

Statistica Sinica Preprint No: SS-2022-0243

Title A Divide and Conquer Sequential Monte Carlo Approach

to High Dimensional Filtering

Manuscript ID SS-2022-0243

URL http://www.stat.sinica.edu.tw/statistica/

DOI 10.5705/ss.202022.0243

Complete List of Authors Francesca R. Crucinio and

Adam M. Johansen

Corresponding Authors Francesca R. Crucinio

E-mails francesca.crucinio@gmail.com

Notice: Accepted version subject to English editing.

Statistica Sinica

A DIVIDE-AND-CONQUER SEQUENTIAL MONTE CARLO

APPROACH TO HIGH DIMENSIONAL FILTERING

Francesca R. Crucinio and Adam M. Johansen

Department of Statistics, University of Warwick

Abstract: We propose a divide-and-conquer approach to filtering which decom-

poses the state variable into low-dimensional components to which standard par-

ticle filtering tools can be successfully applied and recursively merges them to

recover the full filtering distribution. It is less dependent upon factorization of

transition densities and observation likelihoods than competing approaches and

can be applied to a broader class of models. Performance is compared with

state-of-the-art methods on a benchmark problem and it is demonstrated that

the proposed method is broadly comparable in settings in which those methods

are applicable, and that it can be applied in settings in which they cannot.

Key words and phrases: data assimilation; marginal particle filter; particle filter-

ing; state-space model; spatio-temporal models

1. Introduction

Particle filters (PFs), an instance of sequential Monte Carlo (SMC) meth-

ods, are a popular class of algorithms to perform state estimation for state

Statistica Sinica: Newly accepted Paper
(accepted author-version subject to English editing)

space models (SSM) — or general-state-space hidden Markov models as

they are sometimes known. We consider the class of SSMs with a la-

tent Rd-valued process (Xt)t≥1 and conditionally independent Rp-valued

observations (Yt)t≥1. Such a SSM (Xt, Yt)t≥1 is defined by the transi-

tion density ft(xt−1, xt) of the latent process, with the convention that

f1(x0, x1) ≡ f1(x1), and the observation likelihood gt(yt|xt). In this work,

we are interested in approximating the sequence of filtering distributions,

(p(xt|y1:t))t≥1, i.e. at each time t the distribution of the latent state at that

time given the observations obtained by that time.

Basic PF algorithms are known to suffer from the curse of dimension-

ality, requiring an exponential increase in computational requirements as

the dimension d grows, limiting their applicability to large systems (Rebes-

chini and Van Handel, 2015; Bengtsson et al., 2008). While the ensemble

Kalman filter (Evensen, 2009) can tackle high dimensional problems, it in-

volves approximations which do not disappear even asymptotically and does

not perform well if the model is far from linear and Gaussian (Lei et al.,

2010).

To extend the use of particle filters to high dimensional problems it is

natural to attempt to exploit the fact that dependencies in high dimensional

SSMs encountered in practice are often local in space in order to decompose

Statistica Sinica: Newly accepted Paper
(accepted author-version subject to English editing)

the filtering problem into a collection of local low-dimensional problems

which can somehow be combined; examples of this strategy are the block

particle filter (Rebeschini and Van Handel, 2015), space-time particle filters

(STPF; Beskos et al. (2017)) and nested sequential Monte Carlo (NSMC)

methods (Næsseth et al., 2015, 2019).

We propose a divide-and-conquer approach in which the state space is

divided into smaller subsets over which standard particle filtering ideas can

be applied, these smaller subsets are then recursively merged in a principled

manner to obtain approximations over the full state space. Our method is

an extension of the divide-and-conquer sequential Monte Carlo (DaC-SMC)

algorithm introduced by Lindsten et al. (2017) to the filtering context,

which exploits ideas akin those in Klaas et al. (2005); Lin et al. (2005)

to marginalize out the past x1:t−1 at a given time t.

In order to apply DaC-SMC to the filtering problem, we define a non-

standard sequence of targets evolving both in space and in time: at a given

time t we define d univariate targets serving as proxies for the marginals

of the filtering distribution, p(xt(i)|y1:t) for i = 1, . . . , d, we then iteratively

combine these lower dimensional targets to obtain approximations of higher-

dimensional marginals (e.g. p(xt(i : i + 1)|y1:t)) until we recover the full

filtering distribution, p(xt|y1:t) ≡ p(xt(1 : d)|y1:t).

Statistica Sinica: Newly accepted Paper
(accepted author-version subject to English editing)

Unlike NSMC and STPF, this approach does not require analytic ex-

pressions for marginals of the transition density or observation likelihood,

but only point-wise evaluations of ft and gt, making it suitable to tackle

high dimensional SSM in which the observations are correlated in non-trivial

ways (cf. the model in Section 4.2), as is common in real applications (see,

e.g., Chib et al. (2009, Section 2)).

We review the basic ideas of particle filtering, its marginal variant and

divide-and-conquer SMC in Section 2; we then show how to extend the ideas

underlying DaC-SMC to the filtering problem in Section 3, where we also

discuss strategies to improve computational cost and accuracy. Finally,

in Section 4 we compare the performances of the divide-and-conquer ap-

proach with NSMC and STPF on a simple linear Gaussian SSM for which

the Kalman filter provides the exact filtering distribution. Our experi-

ments show that the errors in approximating the true filtering distribution

obtained with the divide-and-conquer approach are comparable to those

of NSMC and STPF. We then consider a spatial model whose correlation

structure in the observation model makes it impossible to apply NSMC or

STPFs (at least without additional approximations) and empirically show

that the proposed approach can recover stable estimates of the filtering dis-

tribution which, in small dimensional settings, coincide with those obtained

Statistica Sinica: Newly accepted Paper
(accepted author-version subject to English editing)

with a bootstrap PF with a large number of particles.

2. Background

2.1 Particle Filtering

We describe here the basic SMC approach, often referred to as sequential

importance resampling (Doucet and Johansen, 2011, p. 15), and refer to Liu

(2001); Chopin and Papaspiliopoulos (2020) for a more extensive treatment.

Given the sequence of unnormalized target densities (γt)t≥1, with

γt(x1:t) = p(x1:t, y1:t) =
t∏

k=1

fk(xk−1, xk)gk(yk|xk), (2.1)

defined on (Rd)t, PFs proceed iteratively, and, at time t− 1 approximate

πt−1 := γt−1/

∫
γt−1(x1:t−1)dx1:t−1

with a cloud of particles {xn1:t−1}Nn=1. The particles are propagated forward

in time using a Markov kernel Kt(x1:t−1, ·), reweighted using the weight

function wt := γt/γt−1 ⊗Kt and resampled to obtain a new particle popu-

lation {xn1:t}Nn=1 approximating πt.

Standard PFs formally target distributions (2.1) whose dimension in-

Statistica Sinica: Newly accepted Paper
(accepted author-version subject to English editing)

2.1 Particle Filtering

creases at every time step t, although one is often interested only in the

final time marginal of the distributions so approximated, in this case the

filtering distribution. An alternative to this approach is given by marginal

particle filters (MPFs; Klaas et al. (2005)) and the closely related ideas of

Lin et al. (2005). MPFs target the filtering distribution directly

γt(xt) = p(xt|y1:t) = gt(yt|xt)
∫
ft(xt−1, xt)p(xt−1|y1:t−1)dxt−1; (2.2)

and, since the integral w.r.t. xt−1 is intractable, replace p(xt−1|y1:t−1) with

its particle approximation obtained at time t−1. Given the new sequence of

targets, MPFs proceed as standard PFs, with the only difference being that,

whenever we need to compute an integral w.r.t. xt−1, this is approximated

using πNt−1, obtained by normalizing γNt−1, the particle approximation of

p(xt−1|y1:t−1). Basic MPFs incur an O(N2) cost for each time step, because

of the presence of the integral w.r.t. xt−1 in the weight computations,

although lower cost strategies might be employed in some cases (Lin et al.

