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Abstract: Particle filters, also known as sequential Monte Carlo, are a powerful

computational tool for making inference with dynamical systems. In particular,

it is widely used in state space models to estimate the likelihood function. How-

ever, estimating the gradient of the likelihood function is hard with sequential

Monte Carlo, partially because the commonly used reparametrization trick is not

applicable due to the discrete nature of the resampling step. To address this

problem, we propose utilizing the smoothly jittered particle filter, which smooths

the discrete resampling by adding noise to the resampled particles. We show

that when the noise level is chosen correctly, no additional asymptotic error is

introduced to the resampling step. We support our method with simulations.
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1. Introduction

Computing or estimating the likelihood function and its gradient for a sta-

tistical model with hidden variables is a challenge with applications in many

areas of statistics and machine learning (Andrieu et al., 2005; Kingma and

Welling, 2014; Le et al., 2017; Mohamed et al., 2020). In a general form,

such a likelihood function can be written as

L(θ | y) =
∫

p(y, z; θ)dz, (1.1)

where p(y, z; θ) is the joint likelihood of the observed variables y and the

unobserved latent variables z with θ as parameters. In practice, the in-

tegral is usually estimated by a Monte Carlo method, typically a form of

importance sampling:

L̂(θ | y) = 1

n

n∑
i=1

p(y, zi; θ)

q(zi; θ)
with zi ∼ q, (1.2)

where q is the sampling distribution of zi’s which could potentially depend

on θ. The gradient of the likelihood function can be estimated by differenti-

ating L̂(θ | y) with respect to θ, provided that the sampling distribution q is

differentiable (in practice, usually the target is the log-likelihood instead).

However, in some high-dimensional cases, q may not be well behaved and

this naive method could result in considerable instability. A notable exam-

ple is the inference of state space models, where particle filters, also known
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as sequential Monte Carlo (SMC), are usually used to construct q (Liu and

Chen, 1998; Doucet et al., 2001).

A state space model consists of a Markovian system of hidden states

and a probabilistic observation model. The q function provided by SMC is

high-dimensional and often incurs a high variance in estimating the deriva-

tive of the likelihood function (Naesseth et al., 2018). Recently, there has

been a line of work on differentiable particle filters (DPF) (Naesseth et al.,

2018; Zhu et al., 2020; Corenflos et al., 2021) that addresses this difficulty

and enables end-to-end training in state space models. Research on DPF

addresses the challenge of using particle filters to estimate the gradient of

an estimating equation, usually the log-likelihood function, with respect to

the estimand, where directly applying backpropagation through the pro-

posal function q is generally highly unstable due to the discreteness of the

resampling step. As a result, DPF can be used to infer the parameters of

a complex model using gradient-based methods. Although gradient-based

methods are not theoretically guaranteed to converge, they have garnered

growing attention due to their promising performance in practice and in-

herent regularization ability (Ali et al., 2020).

The reparametrization trick is a method used to provide low-variance

gradient estimate of an expectation, such as ∇θEp(z;θ)[f(z; θ)], where θ ap-
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pears in the underlying density function p (see Section 4.2 for a detailed

description). However, the reparametrization trick only works for continu-

ous distributions. As briefly mentioned above, the main challenge of DPF

arises from the resampling step, which introduces discreteness and prevents

the deployment of the reparametrization trick. While this issue is created

by resampling, the resampling step is necessary for coping with the weight

degeneracy problem that often appears in particle filters. If no resampling

is performed, most of the particle weights will soon converge to zero and

only a tiny number of particles are actually used for approximating the

posterior. A main intuition behind resampling is that particles with small

weights are less informative and thus discarded so as to save computational

resources to explore regions that may be more promising for the future (Liu

and Chen, 1995).

Numerous approaches have been proposed to resample from a set of

weighted particles, including the bootstrap resampling or multinomial re-

sampling (Gordon et al., 1993), residual resampling (Liu and Chen, 1998),

stratified resampling (Kitagawa, 1996), optimal resampling (Fearnhead and

Clifford, 2003), and so on. Most, if not all, of the commonly used resampling

methods are discrete in nature, preventing a direct use of the reparametriza-

tion trick. Some researchers have investigated jittered resampling, which

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



involves adding a small amount of noise to the resampling step to alleviate

the particle degeneracy issue(Shephard and Flury, 2009). Although jittered

resampling is not popularly deployed in a regular SMC algorithm, perhaps

because it does not improve the performance of SMC for simple posterior

estimation, we demonstrate in this paper how to use it as a building block

to facilitate the reparametrization trick for gradient estimation with SMC.

Naesseth et al. (2018) point out that in the absence of the reparametriza-

tion trick, the gradient estimate is highly unstable, and propose to dis-

card the term that corresponds to resampling and thus cannot exploit the

reparametrization trick. Clearly, this method produces non-negligible bias

if resampling is frequently implemented . Zhu et al. (2020) propose to

replace the traditional resampling mechanisms with a continuous transfor-

mation called particle transformer to enable the reparametrization trick.

