

disclosure limitation, a broad set of techniques used to limit the leakage

of sensitive information from statistical analyses. Duncan and Lambert

(1986, 1989) and Reiter (2005) work on identifying and quantifying dis-

closure risk under different assumptions. There has also been substantial

work developing various privacy definitions such as k-anonymity (Sweeney,

2002), t-closeness (Li et al., 2007), and l-diversity (Machanavajjhala et al.,

2007) among others.

Dinur and Nissim (2003) developed a polynomial data reconstruction

algorithm and used it to prove a result later coined in Dwork and Roth
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1.1 Overview

(2014) as the Fundamental Law of Information Recovery. Roughly, this

law states that an attacker can reconstruct a data set by asking a suffi-

ciently large number of cleverly chosen queries of the data. This inspired

the invention of a more formal privacy definition called differential privacy

(DP) (Dwork et al., 2006). DP is a definition which requires that, for any

two data sets differing in one row, the change in the distribution of answers

to any possible query between the two data sets is minimal. We loosely

define a “DP Algorithm” as a procedure that takes a statistical estimator

and converts it into an estimator that satisfies DP (i.e. a “DP Estimator”);

we define what it means to “satisfy DP” later.

DP has become a popular tool in many corners of industry but has not

been widely applied to research in many fields that often analyze sensitive

data (social sciences, medicine, etc.). We suggest that this is, in part,

because of a lack of DP algorithms that effectively meet the needs of these

fields. First, DP algorithms typically require the user to, without looking at

the data, specify a domain to which the data will be censored/clipped. This

is because privacy mechanisms often take the form of additive noise, with

a variance parameter that scales with the sensitivity of the function being

privatized (see Definition S3 and Lemma S1 for more details, and note that

any theorem, algorithm, section, etc. whose number is preceded by an S
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1.2 Problem Demonstration

can be found in the online supplement). Many functions of interest, e.g.

means and variances, are unbounded (and thus have infinite sensitivity)

when defined over unbounded data domains, so we achieve finite sensitivity

by bounding the data domain, i.e. clipping/censoring the data.

We claim that bounding the data domain effectively is a difficult prob-

lem in general, and potentially introduces substantial error into the DP

pipeline which is difficult to account for. In particular, without assumptions

that the data bounds are set well, DP estimators do not typically yield

basic statistical guarantees that many applied researchers desire, namely

unbiasedness and valid confidence intervals. Our goal is to provide a frame-

work (i.e. a DP algorithm) for converting non-private estimators to DP

estimators in a way that jointly addresses both of these concerns.

1.2 Problem Demonstration

Many DP mechanisms take the form “non-private statistic plus zero-mean

noise” (e.g. the Gaussian mechanism defined in Lemma S1) and thus look

like they ought to be unbiased and yield easily characterizable confidence

regions. However, this doesn’t take into account the necessary step of choos-

ing a bounded data domain. In practice, analysts are required to specify

this domain without looking at the data. The data are then projected into
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1.2 Problem Demonstration

the domain, and analysis proceeds on the projected data. This introduces

a potential trade-off in the analyst’s decision calculus. The analyst gener-

ally wants to specify a small domain, as this generally requires less noise

addition to satisfy DP. However, if the analyst’s domain is too small, they

risk clipping the data, which can lead to biased estimates.

Consider the case where X = {X1, . . . , Xn} with Xi ∼ N(0, 1) and

y = Xβ + ϵ for β = 100, ϵ ∼ N(0, 102). We estimate β and get associated

95% confidence intervals using OLS and test the effect of various levels of

clipping on the estimates and confidence intervals. Specifically, we leave X

unclipped and clip the top {0, 0.1, 1, 5} percent of y.

(a) Bias: 0.1% clipping (b) Bias: 1% clipping (c) Bias: 5% clipping

(d) CI coverage: 0.1% clipping (e) CI coverage: 1% clipping (f) CI coverage: 5% clipping

Figure 1: Distribution of OLS coefficient estimates (a-c) and 95% confidence intervals

(d-f) under different levels of clipping of y. Non-clipped distribution in green, clipped

distribution in orange.
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1.2 Problem Demonstration

Figure 1 shows results from 10,000 simulations of this process. The

top plots show coefficient distributions under each level of clipping and

compare it to the condition of no clipping. Note that at even a moderate

level of 1% clipping, the distributions of estimates are completely non-

overlapping. The bottom plots show the absolute error of the estimates,

arranged in increasing order on the x-axis, with vertical bars representing

the 95% confidence interval for that estimate. The black dotted vertical

lines on the left and right sides of each plot show the 0.025 and 0.975

quantiles, where we expect perfectly calibrated confidence intervals to cross

the x-axis. At 0.1% clipping, approximately half of our confidence intervals

do not contain the true parameter value; at higher levels of clipping, none

of them do.

We chose a very simple regime for the experiments above: one-dimensional

OLS with a Gaussian covariate, Gaussian error, clipping in only the out-

come variable, and no attempt to satisfy DP (i.e. no noise addition). In

more complex settings, the effect of clipping on the coefficients could be

larger, in addition to being harder to predict and reason about. Thus, we

argue that the data bounding step that precedes so many DP algorithms

has potentially immense consequences for practical analysis and ought to

be seriously considered.
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1.3 Related Work

1.3 Related Work

Differential privacy has grown in popularity in recent years, as has the lit-

erature exploring the intersection between statistics and DP. Dwork and

Lei (2009) point out how a handful of common robust statistical esti-

mators could be extended to satisfy differential privacy. Wasserman and

Zhou (2010) compare DP mechanisms via convergence rates of distribu-

tions and densities from DP releases and frame DP in statistical language

more broadly. Lei et al. (2016) explores model selection under DP, while

Peña and Barrientos (2021) explores model uncertainty. Vu and Slavkovic

(2009); Wang et al. (2015); Gaboardi et al. (2016); Canonne et al. (2019),

and Awan and Slavkovic (2019) propose methods for DP hypothesis testing

in various domains. Sheffet (2017); Wang (2018); Barrientos et al. (2019),

and Alabi et al. (2020) all address the problem of differentially private linear

regression.

