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Approximating optimal SMC proposal distributions

in individual-based epidemic models

Lorenzo Rimella, Christopher Jewell and Paul Fearnhead

Lancaster University

Abstract: Many epidemic models are naturally defined as individual-based mod-

els: where we track the state of each individual within a susceptible population.

Inference for individual-based models is challenging due to the high-dimensional

state-space of such models, which increases exponentially with population size.

We consider sequential Monte Carlo algorithms for inference for individual-based

epidemic models where we make direct observations of the state of a sample of in-

dividuals. Standard implementations, such as the bootstrap filter or the auxiliary

particle filter are inefficient due to mismatch between the proposal distribution

of the state and future observations. We develop new efficient proposal distri-

butions that take account of future observations, leveraging the properties that

(i) we can analytically calculate the optimal proposal distribution for a single

individual given future observations and the future infection rate of that individ-

ual; and (ii) the dynamics of individuals are independent if we condition on their

infection rates. Thus we construct estimates of the future infection rate for each

individual and then use an independent proposal for the state of each individual

given this estimate. Empirical results show order of magnitude improvement in
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efficiency of the sequential Monte Carlo sampler for both SIS and SEIR models.

Key words and phrases: individual-based model; proposal distribution sequential

Monte Carlo.

1. Introduction

The use of dynamical disease transmission models to inform disease con-

trol policy has increased throughout the 21st century for both human and

livestock outbreaks, for example, SARS and H1N1 pandemic influenza in

humans (Zhou et al., 2004), avian influenza in poultry (Van der Goot et al.,

2005), and foot-and-mouth disease in cloven-hoofed livestock (Zhou et al.,

2004; Jewell et al., 2009). Most recently, they have been central in inform-

ing national-level decisions on social distancing and vaccination strategies

for the SARS-CoV-2 pandemic (Brooks-Pollock et al., 2021; Funk et al.,

2020). Besides outbreaks, such models are also useful for studying the dy-

namics of endemic diseases, with the ability to explain random fluctuations

around an otherwise stable case incidence, particularly in highly heteroge-

neous populations (Britton, 2010).

In essence, disease transmission models belong to the class of state

transition models, described by a directed (though not necessarily acyclic)

graph. For example, the SIS model proposes individuals as existing as “sus-
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ceptible” or “infected”, and individuals are allowed to transition from either

state to the other. In a stochastic setting, it is natural to assume that an

individual in the population experiences a hazard rate of progressing from

some source state to a destination state. This setup has particular rele-

vance for the case when transition hazard rates depend on the individuals’

characteristics as well as the characteristics of their relationship with each

other. Many applications demand individual-level granularity, particularly

when observations are of specific individuals or where disease interventions

are targeted to particular individuals (Chapman et al., 2020; Jewell et al.,

2009; Cocker et al., 2022).

Inference for such models is, however, challenging due to the presence

of partial- or total-censoring of transition events, for which the state-space

increases exponentially with population size. For example, in an SIS model,

we may have noisy observations of which individuals exist in either the S

or I states at particular times, but no direct observation of when state

transitions occur.

Following Rimella et al. (2022), we consider sequential Monte Carlo

(SMC) methods for inference for such models. We show that standard

implementations of SMC (Gordon et al., 1993; Pitt and Shephard, 1999)

are inefficient for these individual-based epidemic models. In particular,
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they struggle to propose states for all individuals that will be consistent

with future observations. Ju et al. (2021) consider how to improve the

efficiency of SMC for individual-based epidemic models, but they consider

observations of e.g. the number of infected individuals, and their approach

does not obviously apply to the observation models we consider.

To improve SMC, we develop a novel proposal distribution that takes

account of future observations. The key idea is based on two properties

of the dynamics of individual-based epidemic models. First, calculating

the conditional distribution of the state of a single individual, given future

observations and the future infection rate of the individual is tractable. This

can be calculated using standard recursions for finite-state hidden Markov

models Rabiner and Juang (1986) together with the fact that the state-

space for a single individual is small (e.g. 2 for an SIS model or 4 for an

SEIR model). Second, there is a form of conditional independence across

individuals: if we condition on the future infection rates for each individual

then the dynamics of the state for individuals are independent of each other.

In the models, we consider the infection rate for each individual just depends

on the total number of infectious individuals. Thus we can use ideas from

Whiteley and Rimella (2021) to estimate the future number of infectious

individuals. Then conditioning on this estimate, and the corresponding
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infection rates for each individual, we have a proposal distribution that is

independent across individuals, and for each individual is equal to the true

conditional distribution of the state given the estimated future infection

rates and observations for that individual.

The computational cost of using this proposal is proportional to the

number of time-steps at which we have future observations. In practice,

we can implement such a proposal distribution just conditioning on future

observations over a suitable time window. We show empirically that using

this proposal distribution can lead to an order of magnitude improvement

in Monte Carlo efficiency, even after accounting for the increased computa-

tional cost.