In a particle transformer, the resampling procedure is realized through a

neural network (NN) with additional parameters, where the input layer is

the weighted particles and the output layer is the resampled unweighted

particles. Corenflos et al. (2021) apply ensemble transform (Reich, 2013)

to the resampling step, which is accomplished through a linear transforma-

tion (interpolation). Specifically, the linear transformation is determined

by an entropy penalized optimal transport measure. Compared to the par-
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ticle transformer, the ensemble transform can avoid training a neural net-

work. However, neither the particle transformer nor the ensemble transform

necessarily preserve well the particles’ empirical distribution after resam-

pling. As will be detailed in Section 2, while the NN-based transformer

lacks theoretical guarantees and is computationally expensive, the linear

transformation may significantly alter the empirical particle distribution.

In this article, we develop a deployment of the “smoothly jittered parti-

cle filter,” which replaces standard discrete resampling mechanisms with

a kernel smoothed resampling procedure, to enable the reparametrization

trick. We also present that specially designed kernel functions can enable

efficient computation. Our experiments show that the proposed method

outperforms existing techniques in various model settings.

The rest of the paper is organized as follows. Section 2 reviews some

related work. Section 3 offers a comprehensive yet concise overview of the

state space model and the SMC framework under a unified notation sys-

tem. Section 4 is dedicated to the gradient estimation problem, in which we

first introduce the general gradient estimation problem and two main ap-

proaches to solve it, and then show the obstacles in realizing the approaches

under the SMC framework. Section 5 proposes the reparametrized resam-

pling via jittering and presents a fast computation algorithm to solve the
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differentiability problem of SMC discussed in Section 4. Section 6 provides

numerical simulation results to support the proposed method. Section 7

concludes the article and discusses some further extensions.

2. Related work

Pitt (2002) presents an early work on smooth likelihood estimators, sug-

gesting a method to sample from a linearly interpolated empirical CDF of

particles in one-dimensional cases. Building on this concept, Lee (2008) ex-

tends the approach by utilizing tree-based partitions to construct piece-wise

continuous estimators.

Ścibior and Wood (2021) suggest that the stop-gradient operator can be

used to customize which terms to ignore in gradient calculation. Maddison

et al. (2016), Le et al. (2017) and Corenflos et al. (2021) discussed the

gradient estimation bias when the resampling term is ignored. In particular,

Corenflos et al. (2021, Proposition 4.1) showed that the bias is zero when

p((x(t−1), x(t)) | y1:t) = p((x(t−1), x(t)) | y1:T ).

The ensemble transform (Corenflos et al., 2021) replaces resampling

with a linear transformation of particles (with the coefficients being non-

linear functions of the weights and particles). The linear transformation

may be problematic, for instance, when the particles concentrate on a low-
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dimensional manifold and a linear transformation could send the particles

off the manifold. We refer the reader to Figure 1 for an illustration. Intu-

itively, this issue is less severe when the number of particles is large. Note

that since the optimal transport matrix is usually close to a diagonal matrix,

this issue may not be very pronounced in practice. Our proposed jittering

method statistically produces particles close to existing particles. Thus,

we believe it mitigates this particular issue to a certain extent, though not

entirely.

Another closely related work is VMPF-UG by Lai et al. (2022), in

which the resampling and proposal steps are merged into a single step, thus

eliminating the discrete resampling component in SMC and enabling the

reparametrization trick. The key difference between their method and ours

is that by keeping the resampling step, our approach preserves the trajectory

structure. The absence of a trajectory structure prohibits the use of some

models including the variational recurrent neural network (VRNN) (Lai

et al., 2022, Section 7). Another advantage of our method is its flexibility to

accommodate any proposal distribution, whereas VMPF-UG currently only

supports Gaussian or product distributions. In a more divergent approach,

Aitchison (2019) introduced tensor Monte Carlo as an alternative to SMC,

which no longer has a sequential structure and avoids resampling entirely.
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Figure 1: Cartoon illustration of a potential issue of linear-transformation-

based resampling. Let X1:4 denote the original particles, which are resam-

pled to X̃1:4 (X4 = X̃4). The solid curve represents a low-dimensional

manifold, around which the probability distribution is concentrated. While

the original particles are close to the manifold, after such linear resampling

X̃2 and X̃3 drifted away and became bad particles.

3. Preliminaries

3.1 Notation

We use capital letters to denote random variables and lower case letters

for their realizations. Superscripts and subscripts are used to denote the

step/iteration and the sample index, respectively. Temporal notations are

omitted for clarity whenever there is no confusion. We use E and V to

represent expectation and variance, with subscripts, when used, to highlight
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3.2 State space model

the underlying distribution. The gradient with respect to variable θ is

denoted by ∇θ.

3.2 State space model

State space models, also known as hidden Markov models when the hidden

states take on finite discrete values, are characterized by a transition model

and an observation model. In its general form, the state space model can

be expressed as:

X(1) ∼ g1(·; θ),

Y (t) |
(
X(1:t) = x(1:t), Y (1:t−1)

)
∼ ft(· | x(t); θ),

X(t) |
(
X(1:t−1) = x(1:t−1), Y (1:t−1)

)
∼ gt(· | x(t−1); θ), t = 2, · · · , T,

(3.3)

where the X(t)’s are unobserved hidden states while the Y (t)’s are fully

observed, and f and g represent distributions as well as density functions.