(2005); see also Klaas et al. (2006)).

Statistica Sinica: Newly accepted Paper
(accepted author-version subject to English editing)

2.2 Particle Filters for High Dimensional Problems

2.2 Particle Filters for High Dimensional Problems

We briefly summarize three classes of particle filters which make use of

space decompositions to tackle the filtering problem which we believe to

be the state-of-the-art in Monte Carlo approximation of high dimensional

filtering distributions.

The block particle filter (BPF; Rebeschini and Van Handel (2015)) algo-

rithm relies on a decomposition of the state space Rd into lower dimensional

blocks on which, at each t, one step of a standard PF is run. The approxi-

mation of the filtering distribution over the whole state space is obtained by

taking the product of the lower dimensional approximations on each block.

BPFs are inherently biased because of the decomposition into blocks; al-

though this bias can be eliminated asymptotically by allowing the blocks

to grow at an appropriate rate with computational effort.

Space-time particle filters (STPF; Beskos et al. (2017)) exploit local

dependence structures in the observation yt to gradually introduce the like-

lihood term by decomposing the space dimension into smaller subsets and

running N independent particle filters on each of the subsets (also called

islands) which are then combined using an importance resampling step, the

presence of the latter, guarantees asymptotically consistent approximations,

contrary to BPFs. Crucial to the implementation of STPF is that the joint

Statistica Sinica: Newly accepted Paper
(accepted author-version subject to English editing)

2.3 Divide and Conquer SMC

law (2.1) at time t can be factorized so that the marginal of xt(i) given

the observations and the past only depends on a neighbourhood of xt(i),

{xt(j) : j ∈ A} for some A ⊂ {1, . . . , d}, for all i = 1, . . . , d. STPFs are

particularly amenable to SSM which are time discretizations of SDEs, since

in this case one can build time discretization schemes which guarantee an-

alytical forms for the marginals (Akyildiz et al., 2022). A marginal version

of STPFs also exists (Beskos et al., 2017; Xu and Jasra, 2019).

Nested sequential Monte Carlo (NSMC; Næsseth et al. (2015)) treats

the problem of recovering the filtering distribution as a smoothing problem,

where the time variable is replaced by the dimension d, approximates the

fully adapted proposal of Pitt and Shephard (1999) with an inner SMC

iteration and then uses the result in the outer level which corresponds to

a standard forward filtering backward simulation algorithm. NSMC is par-

ticularly well-suited for Markov random fields in which the temporal and

the spatial components can be separated, as this makes the backward sim-

ulation straightforward.

2.3 Divide and Conquer SMC

Divide-and-Conquer SMC (DaC-SMC; Lindsten et al. (2017)) is an exten-

sion of standard SMC in which a collection of (unnormalized) target distri-

Statistica Sinica: Newly accepted Paper
(accepted author-version subject to English editing)

2.3 Divide and Conquer SMC

butions (γu)u∈T is indexed by the nodes of a rooted tree, T, and particles

evolve from the leaves to the root, R, rather than along a sequence of distri-

butions indexed by (algorithmic) time. It shares many of the convergence

properties of standard SMC (Kuntz et al., 2021).

The target distributions are defined on spaces whose dimension grows

as we progress up the tree: for each u, πu ∝ γu is a density over R|Tu| where

Tu denotes the sub-tree of T rooted at u (obtained by removing all nodes

from T except for u and its descendants) and |Tu| denotes its cardinality.

We focus here on the case in which the state space is Rd, however, essentially

the same construction allows for much more general spaces, including those

with discrete components.

As in standard SMC, each distribution γu is approximated by a particle

population {xnu}Nn=1. However, these distributions do not evolve ‘linearly’

but are merged whenever the corresponding branches of T merge. For

simplicity, we describe here the case in which T is a binary tree and each

non-leaf node u has two children, a left child `(u) and a right child r(u).

If u is a leaf node, the algorithm performs a simple importance sampling

step with proposal Ku and importance weight wu := γu/Ku to obtain a

weighted particle population {xnu, wnu}Nn=1 approximating γu. Otherwise,

to obtain a particle population approximating γu, we gather the particle

Statistica Sinica: Newly accepted Paper
(accepted author-version subject to English editing)

2.3 Divide and Conquer SMC

populations associated with each of u’s children and compute the (weighted)

product form estimator (Kuntz et al., 2022)

γNCu =
1

N2

N∑
n1=1

N∑
n2=1

w`(u)(x
n1

`(u))wr(u)(x
n2

r(u))δ(xn1
`(u)

,x
n2
r(u)

) (2.3)

to approximate the product of the marginal distributions γCu := γ`(u)×γr(u).

TheO(N2) cost of evaluating γNCu can be prohibitively large, we discuss lower

cost alternatives in Section 3.3.

We reweight the particle approximation γNCu of γCu to target γu; the

resulting mixture (importance) weights

mu(x`(u), xr(u)) :=
γu(x`(u), xr(u))

γ`(u)(x`(u))γr(u)(xr(u))
(2.4)

capture the mismatch between γu and γ`(u) × γr(u), and are incorporated

prior to resampling similarly to the auxiliary “twisting” function in the

auxiliary PF (see, e.g., Chopin and Papaspiliopoulos (2020, Chapter 10)).

This leads to weights of the form

w̃u(x`(u), xr(u)) := w`(u)(x`(u))wr(u)(xr(u))mu(x`(u), xr(u)). (2.5)

Resampling N times from w̃uγ
N
Cu , using any unbiased resampling scheme (cf.

Statistica Sinica: Newly accepted Paper
(accepted author-version subject to English editing)

2.3 Divide and Conquer SMC

Gerber et al. (2019)), we obtain an equally weighted particle population

{x̃nu, wnu = 1}Nn=1 approximating γu. If necessary, we can then apply a πu-

invariant Markov kernel Ku, to rejuvenate the particles. Algorithm 1, which

is applied to the root node to carry out the sampling process, summarizes

this.

The DaC approach in Algorithm 1 is a special case of that considered

in Lindsten et al. (2017); Kuntz et al. (2021), in which the target at each

non-leaf node is defined on the product of the spaces on which each of its

child targets are defined. DaC-SMC is particularly amenable to distributed

implementation (Lindsten et al., 2017, Section 5.3).

Algorithm 1 dac smc(u) for u in T.

1: if u is a leaf then
2: Initialize: draw xnu ∼ Ku and compute wnu = γu/Ku for all n ≤ N .
3: else
4: Recurse: set ({xnv , wnv }Nn=1) := dac smc(v) for v in {`(u), r(u)} and

obtain γNCu in (2.3).

5: Merge: compute w̃
(n1,n2)
u in (2.5) for all n1, n2 ≤ N .

6: Resample: draw {x̃nu}Nn=1 using weights w̃
(n1,n2)
u and set wnu = 1 for

all n ≤ N .
7: (Optionally): draw xnu ∼ Ku(x̃

n
u, ·) for all n ≤ N .