2. Preliminaries

We use bold lowercase letters for vectors, e.g. a, and bold uppercase letters

for matrices, e.g. A. We use A(i,j) for the (i, j)-th element of A and

we use A(i,•) (or A(•,j)) to represent the column vector given by the (i)-

th column (or the (j)-th row) of matrix A. With ◦ and / we denote the

elementwise product and ratio between vectors or matrices. 1M denotes the

M -dimensional vector of ones. Given t, s ∈ N with t > s we use [s : t] for

the set {s, . . . , t}, which also applies on indexing as a shorthand, e.g. for
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t ∈ N we use y[1:t] for {y1, . . . , yt}. The notation for the main probability

distributions is reported in Table 1.

Distribution Categorical Bernoulli Binomial Gaussian Uniform Multinomial

Notation CatM(i|p) Be(i|q) Bin(i|N, q) N (a|µ, σ2) Unif(q|a, b) Mult(c|N,p)

Table 1: Notation table for probability mass and density functions.

3. Model

3.1 Individual-based epidemic models

In this article we consider individual-based models defined by: the num-

ber of compartments M , the population size N , the initial probability of

an individual being assigned to a compartment (pn,0)n∈[1:N ] and the prob-

ability of an individual to transition from one compartment to the other

(Kn,•)n∈[1:N ], where the stochastic transition matrix Kn,• is defined as a

function of an M -dimensional vector c, i.e. c → Kn,c. In practice, c(i) is

the number of individuals in compartment i, and so the transition matrix

Kn,c depends on the compartments’ state only, however, more general ver-

sions are possible and briefly discussed in Section 6 (e.g. spatial models).

We use (xt)t≥0 for the population state and (ct)t≥0 for the compartments’

state, following:
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3.2 Observation model

Time 0: x
(n)
0 ∼ CatM(•|pn,0) for n ∈ [1 : N ] and

c
(i)
0 =

∑N
n=1 Ix(n)

0
(i) for i ∈ [1 : M ];

Time t: x
(n)
t |xt−1 ∼ CatM

(
•
∣∣∣K(x

(n)
t−1,•)

n,ct−1

)
for n ∈ [1 : N ] and

c
(i)
t =

∑N
n=1 Ix(n)

t
(i) for i ∈ [1 : M ].

SIS example We can make the SIS model heterogeneous by following

the construction in Ju et al. (2021). Suppose that we have d ∈ N covariates

for each individual, we can then define (wn)n∈[1:N ] as the collection of d-

dimensional vectors gathering the individual-specific covariates, from which

we can compute for n ∈ [1 : N ]:

pn,0 =

1− 1
1+exp (−βT

0 wn)

1
1+exp (−βT

0 wn)

 , Kn,c =

1− 1
1+exp (−βT

λwn)
c(2)

N
1

1+exp (−βT
λwn)

c(2)

N

1
1+exp (−βT

γ wn)
1− 1

1+exp (−βT
γ wn)


with β0 ∈ Rd and βλ, βγ ∈ Rd. In this model we have individual-specific

probabilities of infection and recovery.

3.2 Observation model

The observation process is denoted by (yt)t≥1 and given (qn,t)n∈[1:N ],t≥1 with

qn,t ∈ [0, 1]M we generate observations per each time step t as follows:

y
(n)
t = x

(n)
t r

(n)
t with r

(n)
t ∼ Be

(
•
∣∣∣q(x

(n)
t )

n,t

)
for n ∈ [1 : N ], (3.1)
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3.3 Inference in individual-based models with granular observations

which we refer to as the “granular observations model”. Note that y
(n)
t ∈

[0 : M ] meaning that we either report the state of individual n as it is

(y
(n)
t = x

(n)
t ) or we do not report it at all (y

(n)
t = 0). This model includes

observations from random samples of the population, where each component

of qn,t is the same and equal to the probability that individual n is included

in the sample at time t, as well as situations where observations are pref-

erentially made for certain states (such as observations being of infected

farms for foot-and-mouth disease). To simplify the notation and deriva-

tions, in this paper we focus on individual homogeneous reporting rates,

i.e. qn,t = qt, and under this assumption
∑

n∈[1:N ] Iy(n)
t
(i) ∼ Bin(•|c(i)t ,q

(i)
t )

for any i ∈ [1 : M ], which recover the binomial observation model (Whiteley

and Rimella, 2021; Ju et al., 2021).

SIS example Given qt ∈ [0, 1]2, q
(1)
t is the probability of reporting a

susceptible, while q
(2)
t is the probability of reporting an infected.

3.3 Inference in individual-based models with granular observa-

tions

In epidemiology, we are interested in inferring both the unknown state of the

population xt and the parameters of the epidemic θ. Given the time hori-

zon t, the individual-based model with granular observation (xs,ys)s∈[1:t] is
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3.3 Inference in individual-based models with granular observations

by construction a hidden Markov model (HMM). We can hence compute

filtering distribution p(xs|y[1:s], θ) and marginal likelihood p(y[1:s]|θ) with

the forward algorithm (Rabiner and Juang, 1986). The parameters can be

then inferred through, for example, the EM algorithm (Yang et al., 2017).