A well-known problem for such models is the so-called filtering problem,

which is to estimate the hidden state X(t) given all of the observations up

to time t for fixed θ. In other words, the filtering problem focuses on the

on-line posterior distribution of the hidden state at each time:

p(x(t) | y(1:t); θ) =
∫

p(x(1:t) | y(1:t); θ)dx(1:t−1),

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



3.3 Particle filters

where

p(x(1:t) | y(1:t)) ∝
t∏

s=1

[
gs(x

(s) | x(s−1); θ)fs(y
(s) | x(s); θ)

]
.

Aside from inferring the hidden states, we are also interested in esti-

mating the model parameter θ when it is unknown. There are two general

inference strategies. From the perspective of maximizing the likelihood

function, we aim to compute

argmax
θ

∫
p(x(1:t), y(1:t); θ)dx(1:t).

From the perspective of Bayesian inference, we assign a prior density p(θ)

and aim to infer the following joint posterior density of (θ, x(1:t)):

p(θ, x(1:t) | y(1:t)) ∝ p(x(1:t), y(1:t); θ)p(θ).

The standard method of maximizing the likelihood function or comput-

ing the posterior mean is difficult because p(y(1:t); θ) or p(θ, x(1:t)|y(1:t)) is

generally intractable unless the model is linear and Gaussian. Therefore, it

is necessary to use Monte Carlo approximations to carry out the inference.

3.3 Particle filters

For state space models, particle filters (PF) refer to a class of algorithms to

approximate the sequence of posterior distributions (of the hidden states,
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say) with weighted particles. A generic particle filter algorithm is outlined

in Algorithm 1. In a sequential manner, particles and their weights are

updated according to proposal distributions.

Consider a scenario where θ is the unknown parameter of interest. In

a Bayesian framework, we can utilize particle filters for posterior inference.

Although particle filters do not directly target the posterior distribution

of θ, they can estimate the values of p(y(1:t) | θ) and approximate the

simulation from p(x(1;t) | y(1:t); θ). Thus, particle filters can be used for

making a Metropolis–Hastings type proposal and computing the acceptance

ratio. This class of algorithms is widely recognized as particle MCMC

methods (Andrieu et al., 2010).

4. Differentiability of Sequential Monte Carlo

4.1 Gradient-based parameter estimation

Although the particle MCMC approach and its variants have been shown

effective in estimating the parameters in state space models, it may take a

large number of iterations for the algorithm to converge. To avoid costly

computation, one intuitive way is to employ the gradient of the log-likelihood

with respect to the parameters to guide the search in the parameter space.

An accurate estimation of the gradient can guide us to search in the space
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4.1 Gradient-based parameter estimation

Algorithm 1: Sequential importance sampling with resampling.

Input: {gt, ft, y(t)}Tt=1, θ

Output: weighted particles (X
(1:T )
i ,W

(T )
i )1≤i≤n, estimation of

log-likelihood ˆℓ(θ)

Initialization: ℓ̂(θ)← 0.

for t = 1 to T do

Draw X
(t)
j from gt(X

(t) | X(1:t−1)
j ; θ) (g1(X

(1); θ) if t = 1) for

j = 1, 2, . . . , n conditionally independently.

Calculate the importance weight (π0 ≡ 1):

W
(t)
j = ft(y

(t) | X(t)
j ; θ)

Update the estimate of the log-likelihood:

ℓ̂(θ)← ℓ̂(θ) + log

(
1

n

∑
j

W
(t)
j

)
.

Normalize the importance weight.

if t < T then

Sample a
(t)
1 , a

(t)
2 , . . . , a

(t)
n from {1, 2, . . . , n} with probabilities

W
(t)
1 , · · · ,W (t)

n , let X̃
(1:t)
j = X

(1:t)

a
(t)
j

, and reweight the

samples X̃
(1:t)
1 , X̃

(1:t)
2 , · · · , X̃(1:t)

n equally with 1/n.

Let X
(1:t)
j = X̃

(1:t)
j for j = 1, 2, . . . , n.

end

end

Return (X
(1:T )
i ,W

(T )
i )1≤i≤n, ℓ̂(θ).
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4.1 Gradient-based parameter estimation

more efficiently. However, the gradient of the marginal log-likelihood ℓ(θ)

with respect to θ is intractable analytically because the distribution itself

is generally not in closed form. Instead, letting

ℓ̂(θ) = log L̂(θ) = log
(
SMC estimate of p(y(1:t) | θ)

)
, (4.4)

where L̂(θ) is an unbiased estimator for the likelihood function L(θ), we

aim to compute the gradient of E[ℓ̂(θ)], where the expectation is taken

with respect to the randomness in the SMC procedure, including both the

particle generation and resampling. It is not difficult to derive the joint

distribution of the particles and the resampling indices, conditional on the

observations y(1:t), which is shown in equation (4.5) below:

p(x
(1:t)
1:n , a

(1:t)
1:n ; θ) =

[
n∏

i=1

g(x
(1)
i ; θ)

]
·

t∏
s=2

n∏
i=1

 w
(s−1)

a
(s−1)
i∑

l w
(s−1)
l

g(x
(s)
i | x

(s−1)

a
(s−1)
i

; θ)

 ,

(4.5)

where a
(1:t)
1:n represents the resampling indices as in Algorithm 1 and w rep-

resents the importance weights, which depend on y. From the perspective

of variational inference, the objective function E[ℓ̂(θ)] can be regarded as a

surrogate evidence lower bound (see Theorem 1 in Naesseth et al. (2018)).

