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Abstract: This paper considers testing for two-sample mean difference with high-dimensional tem-

porally dependent data, which is later extended to the one-sample situation. To eliminate the bias

caused by the temporal dependence among the time series observations, a band-excluded U-statistic

(BEU) is proposed to estimate the squared Euclidean distance between the two means, which ex-

cludes cross-products of data vectors among temporally close time points. The asymptotic normality

of the BEU statistic is derived under the high-dimensional setting with “spatial” (column-wise) and

temporal dependence. An estimator built on the kernel smoothed cross-time covariances is devel-

oped to estimate the variance of the BEU-statistic, which facilitates a test procedure based on the

standardized BEU-statistic. The proposed test is nonparametric and adaptive to a wide range of

dependence and dimensionality, and has attractive power properties relative to a self-normalized test.

Numerical simulation and a real data analysis on the return and volatility of S&P 500 stocks before

and after the 2008 financial crisis are conducted to demonstrate the performance and utility of the

proposed test.

Key words and phrases: High dimensionality, long-run variance estimation, L2-type test, spatial and

temporal dependence, U-statistics.
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1. Introduction

High-dimensional data characterized by simultaneous measurements of a large number of

variables become feasible in current social, economic and environmental studies, especially

in spatial econometrics (Arbia, 2016) and financial econometrics (Fan et al., 2020). Those

data are usually temporally dependent while there are also dependence among the high-

dimensional components at each cross section of time. Specific examples include high-

frequency financial data for asset returns (Fan et al., 2011; Liu and Chen, 2020), economic

panel data (Stock and Watson, 2002) with a large number of recorded variables, and large

scale spatio-temporal data from atmospheric environmental and climate change studies

(Xu et al., 2020). Inference for mean vectors with both high dimensionality and temporal

dependence is much needed for evaluating treatment effects in econometric studies arisen

from the aforementioned studies (Fan et al., 2015).

This article is aimed to provide an effective testing procedure to detect differences

in the means of two groups under different treatments, where the data exhibit temporal

dependence and high dimensionality. It is known that the conventional Hotelling’s test

published when the author became an economic Professor at Columbia University and

designed for independent and identically distributed (IID) data with fixed dimension cannot

be applied for high dimensional treatment effect evaluation (Bai and Saranadasa, 1996).

Two sample mean tests designed for high-dimensional data have been proposed, largely for

IID data, which include the L2-type tests of Bai and Saranadasa (1996) based on a bias-

corrected Euclidean statistic and Chen and Qin (2010) formulated with U-statistics. These

tests avoid using the sample covariance due to its adverse effects under high-dimensional

settings. Also see Chen et al. (2011); Feng et al. (2015); Wang et al. (2015) for other

formulations of the L2-type tests. Another type of test procedure is the L∞ (maximum)-

2

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing) 



test, which takes the maximum standardized difference among all dimensions of the two

sample means (Chernozhukov et al., 2013; Cai et al., 2014; Chang et al., 2017). A third

type is the L2 thresholding test (Zhong et al., 2013) which improves upon the higher

criticism tests (Donoho and Jin, 2015; Hall and Jin, 2010). These tests apply a thresholding

procedure in the marginal differences of two-sample means to exclude non-signal bearing

dimensions so as to enhance the signal-to-noise ratio for better power under the sparse and

faint signal setting. Also see the references in the review paper (Huang et al., 2021) for

high-dimensional mean tests.

Comparing with the studies for independent data, there have been less works on testing

for high-dimensional means for temporally dependent data which are common in economic

big data, mainly due to the difficulties in dealing with the temporal dependence while hav-

ing to account for the column-wise dependence among the high-dimensional components.

Chernozhukov et al. (2019) extended the Gaussian approximation results for the maximum

statistics to weakly dependent data under the β-mixing conditions. Using this result, an

L∞-test was constructed by a kernel based multiplier bootstrap procedure; see Chang et

al. (2018); Qiu and Zhou (2022) for the global and multiple testing procedures for high-

dimensional precision and partial correlation matrices. However, the maximum test is less

advantageous for detecting weak signals. For L2-type tests, Ayyala et al. (2017) extended

the procedure of Bai and Saranadasa (1996) to m-dependent Gaussian data under the

moderate dimensionality where p and n are at the same order. Wang and Shao (2020) con-

sidered one-sample testing for a high-dimensional mean via a U-statistic formulation under

the physical dependence with geometric decaying rate. Instead of estimating the variance

of the statistic, Wang and Shao (2020) constructed the test via the self-normalization.

In this paper, we consider testing for two-sample means for high-dimensional weakly

dependent time series data without the Gaussian assumption while allowing for exponential
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growth of dimension. As the L2-type U-statistics originally proposed by Chen and Qin

(2010) for independent data is no longer unbiased for ||µ1 − µ2||2, the squared Euclidean

distance between two population means µ1 and µ2, for temporally dependent data, we

construct a band-excluded U-statistic (BEU) for the two-sample setting which removes the

pairs of temporally close observations. Asymptotic normality of the proposed test statistic

is derived under general weakly column-wise dependence and temporal dependence, where

the dimension can be much larger than the sample size. A kernel smoothing method

over the cross-time long-run covariances is developed to estimate the variance of the test

statistic. A testing procedure with data driven tuning parameter selection for the exclusion

and smoothing bandwidths is proposed. Theoretical properties of the proposed test are

established under the null and alternative hypotheses, which shows its proper asymptotic

size control and being powerful for dense and weak signals. The power of the proposed test

is analyzed under both local and fixed alternatives. We extend the test formulation to the

one-sample setting, which is shown to be more powerful than the self-normalized test of

Wang and Shao (2020) by both theoretical results and numerical simulations. Simulation

studies are conducted to evaluate the performance and confirm the theoretical properties.

Under the capital asset pricing model, we apply the proposed method to compare the S&P

500 stocks’ adjusted returns by market index and their specific volatility before and after

the 2008 financial crisis. Our results indicate that the crisis did not lead to significant

difference in the adjusted returns, but increased the volatility.

The paper is organized as follows. Section 2 outlines the assumptions on the data

distribution and the temporal dependence. The U-statistic formulation is introduced in

Section 3 with the theoretical result on its asymptotic normality. Section 4 constructs

the variance estimator of the proposed statistic and shows its ratio consistency. Section 5

provides the implementation and data adaptive tuning parameter selection for the proposed
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test. Section 6 analyzes the power of the proposed test and compares it with that of the

self-normalized test. Sections 7 and 8 report results from simulation studies and a real

data analysis on S&P 500 stock returns. All the technical proofs are relegated to the

supplementary material (SM).

2. Preliminaries

Suppose we observe p-dimensional stationary time series {XXX i,t}ni
t=1 from two populations for

i = 1 and 2, where XXX i,t = (Xi,t,1, Xi,t,2, . . . , Xi,t,p)
T, and n1 and n2 are the sample sizes. We

assume mutual independence between the two samples, while allow temporal dependence

within each sample. Let µµµi = (µi,1, . . . , µi,p)
T and ΣΣΣi,0 be the mean and covariance matrix

of XXX i,1. Define the cross covariance matrices ΣΣΣi,k = Cov(XXX i,t+k,XXX i,t) = (σi,k,j1j2)p×p for

k = −(ni − 1), . . . , ni − 1, while ΣΣΣi,0 is the marginal covariance. Let ΣΣΣi,∞ =
∑+∞

k=−∞ΣΣΣi,k =

(σi,∞,j1j2)p×p be the long-run covariance matrix of XXX i,t, provided {σi,k,j1j2} are summable

over k for all j1, j2.