Karwa and Vadhan (2017) gives nearly optimal confidence intervals for

univariate Gaussian mean estimation with finite sample guarantees. Du

et al. (2020) proposes their own algorithms for the same problem and finds

superior practical performance in some domains, and Biswas et al. (2020)

develop an algorithm that works well at reasonably small sample sizes and

without strong assumptions on user knowledge, while also scaling well to
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1.3 Related Work

high dimensions. Drechsler et al. (2021) explores non-parametric confidence

intervals for calculating medians. D’Orazio et al. (2015) gives confidence

intervals for a difference of means. Avella-Medina et al. (2021) shows how

to construct DP version of M-estimators, as well as associated confidence

regions.

Our work continues in a line of recent work for constructing confi-

dence intervals for more general classes of differentially private estimators.

Brawner and Honaker (2018) shows how to combine estimates from addi-

tive functions that satisfy zCDP to get confidence intervals at no additional

cost. Wang et al. (2019) provides confidence intervals for models trained

with objective or output perturbation algorithms. These algorithms are

quite general, but require solving the non-private ERM sub-problem op-

timally. Ferrando et al. (2021) presents a very general approach based

on privately estimating parameters of the data-generating distribution and

bootstrapping confidence intervals by repeatedly running the model of in-

terest on samples from a distribution parameterized by the privately esti-

mated parameters. This method is efficient with respect to its use of the

privacy budget, but relies on significant knowledge of the structure of the

data-generating process. With the exception of Karwa and Vadhan (2017),

these works either ignore the issue of bounding the data domain X effec-
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1.3 Related Work

tively, or attempt to address it through bias-correction strategies which we

believe are unlikely to work for complex problems. Barrientos et al. (2021)

tests a variety of DP algorithms for various tasks (ranging from tabular

statistics to OLS regression) on real data and argue that existing methods

for performing DP regression, “would struggle to produce accurate regres-

sion estimates and confidence intervals” (Barrientos et al. (2021), p. 1).

Evans et al. (2019) is the closest existing work to ours. They also

start with the Sample & Aggregate framework, and BLB algorithm to get

k estimates of the parameters of the sampling distribution of their non-

private estimator. The k estimates are then aggregated via a differentially

private mean and confidence intervals are calculated using a differentially

private variance estimate and CLT assumption. Because the estimates are

projected into a bounded paramter domain to control the sensitivity of the

mean, the resulting private mean is not necessarily unbiased. Evans et al.

(2019) attempts to address this issue by privately estimating the proportion

of the k estimates that are clipped by the projection and adjusting the

private mean by the estimated clipping proportions. This method has the

advantage of allowing users to specify overly tight clipping bounds in order

to decrease the global sensitivity of their estimator, but is sensitive to how

well the clipping proportions are estimated and, to our knowledge, has no
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means of generalizing to multivariate parameter estimation.

1.4 Contributions

We introduce a general-purpose meta-algorithm that allows an analyst to

take any estimator that is (1) unbiased in the non-private setting and (2) has

“nice” properties under the bootstrap and produce a version that satisfies

DP and, with high probability, is unbiased and produces valid confidence

intervals or a valid confidence region. Our results hold under the central

(or trusted curator) model of DP.

Our algorithm can be split into three distinct steps, each of which we

explain in detail in Section 2. First, we use the Bag of Little Bootstraps

(BLB) algorithm (Algorithm S1) developed by Kleiner et al. (2014) to pro-

duce estimates of the mean and covariance of the sampling distribution of

the non-private estimator.

Second, we privately estimate the mean of each set of BLB estimates

(both the means and covariances) using a modified version of the CoinPress

private mean estimation algorithm (Algorithm S2 (Biswas et al., 2020)). For

both the mean and covariance distributions induced by the BLB, the an-

alyst must provide a distribution that is heavier-tailed (Definition S7 and

Assumption 2), as well as give bounds on the mean (Assumption 3) and
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1.4 Contributions

covariance (Assumption 4) of the induced distribution. Under these condi-

tions, this step produces parameter estimates which are unbiased and follow

a multivariate Gaussian distribution with known covariance (Theorem 5).

We argue that these conditions are natural and demonstrate how the prop-

erties of the CoinPress algorithm allow the analyst to get good performance

even when they set the aforementioned bounds very conservatively.

Although our use of CoinPress in this way guarantees that DP is sat-

isfied with respect to the BLB estimates, this guarantee also holds for the

underlying sensitive data over which the BLB estimates were calculated.

This fact follows from noting that combining the BLB with an aggregation

step that satisfies DP (such as CoinPress) falls under the purview of the

Sample & Aggregate framework developed in Nissim et al. (2007).

Third, we combine the estimated parameters using precision weight-

ing to produce final mean and covariance estimates (Theorems 8 and 7),

which are used to calculate a valid confidence region/intervals (Theorem 9).