(Otherwise): set xnu = x̃nu for all n ≤ N .
8: end if

Statistica Sinica: Newly accepted Paper
(accepted author-version subject to English editing)

3. Divide and Conquer within Marginal SMC for Filtering

To apply the DaC-SMC algorithm described above to the filtering problem,

we need to identify a suitable collection (γ̃t,u)u∈T indexed by the nodes of

the tree T, for each time t. Graphically, this corresponds to a path graph

(corresponding to time) in which each node has associated with it a copy of

the tree T (corresponding to space). In this case Algorithm 1 takes as input

at the leaves a particle population approximating the filtering distribution

at time t− 1 and outputs at the root a particle population approximating

the filtering distribution at time t.

At a given time t, to build the collection (γ̃t,u)u∈T, we consider spa-

tial decompositions of xt into low dimensional (often univariate) elements.

Here, we consider a simple decomposition obtained by identifying the d

components (xt(1), . . . , xt(d)) with the leaves of a tree T. As we move up

the tree, the components are merged pairwise until xt = xt(1 : d) is recov-

ered at the root node R. For simplicity, we assume that d = 2D for some

D ∈ N so that T is a perfect binary tree; essentially the same construction

applies to general d.

We denote the set of components associated with node u by Vu, its

cardinality increases from leaves to root: at the level of the leaves |Vu| = 1,

while |VR| = d. Figure 1 shows the space decomposition for d = 8.

Statistica Sinica: Newly accepted Paper
(accepted author-version subject to English editing)

xt(1 : 8)

xt(1 : 4)

xt(1 : 2)

xt(1)

Figure 1: Space decomposition for d = 8.

As the filtering problem has an inherent (temporal) sequential structure,

the collection (γ̃t,u)u∈T at time t is most easily specified in terms of the fil-

tering distribution at time t−1, γ̃t−1,R — as shown below in (3.6). Similarly

to MPFs, we deal with this dependence by approximately marginalizing out

the previous timestep using the existing sample approximation. We intro-

duce auxiliary functions ft,u : Rd × R|Vu| → R and gt,u : R|Vu| × R|Vu| → R

for t ≥ 1 and u ∈ T, such that ft,R = ft, gt,R = gt and for u ∈ T\R, ft,u and

gt,u serve as proxies for marginals of the transition density and observation

likelihood, respectively. These auxiliary functions are used to define our

collection of target densities (γ̃t,u)t≥1,u∈T over R|Vu|:

γ̃t,u(zt,u) = gt,u(zt,u, (yt(i))i∈Vu)

∫
ft,u(xt−1, zt,u)γ̃t−1,R(xt−1)dxt−1 (3.6)

where zt,u = (xt(i))i∈Vu are the components of xt associated with node

Statistica Sinica: Newly accepted Paper
(accepted author-version subject to English editing)

u and xt−1 denotes the previous state of the system. The requirement

that gt,R = gt, ft,R = ft ensures that at the root we obtain the distribution

in (2.2). The integral w.r.t. γ̃t−1,R in (3.6) cannot be computed analytically,

hence, as in MPFs, we use a sample approximation of this integral, as

described in the next section.

If the marginals of ft, gt are available, one could use them to define

gt,u, ft,u, but this is not essential: these intermediate distributions can be

essentially arbitrary up to the absolute continuity required to justify the im-

portance sampling steps although, of course, the variance of the estimator

will be influenced by this choice. The issue of specifying these distributions

is closely related to that of choosing the sequence of artificial targets in

a standard SMC sampler when one is only interested in the final target

distribution (see Del Moral et al. (2006), where they note that optimizing

this sequence is a very difficult problem). See Kuntz et al. (2021, Section

4.2) for a theoretical perspective in the divide-and-conquer context, which

suggests that the optimal choice of intermediate target distribution is the

appropriate marginal of the root target, hence the suggestion to use the

marginals of ft and gt where these are available. In practice, when doing

this exactly is not feasible, this perspective suggests that we should seek

to approximate these distributions with distributions with comparable tail

Statistica Sinica: Newly accepted Paper
(accepted author-version subject to English editing)

3.1 The Algorithm

behaviour to keep all importance weights well controlled. If there is a sub-

stantial mismatch between the children of a node and itself then choosing

a parametric path between the two, adaptively specifying a tempering se-

quence along that path and using SMC techniques to approximate each

distribution in turn may mitigate some difficulties (See Appendix S2).

While we believe that the choice of the best ft,u, gt,u will be model

dependent, we found that, in some cases, some choices are preferable. As an

example, take ft to be a Gaussian distribution with mean µ and covariance

Σ. Then, a possible choice for γt,u are Gaussian distributions with mean µu

equal to the restriction of µ to the components corresponding to node u and

covariance Σu obtained by subsetting Σ and discarding all components not

in u. In this context, we found that setting Σu = Σ(Vu)−1, i.e. selecting the

components of Σ corresponding to node u and then inverting this matrix,

instead of Σu = Σ−1(Vu) has lower computational cost and leads to more

diffuse distributions and thus better behaved mixture weights (3.10).

3.1 The Algorithm

For each time t, having identified the space decomposition over T and the

collection of distributions (γ̃t,u)u∈T, we can apply Algorithm 1 to the root

R of T. However, since the integral in (3.6) is not analytically tractable, we

Statistica Sinica: Newly accepted Paper
(accepted author-version subject to English editing)

3.1 The Algorithm

replace γ̃t−1,R with an approximation provided by the particle population

at the root of the tree corresponding to t − 1, {znt−1,R}Nn=1, i.e. its particle

approximation obtained at the previous time step, as is normally done in

MPFs, and define

γt,u(zt,u) := gt,u(zt,u, (yt(i))i∈Vu)
1

N

N∑
n=1

ft,u(z
n
t−1,R, zt,u). (3.7)

Given {znt−1,R}Nn=1, at each leaf node of the tree we sample one compo-

nent of xt per node from N−1
∑N

n=1Kt,u(z
n
t−1,R, ·), the importance weights

are then given by

wt,u(zt,u, x1:t−1,u) =
gt,u(zt,u, (yt(i))i∈Vu)

∑N
n=1 ft,u(z

n
t−1,R, zt,u)∑N

n=1Kt,u(znt−1,R, zt,u)
. (3.8)

As in the MPF, if we choose Kt,u = ft,u, (3.8) simplifies dramatically to

wt,y(zt,u, x1:t−1,u) = gt,u(zt,u, (yt(i))i∈Vu), considerably reducing the cost of

evaluating the weights at the leaves.

For any non-leaf node u we gather the particle populations {znt,`(u)}Nn=1

and {znt,r(u)}Nn=1 on its left and right child, respectively, and obtain an

approximation of the product measure γt,Cu := γt,`(u) × γt,r(u) using the

Statistica Sinica: Newly accepted Paper
(accepted author-version subject to English editing)

3.1 The Algorithm

weighted product form estimator (2.3)

γNt,Cu = N−2
N∑

n1=1

N∑
n2=1

wt,`(u)(z
n1

t,`(u))wt,r(u)(z
n2

t,r(u))δ(zn1
t,`(u)

,z
n2
t,r(u)

), (3.9)

or one of the lower cost alternatives discussed in Section 3.3.

As in the DaC-SMC setting, we reweight the particle approximation of

γt,Cu to target γt,u. In this case, the mixture weights are given by

mt,u(zt,Cu) =
γt,u(zt,Cu)

γt,Cu(zt,Cu)
(3.10)

=
gt,u(zt,Cu , (yt(i))i∈Vu)

gt,`(u)(zt,`(u), (yt(i))i∈V`(u))gt,r(u)(zt,r(u), (yt(i))i∈Vr(u))
×

N−1
∑N

n=1 ft,u(z
n
t−1,R, zt,Cu)

N−1
∑N

n=1 ft,`(u)(z
n
t−1,R, zt,`(u))N

−1
∑N

n=1 ft,r(u)(z
n
t−1,R, zt,r(u))

,

where we defined zt,Cu := (zt,`(u), zt,r(u)) the vector obtained by merging the

components on the left and on the right child of u.