Our aim is at testing for the following hypotheses

H0 : µµµ1 = µµµ2 vs. H1 : µµµ1 6= µµµ2. (21)

These are global hypotheses for two-sample means, which are extensively studied under

independent data (Donoho and Jin, 2004; Chen and Qin, 2010; Feng et al., 2015; Wang

et al., 2015). However, except Ayyala et al. (2017) for m-dependent data, the two-sample

mean test for temporal dependent high-dimensional observations has not been sufficiently

studied in the literature.

We make the following assumptions in the analysis.

Assumption 1. (i) n1/(n1 + n2)→ κ0 ∈ (0, 1) as n1, n2 →∞. (ii) For a positive integer

q and a constant ∆ > 0, max1≤i≤2,1≤j≤p E1/q(|Xi,t,j|q) ≤ ∆.
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Assumption 2. Each XXX i,t is generated from a linear-innovation model such that XXX i,t =

ΓΓΓiZZZi,t + µµµi for i = 1, 2, where ΓΓΓi is a p × r matrix with r ≥ p such that ΓΓΓiΓΓΓ
T
i = ΣΣΣi,∞,

and ZZZi,t = (Zi,t,1, Zi,t,2, . . . , Zi,t,r)
T is the innovation random vector with E

(
ZZZi,t

)
= 000. For

each j, {Zi,t,j}ni
t=1 is a second-order stationary time series with unit long-run variance, and

max1≤j≤r E(Z8
i,t,j) ≤ ∆z for a positive constant ∆z and i = 1, 2. Furthermore, Zi,t1,j1 and

Zi,t2,j2 are uncorrelated for any t1 and t2 if j1 6= j2. For any sequences of time points

{t11, . . . , t1a1}, . . . , {tl1, . . . , tlal} with
∑l

k=1 ak ≤ 8 and distinct j1, . . . , jl,

E

{
l∏

k=1

(
Zi,tk1,jk . . . Zi,tkak ,jk

)}
=

l∏
k=1

E
(
Zi,tk1,jk · · ·Zi,tkak ,jk

)
. (22)

Assumption 1 (i) is a convention assumption made in the two-sample problems, while

the part (ii) is needed for the Davydov’s inequality (Davydov, 1968) to control the temporal

correlation between XXX i,t1 and XXX i,t2 under mixing conditions. Assumption 2 extends the

linear-innovation model in Bai and Saranadasa (1996) and Cui et al. (2020) for IID data

to temporally dependent data. Assumption 2 prescribes a linear process model for data

generation with {Zi,t}ni
t=1 as the innovation process. The linear process is widely used

in time series analysis (Brockwell and Davis, 1991). Although the linear generation of

multivariate data had been considered in Bai and Saranadasa (1996) and other works for

the independent setting, the innovation process here is temporarily dependent, which is

much different from Bai and Saranadasa (1996). For each time t, the innovation vector ZZZi,t

is assumed to be nearly independent to allow wider forms of the innovation distributions.

We could just assume ZZZi,t having independent column vector. However, the theoretical

derivation can be made without the full independence and assuming the weaker equation

(22) is sufficient. Examples of (22) for non-independent cases can be found for non-Gaussian

distributed data.

Let ΣΣΣz
i,k = Cov(ZZZi,t+k,ZZZi,t) be the cross-time covariance for any integer k, and ΣΣΣz

i,∞ =
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∑∞
k=−∞ΣΣΣz

i,k be the long-run covariance of ZZZi,t. Under Assumption 2, ΣΣΣz
i,k is diagonal

satisfying ΣΣΣz
i,−k = ΣΣΣz

i,k and ΣΣΣz
i,∞ = IIIr, where IIIr is the r × r identity matrix. Moreover,

ΣΣΣi,k = ΓΓΓiΣΣΣ
z
i,kΓΓΓ

T
i and ΣΣΣi,∞ = ΓΓΓiΣΣΣ

z
i,∞ΓΓΓT

i = ΓΓΓiΓΓΓ
T
i for i = 1, 2. The condition of unit long-

run variance of {Zi,t,j} for each j is not essential, as otherwise rescaling can be applied

on ΓΓΓi and ΣΣΣz
i,∞ simultaneously to make it so. It is noted that the so called column-wise

dependence among the components of XXX i,t are mostly induced by the matrices ΓΓΓi, while

the temporal dependence ofXXX i,t is resulted from the temporal dependence of the univariate

innovations {Zi,t,j} over time for all j = 1, . . . , r. If the elements of ΣΣΣi,∞ are bounded and

the diagonal values of ΣΣΣz
i,k decrease to zero uniformly as the time lag k increases, this leads

to all elements in ΣΣΣi,k decay to zero uniformly.

In spatial and temporal statistics, separability is a common assumption on covari-

ances. The covariance structure of XXX i,t implied from Assumption 2 includes the separable

covariances as a special case. To see this, let Xi = (XXXT
i,1,XXX

T
i,2, . . . ,XXX

T
i,ni

)T be the vector-

ization of the data over all time points. Correspondingly, let Zi = (ZZZT
i,1,ZZZ

T
i,2, . . . ,ZZZ

T
i,ni

)T

and Gi = diag(ΓΓΓi, . . . ,ΓΓΓi) = IIIni
⊗ ΓΓΓi, where ⊗ denotes the Kronecker product. It can

be shown that Var(Xi) = GiVar(Zi)GT
i . Let ΣΣΣz

i,k = diag{σzi,k,1, . . . , σzi,k,r} with diagonal

elements {σzi,k,l}rl=1. If σzi,k,1 = . . . = σzi,k,r = σzi,k for all k, we have Var(Z) = CCCi ⊗ IIIr where

CCCi = (σzi,k1−k2)ni×ni
. This implies that Var(Xi) = CCCi ⊗ ΓΓΓiΓΓΓ

T
i , where CCCi and ΓΓΓiΓΓΓ

T
i prescribe

the temporal and spatial dependence of Xi, respectively. Therefore, if the diagonal elements

of ΣΣΣz
i,k are identical for each k, meaning all the univariate innovation time series {Zi,t,j}

have the same cross-time covariances, Xi has a separable covariance matrix.

We assume the temporal dependence in the innovation time series {ZZZi,t} are β-mixing

with the mixing coefficient

βzi (k) = sup
t

E

{
sup

B∈F∞
i,t+k

∣∣P(B|F ti,−∞)− P(B)
∣∣},
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where F ti,−∞ = σ(ZZZi,s, s ≤ t) and F∞i,t+k = σ(ZZZi,s, s ≥ t + k) are the σ-fields generated

respectively by {ZZZi,s}s≤t and {ZZZi,s}s≥t+k. The β-mixing condition is assumed as follows.

Assumption 3. For a, c > 0, the β-mixing coefficients of the innovation process {ZZZi,t}

satisfy max{βz1(k), βz2(k)} ≤ c exp{−ak} for all positive integer k.