We do so via a multivariate extension of the precision-weighting technique

to improve CoinPress’ estimates (Theorem 6). While precision-weighting

is a well-known technique in the meta-analysis literature Cochran (1954),

we give, to the best of our knowledge, the first proof of multivariate op-

timality, which may be of independent interest. This step maintains the
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1.4 Contributions

privacy guarantees of the CoinPress algorithm because differential privacy

is preserved under postprocessing (Lemma 2).

We believe that our framework is a promising step toward making differ-

ential privacy more practical for applied research. The problem of choosing

good data bounds is significant in practice in that it is both generally dif-

ficult and that many DP algorithms are sensitive to poor choices. There

is also currently an asymmetry in the failure modes, in that bounds that

are too wide typically yield answers which are unbiased but very noisy,

while bounds that are too narrow risk “silent failure”, where the DP result

looks precise but is not actually representative of the non-private answer.

Our framework, through use of the CoinPress algorithm, gives users more

leeway to err on the side of conservatism without introducing bias, thus

mitigating the possibility of getting DP results that appear precise but are

systematically incorrect.

Moreover, our framework is general enough to be applied to any esti-

mator for which the BLB does a “good” job approximating the sampling

distribution of the estimator. The bootstrap is broadly familiar to ap-

plied statisticians, and its properties for any particular estimator an ana-

lyst wishes to use can, in principle, be tested on non-sensitive data. Thus,

answering the question of whether or not our algorithm will be useful in a
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particular setting does not require significant knowledge of DP.

2. Algorithm Overview

2.1 DP Preliminaries

Throughout this work we use a particular notion of DP called zero-concentrated

DP. Suppose we have a data domain X and data set X ∈ X n.

Definition 1 (Zero-concentrated differential privacy (zCDP) (Bun and

Steinke, 2016)). Let M : X n → Ω be a randomized algorithm where

(Ω,Σ,P) is a probability space and ρ ≥ 0. We say that M satisfies ρ-

zCDP with respect to a data set X if, for all (X ′, X∗) ∈ Xn and α ∈ (1,∞):

Hα (M(X ′)∥M(X∗)) ≤ ρα, where Hα is the α-Rényi divergence.

The parameter ρ represents an upper bound on the amount of informa-

tion M leaks about the underlying data X. Larger ρ implies more infor-

mation leakage, or privacy loss, but also allows for the statistics returned

by M to be more accurate.

zCDP (like other standard notions of DP) has two properties which are

very useful for reasoning about how DP guarantees operate within a full

data analysis pipeline.

Lemma 1 (Composition of zCDP (Bun and Steinke, 2016)). Let M : X n →
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2.2 Algorithm Step 1: Bag of Little Bootstraps and Sample & Aggregate

Y and M′ : X n → Z such that M satisfies ρ-zCDP and M′ satisfies ρ′-

zCDP. Define M′′ : X n → Y × Z by M′′(x) = (M(x),M′(x)). Then M′′

satisfies (ρ+ ρ′)-zCDP.

We use zCDP because its privacy parameters ρ compose additively,

which is convenient for algorithms, like CoinPress, that contain multiple

private releases. zCDP implies the more familiar notion of (ϵ, δ)-DP (see

Proposition 3 of Bun and Steinke (2016)), so any zCDP guarantees in this

paper can be converted to (ϵ, δ)-DP if an analyst prefers.

Lemma 2 (Postprocessing of zCDP (Bun and Steinke, 2016)). Let M :

X n → Y and f : Y → Z such that M satisfies ρ-zCDP. Define M′ : X n →

Z such that M′(x) = f (M(x)). Then M′ satisfies ρ-zCDP.

This postprocessing property of zCDP states that if some output satis-

fies DP with respect to some data X, functions of that output also satisfy

DP with respect to X (provided that the functions do not take X as input).

2.2 Algorithm Step 1: Bag of Little Bootstraps and Sample &

Aggregate

In Step 1 of our algorithm, the algorithm takes the analyst’s non-private

estimator θ̂ and uses the Bag of Little Bootstraps to try to approximate

the sampling distribution of θ̂. In particular, the BLB partitions the data
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2.2 Algorithm Step 1: Bag of Little Bootstraps and Sample & Aggregate

into k disjoint subsets, repeatedly runs the estimator over each subset, and

produces k estimates of its mean, {θ̂BLB
i }i∈[k], and covariance, {Σ̂BLB

i }i∈[k].

Let X be our data domain, D a distribution over the domain, and

X = {x1, . . . , xn} be our sensitive data set where xi are drawn i.i.d. from

D. For shorthand, we say that X ∈ X n and X ∼ Dn. We say that the

analyst wants to run some model, which has an associated parameter vector

θ ∈ Rd. The analyst specifies the estimator they would have liked to run in

the non-private setting θ̂ : X n → Rd. Our goal is eventually to approximate

θ̂ in a manner that satisfies DP with respect to X. We assume that n is

“public knowledge” and does not need to be privately estimated. If this is

not true, we can generate a DP estimate of n, call it ñ, and then X could be

subsampled or augmented with rows of synthetic data until it has ñ rows,

creating a new data set X̃ over which we can apply our algorithm.

As stated earlier, DP algorithms typically require specification of the

global sensitivity of the function whose outputs are being privatized (see

Definition S3 and Lemma S1). This can become arbitrarily complex for

complicated models, even after assuming a bounded input domain. The

Sample & Aggregate framework introduced in Nissim et al. (2007) provides

a strategy for estimating such functions without specifying the global sensi-

tivity. First run the function of interest non-privately over k disjoint subsets
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2.2 Algorithm Step 1: Bag of Little Bootstraps and Sample & Aggregate

of the data, bound the outputs, and then aggregate the results using a func-

tion with a sensitivity that is easier to reason about (for our purposes, we

assume the aggregation function is the mean). We then privately estimate

the mean of these k results. Because each element in the original data

contributes to one subset of the partition, its effect on the aggregation is

localized to one of its k inputs, and so a mean estimation algorithm that

satisfies DP with respect to those k elements also satisfies DP with respect

to the underlying data. A more thorough treatment of this framework can

be found in Nissim et al. (2007) and Chapter 7 of Dwork and Roth (2014).