The forward algorithm requires marginalizing over the whole state-

space, making it unfeasible for our individual-based model, where marginal-

izations are O(MN). Alternatively, Sequential Monte Carlo (SMC) algo-

rithms can be employed to obtain particle approximations of p(xs|y[1:s], θ)

and p(y[1:s]|θ) (Ionides et al., 2006; Kucharski et al., 2020) at a cost that

is linear in the number of particles and time horizon. Given a number of

particles P ∈ N, at each time step s an SMC algorithm proposes instances

(xp
s)p∈[1:P ] of the latent process (xs)s∈[1:t] through the proposal distribution

q(xs|xs−1,y[1:t]), with q(x0|x−1,y[1:t]) := q(x0|y[1:t]) and q(x0|y[1:t]) proposal

distribution at time s = 0, and it assigns weights (wp
s)p∈[1:P ] to the particles

to produce an importance sample that approximates the filtering distri-

bution. Before moving to the next step, the algorithm uses a resampling

scheme rs(i), a distribution over the particles’ indexes [1 : P ], to discard

low-weight particles. At the end of the procedure, particle estimates of

the filtering distribution, p(xs|y[1:s], θ) ≈ (
∑

p̃∈[1:P ] w
p
s)

−1
∑

p∈[1:P ]w
p
sδxp

s
(xs),

and the marginal likelihood, p(y[1:t]|θ) ≈
∏

s∈[1:t]
∑

p∈[1:P ] w
p
s , are generated.
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3.3 Inference in individual-based models with granular observations

The performance of SMC algorithms heavily depends on the proposal

distributions (q(xs|xs−1,y[1:t]))s∈[0:t] and the resampling scheme (rs(i))s∈[0:t],

incautious choices of these quantities might lead to high variance of the

marginal likelihood estimator, particles/weights degeneracy and even ob-

servation mismatch, which might cause the failure of the algorithm. The

Bootstrap Particle Filter (BPF) (Gordon et al., 1993; Candy, 2007) pro-

poses new particles through the transition kernel and it resamples ac-

cording to the current weights, i.e. q(xs|xs−1,y[1:t]) = p(xs|xs−1, θ), with

q(x0|y[1:t]) = p(x0|θ), and rs(i) = CatP
(
i|
[
w1

s , . . . , w
P
s

])
. BPF is known

to perform poorly in high-dimensional scenarios (Bickel et al., 2008) and

with informative observation, especially when simulated particles have to

match certain paths. An easy fix is to include the information from the

current observations in the proposal distributions, to avoid mismatch at

the current time step when proposing new particles. The resulting al-

gorithm is called the auxiliary particle filter (APF) (Pitt and Shephard,

1999; Carpenter et al., 1999; Johansen and Doucet, 2008) and it arises by

picking q(xs|xs−1,y[1:t]) = p(xs|xs−1,ys, θ), with q(x0|y[1:t]) = p(x0|θ), and

rs(i) = CatP
(
i|
[
w1

s , . . . , w
P
s

])
. We illustrate graphically in Figure 1 the

comparison between BPF and APF in an individual-based model. The

BPF fails after three iterations because the proposed particle mismatch the
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3.3 Inference in individual-based models with granular observations

observed state for individuals 1 and 3, indeed we observe y
(1)
3 = 2 and

y
(3)
3 = 2, but the BPF proposes (xp

3)
(1) = 1 and (xp

3)
(3) = 1 (green lines).

On the contrary, the APF is able to propose particles that are constrained

to match the observation, because it includes the current data in the pro-

posal. However, the APF’s proposal is still inefficient as it does not take

into account future observations. In Figure 1 this is seen by it tending to

propose a switch to the infected state immediately before the observation

of an infected individual, whereas often an individual becomes infected one

or more time-steps earlier. For more complicated models, such as the SEIR

model we consider in Section 5.2, the APF can also suffer from mismatch,

as the transition to an observed state may not be possible for the current

state of a particle.

In the next section, we show how to build for any s ∈ [0 : t] an approx-

imation of p(xs|xs−1,y[s:t], θ) for the individual-based model with granular

observations. Given that computing p(xs|xs−1,y[s:t], θ) requires (cs̃)s̃∈[s:t−1],

the main idea consists of approximating (cs̃)s̃∈[s:t−1] with the expectation of

a precomputed multinomial distribution (Whiteley and Rimella, 2021) and

to propagate backward the observation y[s:t] to inform the proposal in s.
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Figure 1: Illustration of BPF (left) and APF (right), in an SIS scenario.

Colored dots show the state of each individual, with green for susceptible

and red for infected. Dots in grey squares are observations. Horizontal lines

from s− 1 to s are used for the proposed states in s.

4. Optimal proposal distributions for individual-based models

The optimal proposal for an SMC is p(xs|xs−1,y[s:t], θ) and it can be com-

pute recursively:

Time t: p(yt|xt−1, θ) =
∑

xt∈[1:M ]N p(yt|xt, θ)p(xt|xt−1, θ) and

p(xt|xt−1,yt, θ) =
p(yt|xt,θ)p(xt|xt−1,θ)

p(yt|xt−1,θ)
;

Time s: p(y[s:t]|xs−1, θ) =
∑

xs∈[1:M ]N p(y[s+1:t]|xs, θ)p(ys|xs, θ)p(xs|xs−1, θ) and

p(xs|xs−1,y[s:t], θ) =
p(y[s+1:t]|xs,θ)p(ys|xs,θ)p(xs|xs−1,θ)

p(y[s:t]|xs−1,θ)
;

Time 0: p(y[1:t], θ) =
∑

x0∈[1:M ]N p(y[1:t]|x0, θ)p(x0, θ) and

p(x0|y[1:t], θ) =
p(y[1:t]|x0,θ)p(x0,θ)

p(y[1:t]|θ)
.