Let βxi (k) be the β-mixing coefficient of {XXX i,t}. Since {XXX i,t} are linearly generated by

{ZZZi,t}, βxi (k) ≤ βzi (k). Thus, Assumption 3 implies max{βx1 (k), βx2 (k)} ≤ c exp{−ak}. This

condition is needed for the coupling method to derive the asymptotic distribution of the

test statistic under time dependent data. Similar conditions are made for high-dimensional

inference in Chang et al. (2018); Chernozhukov et al. (2019); Wong et al. (2020). It is

noticeable that exponential decay can be relaxed to polynomial decay with more involved

technical derivations. More discussions on polynomial decay is presented in the end of this

section after the main theorems have been provided.

Under the fixed dimension scenario, the β-mixing condition is a mild assumption in

time series literature. It is known that the causal ARMA processes with continuous inno-

vation distributions, the stationary Markov chains with certain conditions and the station-

ary GARCH models with finite second moments and continuous innovation distributions

all satisfy the β-mixing condition; see Doukhan (1994) and Bradley (2005) for more dis-

cussions. Under the high-dimensional scenario where the dimension increases with the

sample size, the β-mixing condition is more restrictive. Theorem 3.2 in Han and Wu

(2022+) provides a lower bound β̃(k) ≥ 1− 2 exp(−c̃1pτ̃
2k) on the β-mixing coefficient for

a high-dimensional stationary vector AR model Z̃t,j = τ̃ Z̃t,j + ε̃t,j for j = 1, . . . , p with a

common coefficient τ̃ and IID innovation noises {ε̃t,j}, where c̃1 is a positive constant. It

implies that inf limn β̃(n) > 0 if limn log pτ̃ 2n ≥ log 2/c̃1. However, under the condition of

b ≥ c1(log n + log p) for some c1 as assumed in Proposition 1, this lower bound becomes
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trivial if c1 ≥ −(2 log κ)−1, which can be achieved by choosing a sufficient large c1. Hence,

the β-mixing condition in Assumption 3 is not violated. Meanwhile, the asymptotic re-

sults of the proposed tests should still be valid under certain conditions on τ -measure of

dependence (Dedecker and Prieur, 2005), following a similar investigation in Qiu and Zhou

(2022), although the theoretical proof would be more involved. Though, the theoretical

proof would be more involved.

Assumption 4. For any i, i1, i2 ∈ {1, 2}, and µµµi1 and µµµi2 such that µµµT
i1

ΣΣΣi,∞µµµi2 6= 000, there

exists a C0 > 0 such that

max

{
lim sup
p→+∞

∞∑
k1,k2=−∞

|tr(ΣΣΣi,k1ΣΣΣi,k2)|
tr(ΣΣΣ2

i,∞)
, lim sup
p→+∞

+∞∑
k=−∞

|µµµT
i1

ΣΣΣi,kµµµi2|
|µµµT
i1

ΣΣΣi,∞µµµi2|

}
≤ C0.

Assumption 5. For two positive constants η and C1, min(λ1,min, λ2,min) ≥ C1p
−η, where

λi,min are the minimum eigenvalue of ΣΣΣi,∞ for i = 1, 2.

Assumptions 4 and 5 are mild technical conditions for deriving the asymptotic distri-

bution of the proposed test statistic. Note tr(ΣΣΣ2
i,∞) =

∑
k1,k2

tr(ΣΣΣi,k1ΣΣΣi,k2). Assumption

4 requires {tr(ΣΣΣi,k1ΣΣΣi,k2)/tr(ΣΣΣ
2
i,∞)} to be summable, which is analogous to the absolute

summable condition on cross-time covariances of univariate time series. Similar conditions

are made in Wang and Shao (2020) for one-sample testing. Assumption 5 puts a lower

bound on the minimum eigenvalue of ΣΣΣi,∞, which is allowed to diminish to zero.

3. Band-Exclusion U-statistic

We consider the L2-type statistics which aim at estimating ‖µµµ1 − µµµ2‖2
2 = (µµµ1 − µµµ2)T(µµµ1 −

µµµ2), the overall difference between the two population means. Let X̄XX i =
∑ni

t=1XXX i,t/ni =

(X̄i,1, . . . , X̄i,p)
T be the sample means for i = 1, 2. Under Assumptions 2 and 3, it can

be shown that X̄i,j is asymptotic normal with mean µi,j and variance σi,∞,jj/ni for all

j = 1, . . . , p. The leading order term of E(X̄2
i,j) is µ2

i,j +σi,∞,jj/ni, where the bias σi,∞,jj/ni
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would accumulate in the mean of the L2-statistic
∑p

j=1 X̄
2
i,j and diverge when the dimension

p is much larger than the sample size.

To reduce the bias induced by the temporal dependence, we construct

Ui,j(b) =
1

ni(b)

∑
|t1−t2|≥b

Xi,t1,jXi,t2,j (31)

as an estimator for µ2
i,j for i = 1, 2 and j = 1, . . . , p, where b is a positive tuning parameter

that defines a temporal exclusion band of width b to exclude products XT
i,t1
Xi,t2 among t1

and t2 which are less than b apart in the above statistic, and ni(b) = (ni − b)(ni − b+ 1) is

the number of terms involved in the summation of (31). We take b→∞ as ni →∞.

Let Vj(b) = U1,j(b)+U2,j(b)−2X̄1,jX̄2,j be the estimator of (µ1,j−µ2,j)
2 for j = 1, . . . , p.

Summing Vj(b) over j, we propose a banded-exclusion U-statistic (BEU-statistic)

T (b) =
1

n1(b)

∑
|t1−t2|≥b

XXXT

1,t1
XXX1,t2 +

1

n2(b)

∑
|t1−t2|≥b

XXXT

2,t1
XXX2,t2 −

2

n1n2

n1∑
t1=1

n2∑
t2=1

XXXT

1,t1
XXX2,t2 (32)

as an estimator for ‖µµµ1 − µµµ2‖2
2.

Notice that T (0) = (X̄XX1−X̄XX2)T(X̄XX1−X̄XX2) is the L2 statistics used in Bai and Saranadasa

(1996), and T (1) is the U-statistic proposed by Chen and Qin (2010) for independent

observations. The exclusion band of |t1 − t2| ≥ b removes pairs of observations XXX i,t1 and

XXX i,t2 in (32) which would be more strongly correlated. This effectively mitigates the bias of

T (b) induced by the temporal dependence. Bias reduction is the key to construct L2-type

statistics for high-dimensional data, as the accumulation of bias from each component will

deteriorate the asymptotic performance of the L2 statistics if p is much larger than n (Feng

et al., 2015).

Let T1(b) = n1(b)−1
∑
|t1−t2|≥bXXX

T
1,t1
XXX1,t2 be the first term on the right hand side of (32).

Then, T1(b) can be used for testing one-sample hypothesis H0 : µµµ1 = 000 vs. H1 : µµµ1 6= 000,

while a location shift can be made for testing H0 : µµµ1 = µµµ10 vs. H1 : µµµ1 6= µµµ10 for a known

µµµ10. It is noted that T1(b) is the statistic considered in Wang and Shao (2020) for testing
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H0 : µµµ1 = 000 under the geometric regularized physical dependence. Instead of estimating the

variance of T1(b), a self-normalized technique is used to formulate the testing procedure.

A power comparison between the proposed test and the self-normalized test will be made

in Section 6 for the one-sample situation.