For each pair in (3.9) we obtain the incremental mixture weightsm
(n1,n2)
t,u :=

mt,u((z
n1

t,`(u), z
n2

t,r(u))) in (3.10) and the updated weights

w̃
(n1,n2)
t,u = w̃t,u((z

n1

t,`(u), z
n2

t,r(u))) := wt,`(u)(z
n1

t,`(u))wt,r(u)(z
n2

t,r(u))mt,u((z
n1

t,`(u), z
n2

t,r(u))),

for n1, n2 = 1, . . . , N . To avoid unbounded growth in the number of parti-

Statistica Sinica: Newly accepted Paper
(accepted author-version subject to English editing)

3.1 The Algorithm

cles, the weights w̃t,u are then used to resample a population of N particles

approximating γt,u, {z̃nt,u, wt,u = 1}Nn=1 — although one could allow the num-

ber of particles retained to grow as the simulation approaches the root of

the tree to accommodate the growing dimension of the space. Algorithm 2

summarizes the procedure described above with the natural modification

at t = 1, where it is not necessary to “marginalize” over previous states

and simple importance sampling can be used at the leaf nodes. Contrary to

Algorithm 1, we do not include an additional MCMC step in this statement

of the algorithm, but one could easily be added as discussed in Section 3.2.

In this case, given a πt,u-invariant kernel Qt,u, with πt,u ∝ γt,u, line 8 should

be replaced by: draw znt,u ∼ Qt,u(z̃
n
t,u, ·) for all n ≤ N .

Algorithm 2 dac smc(t) for t ≥ 1. Given ({znt−1,R}Nn=1) := dac smc(t− 1).

1: for u leaf node do
2: Initialize: draw znt,u ∼ N−1

∑N
n=1Kt,u(z

n
t−1,R, ·) and compute wnt,u as

in (3.8) for all n ≤ N .
3: end for
4: for u non-leaf node do
5: Recurse: set ({znt,v, wnt,v}Nn=1) := dac smc(t, v) for v in {`(u), r(u)}

and obtain γNCu in (3.9).

6: Merge: compute the mixture weights m
(n1,n2)
t,u in (3.10) and w̃

(n1,n2)
t,u

for all n1, n2 ≤ N .
7: Resample: draw {z̃nt,u}Nn=1 using weights w̃

(n1,n2)
t,u and set wnu = 1 for

all n ≤ N .
8: Update: set znt,u = z̃nt,u for all n ≤ N .
9: end for
10: Output ({znt,R}Nn=1).

Statistica Sinica: Newly accepted Paper
(accepted author-version subject to English editing)

3.2 Choice of Proposals

The mixture resampling strategy described above requires evaluating

the mixture weights (3.10) for each of the N2 pairs in (3.9). The O(N2)

cost of this operation is often prohibitive for large N ; we describe smaller

cost alternatives in Section 3.3 and demonstrate that these approaches have

good performance in Section 4.

3.2 Choice of Proposals

Algorithm 2 describes a general strategy to perform filtering using DaC-

SMC; as in the case of standard SMC the performances of the algorithm

are heavily influenced by the choice of the proposals at the leaf nodes. We

discuss here a simple strategy to select Kt,u.

We assume that we can sample from ft,u in (3.6) and set Kt,u(z
n
t−1,R, ·) =

ft,u(z
n
t−1,R, ·) so that the importance weights (3.8) reduce to wt,u = gt,u. This

choice corresponds to the proposal used in the bootstrap PF of Gordon

et al. (1993), (locally) optimal proposals also exist (see e.g., Chopin and

Papaspiliopoulos (2020, Chapter 10)) and are expected to lead to better

performances but incur a higher computational cost.

While picking Kt,u(z
n
t−1,R, ·) = ft,u(z

n
t−1,R, ·) causes standard marginal

PFs to reduce to the bootstrap PF (as described in Klaas et al. (2005,

Section 3.3)), this is not true for our marginal DaC-SMC, since the integral

Statistica Sinica: Newly accepted Paper
(accepted author-version subject to English editing)

3.3 Adaptive Lightweight Mixture Resampling

w.r.t. zt−1,R still appears in the mixture weights (3.10).

If needed, to avoid particle impoverishment, one might consider apply-

ing a Markov kernel Qt,u which leaves πt,u ∝ γt,u invariant after the re-

sampling step in line 7 of Algorithm 2. These πt,u-invariant kernels can be

selected exploiting the vast literature on sequential MCMC methods (e.g.,

Gilks and Berzuini (2001); Septier et al. (2009); Carmi et al. (2012); Septier

and Peters (2016); Pal and Coates (2018); Han and Nakamura (2021)) to

employ proposals whose cost is not O(N) as it would be for some näıve

choices.

3.3 Adaptive Lightweight Mixture Resampling

The mixture resampling in line 6–7 of Algorithm 2 becomes computation-

ally impractical for large N , since it requires evaluating the mixture weights

for N2 particles (Lindsten et al., 2017; Kuntz et al., 2021; Corneflos et al.,

2022). Several strategies have been proposed to alleviate this cost by only

constructing a subset of the N2 combinations in (3.9), e.g. the multiple

matching strategy of Lin et al. (2005) which gives rise to the lightweight

mixture resampling of Lindsten et al. (2017) in this context, strategies bor-

rowed from the literature on incomplete U-statistics (Kuntz et al., 2021)

and lazy resampling schemes (Corneflos et al., 2022).

Statistica Sinica: Newly accepted Paper
(accepted author-version subject to English editing)

3.3 Adaptive Lightweight Mixture Resampling

We consider the lightweight version of mixture resampling proposed in

Lindsten et al. (2017) which only considers a subset θN with θ � N of the

N2 possible pairs. However, instead of setting θ to some pre-specified value

(e.g. θ = d
√
Ne), we propose a simple strategy to select θ adaptively based

on the effective sample size (ESS; Kong et al. (1994)),

ESS :=

(∑
n

w̃nt,u

)2

/
∑
n

(w̃nt,u)
2, (3.11)

where the sum is over all pairs n = (n1, n2) obtained from (3.9), which is

similar in spirit to the adaptive tempering strategies commonly encountered

in the SMC literature (see, e.g., Jasra et al. (2010); Johansen (2015)) and

aiming to do just enough computation to obtain a good N -sample approx-

imation.

The merge step in lines 6–7 of Algorithm 2 is replaced by Algorithm 3:

after building all the N pairs obtained by concatenating the particles asso-

ciated with each of the two children, further permutations are added until

the ESS achieves a pre-specified value ESS? (e.g. ESS? = N). To avoid θ

getting too large, we stop adding permutations when θ = d
√
Ne thereby

allowing us to bound the worst-case computational cost by O(N3/2). We

empirically compare several mixture resampling approaches in Appendix S1.

Statistica Sinica: Newly accepted Paper
(accepted author-version subject to English editing)

3.3 Adaptive Lightweight Mixture Resampling

Algorithm 3 Adaptive lightweight mixture resampling.

1: Correct: compute the mixture weights mt,u(x
n
`(u), x

n
r(u)) as in (3.10) and

w̃t,u(x
n
`(u), x

n
r(u)) for all n ≤ N and the ESS (3.11).

2: Set: θ ← 1 and x̃nu = (xn`(u), x
n
r(u)) for n ≤ N .