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing) 



See Fearnhead (2008) for a review of the optimal proposal for impor-

tance sampling, Chopin et al. (2020) for a discussion on optimal proposal

for Particle Filters and Whiteley and Lee (2014) for a more technical dis-

cussion.

A marginalization over the whole state-space is required resulting in a

computational cost of O(MN) per each step. Observe that at the beginning

of the recursion we can exploit the factorization over the individuals at time

t, components of xt, of the transition kernel and emission distribution to

reduce the computational cost of the marginalization to O(NM):

p(yt|xt−1, θ) =
∏

n∈[1:N ]

∑
x
(n)
t ∈[1:M ]

K
(x

(n)
t−1,x

(n)
t )

n,ct−1

(
q
(x

(n)
t )

t

)I
y
(n)
t

(x
(n)
t ) (

1− q
(x

(n)
t )

t

)I
y
(n)
t

(0)

.

(4.2)

Notice that y
(n)
t is not conditionally independent given x

(n)
t−1 because of the

dependence of the transition kernel on the compartments’ state ct−1. This

breaks the computational trick because we cannot express p(yt|xt−1, θ) as a

product over the individuals at time t−1, and so the cheap marginalization

has to be repeated for each state of xt−1, leading to O(NMN+1). However,

y
(n)
t is conditionally independent given x

(n)
t−1 and ct−1, meaning that if an

estimate of ct−1 is available a priori the factorization is preserved and the

same trick can be iterated in the next time steps.
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4.1 A priori estimates of the compartments’ states

4.1 A priori estimates of the compartments’ states

Whiteley and Rimella (2021) proposes an efficient way to approximate

the smoothing distribution p(cs|y[1:t], θ) with a multinomial distribution

Mult(cs|N,ms|t) whose parameters are computed recursively with a for-

ward and a backward step through the data at a computational costO(tM3).

In the multinomial approximation, there are two key assumptions: the ho-

mogeneity of the individuals and a binomial observation model of the form

Bin(•|c(i)s ,q
(i)
s ). We can recover homogeneity in the individual-based model

with granular observation by defining the mean initial distribution p̄n,0 and

the mean transition kernel K̄cs :

p̄
(i)
n,0 :=

1

N

∑
n∈[1:N ]

p
(i)
n,0, for i ∈ [1 : M ],

K̄(i,j)
cs

:=
1

N

∑
n∈[1:N ]

K(i,j)
n,cs , for i, j ∈ [1 : M ].

We remark that recovering homogeneity by approximating the individuals’

transition kernel with an average is also a key step in Ju et al. (2021),

where the transition probabilities are approximated by averaging over the

individuals to avoid an exponential computational cost in the population

size.

We already have
∑

n∈[1:N ] Iy(n)
s
(i) ∼ Bin(•|c(i)s ,q

(i)
s ) for i ∈ [1 : M ], from

which we can define the cumulative observations per each compartment as
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4.1 A priori estimates of the compartments’ states

the vector os with components o
(i)
s :=

∑
n∈[1:N ] Iy(n)

s
(i).

Using the aforementioned approximate dynamic and observation model,

the multinomial approximation in Whiteley and Rimella (2021) scans the

data forward and backward and computes multinomial approximations of

the filtering and smoothing distribution (the full algorithm is reported in

the appendix). The forward pass consists of a prediction step and an update

step preserving the multinomial form, precisely, starting from m0|0 := p̄n,0,

we have:

ms−1|s :=
(
mT

s−1|s−1K̄ms−1

)T
, ms|s :=

os

N
+

(
1− 1T

Mos

N

)
ms−1|s ◦ (1M − qs)

1−mT
s−1|sqs

,

which gives an approximation for the filtering distribution p(cs|y[1:s]) ≈

Multi(cs|N,ms|s). The backward pass implements a reverse kernel and

applies it backward:

Ls :=
{[

(ms|t1
T
M) ◦ K̄ms

]
/
[
1M(mT

s|tK̄ms)
]}T

, ms|t :=
(
mT

s+1|TLs

)T
,

outputting theM -dimensional probability vectorms|t and so approximating

the smoothing distribution with p(cs|y[1:t], θ) ≈ Multi(cs|N,ms|t). Given

the multinomial approximations we can approximate the compartments’

state with:

cs ≈ EMult(cs|N,ms|t)(cs) = Nms|t.

We have imposed a restriction on the emission distribution by assum-
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4.2 Approximate optimal proposals for individual-based models

ing a uniform reporting probability for all individuals. However, our ap-

proach can be extended to accommodate a more general scenario where

qt,n varies with n. To do so, we can compute the mean reporting rate

q̄t := (N)−1
∑

n∈[1:N ] qt,n when running Whiteley and Rimella (2021) and

then substitute back qt,n when computing the approximation to the optimal

proposal.