Note that parameter θ not only appears in the term ℓ̂(θ), but also affects

the underlying joint density p(x
(1:t)
1:n , a

(1:t)
1:n ; θ). Therefore, it is imprecise to

simply exchange the differentiation and the expectation signs for the com-
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4.2 Score estimate and the reparametrization trick

putation of the gradient. To propose an efficient and accurate estimation

of ∇θE[ℓ̂(θ)] is the major focus of this article.

4.2 Score estimate and the reparametrization trick

Computing the gradient of the expectation term is a ubiquitous problem

in statistics and machine learning (Mohamed et al., 2020). Two most used

gradient estimators are the score function gradient (Williams, 1992) and the

reparametrization gradient (Kingma andWelling, 2014). Specifically for our

goal, the objective function is Ep(z;θ)[ℓ̂(θ, z)], where z = (x
(1:t)
1:n , a

(1:t)
1:n ), and

we have made clear the dependency of the log-likelihood estimate ℓ̂ on z.

Assuming that we can swap the derivative and integration signs, we have

∇θEp(z;θ)[ℓ̂(θ, z)] =∇θ

[∫
z

p(z; θ)ℓ̂(θ, z)dz

]
=

∫
z

∇θ

[
p(z; θ)ℓ̂(θ, z)

]
dz

=

∫
z

p(z; θ)∇θℓ̂(θ, z)dz +

∫
z

ℓ̂(θ, z)∇θp(z; θ)dz.

(4.6)

The first term in equation (4.6) can be rewritten as Ep[∇θℓ̂(θ, z)] and thus

can be easily estimated by a Monte Carlo method that draws samples z ∼

p(z; θ). We can rewrite the second term as

∫
z

ℓ̂(θ, z)p(z; θ)∇θ log p(z; θ)dz = Ep[ℓ̂(θ, z)∇θ log p(z; θ)],
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4.2 Score estimate and the reparametrization trick

and then apply the same Monte Carlo method. This Monte Carlo estimate

is usually termed as the score estimate or reinforce estimate (Williams, 1992;

Poyiadjis et al., 2011). However, this estimate usually has a huge variance,

and it may even be better to simply estimate it as zero (Le et al., 2017;

Naesseth et al., 2018). The induced bias is provided explicitly in Corenflos

et al. (2021, Proposition 4.1).

The reparametrization trick is another way to solve the gradient esti-

mation problem. Using this trick, Kingma and Welling (2014) proposed

an unbiased, differentiable and scalable estimator for the variational bound

(see their Section 2.2) in auto-encoding variational Bayes. The “tricky”

part of the reparametrization trick is that we can make the randomness

an input to the model so as to backpropagate through a random node.

Consider the general question of estimating ∇θ

(
Ep(z;θ) [f(z; θ)]

)
, of which

equation (4.6) is a special case. If we can reparametrize Z as Z = ϕ(ϵ; θ),

such that ϕ(ϵ; θ) has density p(·; θ), where ϕ is differentiable with respect

to θ, and ϵ ∼ p(ϵ) independent of θ, then

Ep(z;θ) [f(z; θ)] = Ep(ϵ) [f(ϕ(ϵ; θ); θ)] , (4.7)

and consequently,
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4.3 Resampling in SMC and non-differentiability

∇θEp(z;θ) [f(z; θ)] = ∇θEp(ϵ) [f(ϕ(ϵ; θ); θ)]

= Ep(ϵ) [∇θf(ϕ(ϵ; θ); θ)] ,

(4.8)

which can be approximated by a Monte Carlo method that draws ϵ ∼

p(ϵ).

4.3 Resampling in SMC and non-differentiability

Although the reparametrization trick has been shown to be efficient in vari-

ous applications, it is not applicable to discrete distributions. For example,

if we employ step functions as our ϕ, the gradient will be zero almost every-

where and undefined at some points. This means that we cannot directly

apply the reparametrization trick to equation (4.6), since the resampling

indices a
(1:t)
1:n are discrete.

To specifically understand the subtlety of the problem in the context

of SMC, let us consider the state-space model in more details. Following

notations from Section 3.2 and the chain-rule of probability, we have

∇ℓ(θ) = ∇ log p(y(1); θ) +
T∑
t=2

∇ log p(y(t) | y(1:(t−1)); θ). (4.9)

Let us start from the first term. Suppose we draw x
(1)
1:n from a distribution

q1(·; θ), such that we can use the reparameterization trick to write x
(1)
i =
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4.3 Resampling in SMC and non-differentiability

ϕ1(ϵ
(1)
i , θ), ϵ

(1)
i ∼iid N (0, 1). Then we have

p(y(1); θ) = Eq1(·;θ)

[
p(y(1), x(1); θ)

q1(x(1); θ)

]
= E

[
p(y(1), ϕ1(ϵ

(1), θ); θ)

q1(ϕ1(ϵ(1), θ); θ)

]
, ϵ(1) ∼ N (0, 1).