3: while ESS((x̃n)θNn=1) < ESS? and θ <
⌈√

N
⌉
do

4: Set: θ ← θ + 1.
5: Permute: draw one permutation of N , π(N), set x̃

N(θ−1)+n
u =

(xn`(u), x
π(n)
r(u)), compute the mixture weights mt,u(x̃

N(θ−1)+n
u) in (3.10)

and the updated weights w̃t,u(x̃
N(θ−1)+n
u) for n ≤ N and update the

ESS.
6: end while
7: Resample: draw {znt,u}Nn=1 from x̃1:Nθu with weights w̃t,u(x̃

1:Nθ
u) and set

wnt,u = 1 for all n ≤ N .

Algorithm 3 can be implemented in a space-efficient manner by storing

the permutations π(N) corresponding to each value of θ rather than building

the θN pairs x̃1:Nθu .

We report in Figure 2 the distribution of the number of permutation

θ selected by Algorithm 3 for the linear Gaussian model in Section 4. We

observe that the highest values of θ are chosen at the level above the leaves

(panel 1), indeed, at the leaf level the observation yt is incorporated, causing

a larger adjustment to the distribution at the first mixture resampling step

than that needed as we move up the tree. The spike at θ = d
√
Ne at

level 1 shows that sometimes the target ESS is not reached, which suggests

that the product of the proposal distributions over the children might be

a poor proposal for γt,u — this is in part likely to be due to the use of a

Statistica Sinica: Newly accepted Paper
(accepted author-version subject to English editing)

3.3 Adaptive Lightweight Mixture Resampling

1 2 3 4 5

10 20 30 10 20 30 10 20 30 10 20 30 10 20 30

0

20

40

60

Linear Gaussian

Figure 2: Distribution of the number of permutations θ selected by Algo-
rithm 3 for the simple linear Gaussian model in Section 4.1 with d = 32,
N = 103 and 10 time steps; the 5 panels correspond to the 5 levels of the
tree from the level above the leaves (level 1) to the root (level 5).

“bootstrap proposal” and could be mitigated in the same way as standard

particle filters by seeking to design (marginal) proposal distributions which

incorporate the influence of observations. In addition, this phenomenon

can be mitigated with the use of (adaptive) tempering, as shown in, e.g.,

Jasra et al. (2010); Johansen (2015); Wang et al. (2020); Zhou et al. (2016)

for standard SMC and Lindsten et al. (2017, Section 4.2) for DaC-SMC.

However, näıve implementation of this approach will bear a substantial

computational cost in the marginal context; designing MCMC kernels that

are efficient in this context has been explored in the sequential MCMC

context — see, e.g., Septier and Peters (2016, Section III-B) — and in

marginal STPFs (Xu and Jasra, 2019). We give details of a tempering

strategy for Algorithm 3 in Appendix S2.

Statistica Sinica: Newly accepted Paper
(accepted author-version subject to English editing)

3.4 Computational Cost

3.4 Computational Cost

At a given node, u, the runtime cost of Algorithm 2 with lightweight

mixture resampling given the particle approximations for its children, is

O(h(N, d)θN) where h(N, d) denotes the cost of obtaining the mixture

weights (3.10).

In general, the dependence of h(N, d) on the number of particles N

is O(N) as for MPFs. Similarly to MPFs, one could try to reduce the

cost of computing (3.10) making use of techniques from N -body learning

(e.g. Gray and Moore (2000); Lang et al. (2005)) as shown in Klaas et al.

(2005). Alternatively, one could consider efficient implementations using

GPUs (Charlier et al., 2021) as shown in (Clarté et al., 2019, Section 4) for

sums of the form of those in (3.10).

For some models, it might be possible to pick the auxiliary functions ft,u

so that the dependence on the past (i.e. zt−1,R in (3.7)) vanishes and obtain

an O(1) cost w.r.t. N . However, we expect that this type of decompositions

will require larger corrections at the root, where ft,R = ft, which might offset

the cost savings.

In the adaptive case, worst case costs are given by O(h(N, d)θN) with

θ replaced by the upper bound imposed upon the number of permutations

considered. For instance, for the examples in Section 4 we have an h(N, d) =

Statistica Sinica: Newly accepted Paper
(accepted author-version subject to English editing)

3.4 Computational Cost

O(N) cost to obtain the mixture weights and we set the upper bound for θ

to be N1/2 leading to a cost of order O(N5/2) w.r.t. the number of particles.

Denoting Cu(d, θu, N) the cost of running Algorithm 2 at node u, we

can then bound the total cost of serial implementations Algorithm 2 applied

at the root node R by O(dt supuCu), where the supremum is taken over

all nodes in T; a lower running cost of O(t supuCu log2 d), can be achieved

parallelizing the computations over each level of the tree (Lindsten et al.,

2017, Section 5.3).

In the adaptive case, this upper bound is far from being tight, since,

as shown in the histogram in Figure 2, θ tends to be high when the ob-

servation is incorporated (level 1) but stabilizes as we move up the tree.

Additionally, for large N one expects the number of permutations required

to obtain a good N -particle approximation to converge to some fixed inte-

ger and hence the cost for sufficiently large N will with high probability be

of smaller order than these bounds. Furthermore the constants multiplying

the N5/2 contribution arising from the level above the leaves are sufficiently

small that this is not the dominant cost in our experiments — and is likely

to be typical in high-dimensional settings in which it is rarely feasible to

employ very large numbers of particles and the objective is to obtain a good

approximation at acceptable time and space costs.

Statistica Sinica: Newly accepted Paper
(accepted author-version subject to English editing)

4. Experiments

We compare the results obtained with DaC with those of NSMC and STPF;

we do not include simpler strategies because both standard PF and BPF

have been shown to have worse performances than NSMC and STPF for

the model considered here (Næsseth et al., 2015, 2019; Beskos et al., 2017),

and the marginal version of STPF because of the higher cost for large d.

The functions gt,u, ft,u in (3.6) are obtained from gt, ft, respectively, by

discarding all the terms in those functions involving components i 6∈ Vu,

further details are given in Appendix S3. For Algorithm 2 we use the

proposals discussed in Section 3.2 and the lightweight mixture resampling

strategies described in Section 3.3. All resampling steps are performed using

stratified resampling (Kitagawa, 1996).

First, we consider a simple linear Gaussian SSM, and compare the re-

sults obtained by the three algorithms with the exact filtering distribution

given by the Kalman filter. Then, we consider a spatial model with simple

latent dynamics but non-trivial spatial correlations structure between ob-

servations, moving away from the assumption of i.i.d. observations which is

convenient from a computational perspective, but rarely satisfied in practice

(Chib et al., 2009).

All the experiments have been executed in serial using a single core of

Statistica Sinica: Newly accepted Paper
(accepted author-version subject to English editing)

4.1 Simple Linear Gaussian Model

a Intel(R) Xeon(R) CPU E5-2440 0 @ 2.40GHz using R 4.1.0.

4.1 Simple Linear Gaussian Model

We start by considering a simple linear Gaussian SSM taken from Næs-

seth et al. (2015), for which the filtering distributions can be computed

exactly with the Kalman filter. The model is given by ft(xt−1, xt) =

N (xt;Axt−1,Σ), and gt(xt, yt) = N (yt;xt, σ
2
yIdd), with A ∈ Rd×d, σ2

y > 0,

Σ ∈ Rd×d a tridiagonal covariance matrix and Idd the d-dimensional identity

matrix (see Appendix S3.1 for full details and computation of the mixture

weights (3.10)).

We compare DaC with both non-adaptive and adaptive lightweight mix-

ture resampling with 2-level NSMC with fully adapted outer level and STPF

on data simulated from the model for d = 25, 28, 211 for t = 100 time steps.