The Bag of Little Bootstraps algorithm (developed in (Kleiner et al.,

2014) and reproduced in Section S2) randomly partitions the data X into k

disjoint subsets {X1, . . . , Xk}, scales the subset back up to an effective sam-

ple size that matches that of the original data (via multinomial sampling),

and runs θ̂ r times, producing estimates {θ̂i,a}a∈[r]. It then aggregates these

into an arbitrary assessment of estimator quality. We use the mean and

covariance, so for each i ∈ [k] we get θ̂BLB
i = 1

r

∑r
a=1 θ̂i,a and Σ̂BLB

i =

Cov
(
{θ̂i,a}a∈[r]

)
. Our approach allows us to find a single confidence region

for the entire parameter vector jointly. However, we acknowledge that many

analysts will prefer separate confidence intervals for each element in their

parameter vector. This preference is advantageous from a privacy perspec-
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2.2 Algorithm Step 1: Bag of Little Bootstraps and Sample & Aggregate

tive, as confidence intervals will require less noise to privatize than a full

confidence region and will thus be more accurate.

We present methods and results for the general case of finding a con-

fidence region, but also show how this could be adapted to instead find

confidence intervals. We include the setup for finding confidence intervals

in the main text with results in the supplement.

These sets of estimates are now empirical approximations to the theo-

retical distributions of the BLB estimates, which we assume are themselves

good approximations of the actual parameters of interest. We make this

last assumption explicit as follows.

Assumption 1. Let the estimator θ̂ ∼ G(θ,Σ) where the marginals of

G each belong to a location-scale family. For θ̂BLB
i and Σ̂BLB

i generated

by applying BLB to our estimator θ̂, let θ̂BLB = 1
k

∑k
i=1 θ̂

BLB
i and Σ̂BLB =

1
k

∑k
i=1 Σ̂

BLB
i . We assume that E

(
θ̂BLB

)
= E

(
θ̂
)
= θ and P

(
Σ̂BLB ⪰ Σ̂

)
=

1.

We take ⪰ to mean “greater/equal in Löwner order”. In particular,

A ⪰ B ⇐⇒ A − B is a PSD matrix, in which case we call A a Löwner

upper bound on B.
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2.3 Algorithm Step 2: Generating Private Parameter Estimates With
CoinPress

2.3 Algorithm Step 2: Generating Private Parameter Estimates

With CoinPress

Now that we have BLB estimates {θ̂BLB
i }i∈[k] and {Σ̂BLB

i }i∈[k], we can pri-

vately estimate their empirical means θ̂BLB and Σ̂BLB using the CoinPress

mean estimation algorithm (Section S3.1). We try to provide intuition

here for how and why CoinPress works, but interested readers should con-

sult Biswas et al. (2020) for a more complete treatment.

For generality, we say that we have data {yi}i∈[k] with empirical mean

µ̂, where each yi is an i.i.d. instantiation of a random variable Y with mean

µY and covariance ΣY . Our goal is to estimate µY in a manner that satisfies

DP. In order to state these results generally, we will assume that Y ∈ Rd′

for some d′. When yi stands in for θ̂BLB
i , we have d′ = d, the dimension

of our parameter vector of interest. The same is true when yi stands in

for Σ̂BLB
i and we care only about univariate confidence intervals such that

Σ̂BLB
i = V̂ BLB

i Id for some V̂ BLB
i . When we care about a joint confidence

region, we need to use the entire upper triangular of Σ̂BLB
i , so d′ = d(d+1)

2
.

In the actual implementation (and proofs), these covariance estimates are

flattened into a vector of the appropriate dimension before estimation and

unflattened at the end of estimation to produce full covariance matrices

again. We assume that this is going on behind the scenes and, for notational
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2.3 Algorithm Step 2: Generating Private Parameter Estimates With
CoinPress

clarity, keep calling them Σ̂BLB
i .

The high-level idea behind CoinPress is to make a series of mean es-

timates, where each estimate (probabilistically) improves upon the last,

making only a few requirements of the analyst.

Assumption 2. The analyst provides a location-scale family of distribu-

tions QY (µ,Σ) with heavier tails than the distribution of Y as described in

Definition S7.

Assumption 3. The analyst provides µ̃0 ∈ Rd and r0 ∈ R such that µY ∈

B2(µ̃0, r0), the ℓ2 ball centered at µ̃0 with radius r0.

Assumption 4. The analyst provides ΣU
Y ∈ Rd×d such that ΣY ⪯ ΣU

Y .

These three assumptions provide the backbone of the iterative improve-

ment in CoinPress. Recall that the noise added to privatize an estimator

defined over an input domain generally scales with the size of the domain.

Over a series of t steps, CoinPress attempts to find a small domain that,

with high probability, contains all the {yi}i∈[k]. Assumption 3 ensures that

the algorithm starts with sufficiently conservative bounds that contain µX .