Since the distribution of ϵ(1) is free of θ, we can directly differentiate under

the integral sign and obtain an expectation form of ∇θp(y
(1); θ) (and hence

also ∇θ log p(y
(1); θ)), then use x

(1)
1:n as Monte Carlo samples for estimation.

Now, suppose we resample the particles x
(1)
1:n, and equivalently ϵ

(1)
1:n, to

get a new set ϵ̃
(1)
1:n and, correspondingly x̃

(1)
1:n with x̃

(1)
i = ϕ1(ϵ̃

(1)
i , θ), which

can be viewed as approximate samples from p(x(1) | y(1); θ). Let us similarly

sample x
(2)
1:n from q2(·; θ), reparametrize x

(2)
i = ϕ2(ϵ

(2)
i , θ), ϵ

(2)
i ∼iid N (0, 1),

and write

p(y(2) | y(1); θ) =
∫

p(y(2), x(2) | y(1), x(1); θ)p(x(1) | y(1); θ)dx(1)dx(2)

= Ex(1)∼p(x(1)|y(1);θ),x(2)∼q2(·;θ)

[
p(y(2), x(2) | y(1), x(1); θ)

q2(x(2); θ)

]
≈ Ex̃(1)∼ϕ1(ϵ̃(1),θ),x(2)∼q2(·;θ)

[
p(y(2), x(2) | y(1), x̃(1); θ)

q2(x(2); θ)

]
= Eϵ̃(1),ϵ(2)

[
p(y(2), ϕ2(ϵ

(2), θ) | y(1), ϕ1(ϵ̃
(1), θ); θ)

q2(ϕ2(ϵ(2), θ); θ)

]
.

However, this is not a successful reparametrization attempt, as the ϵ̃(1)’s

are no longer i.i.d. Gaussian and their distribution implicitly depends on

θ due to resampling. Thus, we are not able to directly differentiate under

the integral sign. If we ignore this fact, pretending that the ϵ̃’s are i.i.d.

Gaussian and differentiating under the integral sign anyway, we recover the
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4.3 Resampling in SMC and non-differentiability

algorithm proposed by Naesseth et al. (2018).

Despite the non-differentiability, resampling is necessary in SMC be-

cause the repeated forward sampling procedure would eventually lead to

weight degeneracy, where the weights concentrate on only a few particles

(Liu and Chen, 1995). There are various means to resample from a set of

weighted particles. Aside from the bootstrap resampling or multinomial re-

sampling shown in Algorithm 1, residual resampling (Liu and Chen, 1998)

and stratified resampling (Kitagawa, 1996) are two more popular resam-

pling schemes because they tend to introduce less unnecessary randomness.

Reich (2013) proposed the optimal transport resampling, borrowing ideas

from transportation theory. More recently, Gerber et al. (2019) introduced

the Hilbert curve resampling in a multi-dimensional space, which is shown

to have optimal rate under some conditions (Li et al., 2022). Unfortunately,

all these resampling schemes are discrete, in that the resampled particles

can only take values in a finite set (conditional on particles from the previ-

ous step), and thus incompatible with the reparametrization trick.

To circumvent the non-differentiability, Corenflos et al. (2021) proposed

a framework where the traditional resampling step is replaced by a linear

transformation with parameters defined by the optimal transport resam-

pling (Reich, 2013). However, the linear transformation could give rise to
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bad particles when the posterior distribution concentrates on a non-linear

manifold, or when a linear combination of two modes ends up in an area

with low density.

5. Reparametrized Resampling via Jittering

5.1 Algorithm description

The vanilla multinomial resampling strategy in SMC samples independently

from the following multinomial distribution:

X̃i | X,W ∼ Multinomial(1, X, (W1,W2, . . . ,Wn)),

which is equivalent to sampling from the empirical distribution:

X̃i | X,W ∼
n∑

i=1

WiδXi
(x).

The discrete nature of multinomial distribution makes the reparametriza-

tion trick fail. To overcome this issue, we consider a kernel smoothed version

of the form

X̃i | X,W ∼
n∑

i=1

Wiκr (x−Xi) , (5.10)

where κr(·) is a non-negative differentiable kernel density, and r is a pre-

determined bandwidth parameter that balances smoothness and bias. Here,

we require that
∫
Rd κr (x) dx = 1, where d is the dimension of x. In other
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5.1 Algorithm description

words, κr is the derivative of a d-dimensional cumulative distribution func-

tion (CDF).

If we resample independently according to (5.10), everything is differ-

entiable and we can utilize the reparametrization trick. If κr =
∏d

j=1 κr,j =

∇xKr is the derivative of the CDF Kr =
∏d

j=1Kr,j, which corresponds

to independent random components. Then we can express each X̃i as

F−1(Ui;W,X,Kr), where Ui is a uniform random vector on the d-dimensional

unit cube [0, 1]d, and F−1(·;W,X,Kr) is the generalized inverse function of

FW,X,Kr(x), which is defined recursively as follows:

FW,X,Kr

1 (x1) =
∑
i

WiKr,1(x1 −Xi1),

FW,X,Kr

j (xj;x1:j−1) =

∑
i Wi

∏j−1
k=1 κr,k(xk −Xik)Kr,j(xj −Xij)∑
i Wi

∏j−1
k=1 κr,k(xk −Xik)

.