Our plan is to derive and estimate the variance of T (b), and to construct a test for the

hypotheses (21) based on a standardized version of T (b). For a positive integer k, let

MMMk = κ−1
0 ΣΣΣ1,k + (1− κ0)−1ΣΣΣ2,k and MMM∞ =

+∞∑
k=−∞

MMMk (33)

be a weighted lag-k cross covariance and the weighted long-run covariance of the two-sample

time series, respectively. The following proposition provides the mean and variance of the

BEU-statistic T (b), which shows that T (b) is asymptotically unbiased for ‖µµµ1 − µµµ2‖2
2.

Proposition 1. Under Assumption 1 with q > 4 and Assumptions 2–5, if log p = o(n) and

the exclusion bandwidth satisfies b = o(n) and b ≥ c1(log n + log p) for a positive constant

c1, we have as n, p→∞,

E{T (b)} = ‖µµµ1 − µµµ2‖2
2 +

2∑
i=1

2

ni(b)

ni−1∑
k=b

(ni − k)tr(ΣΣΣi,k) and

Var{T (b)} =
{

2n−2tr(MMM2
∞) + 4n−1(µµµ1 − µµµ2)TMMM∞(µµµ1 − µµµ2)

}
{1 + o(1)}.

In Proposition 1, we allow the exponential growth rate of p relative to n. The propo-

sition shows that the bias of T (b) is asymptotically equal to 2n−1
∑

k≥b tr(MMMk) by noting

that ni(b) = (ni− b)(ni− b+ 1), which is determined by the auto-covariance of {XXX1,t} and

{XXX2,t} with time-lag larger than b. This bias term diminishes to zero at a polynomial rate

of p and n if b ≥ c1(log n+ log p) for sufficiently large c1 under Assumption 3.

Corollary 1. Under the conditions of Proposition 1 and the null hypothesis of (21),

Var{T (b)} =

{
2

n2
1

tr(ΣΣΣ2
1,∞) +

2

n2
2

tr(ΣΣΣ2
2,∞) +

4

n1n2

tr(ΣΣΣ1,∞ΣΣΣ2,∞)

}
{1 + o(1)}. (34)

Corollary 1 provides the variance of the BEU-statistic under the null hypothesis. An
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estimator of this variance is constructed in Section 4, which is used to formulate the pro-

posed testing procedure for hypotheses (21). For the one-sample problem, from the proof

of Proposition 1, it can be shown that the leading variance of T1(b) is 2n−2
1 tr(ΣΣΣ2

1,∞).

To derive the asymptotic normality of the BEU-statistic T (b), we use the coupling

method for time series and the martingale central limit theorem (Hall and Heyde, 1980) for

the U-statistics. For both samples, we partition the time points {1, . . . , ni} into a sequence

of large segments of length a1 followed by small segments of length a2, where a2 = o(a1).

Let di = bni/(a1 + a2)c be the total number of large and small segments for i = 1, 2, where

b·c denotes the floor function. Let X̄XX i,m be the average of XXX i,t over the mth large segment

for m = 1, . . . , di and i = 1, 2. By the coupling method, X̄XX i,m1 and X̄XX i,m2 can be regarded as

independent, since they are separated by at least one small block. Therefore, the averages

{X̄XX i,m}dim=1 over the large blocks can be regarded as independent, and the martingale central

limit theorem for independent observations can be applied to show the asymptotic normality

of T (b) under temporal dependent data. The detail technical derivations are provided in

the proof of Theorem 1 in the SM.

To obtain the limiting distribution, we impose a condition on the trace of the long-

run covariance ΣΣΣi,∞, which is used to bound the higher moments of the data. A similar

condition is made on ΣΣΣi,0 for independent data in Feng et al. (2015); Wang et al. (2015).

Assumption 6. tr
(
ΣΣΣi1,∞ΣΣΣi2,∞ΣΣΣi3,∞ΣΣΣi4,∞

)
= o
[
tr2 {(ΣΣΣ1,∞ + ΣΣΣ2,∞)2}

]
for i1, i2, i3, i4 = 1, 2.

Let λi,min and λi,max be the minimum and the maximum eigenvalues of ΣΣΣi,∞, respec-

tively. Assumption 6 is valid if all the eigenvalues of ΣΣΣi,∞ are bounded from zero and infinity.

If λi,max are bounded away from infinity and λi,min = O(pη), one needs η > −1/4 to ensure

Assumption 6. On the other hand, if λi,min are bounded from zero and λi,max = O(pξ),

Assumption 6 is valid if ξ < 1/4. More generally, if the eigenvalues are diverging such that
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λi,min = γi,1p
η and λi,max = γi,2p

ξ for some positive constants γi,1 and γi,2, then

tr
(
ΣΣΣi1,∞ΣΣΣi2,∞ΣΣΣi3,∞ΣΣΣi4,∞

)
tr2 {(ΣΣΣ1,∞ + ΣΣΣ2,∞)2}

≤ γi1,2γi2,2γi3,2γi4,2p
4(ξ−η)−1

(γ1,1 + γ2,1)4
→ 0 as p→∞

for i1, i2, i3, i4 ∈ {1, 2} and if ξ − η < 1/4.

The following theorem states the asymptotic normality of the BEU-statistic T (b).

Theorem 1. Under the conditions of Proposition 1 and Assumption 6, we have

T (b)− ‖µµµ1 − µµµ2‖2
2√

Var{T (b)}
d→ N(0, 1) as n, p→∞.

Under Assumption 3, our proposed BEU statistic can be used for ultra high-dimensional

series. A weaker condition on mixing coefficients, say the polynomial decay, will put re-

strictions on the dimension p of the series, leading to more involved technical derivations.

The challenge is mainly due to the slower convergence rate of the cross covariance in-

duced by the Davydov’s inequality under the polynomial decay condition, compared to

that under Assumption 3 for exponential decay. This makes the related terms such as∑
|k1|,|k2|>K |tr(ΣΣΣi,k1ΣΣΣi,k2)| in Lemma 2 in the SM converge at a slower rate. Under the

polynomial decay case, it can be shown that
∑
|k1|,|k2|>K |tr(ΣΣΣi,k1ΣΣΣi,k2)| = o{tr(ΣΣΣ2

i,∞)} for

K being a polynomial order of n under p ≤ ānb̄ for some constants ā, b̄ > 0. Hence, for the

series with stronger dependence which corresponds to the polynomial decay, our proposed

BEU statistic is still applicable, with more restrictions on the polynomial increase of p with

respect to n.

The current L2 proposal is for temporally dependent data. Another important choice

of the test statistic is based on the thresholding procedure (Chen et al., 2019). The L2

type statistics like the proposed one and the thresholding type statistics target on different

signal regimes. The former ones are powerful for dense but weak signals where the signal

strength from each component can be much smaller than the order n−1/2, while the latter

ones are powerful for sparse signals with strength at least at the order {(log p)/n}1/2. To
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establish the thresholding test similar to Chen et al. (2019) for dependent data requires

first establishing moderate deviation results, which is not available yet. Upon having the

moderate deviation results, a similar thresholding test can be developed for dependent time

series data.

Based on the asymptotic normality, we can construct a test for the null hypothesis in

(21) if a ratio-consistent estimator for the null variance of T (b) can be obtained. The latter

task is the focus of the next section.