Assumptions 2 and 4 then allow the algorithm to convert bounds on µX to

high-probability bounds on the individual data points yi. For the remainder

of the section, we assume that our three assumptions hold.
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2.3 Algorithm Step 2: Generating Private Parameter Estimates With
CoinPress

At step m ∈ [t] of the algorithm, CoinPress takes the ℓ2 ball and ex-

pands it outward based on the assumed distribution. If you have a distribu-

tion of a known family with bounded mean and covariance, you can, with

high probability, upper bound the ℓ2 norm of an arbitrary number of draws

from said distribution. In the context of our case, it specifies a ball that,

with high probability, contains all of the {yi}i∈[k]. In this case, using the ball

as our data domain and projecting our data into this domain will not clip

any of the data. The global sensitivity of the mean is calculated using this

ball and CoinPress adds noise scaled to the sensitivity using the Gaussian

mechanism (Lemma S1), which adds zero-mean noise from a multivariate

Gaussian with diagonal covariance to get a private estimate µ̃m. Because

we are, with high probability, not clipping any of the {yi}i∈[k], our use of

the Gaussian mechanism implies that the form of our private estimator is

“empirical mean + zero-mean noise”. Thus, based on the scale of the noise,

we can produce a new ℓ2 ball which, with high probability, contains the true

empirical mean. This ball becomes the bounding set for the mean at the

next step and the process continues. The guarantee that CoinPress does

not clip any points ensures (with high probability) that for all m ∈ [t], the

µ̃m are unbiased estimates of the empirical mean of the yi.

Moreover, assuming no clipping, the variances (induced by clipping
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2.3 Algorithm Step 2: Generating Private Parameter Estimates With
CoinPress

and our use of the Gaussian mechanism) of µ̃m are just the diagonal of

the covariance parameter used in the Gaussian mechanism, which we call

σ⃗2
µ̃,m ∈ Rd′

+. In other words, under no clipping, the additional error incurred

by the general privacy mechanism is simply the error from the Gaussian

mechanism.

In general, applying the CoinPress algorithm to a data set {yi}i∈[k]

satisfies ρ-zCDP with respect to {yi}i∈[k] (Biswas et al., 2020). In our

case {yi}i∈[k] stands in for either of the sets of BLB estimates {θ̂BLB
i }i∈[k]

and {Σ̂BLB
i }i∈[k]. So, CoinPress satisfies zCDP with respect to each set of

BLB estimates and, by the extension implied by our use of the Sample &

Aggregate framework, also satisfies zCDP with respect to the original data

X. Moreover, CoinPress comes with a high-probability guarantee on the

form of the private estimates it produces.

Theorem 5. Under Assumptions 2, 3, and 4, CoinPress produces t mean

estimates {µ̃m}m∈[t] and associated privacy variances {σ⃗2
µ̃,m}m∈[t] such that

P
[
∀m ∈ [t] : µ̃m ∼ N

(
µ̂, σ⃗2

µ̃,mId′
)]

≥ 1− βµ̃.

We now recall that µ̂ is the empirical mean of the {yi}i∈[k], where yi

stands in for either θ̂BLB
i or Σ̂BLB

i . That is, we use CoinPress to privately

estimate the mean of the distributions induced by the BLB. This yields t es-
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2.4 Algorithm Step 3: Get Final Parameter Estimates and Confidence
Intervals Via Postprocessing

timates of both the parameter means and covariances (both with associated

privacy variances) {θ̃m, σ⃗2
θ̃,m

}m∈[t] and {Σ̃m, σ⃗
2
Σ̃,m

}m∈[t].

2.4 Algorithm Step 3: Get Final Parameter Estimates and Con-

fidence Intervals Via Postprocessing

We now use our t DP mean and covariance estimates {θ̃m, Σ̃m}m∈[t] to get

a single DP estimate of the mean and covariance, which we’ll call θ̃ and Σ̃.

Final Parameter Estimates We start by presenting a multivariate ver-

sion of the precision weighting argument which gives the minimal covariance

way to combine a set of unbiased estimators.

Theorem 6. For a parameter τ , say we are given a series of independent

estimates {τ̂m}m∈[t] such that E (τ̂m) = τ and Cov (τ̂m) = Sm for some

positive definite Sm. Then the minimum covariance unbiased linear weight-

ing of the {τ̂m}m∈[t] is given by τ̂ = (Σt
m=1S

−1
m )

−1
(Σt

m=1S
−1
m τ̂m), which has

E (τ̂) = τ and Cov (τ̂) = (Σt
m=1S

−1
m )

−1
.

Specifically, by “minimum covariance” we mean that any other unbiased

linear weighting τ̂ ′ of the {τ̂m}m∈[t] will have Cov (τ̂) ⪯ Cov (τ̂ ′).

Recall from Theorem 5 that, with high probability, both our {θ̃m}m∈[t]

and {Σ̃m}m∈[t] are sets of estimates which are independent, unbiased, and
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2.4 Algorithm Step 3: Get Final Parameter Estimates and Confidence
Intervals Via Postprocessing

have a known covariance structure. Thus, they both meet the criteria to

be combined into precision-weighted estimators in the style of Theorem 6.

Because the precision weighting step is a function of the DP estimates, it

retains the privacy guarantees from Step 2 by the postprocessing property

of zCDP (Lemma 2).

We start by using the precision-weighting idea to find an estimator for

the covariances, Σ̃. Unlike the mean estimation setting, where our goal is to

produce an unbiased private estimator, our goal for our private covariance

estimator is to find a private estimator that will reliably overestimate the

empirical covariance, and thus yield valid confidence intervals. To get a

sense for why this is necessary, consider the one-dimensional case where

we have a sample variance s and a privatized version s̃. In the non-private

setting, we simply use the estimate s to calculate confidence intervals, but in

order to use s̃ for confidence intervals we need to understand the relationship

between s and s̃. An important first step is to ensure that there is no

clipping in the construction of s̃, so we know that s̃ equals s plus zero-

mean noise; this is the same motivation as in the mean estimation case.