(5.11)

Here, xj denotes the j-th entry of the d dimensional vector x.

Let X̃i = F−1(Ui;W,X,Kr), it suffices to calculate the gradient of

F−1(·;W,X,Kr). The details are deferred to Section S1 in the supplemen-

tal material. Our method, named reparametrized resampling via jittering

(RRJ), is detailed in Algorithm 2.

It has been pointed out to us by a reviewer that an arXiv preprint

Graves (2016) proposed a recursive method that can also be used as an

alternative way to calculate this gradient of F−1. The main ideas behind

their method and ours are very similar. In the remainder of this paper, we
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5.2 Choice of the kernel distribution

present theoretical insights, practical considerations, and empirical studies.

Algorithm 2: Reparametrized Resampling via Jittering (RRJ)

Input: weighted particles (X
(1:t)
i ,W

(t)
i )1≤i≤n, kernel distribution

Kr with a pre-chosen bandwidth r.

Output: resampled particles. (X̃i
(1:t)

)1≤i≤n.

Sample X̃
(1:t)
1 , X̃

(1:t)
2 , · · · , X̃(1:t)

n from X
(1:t)
1 , · · · , X(1:t)

n with

probabilities W
(t)
1 , · · · ,W (t)

n , and reweight the samples

X̃
(1:t)
1 , X̃

(1:t)
2 , · · · , X̃(1:t)

n equally with 1/n.

Let X̃
(1:t)
i = X̃

(1:t)
i + ϵi, where ϵ

i.i.d.∼ Kr, i = 1, . . . , n.

Return (X̃i
(1:t)

)1≤i≤n.

5.2 Choice of the kernel distribution

Technically any kernel distribution with differentiable density is valid for

RRJ. We recommend the Gaussian kernel as a default choice for practical

use, given its simplicity in sampling and computation. Aside from the kernel

itself, the choice of the bandwidth r is more critical for the behavior of the

proposed algorithm, as it balances the SMC accuracy and differentiability.

For the sake of differentiability, we would like a large r; for high sampling

accuracy, however, we would like a small r so that the bias introduced by

RRJ is negligible.
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5.2 Choice of the kernel distribution

Consider a generic step in Algorithm 2, where we analyze the resampling

error similar to that in Li et al. (2022). There, the resampling step is

unbiased in terms of

E

[
n∑

i=1

1

n
ϕ(X̃i) | X,W

]
=

n∑
i=1

Wiϕ(Xi)

for any ϕ, so they only analyzed the resampling variance. Here, we are

interested in the mean squared error (MSE) instead because resampling

is now generally biased. When bias exists, under some loose conditions,

specified in Theorem 1, a properly chosen r does not affect the order of the

estimation error rate.

Theorem 1. Consider the state space model and the SMC process in Al-

gorithm 2 in which parameter θ is given, the length T of the state space

model is fixed, and kernel Kr satisfies kr(x) = k(x/r) for a fixed density

k(·) with bandwidth r given. Let πt(x
(1:t)) = p(x(1:t) | y(1:t)) and let d be the

dimension of the hidden state x(t). Assume

(i) ft(y
(t) | ·) and gt(x

(t) | ·) are upper bounded by M and L-Lipschitz,

(ii) ft(y
(t) | ·) is lower bounded by e > 0,

(iii) r = O(1/
√
dn).
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Then for any bounded Lipschitz ϕ, we have∣∣∣∣∣E
{∑n

j=1W
(t)
j ϕ(X

(t)
j )∑n

j=1 W
(t)
j

}
−
∫

πt(x
(1:t))ϕ(x(t))dx(1:t)

∣∣∣∣∣ = O(1/
√
n), (5.12)

Var

{∑n
j=1 W

(t)
j ϕ(X

(t)
j )∑n

j=1W
(t)
j

}
= O(1/n), (5.13)

and

E
[
|ℓ̂(θ)− ℓ(θ)|2

]
= O(1/n), (5.14)

where ℓ(θ) is the true log-likelihood.

We note that, while the rates in Theorem 1 do not explicitly depend on

the dimension d, the dimension plays a role through the Lipschitz constant

L. We therefore cannot claim that this result is dimension-independent.

The complete proof and some empirical results on the likelihood bias of

RRJ are provided in the Supplementary Materials Sections S2 and S3.

6. Experiments

6.1 Experiments overview

To verify the effectiveness of RRJ in different settings, we implement sim-

ulation studies under three models and analyze a real data case. As in

Corenflos et al. (2021), we use the log-likelihood estimate as the training

target. For simulations with well-specified models, we use the MSE of θ̂
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6.1 Experiments overview

as a performance measure; for real data analysis, in the absence of the

ground truth, we run a vanilla SMC algorithm with a large n to evaluate

the likelihood at θ̂ obtained by different resampling methods.