4.2 Approximate optimal proposals for individual-based models

Conditioning on cs̃ = Nms̃|t for s̃ ∈ [s : t] makes the individuals evolve

independently from each other and so it allows an analytical computation

of p(y[s:t]|xs−1, θ) at a cost O(NM). Starting again from (4.2):

p(yt|xt−1, θ) ≈
∏

n∈[1:N ]

∑
x
(n)
t ∈[1:M ]

K
(x

(n)
t−1,x

(n)
t )

n,Nmt−1|t

(
q
(x

(n)
t )

t

)I
y
(n)
t

(x
(n)
t ) (

1− q
(x

(n)
t )

t

)I
y
(n)
t

(0)

=:
∏

n∈[1:N ]

ξ
(x

(n)
t−1)

n,t−1 ,

where we define the quantities ξn,t−1 for each individual n as the approx-

imate probability of observing the future observation y
(n)
t given the state

at time t − 1. We can then follow a similar argument and approximate
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4.2 Approximate optimal proposals for individual-based models

p(y[s:t]|xs−1, θ) as follows:

p(y[s:t]|xs−1, θ) ≈
∏

n∈[1:N ]

∑
x
(n)
s ∈[1:M ]

ξ(x
(n)
s )

n,s K
(x

(n)
s−1,x

(n)
s )

n,Nms−1|t

(
q(x

(n)
s )

s

)I
y
(n)
s

(x
(n)
s ) (

1− q(x
(n)
t )

s

)I
y
(n)
s

(0)

=:
∏

n∈[1:N ]

ξ
(x

(n)
s−1)

n,s−1 ,

where ξn,s−1 is the approximate probability for each individual n of observ-

ing the future observation y[s:t] given the state at time s− 1. Note that the

marginalization is repeated for all the states of x
(n)
s−1 and not xs−1, which

reduces the cost from O(NMN+1) to O(NM2). We can now build our

proposal distribution for SMC and approximate p(xs|xs−1,y[s:t], θ) as:

p(xs|xs−1,y[s:t], θ) ≈
∏

n∈[1:N ]

ξ(x
(n)
s )

n,s K
(x

(n)
s−1,x

(n)
s )

n,cs−1

(
q
(x

(n)
s )

s

)I
y
(n)
s

(x
(n)
s ) (

1− q
(x

(n)
s )

s

)I
y
(n)
s

(0)

ξ̃
(x

(n)
s−1)

n,s

,

p(x0|y[1:t], θ) ≈
∏

n∈[1:N ]

ξ
(x

(n)
0 )

n,0 p
(x

(n)
0 )

n,0

ξ̃n,0
,

for s ∈ [1 : t] and with:

ξ̃
(x

(n)
s−1)

n,s :=
∑

x
(n)
s ∈[1:M ]

ξ(x
(n)
s )

n,s K
(x

(n)
s−1,x

(n)
s )

n,cs−1

(
q(x

(n)
s )

s

)I
y
(n)
s

(x
(n)
s ) (

1− q(x
(n)
s )

s

)I
y
(n)
s

(0)

,

ξ̃n,0 :=
∑

x
(n)
0 ∈[1:M ]

ξ
(x

(n)
0 )

n,0 p
(x

(n)
0 )

n,0 ,

for n ∈ [1 : N ].
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4.2 Approximate optimal proposals for individual-based models

It is crucial to understand the difference between ξn,s and ξ̃n,s. ξn,s

is used to approximate p(y[s+1:t]|xs, θ) without knowing xs and so it is

computed by substituting cs with Nms|t. ξ̃n,s is used to approximate

p(y[s+1:t]|xs, θ) when knowing xs and so having access to the actual cs. The

latter is important because when considering the proposal distribution of an

SMC we know the latest particles and we want to propose the next time step

given the last. It is worth mentioning the special case s = 0, here we have

no latest particles hence the recursion looks different, in particular, ξ̃n,0 is a

scalar and it can be used to approximate the marginal likelihood p(y[1:t]|θ).

Note that the marginal likelihood approximation could be a useful tool, for

example, it can be employed in pseudo-likelihood methods (Andrieu and

Roberts, 2009) or implemented in a delayed acceptance particle MCMC

(Golightly et al., 2015).

ξn,s and ξ̃n,s are the only quantities needed to compute our approxi-

mate proposal distribution and they can be precomputed before running

the SMC at a computational cost O(tNM2). However, this also requires a

memory cost of O(tNM2), because they have to be accessible when running

the SMC and it is a considerable issue when t is large. As an alternative,

we can compute ξn,s and ξ̃n,s at each step of the SMC, which requires a

computational cost of O(Pt2NM2). A quadratic in t computational cost
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4.2 Approximate optimal proposals for individual-based models

Algorithm 1 Computation of (ξn,h,s, ξ̃n,h,s)n∈[1:N ]

Require: (Kn,•)n∈[1:N ], (qs̃)s̃∈[s+1:s+h], (ms̃|t)s̃∈[s:s+h−1], y[s+1:s+h],

if s ̸= 0 add ys, cs−1

1: for n = 1, . . . , N do

2: ξn,h,s+h ← 1M

3: for s̃ = s+ h− 1, . . . , s do

4: ξTn,h,s̃ ← K
(•,i)
n,Nms̃|t

q
(i)
s̃+1ξ

(i)
n,h,s̃+1Iy(n)

s̃+1

(i) + Kn,Nms̃|t(1M − qs̃+1 ◦

ξn,h,s̃+1)Iy(n)
s̃+1

(0)