We use different number of particles N = 100, 500, 1000 for Algorithm 2 and

the outer level of NSMC and STPF, while the number of particles for the

inner level of NSMC and the number of particles for each island of STPF

is fixed to M = 100 as suggested in Næsseth et al. (2015); Beskos et al.

(2017).

To evaluate the results, we consider two global measures of accuracy

for each of the d marginals, the Wasserstein-1 distance (see, e.g., Vallender

Statistica Sinica: Newly accepted Paper
(accepted author-version subject to English editing)

4.1 Simple Linear Gaussian Model

(1974)), and the Kolmogorov-Smirnov distance

W1,i :=

∫ ∣∣∣Ft,i(x)− F̂t,i(x)
∣∣∣ dx, KSi := max

x

∣∣∣Ft,i(x)− F̂t,i(x)
∣∣∣ ,

where Ft,i denotes the 1-dimensional cumulative distribution function of

marginal i at time t and F̂t,i its particle approximation. Further compar-

isons, which demonstrate that the mean squared error (MSE) of the filtering

mean behaves similarly, are collected in Appendix S4.1.

For lower-dimensional problems (e.g. d = 32) STPF achieves the best

results both in terms of Wasserstein-1 distance and in terms of KS dis-

tance (Figure 3) and the relative MSE of the reconstructions is considerably

smaller (almost one order of magnitude smaller; see Appendix S4.1). The

results provided by STPF deteriorate quickly as d grows, for d = 256 the

estimates of W1 and KS distance are significantly worse than those provided

by NSMC or DaC without adaptation.

The cost of STPF grows quadratically with d, and becomes unman-

ageable for large d, it is therefore not included in Figure 3 bottom panels.

STPF has the higher cost also for lower dimension (Figure 3 top panel), but

in this case STPF provides the best results. STPF has higher variability

than the other methods, and even when the average results are better than

Statistica Sinica: Newly accepted Paper
(accepted author-version subject to English editing)

4.1 Simple Linear Gaussian Model

102 103 104 105 106

10−2

10−1.5

10−1

10−0.5

10−2

10−1.5

10−1

10−0.5

10−2

10−1.5

10−1

10−0.5

W1

d
=

32
d

=
25

6
d

=
20

48

102 103 104 105 106

10−1.5

10−1

10−0.5

10−1.5

10−1

10−0.5

10−1.5

10−1

10−0.5

KS

Runtime / s Runtime / s

dac dac−ada nsmc stpf

Figure 3: Comparison of DaC, NSMC and STPF for d = 25, 28, 211. Dis-
tribution of the average (over dimension) W1 and KS distance at the last
time step t = 100 for 50 runs; the boxes, form left to right, correspond to
increasing number of particles (N = 100, 500, 1000). Due to their excessive
cost, we do not include the results for STPF with d = 2048 and those of
the non-adaptive version of DaC d = 2048, N = 1000.

Statistica Sinica: Newly accepted Paper
(accepted author-version subject to English editing)

4.2 Spatial Model

DaC and NSMC (e.g. d = 32), W1 and KS can take considerably high

values.

The results in terms of KS are generally more variable, this is likely

due to the fact that KS is a measure of the worst case mismatch between

Ft,i(x) and F̂t,i(x), while for W1 the mismatch is averaged over locations.

For large d, DaC has the smallest variability among the three algorithms.

DaC with fixed-cost lightweight mixture resampling generally gives bet-

ter results than the adaptive lightweight mixture resampling, however, the

cost of the latter is considerably smaller, making the adaptive version still

manageable for large N whereas the fixed-cost lightweight mixture resam-

pling becomes too costly for large N and large d. As discussed in Sec-

tion 3.4, the computational cost of both versions of DaC could be reduced

using GPUs. In particular, both W1 and KS decay more quickly with N for

DaC without adaptation than for DaC with adaptive lightweight mixture

resampling. The decay with N is less evident for NSMC.

4.2 Spatial Model

We consider a model on a 2D-lattice in which the latent dynamics are

simple but the observation structure is challenging. The components of Xt

are indexed by the vertices v ∈ V of a lattice, where V = {1, . . . , d}2, and

Statistica Sinica: Newly accepted Paper
(accepted author-version subject to English editing)

4.2 Spatial Model

follow a simple linear evolution Xt(v) = Xt−1(v) + Ut(v), where Ut(v)
i.i.d∼

N (0, σ2
x). The observations model is Yt = Xt + Vt, where we take Vt to

be jointly t-distributed with ν = 10 degrees of freedom, mean zero and

precision structure encapsulating a spatial component. Let D denote the

graph distance, then the entry in row v and column j of the precision matrix

Σ−1 is given by (Σ−1)vj = τD(j,v) if D(j, v) ≤ ry and 0 otherwise. We obtain

data from the model above with σ2
x = 1, τ = −0.25, ry = 1 and t = 10.

The observation density does not factorize, and therefore NSMC and STPF

cannot be applied (at least without approximating g with e.g. a Gaussian

or discarding the covariance information). To validate the correctness of

the algorithm, we compared the results obtained by DaC with those of the

standard bootstrap PF in Appendix S4 on a small lattice and found the

agreement to be excellent.

To decompose the 2D lattice into a binary tree we use the decomposition

described in Lindsten et al. (2017, Section 5.1), which recursively connects

the vertices first horizontally and then vertically. To evaluate the perfor-

mances of the algorithm we consider the filtering means obtained with 50

repetitions of DaC-SMC on a 8×8 and a 16×16 grid for N = 100, 500, 1000

and 5000. To show how the standard bootstrap particle filter struggles with

higher dimensional problems we run a bootstrap PF with N = 105 particles

Statistica Sinica: Newly accepted Paper
(accepted author-version subject to English editing)

4.2 Spatial Model

for the 8 × 8 grid. Figure 4 reports the filtering means for a corner node

and an interior node of the lattice. Both DaC approaches are in agreement,

however the adaptive version of DaC seems to provide slightly less variable

results. The behaviour for different nodes is similar. As observed for the

linear Gaussian model, DaC with adaptive lightweight mixture resampling

has lower cost than the non-adaptive counterpart and remains feasible for

large N (e.g. N = 5000).

Unsurprisingly, the bootstrap PF struggles to recover the filtering means

and provides high variance estimates for node (1, 1) while collapses com-

pletely for node (8, 6) failing to recover the filtering mean.

The size of the boxplots in Figure 4 gives an indication of the variance

of the estimator provided by DaC, for small N the decay in variance seems

to be more pronounced (at least for the adaptive version of DaC) than for

large N , this is consistent with the decay of the standard deviation which

would be expected from the variance expansions in Kuntz et al. (2021)

where for small N the higher order contributions to the variance are not

yet negligible (we anticipate that a central limit theorem could be obtained

by combining the results of Kuntz et al. (2021) with those for marginal

PFs).

Statistica Sinica: Newly accepted Paper
(accepted author-version subject to English editing)

4.2 Spatial Model

−4

−3

−2

−1

0

103 104 105

2

4

6

103 104 105

(1, 1) (8, 6)

d
=

8
×

8

0

2

4

6

103 103.5 104 104.5 105 105.5 106

−4

−2

0

103 103.5 104 104.5 105 105.5 106

(1, 1) (8, 8)

d
=

16
×

16

Runtime / s Runtime / s

dac dac−ada

Figure 4: Filtering mean estimates for a corner node and a node in the
middle of the grid for a 8 × 8 and a 16 × 16 lattice at time t = 10. The
boxplots from left to right report the distributions over 50 repetitions for
N = 100, 500, 1000 and 5000. The results for the non-adaptive version of
DaC are not included for N = 5000 due to the excessive cost. The reference
lines for the 8×8 grid show the average value of the filtering mean estimate
and the interquartile range obtained with 50 repetitions of a bootstrap PF
with N = 105 particles.