Simulation studies consist of (1) the linear state space model, (2) the

stochastic volatility model, and (3) the non-linear transition model. For

each model, 50 independent replications are carried out. The proposed

RRJ is applied to each of the simulated data to learn the corresponding

parameters. We compare the results with the same model trained by the

ensemble transform proposed by Corenflos et al. (2021), along with the

method in Naesseth et al. (2018), where the resampling terms are simply

ignored. The last two methods are referred to as “ET” and “multinomial”,

respectively.

All of the aforementioned methods, including the RRJ, are carried out

in the procedure of gradient learning using ADAM (Kingma and Ba, 2014).

For simulation studies, we use a fixed learning rate of 0.01; for the real data

analysis, we follow the same setting as in Corenflos et al. (2021) and use

learning rate 0.01× 0.9⌊step/200⌋. All the other ADAM parameters are set to

default values.
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6.2 Linear state space models

6.2 Linear state space models

The multidimensional linear state space model is a widely used model for

time series data. Its general form can be expressed as:

X(t) | X(1:t−1) ∼ N
(
ΦX(t−1),Σx

)
,

Y (t) | X(1:t), Y (1:t−1) ∼ N
(
X(t),Σy

)
,

for t = 2, · · · , T , with X(1) ∼ N (0, 1/3I). In the simulations, we set Σx =

Σy = 0.25I, and let

Φ = [ρ|i−j|]ij ×
0.8

λmax([ρ|i−j|]ij)
, (6.15)

where λmax(·) denotes the maximum eigenvalue of a matrix and the true

value of ρ is set as 0.5.

From Figure 2, we can see that RRJ with different bandwidth param-

eters show better performances than ensemble transform and multinomial.

We also show pairwise comparisons with ensemble transform in Figure 3,

where both methods are applied to the same data. We can see that RRJ

often outperforms ensemble transform, especially in higher dimensions.
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6.2 Linear state space models
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Figure 2: Simulation results for the linear transition state space model in

different dimensions. Boxplots of squared differences over 50 independent

experiments, with mean values indicated by green squares. Here, T = 40,

particle numbers are 50.
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6.2 Linear state space models
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Figure 3: Pairwise comparison between the RRJ and the ensemble trans-

form in different dimensions. Each dot represents an independent experi-

ment, where the x-coordinate is the squared loss of RRJ with kernel band-

width r = 0.02, and the y-coordinate is the squared loss of ensemble trans-

form. Here, T = 40, particle numbers are 50.
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6.3 Stochastic volatility model

6.3 Stochastic volatility model

The multidimensional stochastic volatility model is commonly applied model

in financial economics. The model is

X(t) | X(1:t−1) ∼ N
(
ΦX(t−1),Σ

)
,

Y (t) | X(1:t), Y (1:t−1) ∼ N
(
0, β2 diag(exp(X(t)))

)
,

for t = 2, · · · , T with X(1) ∼ N (0, 1/3I), where Φ and Σ are d×d parameter

matrices.

According to Chapter 14.2 in Chopin and Papaspiliopoulos (2020), the

likelihood function of the stochastic volatility model is highly pathological,

and it is often challenging to estimate all its parameters simultaneously. To

validate the effectiveness of the proposed method more conveniently, in this

study we fix Σ = 0.25I and only estimate part of the parameters, i.e, Φ

and β, with the true value of β set to 0.5 and the true of Φ set the same as

in (6.15). From Figure 4, we can see that RRJ with different parameters

show better performances than ensemble transform, but not as good as

multinomial.
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6.4 Nonlinear transition state space model
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Figure 4: Simulation results for the stochastic volatility model in different

dimensions. Boxplots of squared differences over 50 independent experi-

ments, with mean values indicated by green squares. Here, T = 40, particle

numbers are 50.

6.4 Nonlinear transition state space model

We consider the state space model with nonlinear transition density (Kita-

gawa, 1996) below

X(t) | X(1:t−1) ∼ N
(
0.5θ3X

(t−1) +
10θ4X

(t−1)

1 + (X(t−1))2
, θ1V

(t)

)
,

Y (t) | X(t) ∼ N
(
0.05θ5X

(t), θ2W
(t)
)
,

(6.16)

where V (t) and W (t) are independent random variables sampled from the

standard normal distribution N (0, 1), and X(1) ∼ N (0, 2). In this model,

θ1, θ2, θ3, θ4 and θ5 are the parameters to be estimated, whose real values

are all set to 1. Compared to the linear transition model, the parameters

are more difficult to estimate for this non-linear transition model. Figure 5
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6.4 Nonlinear transition state space model

and Table 1 shows that RRJ outperforms the other methods for θ3 and θ4,

while not as good for θ1 and θ2. For θ5, errors of RRJ methods have much

smaller median, while the means are comparable.

Mean loss θ1 θ2 θ3 θ4 θ5

RRJ0.02 0.782(0.021) 0.067(0.004) 0.318(0.016) 0.248(0.012) 0.047(0.004)

RRJ0.06 0.791(0.021) 0.067(0.004) 0.320(0.017) 0.269(0.021) 0.266(0.027)

RRJ0.1 0.816(0.027) 0.069(0.004) 0.331(0.018) 0.381(0.042) 0.623(0.063)

ET 0.808(0.021) 0.063(0.005) 0.398(0.018) 0.639(0.092) 0.766(0.063)

multinomial 0.740(0.017) 0.054(0.004) 0.346(0.016) 0.621(0.088) 0.361(0.028)

(a) The mean squared error (MSE) and the standard deviation across multiple

independent experiments.