5: if s ̸= 0 then

6: ξ̃
T
n,h,s ← K

(•,i)
n,cs−1q

(i)
s ξ

(i)
n,h,sIy(n)

s
(i) +Kn,cs−1

(
1M − qs ◦ ξn,h,s

)
I
y
(n)
s

(0)

7: else

8: ξ̃n,h,0 ← pT
0,nξn,h,1

is still undesirable, hence we can reduce it by using the observations from

the closest future instead of the whole sequence. We can indeed focus on

approximating p(xs|xs−1,y[s:s+h], θ) for h ∈ N and h ≪ t. Given that

we have presented our approximation for an arbitrary t, approximating

p(xs|xs−1,y[s:s+h], θ) is like approximating p(xs|xs−1,y[s:t], θ) for t = s + h,

but we make the dependence on h explicit by defining ξn,h,s and ξ̃n,h,s as

the ξn,s, ξ̃n,s obtained from the algorithm when looking h steps ahead. The

whole procedure is summarized in Algorithm 1 and it requires a computa-
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4.3 Resampling

tional cost of O(hNM2). Embedding this algorithm in an SMC demands a

computational cost of O(PthNM2), which can be controlled by the users

depending on the computational resources and application. We can then

conclude the section by stating our optimal proposal distribution:

q(xs|xs−1,y[1:t], θ) =
∏

n∈[1:N ]

ξ
(x

(n)
s )

n,h,s K
(x

(n)
s−1,x

(n)
s )

n,cs−1

(
q
(x

(n)
s )

s

)I
y
(n)
s

(x
(n)
s ) (

1− q
(x

(n)
s )

s

)I
y
(n)
s

(0)

ξ̃
(x

(n)
s−1)

n,h,s

,

q(x0|y[1:t], θ) =
∏

n∈[1:N ]

ξ
(x

(n)
0 )

n,h,0 p
(x

(n)
0 )

n,0

ξ̃n,h,0
.

4.3 Resampling

The resampling scheme (rs(i))s∈[0:t] is not trivial, indeed choosing resam-

pling schemes that are not looking into future observation vanishes all the

effort in building optimal proposals (Fearnhead, 2008). Ideally, resam-

pling should be done according to the smoothing distribution p(xs|y[1:t], θ)

(Scharth and Kohn, 2016):

p(xs|y[1:t], θ) =
p(y[s+1:t]|xs, θ)p(xs|y[1:s], θ)

p(y[s+1:t]|y[1:s], θ)
∝ p(y[s+1:t]|xs, θ)p(xs|y[1:s], θ),

which is a combination of the probability of observing the future obser-

vations given the current sample xs and the filtering distribution. The

equivalent of the low-cost case where the proposal distribution approximate
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p(xs|xs−1,y[s:s+h], θ) follows trivially for t = s+ h.

The quantities involved in the optimal resampling cannot be computed

in closed form and they need to be approximated. SMC outputs a par-

ticle approximation (N)−1
∑

p∈[1:P ] w
p
sδxp

s
(xs) of the filtering distribution

p(xs|y[1:s], θ) and at the same time algorithm 1 gives an approximation∏
n∈[1:N ] ξ̃

(x
(n)
s )

n,h,s+1 for p(y[s+1:t]|xs, θ). It then follows that the approximate

optimal resampling is:

rs(i) ∝ wi
s

∏
n∈[1:N ]

ξ̃
((xi

s)
(n))

n,h,s+1 for i ∈ [1 : P ],

with (xp
s)p∈[1:P ] being the sampled particles at time s.

5. Experiments

In this section, we analyse the performance of SMC algorithms when us-

ing our approximation of the optimal proposal and resampling scheme.

We consider simulated data from two compartmental models: Susceptible-

Infected-Susceptible (SIS), Susceptible-Exposed-Infected-Removed (SEIR),

which are analysed in Section 5.1 and Section 5.2 respectively. For each

model we follow an experimental routine inspired by Ju et al. (2021), com-

paring our method with the BPF and APF: (i) compare methods based

on the effective sample size (ESS) 1/
∑

i∈[1:P ](rs(i)); (ii) compare methods

based on the standard deviation of the estimate of marginal likelihood; (iii)
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5.1 Susceptible-infected-susceptible

study of the marginal likelihood surface on a grid of parameter values for

different t when using our method.

All the experiments are run on 32gb Tesla V100 GPU available on the

HEC (High-End Computing) facility from Lancaster University. The code

can be found in the GitHub repository “Optimal IBM proposal”

(https://github.com/LorenzoRimella/Optimal IBM proposal).

5.1 Susceptible-infected-susceptible

The SIS model is used in epidemiology to model the spread of a disease

in a population when herd immunity is not possible. As already men-

tioned in Section 3.1, we can formulate an individual-based model by hav-

ing individuals-specific covariates (wn)n∈[1:N ] and use these covariates to

define a unique dynamic per each individual. We have covariates of the

form wn = [w
(1)
n ,w

(2)
n ]T where w

(1)
n = 1 and w

(2)
n ∼ N (•|0, 1) indepen-

dently for all n ∈ [1 : N ]. If not specified otherwise we consider N = 100,

time horizon t = 100 and data generating parameters (DGP) given by:

β0 = [− log(N − 1), 0]T, βλ = [−1, 2]T , βγ = [−1,−1]T and qt = q with

q = [0.8, 0.8]T.