Statistica Sinica: Newly accepted Paper
(accepted author-version subject to English editing)

5. Discussion

We introduced a novel sequential Monte Carlo algorithm, combining ideas

from marginal PFs and divide-and-conquer SMC to extend the latter to

the filtering context. This algorithm is based on a novel space decom-

position for high dimensional SSM which allows to recursively merge low

dimensional marginals of the filtering distribution to obtain the full fil-

tering distribution, taking into account the mismatch between product of

marginals and joint distributions using importance sampling. In princi-

ple, the DaC-SMC approach is amenable to distributed implementation,

although the marginalization technique employed herein would necessitate

significant communication from the node which computes the overall filter-

ing distribution at time t− 1 to all nodes involved in computing at time t

and we have not explored that direction here.

In contrast with Nested SMC and space-time PFs, the DaC-SMC ap-

proach to filtering can be applied when the marginals of the joint den-

sity (2.1) are not available analytically. The computational cost of this

new approach grows polynomially with the number of particles N , how-

ever, this cost can be reduced exploiting GPU routines to reduce the cost

of computing the weights as discussed in Section 3.4.

The experiments in Section 4.1 show that DaC-SMC achieves com-

Statistica Sinica: Newly accepted Paper
(accepted author-version subject to English editing)

parable performances of NSMC and STPF with a runtime that remains

competitive even for large d (but small N), contrary to STPFs. In addi-

tion, DaC-SMC can be applied to filtering problems which do not allow for

factorization as shown in Section 4.2 and Appendix S4. The variance decay

in Figure 4 and Figure 2 in Appendix S4.1 suggest that this extended DaC-

SMC achieves the same convergences rates as DaC-SMC (Kuntz et al., 2021)

for sufficiently large N and we anticipate that techniques used to analyze

the marginal particle filter could be combined with those in order to provide

formal convergence results for the method developed herein. The adaptive

lightweight mixture resampling discussed in Section 3.3 is a promising route

to further reduce the computational cost of DaC-SMC for filtering, how-

ever, as the experiments in Section 4 and Appendix S1 suggest, selecting

the value at which the target ESS should be set to obtain the best trade-off

between computational cost and accuracy is likely to be problem dependent

and raises interesting theoretical questions that we leave for future work.

For challenging problems it is likely that tempering and MCMC ker-

nels would be required to give good performance. As discussed in Johansen

(2015) and Guarniero et al. (2017) the smoothing and filtering distribu-

tions (i.e. p(x1:t|y1:t) and p(xt|y1:t), respectively) have significantly different

support in the presence of informative observations, especially in high di-

Statistica Sinica: Newly accepted Paper
(accepted author-version subject to English editing)

mensional settings and so we expect that including the influence of future

observations in the proposals and targets in Section 3.2 (as in lookahead

methods, e.g., Lin et al. (2013); Guarniero et al. (2017); Ruzayqat et al.

(2022)) would lead to considerable improvements in the accuracy of the

estimates and might ultimately be essential in the development of good

general purpose filters for high dimensional problems.

This work focuses on obtaining approximations of the filtering distri-

bution for high dimensional SSM. In recent years there has been a lot of

interest in obtaining approximations of the smoothing distribution which is

a necessary component of parameter estimation algorithms (e.g., Finke and

Singh (2017); Guarniero et al. (2017)); we anticipate that the DaC-SMC ap-

proach to filtering could be extended to tackle smoothing and parameter es-

timation dealing with the marginalization in (3.6). In principle, algorithms

which directly approximate only marginals of smoothing distributions can

be adapted to these settings (see, e.g. Gerber and Chopin (2017)). We

leave this for future work.

Supplementary Materials

Supplementary materials contains details of the tempering approach, addi-

tional details and results on the experiments. An R package reproducing

Statistica Sinica: Newly accepted Paper
(accepted author-version subject to English editing)

REFERENCES

the experiments is available at https://github.com/FrancescaCrucinio/

Dac4filtering.

Acknowledgements

FRC and AMJ acknowledge support from the EPSRC (grant # EP/R034710/1).

AMJ acknowledges further support from the EPSRC (grant # EP/T004134/1)

and the Lloyd’s Register Foundation Programme on Data-Centric Engineer-

ing at the Alan Turing Institute. For the purpose of open access, the author

has applied a Creative Commons Attribution (CC BY) licence to any Au-

thor Accepted Manuscript version arising from this submission.

References

Akyildiz, D., D. Crisan, and J. Miguez (2022). Space-sequential particle filters for high-

dimensional dynamical systems described by stochastic differential equations. arXiv

preprint arXiv:2204.07680 .

Bengtsson, T., P. Bickel, and B. Li (2008). Curse-of-dimensionality revisited: Collapse of the

particle filter in very large scale systems. In Probability and Statistics: Essays in Honor of

David A. Freedman, pp. 316–334. Institute of Mathematical Statistics.

Beskos, A., D. Crisan, A. Jasra, K. Kamatani, and Y. Zhou (2017). A stable particle filter

for a class of high-dimensional state-space models. Advances in Applied Probability 49 (1),

Statistica Sinica: Newly accepted Paper
(accepted author-version subject to English editing)

https://github.com/FrancescaCrucinio/Dac4filtering
https://github.com/FrancescaCrucinio/Dac4filtering

REFERENCES

24–48.

Carmi, A., F. Septier, and S. J. Godsill (2012). The Gaussian mixture MCMC particle algorithm

for dynamic cluster tracking. Automatica 48 (10), 2454–2467.

Charlier, B., J. Feydy, J. A. Glaunes, F.-D. Collin, and G. Durif (2021). Kernel operations

on the GPU, with autodiff, without memory overflows. Journal of Machine Learning

Research 22 (74), 1–6.

Chib, S., Y. Omori, and M. Asai (2009). Multivariate stochastic volatility. In Handbook of

Financial Time Series, pp. 365–400. Springer.

Chopin, N. and O. Papaspiliopoulos (2020). An Introduction to Sequential Monte Carlo. Cham:

Springer.

Clarté, G., A. Diez, and J. Feydy (2019). Collective proposal distributions for nonlinear MCMC

samplers: Mean-field theory and fast implementation. arXiv preprint arXiv:1909.08988 .

Corneflos, A., N. Chopin, and S. Särkkä (2022). De-Sequentialized Monte Carlo: a parallel-in-

time particle smoother. Journal of Machine Learning Research 23 (283), 1–39.

Del Moral, P., A. Doucet, and A. Jasra (2006). Sequential Monte Carlo samplers. Journal of

the Royal Statistical Society: Series B (Statistical Methodology) 68 (3), 411–436.

Doucet, A. and A. M. Johansen (2011). A tutorial on particle filtering and smoothing: Fifteen

years later. In D. Crisan and B. Rozovsky (Eds.), The Oxford Handbook of Nonlinear

Filtering, pp. 656–704. Oxford University Press.

Statistica Sinica: Newly accepted Paper
(accepted author-version subject to English editing)

REFERENCES

Evensen, G. (2009). Data Assimilation (2nd ed.). Berlin, Heidelberg: Springer.

Finke, A. and S. S. Singh (2017). Approximate smoothing and parameter estimation in high-

dimensional state-space models. IEEE Transactions on Signal Processing 65 (22), 5982–

5994.