Median loss θ1 θ2 θ3 θ4 θ5

RRJ0.02 0.857 0.025 0.198 0.149 0.016

RRJ0.06 0.875 0.024 0.195 0.137 0.030

RRJ0.1 0.843 0.024 0.182 0.156 0.051

ET 0.956 0.021 0.222 0.190 0.424

multinomial 0.926 0.020 0.221 0.185 0.163

(b) The median of the squared errors across multiple independent trials.

Table 1: The results of the non-linear experiments are presented in these

two tables.
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Figure 5: Simulation results for the nonlinear transition state space model.

Boxplots of squared differences over 600 independent experiments, with

mean values indicated by green squares. Here, T = 20.
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6.5 VRNN on polyphonic music data

6.5 VRNN on polyphonic music data

The variational recurrent neural network (VRNN) proposed by Chung et al.

(2015) combines the concepts of RNN and variational autoencoder, which

can ensure the flexibility of the dynamic model to a large extent. Fol-

lowing the notation in Corenflos et al. (2021), the model is represented in

equation (6.17).

(R(t+1), O(t+1)) = RNNθ(R
(t), Y (1:t), τθ(Z

(t)),

Z(t+1) ∼ N (µθ(O
(t+1)), σθ(O

(t+1))),

p̂(t+1) = hθ(τθ(Z
(t+1)), O(t+1)),

Y (t) | R(t), Z(t) ∼ Ber(p̂(t)),

(6.17)

where R(t) and O(t) represent the RNN state and output in a regular LSTM

model, respectively. Z(t) is a Gaussian random variable and τθ, hθ, µθ, σθ

are fully connected neural networks. Y (t) denotes the binary observations.

We initialize (R(1), O(1)) to be zeros and Z(1) to be a sample from the

standard multivariate Gaussian distribution. We use 36 particles to run the

experiments and then run a separate SMC with multinomial resampling and

500 particles for performance validation. The learning rate is set to 0.01×

0.9⌊step/1000⌋ for a total of 10,000 steps. Further details of the experiments

can be found in Supplementary Materials Section S4.
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6.5 VRNN on polyphonic music data

We present our experimental findings based on three polyphonic music

datasets outlined in Corenflos et al. (2021), which adhere to the method-

ology of Boulanger-Lewandowski et al. (2012). Within each dataset, the

binary vector Y (t) encompasses 88 dimensions, corresponding to the piano

note range spanning from A0 to C8. Table 2 showcases the sample mean and

standard deviation of the last-2000-step-average loss derived from indepen-

dent experiments, while Figure 6 illustrates the loss history of a representa-

tive run. Notably, our results demonstrate that RRJ performs on par with

or surpasses ensemble transform concerning the achieved log-likelihood. It

is worth noting that ensemble transform tends to exhibit greater stability

across distinct experimental runs.

RRJ ET

JSB 99.76 (16.09) 156.19 (16.38)

Nottingham 99.45 (20.88) 147.78 (13.52)

Muse 135.60 (33.59) 189.35 (15.47)

Table 2: Sample mean and standard deviation of the last-2000-step-average

minus log-likelihood, calculated over 50 independent runs.
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Figure 6: The likelihood evaluation for VRNN model in a single run. The

first 100 burn-in steps are omitted.

7. Discussion

This artical introduces and investigates a method called the reparametrized

resampling via jittering in particle filters for efficiently estimating the gra-

dient of the likelihood function of state space models. Some theoretical

insights and numerical experiments are provided to demonstrate the ef-

fectiveness of the proposed method. We conclude the article with some

additional thoughts and open problems.
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In a conventional application of particle filters, stratified resampling

is often preferred as it introduces less randomness compared to multino-

mial resampling. However, it is not straightforward to backpropagate when

stratified resampling is employed. Our method can be easily generalized

to stratified resampling. Instead of using n i.i.d. samples Ui ∼ [0, 1]d (see

Section 5), we can stratify the space and use a low discrepancy set such as

in Gerber and Chopin (2015) and Li et al. (2022). It is expected to improve

the gradient estimation.

The stratified multiple-descendant growth (SMG) algorithm proposed

in Li et al. (2022) has been proved to converge faster than the traditional

SMC in terms of the estimation MSE. The main idea of SMG is to shrink

the number of particles at the resampling step and grow it back at the

transition step in a stratified manner. This design is particularly conducive

to convergence rate analysis. It may be possible to borrow ideas from the

analysis of SMG so as to obtain a more refined convergence rate for RRJ.

In addition to the smooth jittering, there are also other ways to “smooth”

discrete random variables, enabling the application of the reparametrization

trick. For example, Maddison et al. (2016) apply the Gumbel-max trick,

relaxing the multinomial sampling to a continuous distribution supported

on a simplex. It would be useful to compare different relaxation approaches
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in the context of designing differential particle filters.
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