4. Variance Estimation

Under H0 of (21), from (34), the leading order null variance of T (b) is determined by

tr(ΣΣΣ2
i,∞), tr(ΣΣΣ2

2,∞) and tr(ΣΣΣ1,∞ΣΣΣ2,∞). In order to formulate a test, those trace quantities

need to be estimated, which amounts to estimate tr(ΣΣΣi,k1ΣΣΣi,k2) and tr(ΣΣΣ1,k1ΣΣΣ2,k2) in the

expansions

tr(ΣΣΣ2
i,∞) =

∞∑
k1,k2=−∞

tr(ΣΣΣi,k1ΣΣΣi,k2) and tr(ΣΣΣ1,∞ΣΣΣ2,∞) =
∞∑

k1,k2=−∞

tr(ΣΣΣ1,k1ΣΣΣ2,k2). (45)

To estimate tr(ΣΣΣi,k1ΣΣΣi,k2), we apply a similar band exclusion technique used in con-

structing T (b) in (32). Let |N | denote the cardinality of a set N . For i = 1, 2 and another

positive exclusion bandwidth parameter b̃, let

Gi,1(k1, k2; b̃) =
∣∣Ni,1(k1, k2; b̃)

∣∣−1
∑

(t1,t2)∈Ni,1(k1,k2;b̃)

XXXT

i,t2
XXX i,t1XXX

T

i,t1−k1XXX i,t2+k2 ,

Gi,2(k; b̃) =
∣∣Ni,2(k; b̃)

∣∣−1
∑

(t1,t2,t3)∈Ni,2(k;b̃)

XXXT

i,t2
XXX i,t1XXX

T

i,t1−kXXX i,t3 , (46)

Gi,3(b̃) =
∣∣Ni,3(b̃)

∣∣−1
∑

(t1,t2,t3,t4)∈Ni,3(b̃)

XXXT

i,t1
XXX i,t2XXX

T

i,t3
XXX i,t4

be the estimators for tr{E(XXX i,k1+1XXX
T
i,1)E(XXX i,k2+1XXX

T
i,1)}, µµµT

i E(XXX i,k+1XXX
T
i,1)µµµi and (µµµT

i µµµi)
2 re-
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spectively, where |k1|, |k2|, |k| < min(ni, n2)/2, and

Ni,1(k1, k2; b̃) =
{

(t1, t2) : |t1 − t2| ≥ b̃+ |k1|+ |k2|, 1 ≤ t1, t1 − k1, t2, t2 + k2 ≤ ni
}
,

Ni,2(k; b̃) =
{

(t1, t2, t3) : min
1≤j1<j2≤3

|tj1 − tj2| ≥ b̃+ |k|, 1 ≤ t1, t1 − k, t2, t3 ≤ ni
}

and

Ni,3(b̃) =
{

(t1, t2, t3, t4) : min
1≤j1<j2≤4

|tj1 − tj2| ≥ b̃, 1 ≤ t1, t2, t3, t4 ≤ ni
}

are the index sets with certain time separation. These index sets are designed to ensure

sufficient temporal distance to reduce the temporal dependence. For example, the set

Ni,1(k1, k2; b̃) makes XXX i,t1XXX
T
i,t1−k1 and XXX i,t2+k2XXX

T
i,t2

in Gi,1(k1, k2; b̃) at least b̃ apart. Let

t̂r(ΣΣΣi,k1ΣΣΣi,k2 ; b̃) = Gi,1(k1, k2; b̃)−Gi,2(k1; b̃)−Gi,2(k2; b̃) +Gi,3(b̃) (47)

be estimators of tr(ΣΣΣi,k1ΣΣΣi,k2) for i = 1, 2. Similar to the diminishing bias attained by T (b)

as shown in Proposition 1, it can be shown that the bias of t̂r(ΣΣΣi,k1ΣΣΣi,k2 ; b̃) diminishes to

zero as b̃ → ∞. Specifically, under Assumption 3, it suffices to choose b̃ at the order of

log p.

Similar estimators can be constructed for tr(ΣΣΣ1,k1ΣΣΣ2,k2). As observations from different

groups are independent, band exclusion is not needed between two samples. We construct

estimators for tr{E(XXX1,k1+1XXX
T
1,1)E(XXX2,k2+1XXX

T
2,1)}, µµµT

1 E(XXX2,k+1XXX
T
2,1)µµµ1, µµµT

2 E(XXX1,k+1XXX
T
1,1)µµµ2

and ‖µµµ1‖2
2‖µµµ2‖2

2 as

Ga(k1, k2) = |Na(k1, k2)|−1
∑

(t1,t2)∈Na(k1,k2)

XXXT

2,t2
XXX1,t1XXX

T

1,t1−k1XXX2,t2+k2 ,

Gc,1(k; b̃) = n1(b̃)−1|Nc,2(k)|−1
∑

t1∈Nc,2(k)

∑
|t2−t3|≥b̃

XXXT

1,t2
XXX2,t1XXX

T

2,t1−kXXX1,t3 ,

Gc,2(k; b̃) = n2(b̃)−1|Nc,1(k)|−1
∑

t1∈Nc,1(k)

∑
|t2−t3|≥b̃

XXXT

2,t2
XXX1,t1XXX

T

1,t1−kXXX2,t3 and

Gd(b̃) = n1(b̃)−1n2(b̃)−1
∑

|t1−t3|≥b̃

∑
|t2−t4|≥b̃

XXXT

1,t1
XXX2,t2XXX

T

1,t3
XXX2,t4 ,

respectively, where ni(b̃) = (ni − b̃)(ni − b̃ + 1), Na(k1, k2) =
{

(t1, t2) : 1 ≤ t1, t1 − k1 ≤
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n1, 1 ≤ t2, t2 + k2 ≤ n2

}
and Nc,i(k) =

{
t : 1 ≤ t, t− k ≤ ni

}
for i = 1, 2. Then, based on

those statistics, the estimator for tr(ΣΣΣ1,k1ΣΣΣ2,k2) can be constructed as

t̂r(ΣΣΣ1,k1ΣΣΣ2,k2 ; b̃) = Ga(k1, k2)−Gc,1(k2; b̃)−Gc,2(k1; b̃) +Gd(b̃). (48)

As the elements in ΣΣΣi,k decay to zero as |k| increases under Assumption 3, and according

to (45), we consider a weighted sum of t̂r(ΣΣΣi,k1ΣΣΣi,k2 ; b̃) and t̂r(ΣΣΣ1,k1ΣΣΣ2,k2 ; b̃) to estimate

tr(ΣΣΣ2
i,∞) and tr(ΣΣΣ1,∞ΣΣΣ2,∞). The weights are determined by a kernel function such that

larger (smaller) weight is allocated for terms with smaller (larger) |k1| and |k2|. This idea

is connected to the kernel-type estimator for fixed-dimensional long-run covariances treated

in by Andrews (1991), and the smoothing of periodograms method for estimating spectral

density at the zero frequency for fixed-dimensional time series (Priestley, 1981).