Gerber, M. and N. Chopin (2017). Convergence of sequential quasi-Monte Carlo smoothing

algorithms. Bernoulli 23 (4B), 2951–2987.

Gerber, M., N. Chopin, and N. Whiteley (2019). Negative association, ordering and convergence

of resampling methods. Annals of Statistics 47 (4), 2236–2260.

Gilks, W. R. and C. Berzuini (2001). Following a moving target—Monte Carlo inference for

dynamic Bayesian models. Journal of the Royal Statistical Society: Series B (Statistical

Methodology) 63 (1), 127–146.

Gordon, N. J., D. J. Salmond, and A. F. Smith (1993). Novel approach to nonlinear/non-

Gaussian Bayesian state estimation. In IEE Proceedings F-Radar and Signal Processing,

Volume 140, pp. 107–113. IEE.

Gray, A. and A. Moore (2000). ‘N -body’ problems in statistical learning. In Advances in Neural

Information Irocessing Systems, pp. 521–527.

Guarniero, P., A. M. Johansen, and A. Lee (2017). The iterated auxiliary particle filter. Journal

of the American Statistical Association 112 (520), 1636–1647.

Han, Y. and K. Nakamura (2021). The application of Zig-Zag sampler in sequential Markov

Statistica Sinica: Newly accepted Paper
(accepted author-version subject to English editing)

REFERENCES

chain Monte Carlo. arXiv preprint arXiv:2111.10210 .

Jasra, A., D. A. Stephens, A. Doucet, and T. Tsagaris (2010). Inference for Lévy-driven stochas-

tic volatility models via adaptive sequential Monte Carlo. Scandinavian Journal of Statis-

tics 38 (1), 1–22.

Johansen, A. M. (2015). On blocks, tempering and particle MCMC for systems identification.

IFAC-PapersOnLine 48 (28), 969–974.

Kitagawa, G. (1996). Monte Carlo filter and smoother for non-Gaussian nonlinear state space

models. Journal of Computational and Graphical Statistics 5 (1), 1–25.

Klaas, M., M. Briers, N. De Freitas, A. Doucet, S. Maskell, and D. Lang (2006). Fast particle

smoothing: If I had a million particles. In Proceedings of the 23rd International Conference

on Machine Learning, pp. 481–488.

Klaas, M., N. De Freitas, and A. Doucet (2005). Toward practical N2 Monte Carlo: The

marginal particle filter. In Proceedings of the 21st Conference in Uncertainty in Artificial

Intelligence, pp. 308–315.

Kong, A., J. S. Liu, and W. H. Wong (1994). Sequential imputations and Bayesian missing

data problems. Journal of the American Statistical Association 89 (425), 278–288.

Kuntz, J., F. R. Crucinio, and A. M. Johansen (2021). The divide-and-conquer sequen-

tial Monte Carlo algorithm: theoretical properties and limit theorems. arXiv preprint

arXiv:2110.15782 .

Statistica Sinica: Newly accepted Paper
(accepted author-version subject to English editing)

REFERENCES

Kuntz, J., F. R. Crucinio, and A. M. Johansen (2022). Product-form estimators: exploiting

independence to scale up Monte Carlo. Statistics and Computing 32 (1), 1–22.

Lang, D., M. Klaas, and N. de Freitas (2005). Empirical testing of fast kernel density estimation

algorithms. Technical Report TR2005-03, Department of Computer Science, University of

British Columbia.

Lei, J., P. Bickel, and C. Snyder (2010). Comparison of ensemble Kalman filters under non-

Gaussianity. Monthly Weather Review 138 (4), 1293–1306.

Lin, M., R. Chen, J. S. Liu, et al. (2013). Lookahead strategies for sequential Monte Carlo.

Statistical Science 28 (1), 69–94.

Lin, M. T., J. L. Zhang, Q. Cheng, and R. Chen (2005). Independent particle filters. Journal

of the American Statistical Association 100 (472), 1412–1421.

Lindsten, F., A. M. Johansen, C. A. Næsseth, B. Kirkpatrick, T. B. Schön, J. A. D. Aston, and

A. Bouchard-Côté (2017). Divide-and-Conquer with sequential Monte Carlo. Journal of

Computational and Graphical Statistics 26 (2), 445–458.

Liu, J. S. (2001). Monte Carlo Strategies in Scientific Computing. New York: Springer.

Næsseth, C. A., F. Lindsten, and T. B. Schön (2015). Nested sequential Monte Carlo methods.

In Proceedings of the 32nd International Conference on Machine Learning, Volume 37, pp.

1292–1301. Proceedings of Machine Learning Research.

Næsseth, C. A., F. Lindsten, and T. B. Schön (2019). High-dimensional filtering using nested

Statistica Sinica: Newly accepted Paper
(accepted author-version subject to English editing)

REFERENCES

sequential Monte Carlo. IEEE Transactions on Signal Processing 67 (16), 4177–4188.

Pal, S. and M. Coates (2018). Sequential MCMC with the discrete bouncy particle sampler. In

IEEE Statistical Signal Processing Workshop (SSP), pp. 663–667. IEEE.

Pitt, M. K. and N. Shephard (1999). Filtering via simulation: Auxiliary particle filters. Journal

of the American Statistical Association 94 (446), 590–599.

Rebeschini, P. and R. Van Handel (2015). Can local particle filters beat the curse of dimen-

sionality? Annals of Applied Probability 25 (5), 2809–2866.

Ruzayqat, H., A. Er-Raiy, A. Beskos, D. Crisan, A. Jasra, and N. Kantas (2022). A lagged par-

ticle filter for stable filtering of certain high-dimensional state-space models. SIAM/ASA

Journal on Uncertainty Quantification 10 (3).

Septier, F., S. K. Pang, A. Carmi, and S. Godsill (2009). On MCMC-based particle methods

for Bayesian filtering: Application to multitarget tracking. In 3rd IEEE International

Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP),

pp. 360–363. IEEE.

Septier, F. and G. W. Peters (2016). Langevin and Hamiltonian based sequential MCMC for

efficient Bayesian filtering in high-dimensional spaces. IEEE Journal of Selected Topics in

Signal Processing 10 (2), 312–327.

Vallender, S. S. (1974). Calculation of the Wasserstein distance between probability distributions

on the line. Theory of Probability & Its Applications 18 (4), 784–786.

Statistica Sinica: Newly accepted Paper
(accepted author-version subject to English editing)

REFERENCES

Wang, L., S. Wang, and A. Bouchard-Côté (2020). An annealed sequential Monte Carlo method

for Bayesian phylogenetics. Systematic Biology 69 (1), 155–183.

Xu, Y. and A. Jasra (2019). Particle filters for inference of high-dimensional multivariate

stochastic volatility models with cross-leverage effects. Foundations of Data Science 1 (1),

61–85.

Zhou, Y., A. M. Johansen, and J. A. Aston (2016). Toward automatic model comparison:

an adaptive sequential Monte Carlo approach. Journal of Computational and Graphical

Statistics 25 (3), 701–726.

Department of Statistics, University of Warwick

E-mail: francesca.crucinio@gmail.com

Department of Statistics, University of Warwick

E-mail: a.m.johansen@warwick.ac.uk

Statistica Sinica: Newly accepted Paper
(accepted author-version subject to English editing)

	Introduction
	Background
	Particle Filtering
	Particle Filters for High Dimensional Problems
	Divide and Conquer SMC

	Divide and Conquer within Marginal SMC for Filtering
	The Algorithm
	Choice of Proposals
	Adaptive Lightweight Mixture Resampling
	Computational Cost

	Experiments
	Simple Linear Gaussian Model
	Spatial Model

	Discussion