The first experiment consists of measuring the ESS for BPF, APF, and

h = 1, 5, 10, 20, 50 when P = 512. Figure 2 displays our findings for a
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5.1 Susceptible-infected-susceptible
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Figure 2: ESS percentage over time for BPF, APF and our method when

h = 1, 5, 10, 20, 50. Different colors correspond to different methods. The

left plot shows all the listed methods, while the right one considers only

h = 10, 20, 50 and zoom-in.

number of particles P = 512. The BPF fails in sampling any epidemics

trajectory, this is due to the mismatch problem mentioned in Section 3.3,

indeed it is enough to mismatch a single individual out of N to assign 0

probability to the associated particle. APF corrects the proposal by looking

at the current observation and so it avoids mismatch. Even though this is

a significant improvement compared to BPF the ESS is still very low. Our

approximate optimal proposal reaches a significantly better ESS than APF

by just looking at the next step in the future (h = 1). We also observe that

choosing h > 5 does not improve much the performance, this is due to the

forgetting property of our HMM (Douc et al., 2009).
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5.1 Susceptible-infected-susceptible

In the next experiment, we look at the standard deviation of the marginal

likelihood estimates. We consider two frameworks: one using the data gen-

erating parameters and the other substituting βλ with [−3, 0]T. Standard

deviations are computed over 100 runs. The APF is 3− 4 times faster than

our method when h = 5, but the standard deviation is, in both frameworks,

10− 20 times higher than h = 5 for small P and even 20− 30 times higher

than h = 5 for big P . Again, we do not notice a substantial improvement

when using h > 5. The computational cost highly depends on the imple-

mentation, our scripts run on GPUs and parallelize each step of the SMC

across individuals and particles, hence we do not report significant changes

in the running time when increasing P .

Now suppose we want to infer βλ or βγ. We start by setting βλ in a 2-

dimensional grid on [−4, 4]2 and the other parameters to the data generating

parameters (including βγ). We then compute estimates of the marginal

likelihood with an SMC employing our proposal and resampling scheme

when P = 512. The procedure is then replicated for βγ. Both experiments

are run for h = 5, 10 and t = 50, 100, with new data generated per each

value of t. Marginal likelihood contour plots are reported in Figure 3 in log

scale and normalized to have their max in zero.

In both figures, we can observe that increasing the time concentrates the
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5.2 Susceptible-exposed-infected-removed

Table 2: Table reporting standard deviation for the APF and our method

when h = 5, 10, 20 under the data generating process (DGP) and non data

generating process (NDGP) with P = 128, 512, 2048. The mean computa-

tional cost of a single step of the SMC is reported in the first row with the

name of the algorithm.

APF 0.7s h=5 2.5s h=10 3.94s h=20 6.61s

DGP NDGP DGP NDGP DGP NDGP DGP NDGP

P std std std std std std std std

128 4.99 9.89 0.3 0.92 0.31 1.0 0.37 0.89

512 4.01 6.66 0.17 0.48 0.18 0.49 0.18 0.48

2048 2.83 6.23 0.11 0.25 0.11 0.22 0.11 0.22

likelihood around the data-generating parameters. Choosing h = 10 does

not improve much inference over βλ, but it helps to infer βγ by removing

some combination of the parameters from the inference (white spaces).

5.2 Susceptible-exposed-infected-removed

The SEIR model is another popular model in epidemiology (He et al., 2020;

Deguen et al., 2000; Porter and Oleson, 2013), it is used when the disease is

expected to have a latent period (exposed compartment) and herd immunity

(removed compartment). The SEIR case is significantly more challenging
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5.2 Susceptible-exposed-infected-removed

Figure 3: Marginal likelihood contour plots on a βλ grid and a βγ grid in

log-scale. The first and second columns refer to t = 50, 100 from left to

right for βλ. The third and fourth columns refer to t = 50, 100 from left to

right for βγ. Rows refer to h = 5, 10 from top to bottom. The colorbars are

common across parameters and their maximum is set to 0. In red are the

data-generating parameters and in black are the MLE on the grid.

than the SIS because the transition kernel constrains the dynamic on S →

E → I → R and so if in our SMC at time t − 1 we have a particle with

individual n in compartment S and we then observe the same individual

at time t in compartment I or R the SMC assigns 0 probability to that

particle.

As for the SIS case, a heterogeneous SEIR model is obtained by includ-
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5.2 Susceptible-exposed-infected-removed

ing a collection of covariates defining (wn)n∈[1:N ]. The initial distribution

pn,0 is defined on compartments 1 (S) and 3 (I) as for the SIS case, with

zeros for compartments 2 (E) and 4 (I). Similarly, (Kn,•)n∈[1:N ] is defined as

the SIS for transitions 1, 2 (S, E) and 3, 4 (I, R), with the additional transi-

tion 2, 3 (E, I) given by 1−exp(−ρ). Full definitions of pn,0 and (Kn,•)n∈[1:N ]

are available in the appendix. The emission distribution follows (3.1).