Let K(·) be a symmetric function on R that is continuous at 0 and satisfying K(0) =

1, supu∈R |K(u)| ≤ 1,
∫∞
−∞ |K(u)|du < ∞. We propose the following kernel smoothing

estimators

t̂r(ΣΣΣ2
i,∞; b̃, s0) =

ni−1∑
k1=−ni+1

ni−1∑
k2=−ni+1

K(k1/s0)K(k2/s0)t̂r(ΣΣΣi,k1ΣΣΣi,k2 ; b̃) and

t̂r(ΣΣΣ1,∞ΣΣΣ2,∞; b̃, s0) =

n1−1∑
k1=−n1+1

n2−1∑
k2=−n2+1

K(k1/s0)K(k2/s0)t̂r(ΣΣΣ1,k1ΣΣΣ2,k2 ; b̃)

(49)

for tr(ΣΣΣ2
i,∞) and tr(ΣΣΣ1,∞ΣΣΣ2,∞), respectively, where s0 is a smoothing bandwidth diverging

to ∞ as n, p → ∞. According to the expression of the null variance in (34), we propose

the smoothed band-exclusion (SBE) statistic

Vn(b̃, s0) =
2

n2
1

t̂r(ΣΣΣ2
1,∞; b̃, s0) +

2

n2
2

t̂r(ΣΣΣ2
2,∞; b̃, s0) +

4

n1n2

t̂r(ΣΣΣ1,∞ΣΣΣ2,∞; b̃, s0) (410)

for estimating Var{T (b)} under H0.

Andrews (1991) studied the kernel weighted estimator
∑

kK(k/s0)Σ̂ΣΣi,k of the long-run

covariance ΣΣΣi,∞ for various kernels under the fixed dimension case, where Σ̂ΣΣi,k is the sample
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cross-time covariances, and showed that the quadratic spectral (QS) kernel

KQS(u) =
25

12π2u2

{
sin(6πu/5)

6πu/5
− cos(6πu/5)

}
is optimal for the long-run covariance estimation in the sense of minimizing the asymptotic

truncated mean square error. We use the QS kernel in the numerical implementation, and

a data-driven procedure for selecting the smoothing bandwidth s0 is outlined in the next

section. Simulation results reported in Section 7 showed that the BEU-statistic T (b) with

the smoothed band-exclusion variance estimator Vn(b̃, s0) and the QS kernel performed well

in high-dimensional scenarios. Notice that there are other estimation methods for the long-

run covariances under fixed dimensional settings, including the moving block bootstraps

(Lahiri, 2003; Nordman and Lahiri, 2005). How to use those methods for estimating the

variances of L2-type statistics for high dimensional time series is worth further investigation.

To show the ratio consistence of the SBE variance estimator, we make the following mild

technical condition on the eigenvalue of the innovation loading matrix ΓΓΓi in Assumption 2.

Assumption 7. Let BBBi = ΓΓΓT
i ΓΓΓi = (bi,j1j2)r×r, B̃BBi = (|bi,j1j2|)r×r and λmax(B̃BBi) be the

maximum eigenvalue of B̃BBi for i = 1, 2. There exist two positive constants ψ and C2 such

that max{λmax(B̃BB1), λmax(B̃BB2)} ≤ C2p
ψ.

Note that λmax(BBB) = λmax(ΣΣΣi,∞). This assumption prescribes the maximum eigenvalue

of the absolute matrix ofBBB, which is allowed to diverge to infinity at a polynomial rate of p.

The following theorem shows the ratio consistence of the proposed SBE variance estimator.

Theorem 2. Assume the exclusion bandwidth b̃ and the smoothing bandwidth s0 satisfy

b̃ = o(n1/5) and b̃ ≥ c2(log n + log p + s0) for a positive constant c2. Under Assumption 1

with q > 8, Assumptions 2–7, and the null hypothesis of (21),

Vn(b̃, s0)

Var{T (b)}
→ 1 in probability as n, p→∞.
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From Theorems 1 and 2, the propose BEU test rejects the null hypothesis in (21) if

T (b) > zαV
1/2
n (b̃, s0), (411)

where zα is the upper α quantile of N(0, 1). Note that the requirements on the moment q

and the exclusion bandwidth b̃ in Theorem 2 are more restrictive than those in Theorem 1.

This is due to that establishing the consistence of the variance estimator needs to control

higher order moments than those needed in deriving properties of the BEU-statistic T (b).

As discussed in the second paragraph after (32), the statistic

T1(b) = n1(b)−1
∑

|t1−t2|≥b

XXXT

1,t1
XXX1,t2

can be used for testing the one-sample hypotheses H0 : µµµ1 = 000 vs. Ha : µµµ1 6= 000. Following

the same derivation as Proposition 1, it can be shown that Var{T1(b)} = 2n−2
1 tr(ΣΣΣ2

1,∞),

which can be estimated by 2n−2
1 t̂r(ΣΣΣ2

1,∞; b̃, s0) from (49). Therefore, similar as the two-

sample test in (411), the one-sample BEU test rejects the null hypothesis µµµ1 = 000 if

T1(b) > zαn
−1
1 {2t̂r(ΣΣΣ2

1,∞; b̃, s0)}1/2. (412)

For this one-sample hypothesis, we compare the powers of the BEU test with the self-

normalized test of Wang and Shao (2020) in Sections 6 and 7.

5. Computation and Tuning Parameter Selection

In this section, we discuss the computation and implementation aspects of the proposed

BEU test, and propose a data driven procedure to select the tuning parameters b, b̃ and

s0. In calculating the test statistic, matrix operation should be used wherever possible to

improve the computation efficiency. Recall that XXX i = (XXX i,1, . . . ,XXX i,ni
)T is the ni × p data

matrix for the ith sample. Let WWW i(b) = (wi,t1t2)ni×ni
be an indicator matrix with wi,t1t2 = 1

if |t1 − t2| ≥ b and 0 otherwise. Let ◦ denote the Hadamard product of two matrices with

the same dimensions. Then, the summation
∑
|t1−t2|≥bXXX

T
i,t1
XXX i,t2 in the BEU-statistic T (b)
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in (32) can be computed by summing over all elements in (XXX iXXX
T
i ) ◦WWW i(b).

For estimating tr(ΣΣΣi,k1ΣΣΣi,k2), the estimators in (46) can be computed on the centered

data {XXX i,t−X̄XX i}, so that Gi,2(k; b̃) and Gi,3(b̃) become smaller order terms which are negligi-

ble in the construction of the variance estimator. If the computing resource is a constraint,

one can only compute Gi,1(k1, k2; b̃) on the centered data in the estimator t̂r(ΣΣΣi,k1ΣΣΣi,k2 ; b̃) in

(47). Note that Gi,2(k; b̃) and Gi,3(b̃) require computation complexity at the order n3 and

n4 respectively. Centering the data can greatly reduce the computation burden. Similar

arguments apply to estimating tr(ΣΣΣ1,k1ΣΣΣ2,k2) in (48).

Notice that Gi,1(k1, k2; b̃) in (46) can be computed by matrix operation as well. Let

AAA[c1 : c2, ] denote the sub-matrix of AAA with the c1th row to the c2th row. For any integer

−ni < k < ni, let ZZZi(k) be a row-shifted matrix of XXX i in the following way. If k =

0, there is no shift and ZZZi(0) = XXX i; if k < 0, the first |k| rows of ZZZi(k) are zero and

ZZZi(k)[|k| + 1 : ni, ] = XXX i[1 : ni − |k|, ]; if k > 0, the last k rows of ZZZi(k) are zero and

ZZZi(k)[1 : ni − k, ] = XXX i[k + 1 : ni, ]. Then, the summation of XXXT
i,t2
XXX i,t1XXX

T
i,t1−k1XXX i,t2+k2 over

(t1, t2) ∈ Ni,1(k1, k2; b̃) in (46) can be computed by simply summing over all the elements

in (XXX iXXX
T
i ) ◦ (ZZZi(−k1)ZZZi(k2)T) ◦WWW i(b̃ + |k1| + |k2|). Similar algorithm can be applied for

the statistic Ga(k1, k2) in (48).