An extra complication for variances is that zero-mean noise addition has

an asymmetric impact on confidence interval coverage; if we were to use s̃

for confidence intervals, we would underestimate the true variance 50% of
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2.4 Algorithm Step 3: Get Final Parameter Estimates and Confidence
Intervals Via Postprocessing

the time. We can avoid this problem by increasing s̃ to the point that we

know, with high probability, that it is at least as large as s.

Theorem 7. Given covariance estimates and privacy variances {Σ̃m, σ⃗
2
Σ,m}m∈[t],

let S̃m ∈ Rd′ be the flattened version of Σ̃m. We can construct a precision-

weighted estimator S̃: S̃ :=
∑t

m=1 S̃m/σ⃗2
Σ,m∑t

m=1 1/σ⃗
2
Σ,m

.

Let Σ̃′ be the unflattened d × d version of S̃ and b be the unflattened

d × d matrix where b2ij = Var
(
Σ̃′

ij

)
(i.e. the diagonal values of the covari-

ance matrix of the flattened precision-weighted estimator). For βub ∈ (0, 1),

define

c = min
ϵ∈(0,1/2]

(1 + ϵ)

(
2max

i∈[d]
∥b·,j∥2 +

6
√
log d

log(1 + ϵ)
max

i,j∈[d]×[d]
|bij|

)
+

√
ln(1/βub)

4maxij b2ij
.

Then, for Σ̃ = Σ̃′ + cId we have P
(
Σ̂ ⪯ Σ̃

)
≥ 1− βΣ̃ − βub.

We use a similar strategy to convert our private parameter estimates

{θ̃m}m∈[t] into a final private parameter estimate θ̃. Because we want an

unbiased estimator of θ̂, we don’t need to be conservative like we did with

the covariance; we simply use the precision-weighted estimator.

Theorem 8. Given parameter estimates and privacy variances {θ̃m, σ⃗2
θ,m}m∈[t],

we define the precision-weighted estimator θ̃ as θ̃ :=
∑t

m=1 θ̃m/σ⃗2
θ,m∑t

m=1 1/σ⃗
2
θ,m

. This es-

timator has expectation θ̂ and covariance Σθ̃ =
1∑t

m=1 1/σ⃗
2
θ,m

Id. In particular,

we say that P
(
θ̃ ∼ N

(
θ̂,Σθ̃

))
≥ 1− βΣ̃ − βub − β θ̃.
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2.4 Algorithm Step 3: Get Final Parameter Estimates and Confidence
Intervals Via Postprocessing

Confidence Region We now have private estimates θ̃ and Σ̃ such that

θ̃ ∼ N
(
θ̂,Σθ̃

)
and Σ̂ ⪯ Σ̃ with probability 1 − βΣ̃ − βub − β θ̃. Going

back to Assumption 2, we also have a distribution Qθ̂ we assume to be

heavier tailed than that of θ̂. We can represent our approximation of

the sampling distribution of our estimator as the compound distribution

Qθ̂

(
θ̂ +N (0,Σθ̃) , Σ̃

)
.

Theorem 9 (Confidence Region (valid with high probability)). Let Z be a

d-dimensional random variable such that Z ∼ Qθ̂

(
θ̂ +N (0,Σθ̃) , Σ̃

)
. Sup-

pose C is a d-dimensional ellipsoid such that P(Z ∈ C) ≥ 1 − α for some

α ∈ (0, 1). Then, with probability 1− βΣ̃ − βub − β θ̃: P (θ ∈ C) ≥ 1− α.

It is always trivial to find such an ellipsoid C (e.g. take C = Rd), but

finding one with coverage close to 1 − α analytically could be difficult in

general. However, in typical scenarios it is likely to be much more nicely

behaved. Most notable is the case where Qθ̂ is multivariate Gaussian (e.g.

the analyst is comfortable assuming that the CLT has kicked in for the

BLB estimates). The resulting compound distribution is N
(
θ̃, Σ̃ + Σθ̃

)
; a

Gaussian random variable with a Gaussian random variable as its location

parameter is still Gaussian. This becomes even simpler if the analyst is

interested in univariate confidence intervals, in which case they can use the

fact that ∀j ∈ [d] : θ̃j ∼ N
(
θ̂j, Σ̃j,j + Σθ̃j,j

)
, and can calculate confidence
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2.5 Full Algorithm Statement

intervals directly from the CDF of the univariate Gaussian. In more com-

plicated scenarios, an analyst can always get approximate quantiles using

Monte Carlo methods.

2.5 Full Algorithm Statement

In Algorithm 1, we finally present our algorithm in whole. We omit some

hyperparameters in the subroutines to make it easier to focus on the core

pieces that change between them. Let ξ : a1:k 7→ 1
k

∑k
i=1 ai and either

ξ′ : a1:k 7→ Cov
(
{ai}i∈[k]

)
or ξ′ : a1:k 7→ diag

(
Cov

(
{ai}i∈[k]

))
, depending on

whether the analyst desires a joint confidence region or separate confidence

intervals.

In summary, our private estimates θ̃ and Σ̃ have statistical guarantees

relative to the true parameters of the sampling distribution of θ̂ ∼ G(θ,Σ)

via the following lines of reasoning:

E
(
θ̃
)

w.h.p.
=

CoinPress + postprocessing
E
(
θ̂BLB

)
=

Assumption 1
E
(
θ̂
)
= θ

Σ̃
w.h.p.