We have covariates of the form wn = [w
(1)
n ,w

(2)
n ]T where w

(1)
n = 1

and w
(2)
n ∼ N (•|0, 1) independently for all n ∈ [1 : N ]. If not specified

otherwise we consider N = 1000, time horizon t = 100 and data generating

parameters given by: β0 = [− log(N/10 − 1), 0]T, βλ = [1, 2]T, ρ = 0.2,

βγ = [−1,−1]T and qs = q with q = [0, 0, 0.4, 0.6]T.

As for the SIS case, we start by analysing the ESS for BPF, APF, and

h = 1, 5, 10, 20, 50 with P = 512. In Figure 4 both the BPF and the APF

fail due to a mismatch between the proposed particles and the observations.

Even our method fails for h ≤ 5, but when choosing h ≥ 10 we are able to

avoid mismatch and get an increasing in time ESS.

We then investigate the standard deviation and computational cost of

our method when h changes, and we report our results in Table 3. Observe

there is a significant improvement in the standard deviation when increasing

h up to 50, with the jump from h = 20 to h = 50 being less substantial.
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Figure 4: ESS percentage over time for BPF, APF, and our method when

h = 1, 5, 10, 20, 50. Different colors correspond to different methods. The

left plot shows the listed methods, while the right one considers only h =

5, 10, 20, 50 and zoom-in.

Clearly, there is a trade-off, a decrease in standard deviation has to be

paid for by an increase in computational cost, but it seems worth it for

h < 50, given that halving the standard deviation is associated with less

than doubling the computational cost.

We conclude by reproducing the marginal likelihood surfaces of βλ and

βγ on grids for the SEIR scenario. The experiments are run for h = 10, 20

and t = 50, 100, with new data generated per each value of t. Figure 5

shows the marginal likelihood contour plots on a log scale and normalized

to have their max in zero. As for the SIS case, an increase in t concentrates

the likelihood around the DGP as can be seen in both figures. Notice that
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5.2 Susceptible-exposed-infected-removed

Table 3: Table reporting standard deviation for our method when h =

5, 10, 20, 50 under the data generating parameters (DGP) and non data

generating parameters (NDGP) with P = 128, 512, 2048. The mean com-

putational cost of a single step of the SMC is reported in the first row with

the name of the algorithm.

h=5 0.9s h=10 3.5s h=20 5.45s h=50 9.03s

DGP NDGP DGP NDGP DGP NDGP DGP NDGP

P std std std std std std std std

128 58.18 68.2 20.47 32.6 9.59 18.32 6.93 11.71

512 48.23 74.78 18.37 28.64 6.39 15.76 6.23 10.72

2048 42.7 58.37 15.03 24.68 5.69 13.25 4.57 10.45

the log-likelihood surface of βλ is multi-modal, this is due to observing

neither susceptible nor exposed individuals, which makes inference on this

parameter significantly harder. Choosing h = 20 seems to smooth the

likelihood surface and it also avoids failure close to the data generating

parameters, as seen by white holes in the surface for h = 10 and t = 100.

βγ has a smoother surface compare to βλ and again increasing h seems to

improve the shape.
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Figure 5: Marginal likelihood contour plots on a βλ grid and a βγ grid in

log-scale. The first and second columns refer to t = 50, 100 from left to

right for βλ. The third and fourth columns refer to t = 50, 100 from left to

right for βγ. Rows refer to h = 5, 10 from top to bottom. The colorbars are

common across parameters and their maximum is set to 0. In red are the

data-generating parameters and in black are the MLE on the grid.

6. Discussion

Our findings demonstrate the difficulties in fitting individual-based epi-

demic models in the presence of censored data and highlight the significance

of incorporating future observations to guide the choice of proposal distri-

butions in SMC algorithms. The underlying framework in which proposal
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distributions are built is general and the algorithm requires only obtaining,

for each individual, estimates of the transition rates at the times [t+1, t+h],

which are then propagated backwards to build a proposal distribution that

includes future observations.

While the overall procedure has been presented as an algorithm to

compute good proposal distributions, it seems like several aspects of the

work could be used to improve existing methods. For example, as already

mentioned, our backward recursion method could be used to compute the

marginal likelihood approximation in pseudo-likelihood methods (Andrieu

and Roberts, 2009), or as the first approximate model stage in the delayed

acceptance scheme of Golightly et al. (2015).

Our implementation focuses on the case of homogeneous reporting rates

in a fully connected population, however, the work can be extended beyond

this setting. Indeed, it is straightforward to use these techniques for het-

erogeneous reporting rates, as discussed at the end of Section 4.1, and for

spatial epidemic models we would simply need to obtain an estimate of the

spatial risk of infection to be able to run the recursion. Epidemic models

with an open population (e.g. migration or births-deaths) and misreporting

can also be included in the class of models we can deal with, by substituting

the multinomial approximation (Whiteley and Rimella, 2021) with alterna-
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tive approximations (Whitehouse et al., 2022).

Supplementary Materials

The supplementary materials are divided in five sections reporting:

1. the main notation and conventions;

2. an introduction to compartmental model;

3. the main computation in HMM and SMC;

4. the algorithm by Whiteley and Rimella (2021);

5. some additional experiments and extra details on some experiments

from the main paper.
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