The tuning parameters b, b̃ and s0 required in the proposed BEU test are adaptively

chosen based on the time course data. In particular, the exclusion bandwidths b and

b̃ used in the BEU-statistic T (b) and its variance estimator may be determined by the

sample autocorrelation functions (ACF). Specifically, for each dimension j, we calculate the

sample ACF of the univariate time series {Xi,t,j}ni
t=1, denoted as ACi,j(k). Let ACi(k) =

max1≤j≤p |ACi,j(k)| be the maximal absolute sample ACF at time lag k, and Z+ be the set
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of all positive integers. Let

bi = min{k ∈ Z+ : ACi(k) < mACi}

be the first time lag such that ACi(k) is smaller than a data-driven threshold mACi, where

mACi = Median{ACi(k) : n/10 ≤ k ≤ n/4} is the median of the maximal absolute sample

ACF with large time lags, so that the time dependence between observations would be

fairly weak. We choose b = max{b1, b2} and set b̃ = b. The optimal bandwidth with the QS

kernel for estimating the long-run covariances was derived in Andrews (1991). We choose

the estimated optimal bandwidth based on the data-driven procedure introduced in (6.2)

and (6.4) of Andrews (1991) as the smoothing bandwidth s0 in Vn(b̃, s0). Simulation studies

in Section 6 showed that the proposed BEU test with such adaptively chosen exclusion and

smoothing bandwiths worked well with accurate size and good power.

6. Power Analysis

Theorem 1 allows us to discuss the power properties of the proposed test. We consider two

forms of alternative hypotheses for µµµ1 6= µµµ2. The first one is

(µµµ1 − µµµ2)TMMM∞(µµµ1 − µµµ2) = o
{
n−1tr(MMM2

∞)
}

as n, p→∞, (61)

which prescribes the so-called local alternative. The contrary of (61) is

n−1tr(MMM2
∞) = o

{
(µµµ1 − µµµ2)TMMM∞(µµµ1 − µµµ2)

}
as n, p→∞, (62)

which may be viewed as the fixed alternative as it allows stronger signals. Notice that

(µµµ1 − µµµ2)TMMM∞(µµµ1 − µµµ2) is a weighted distance between µµµ1 and µµµ2, which measures the

strength of signals for distinguishing µµµ1 and µµµ2. The local alternative (61) represents a

weak signal case so that this weighted distance is at a smaller order of n−1tr(MMM2
∞). The

fixed alternative (62) implies that the weighted distance between µµµ1 and µµµ2 is at a larger

order than n−1tr(MMM2
∞), which is a reverse of the local alternative condition in (61).
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Let β(µµµ1,µµµ2) = P{T (b) > zαV
1/2
n (b̃, s0)|µµµ1 6= µµµ2} be the power of the proposed test.

From Theorem 1, we have Var
{
T (b)

}
= 2n−2tr(MMM2

∞){1 + o(1)} under the local alternative

(61) and Var{T (b)} = 4n−1(µµµ1−µµµ2)TMMM∞(µµµ1−µµµ2){1+o(1)} under the fixed alternative (62).

Let Φ(·) be the standard normal distribution function and λmax be the largest eigenvalue

of MMM∞. The following two theorems describe the power of the test under the two forms of

alternatives.

Theorem 3. Under the conditions of Theorems 1 and 2 and the local alternative (61), the

power function of the proposed test is

β(µµµ1,µµµ2) = Φ

{
− zα +

‖µµµ1 − µµµ2‖2
2√

2n−2tr(MMM2
∞)

}
{1 + o(1)}, (63)

and β(µµµ1,µµµ2)→ Φ(−zα + d2/
√

2) if n‖µµµ1 − µµµ2‖2
2tr−1/2(MMM2

∞)→ d2 ∈ [0,+∞).

Theorem 4. Under the conditions of Theorems 1 and 2 and the fixed alternative (62), the

power function of the proposed test is

β(µµµ1,µµµ2) = Φ

{
‖µµµ1 − µµµ2‖2

2√
4n−1(µµµ1 − µµµ2)TMMM∞(µµµ1 − µµµ2)

}
{1 + o(1)}. (64)

In Theorems 3 and 4, note that n‖µµµ1 − µµµ2‖2
2tr−1/2(MMM2

∞) and
√
n‖µµµ1 − µµµ2‖2

2{(µµµ1 −

µµµ2)TMMM∞(µµµ1−µµµ2)}−1/2 are the signal-to-noise ratio of the proposed test for the two-sample

hypotheses (21) under the local and the fixed alternatives for weak and strong signals,

respectively. It can be readily checked based on the results in Theorems 3 and 4 that the

power of the proposed test can be bounded from below by

β(µµµ1,µµµ2) ≥ Φ

(
− zα +

n‖µµµ1 − µµµ2‖2
2√

2pλmax

)
and β(µµµ1,µµµ2) ≥ Φ

(√
n‖µµµ1 − µµµ2‖2

2
√
λmax

)
under the local and fixed alternatives, respectively. Let p̃ be the number of nonzero µ1,j−µ2,j

for j = 1, . . . , p. If |µ1,j − µ2,j| = δ for all nonzero µ1,j − µ2,j, ‖µµµ1 − µµµ2‖2 =
√
p̃δ. In this

case, the lower bounds of the power function are

β(µµµ1,µµµ2) ≥ Φ

(
− zα +

np̃δ2

√
2pλmax

)
and β(µµµ1,µµµ2) ≥ Φ

(
δ

2

√
np̃

λmax

)
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under the local and fixed alternatives, respectively. If the non-zero components of µµµ1 −µµµ2

are dense so that p̃ is at the same order of p and λmax is bounded, the proposed test can

detect the difference δ as weak as the order n−1/2p−1/4 under the local alternative.

Let βprop(d) = Φ(−zα + d2/
√

2). Theorem 3 shows that βprop(d) is the limiting power of

the proposed test under the local alternative of the two-sample hypotheses as specified in

(61), where d2 = n‖µµµ1 − µµµ2‖2
2tr−1/2(MMM2

∞).

Figure 1: Theoretical power curves of the proposed test βprop(d1) = Φ(−zα + d2
1/
√

2) (red

curve) and the self-normalized test βSN(d1) of Wang and Shao (2020) (blue curve, labelled

as SN) for the one-sample hypothesis H0 : µµµ1 = 0 vs. µµµ1 6= 0 under the local alternative.

For testing the one-sample hypotheses H0 : µµµ1 = 0, the proposed test based on

(412) has the same power function as βprop(d1) under the local alternative, where d2
1 =

n1‖µµµ1‖2
2tr−1/2(ΣΣΣ2

1,∞) is the signal-to-noise ratio of testing µµµ1 = 000. Theorem 3.11 in Wang

and Shao (2020) shows that

βSN(d1) = P
[

{B(1) + d2
1/
√

2}2∫ 1

0
{B(u2)− u2B(1)}2du

≥ z1,α

]
is the asymptotic power function of the self-normalized test (SN) under the local alternative,

where B(u) denotes the standard Brownian motion for u ∈ [0, 1] and z1,α is the upper α-
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quantile of B(1)2[
∫ 1

0
{B(u2)− u2B(1)}2du]−1. As shown in Figure 1, given the same signal-

to-noise ratio d1, the power of the one-sample BEU test given in (412) is higher than that

of the self-normalized test such that βprop(d1) ≥ βSN(d1). Specifically, Figure 1 plots the two

power functions against the signal-to-noise ratio under α = 0.01 and 0.05, which shows the

superiority of the proposed test.