⪰
CoinPress + postprocessing

Σ̂BLB ⪰
Assumption 1

Σ

3. Empirical Evaluation

We provide empirical demonstrations of our core result, showing that we

can produce unbiased parameter estimates and valid confidence intervals
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Algorithm 1 General Valid DP (GVDP)

Input: data set X ∈ Rn×m, estimator θ̂ : Xn → Rd families of distributions Qθ̂, QΣ̂, privacy

budgets ρθ̃, ρΣ̃ > 0, failure probabilities βθ̃, βΣ̃, βub ∈ (0, 1)

Output: parameter estimate θ̃ and associated confidence intervals/region C which satisfy(
ρθ̃ + ρΣ̃

)
-zCDP and have desired unbiased/validity properties with probability 1− βθ̃ − βΣ̃ − βub

1: procedure GVDP(X, θ̂,Qθ̂, QΣ̂, ρ
θ̃, ρΣ̃)

2: {Σ̂BLB
i }i∈[k] = BLB

(
X, θ̂, ξ′, . . .

)
▷ Algorithm S1 – get BLB estimates of parameter

covariance

3: {θ̂BLB
i }i∈[k] = BLB

(
X, θ̂, ξ, . . .

)
▷ Algorithm S1 – get BLB estimates of parameter means

4: {Σ̃m}m∈[t] = MVMRec
(
{Σ̂BLB

i }i∈[k], . . . , QΣ̂, . . . , ρ
Σ̃, βΣ̃

)
▷ Algorithm S2 – privately

estimate parameter covariance at ρΣ̃-zCDP level

5: Combine {Σ̃m}m∈[t] via precision-weighting to get Σ̃ ▷ Theorem 6

6: {θ̃m}m∈[t] = MVMRec
(
{θ̂BLB

i }i∈[k], . . . , Qθ̂, . . . , ρ
θ̃, βθ̃

)
▷ Algorithm S2 – privately estimate

parameter means at ρθ̃-zCDP level

7: Combine {θ̃m}m∈[t] via precision-weighting to get θ̃ ▷ Theorem 6

8: Use θ̃, Σ̃, Qθ̂, and βub to get confidence intervals/region C. ▷ Theorem 9

9: return {θ̃, C}

when the requisite assumptions hold. For every evaluation, we aim to get

valid confidence intervals for each element of the parameter vector rather

than a single valid confidence region, as we expect this to be the dominant

use case in practice.

All results satisfy zCDP at the ρ = 0.1 level and, inside the GVDP

algorithm, we always run CoinPress for t = 5 iterations. Additionally, we

assume that the analyst chooses bounds that satisfy Assumptions 3 and 4,

but are larger than the tightest possible bounds by a factor of ≈ 100. For
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example, if the analyst had an estimator with a N(µ = 1, σ2 = 1) sampling

distribution we assume their prior knowledge to be that µ ∈ [−100, 100] and

σ2 ≤ 100. Additional empirical results, including comparisons to existing

methods, are described in Section S6.

OLS Regression Demonstration We begin by testing parameter es-

timation for a properly specified OLS model with d = 5 parameters of

interest. In a single iteration of our experiment, we generate data from a

linear model y = Xβ + ϵ with Gaussian covariates, Gaussian error, and

correlation structure such that the effective rank of the resulting data is

≈ d − 1. We increase the underlying noise in the data as n increases such

that the non-private confidence intervals are essentially constant across val-

ues of n. This allows us to better demonstrate the effects of changes in

k and n on our algorithm’s performance. We then privately estimate the

values of the d coefficients and their associated standard errors. We run

this entire experiment 100 times. We assume the sampling distribution of

the coefficients is multivariate Gaussian and imagine that the user sets all

upper bounds ≈ 100 times larger than the tightest possible upper bounds.

We present these results in Figure 2.

Each plot consists of coefficient estimates centered around their true
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(a) n = 10,000, k = 250 (b) n = 10,000, k = 1,000

(c) n = 50,000, k = 1,000 (d) n = 100,000, k = 1,000

Figure 2: OLS: Distribution of coefficient estimates and 95% confidence intervals.

values and presented in increasing order, with vertical bars representing the

95% confidence interval for that estimate. We expect properly calibrated

confidence intervals to cross the x-axis at the vertical dotted black lines,

placed at the 2.5th and 97.5th quantiles, which is the behavior we observe

in each plot.

Additionally, Figure 2 demonstrates the principle that the noise due to

privacy in our algorithm scales with k rather than n. The private confidence

intervals are significantly tighter in plot (b) than in plot (a), while plots (c)
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and (d) are essentially identical.

One complicating factor to this story is that plot (c) looks better than

plot (b), even though they use the same k. This is because the variance

of the BLB estimates will tend to decrease as n
k
increases, up to the point

where n
k
is large enough that the BLB estimates have converged to the

sampling distribution of the estimator. Figure 3 shows the distribution of

the BLB estimates of two of our estimated coefficients at the different levels

of n
k
used in plots (b) and (c).

(a) Coefficient 1 (b) Coefficient 3

Figure 3: OLS: BLB estimates from a single run

Ideally, the analyst should attempt to choose k to be as large as possible,

subject to the constraint that the BLB estimates, calculated on subsets of

size n
k
, converge to the true sampling distribution of the estimator.

One possible strategy for doing this is for the analyst to test the BLB

estimation for their estimator of interest on non-sensitive data and use a
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3.1 Comparison with UnbiasedPrivacy (Evans et al., 2019)

k that performs well on the non-sensitive data. In particular, an analyst

could start with k = 1 and increase k until the distribution of BLB es-

timates starts to look substantially different (i.e. different beyond Monte

Carlo error). Of course, this approach works only if the analyst can find or

generate non-sensitive data that are similar enough to their sensitive data

that the BLB will perform similarly on each. We discuss the issue further

in Section S7.4.

3.1 Comparison with UnbiasedPrivacy (Evans et al., 2019)

In Table 1, we compare our algorithm to the UnbiasedPrivacy (UP) al-

gorithm from Evans et al. (2019). UP is designed for estimators with a

univariate Gaussian sampling distribution, so we focus on that setting here.

While the goal of GVDP is to let users set very conservative bounds

(which the algorithm improves upon) and not clip any points in the aggre-

gation step, UP requires that users set reasonably good bounds upfront. UP

never tightens bounds that are too loose, but it will attempt to bias-correct

the results if the analyst’s chosen bounds clip some of the data (which our

algorithm does not).

We test UP against GVDP across five scenarios using the implementa-

tion provided in the original paper. As suggested in Evans et al. (2019), we
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3.1 Comparison with UnbiasedPrivacy (Evans et al., 2019)

split the privacy budget evenly between the mean estimation task and the

estimation of the proportion of points that are clipped. We consider two

cases in which we expect UP to perform bias correction, clipping the top

20% and 10% of the BLB estimates, and three in which we don’t; clipping

bounds set as tightly as possible with no clipping, bounds set three times

larger than the true values of the parameter, and bounds set 1,000 times

larger than the true value.

We run 1,000 simulations, each of which involves generating n = 50,000

data points Yi ∼ N (0, 250) and using UP and GVDP to generate a private

OLS estimator, using k = 500 as the number of subsets for the BLB for

each method. In Table 1, we provide the average ℓ1 error in the coefficient

estimate, average standard error, and empirical 95% confidence interval

coverage for each method with various levels of clipping bound.

In the 10% clipping and tight bound (no clipping) settings, UP mostly

delivers as advertised; it gives (approximately) valid confidence intervals

and does so with smaller standard errors than GVDP does under any

bounds. However, it is unable to achieve this when the top 20% of BLB

estimates are clipped, yielding highly biased coefficient estimates and poor

CI coverage. Moreover, even in the 10% and tight bound settings, UP

does not appear to achieve truly unbiased coefficient estimates. We believe
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3.1 Comparison with UnbiasedPrivacy (Evans et al., 2019)

Bounds Method Avg Coef Err Avg SE CI Cov

Top 20% Clipped UP 0.222 0.0872 0.237
GVDP 0.007 0.207 0.970

Top 10% Clipped UP 0.080 0.108 0.932
GVDP 0.003 0.207 0.970

Tightest bounds (no clipping) UP 0.129 0.145 0.973
GVDP 0.001 0.208 0.975

3 times too large UP 0.004 0.370 0.968
GVDP 0.004 0.218 0.973

1,000 times too large UP 3.239 121.090 0.950
GVDP 0.005 0.701 0.961

Table 1: Comparison of UP and GVDP: Average Coefficient Estimate, Av-

erage Standard Error, and Empirical Coverage of 95% Confidence Intervals

this is because of the error in the bias correction step of UP, created when

privately estimating the proportion of clipped data points.

In the cases where the bounds are too conservative, we see that GVDP

outperforms UP, as GVDP is designed to improve conservative bounds

whereas UP is not. It’s notable that in the 10% and 20% clipping where

GVDP gives no guarantees, it appears to provide unbiased coefficient esti-

mates and valid CI coverage. This is because of GVDP’s variance estimates

are conservative by design (to ensure valid coverage with high probability),

so even when the initial data bounds are set too narrowly it is possible that

GVDP’s overly conservative variances compensate inside of CoinPress such

that no BLB estimates end up being clipped.
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4. Discussion

We believe that whether or not our method (GVDP) is effective relative to

other approaches will generally come down to a few different factors.

First, we suggest that GVDP be considered primarily when the analyst

is not confident in their ability to set “good” bounds on their underlying

data domain X for their given estimator. This is a function of both analyst

knowledge of X and the properties of their estimator, as some estimators

will be robust even if the analyst sets bounds that clip small proportions of

the data, while others will not be (see our demonstration in Section 1.2).

Second, GVDP is likely to work well only for reasonably large n. Recall

that GVDP partitions the data X into k subsets of size n
k
and bootstrap-

ping the estimator over each subset. This creates a tradeoff between the

plausibility of our assumptions and the required noise addition to satisfy

DP. As k increases, the sensitivity of our aggregator decreases and so too

does the variance of the noise in our privacy mechanism.

However, we require that the BLB estimates be good estimates of the

sampling distribution of our estimator in the non-private setting (Assump-

tion 1). Similar to other bootstrap methods, the BLB’s

guarantees are asymptotic (see Section 3 of Kleiner et al. (2014)), and

so it is difficult to know how reasonable Assumption 1 is when n
k
is small.

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



Finally, we believe GVDP can be useful in settings where the dimen-

sion of the estimand of interest is significantly lower than the dimension of

the data. Higher dimensional domains create two potential problems for

differentially private estimation that are not present in non-private estima-

tion. First, setting clipping bounds, generally speaking, gets more difficult

as the dimension increases. Second, the function sensitivity, and thus vari-

ance of the noise in our privacy mechanism, increases with the dimension

of the function’s input domain (again see Lemma S1). The function being

privatized in GVDP takes the BLB parameter estimates as input rather

than the full data, so these two problems are minimized if the estimand is

low-dimensional relative to the original data.
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