7. Numerical Studies

This section reports results from simulation experiments which were designed to evaluate

the empirical size and power of the proposed test for the two-sample hypotheses (21). For

comparison purposes, the test of Chen and Qin (2010) (CQ) for independent data and the

test of Ayyala et al. (2017) (APR) for m-dependent data were considered in the two-sample

case. Besides, we also compared our proposed test with the self-normalized test (SN) of

Wang and Shao (2020) under the one-sample scenario.

First, we considered the two-sample case where the moving average (MA) model and

the auto-regressive (AR) model were considered to generate temporally dependent data,

• MA model: XXX1,t = εεε1,t + ρtimeεεε1,t−1 and XXX2,t = µµµ2 + εεε2,t + ρtimeεεε2,t−1;

• AR model: XXX1,t = ρtimeXXX1,t−1 + (1 − ρ2
time)

1/2εεε1,t and XXX2,t = µµµ2 + ρtimeXXX2,t−1 + (1 −

ρ2
time)

1/2εεε2,t;

where {εεεi,t}ni
t=1 were IID p-dimensional random vectors from N(0,ΣΣΣε), ρtime was the temporal

dependence parameter that characterized the strength of the temporal dependence. We

set ρtime as 0.1, 0.3 and 0.5 in the simulation. The spatial dependence was prescribed

by ΣΣΣε = (σε,j1j2), where σε,j1j2 = 0.7|j1−j2|. By default, µµµ1 = 0. Under the alternative

hypotheses, different combinations of signal strength and sparsity for µµµ2 were considered,

where the first δ0 proportion of the components in µµµ2 were set as r0 and the rest were

23

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing) 



Table 1: Empirical sizes of the proposed test, the APR test (Ayyala et al., 2017) and

the CQ test (Chen and Qin, 2010) for the two-sample hypotheses under the temporal

dependence parameter ρtime = 0.1, 0.3, 0.5, n0 = 100, 150, p = 100, 400 and the MA and AR

models.

Method (n0, p)
ρtime under MA ρtime under AR

0.1 0.3 0.5 0.1 0.3 0.5

Proposed

(100,100) 0.069 0.045 0.065 0.061 0.074 0.076

(150,100) 0.064 0.062 0.073 0.081 0.078 0.077

(100,400) 0.079 0.056 0.070 0.075 0.053 0.059

(150,400) 0.067 0.055 0.071 0.073 0.075 0.050

APR

(100,100) 0.057 0.051 0.066 0.068 0.077 0.266

(150,100) 0.068 0.055 0.069 0.078 0.102 0.221

(100,400) 0.053 0.046 0.050 0.055 0.066 0.453

(150,400) 0.047 0.043 0.061 0.062 0.113 0.449

CQ

(100,100) 0.191 0.603 0.802 0.245 0.844 1.000

(150,100) 0.204 0.662 0.847 0.285 0.858 0.999

(100,400) 0.473 0.978 1.000 0.513 1.000 1.000

(150,400) 0.486 0.971 0.997 0.546 1.000 1.000

made zero. We chose δ0 = 0.2 and 0.3, and r0 took values from a sequence ranging from

0.05 to 0.3 with increment 0.05. Here, δ0 and r0 represented signal sparsity and strength,

respectively. We set n1 = n2 = n0 = 100 and 150, p = 100 and 400, respectively and

the significance level to be 0.05. All the simulations were repeated for 1000 times under

each setting. The MA model satisfies the m-dependence assumption required by the APR

method, while the AR model is not m-dependent. The time dependence lag parameter m

in the APR test was chosen as 2, as suggested in simulation studies of Ayyala et al. (2017).

Table 1 reports empirical sizes of the proposed test as well as those from the APR

and CQ tests under MA and AR models with different time dependence parameters ρtime.

The CQ test was designed for independence data. The reason for its inclusion was to gain

empirical information for the consequences of ignoring temporal dependence in two-sample

tests. From Table 1, we see that the proposed test could control the size for testing the
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hypotheses (21) around the nominal level for all the cases considered. It is not unexpected

to see that the CQ test designed for independent samples could not control the size with

severe size distortion as ρtime was increased. Thus, the consequence of ignoring the time

dependence was severe. The APR test was able to control the size under the MA model, as

the MA model prescribed an m-dependent series with m = 1, which met the assumptions

of the APR test (Ayyala et al., 2017). However, for the AR model, the APR test could

not manage the size around 0.05, especially when the temporal dependence parameter ρtime

was increased to 0.5, with the size reaching over 0.4 for p = 400 in particular.

Figures 2 and 3 report the power of the proposed and APR tests. We empirically

adjusted the critical values for the proposed and APR tests based on their simulated distri-

butions under the null hypothesis so that they would have the same empirical size of 0.05

for fairer power evaluation. Figures 2 and 3 suggest that the proposed and APR methods

have comparable powers under all combinations of signal proportion and strength. This

is because both tests are constructed from the sum-of-square statistics which have similar

power profile in signal detection. Notice that the power of APR was slightly higher than

that of the proposed test under a couple of settings. This may be due to its employing

more observations than the BEU-statistic T (b) with a larger b as selected by the proposed

algorithm. Similar phenomenon was also observed in the simulation studies of Ayyala et

al. (2017) where the power of APR decreased with the increase of its time lag tuning pa-

rameter. The main issue with the APR test is that it cannot control the size for general

temporal dependence, which limits its general applicability, while the proposed test can be

used with proper control on the size and had reasonable power.

To investigate the performance of the proposed test for other distributions, we consider
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Figure 2: Empirical powers of the proposed test (red) and the APR test (blue) with

respect to the signal strength r0 (horizontal axis) for the two-sample hypotheses under the

AR model, the sample size n0 = 100, 150, the dimension p = 100, 400, three levels of the

temporal dependence ρtime and two values of the signal proportions.
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Figure 3: Empirical powers of the proposed test (red) and the APR test (blue) with

respect to the signal strength r0 (horizontal axis) for the two-sample hypotheses under the

MA model, the sample size n0 = 100, 150, the dimension p = 100, 400, three levels of the

temporal dependence ρtime and two values of the signal proportions.
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the AR model

XXX1,t = ρtimeXXX1,t−1 + (1− ρ2
time)

1/2εεε1,t and XXX2,t = µµµ2 + ρtimeXXX2,t−1 + (1− ρ2
time)

1/2εεε2,t,

where two distributions were assigned to the IID errors {εεεi,t}ni
t=1:

• Multivariate t distribution: εεεi,t = eeei,t/
√
χ2
i,t(6)/6 where {eeei,t}ni

t=1 were IID p-dimensional

random vectors from N(000,ΣΣΣe) with ΣΣΣe = (0.5|j1−j2|), {χ2
i,t(6)}ni

t=1 were IID random

variables with the chi-squared distribution with degree of freedom 6, and {eeei,t}ni
t=1

and {χ2
i,t(6)}ni

t=1 were mutually independent;

• Gamma distribution: εi,t,j = ei,t,j + γiei,t,j−1 where the IID {ei,t,j}pj=0 followed the

centralized Gamma(1, 1) distribution and γ1 = γ2 = 0.5.

Here, we chose ρtime = 0.1, 0.3, 0.5 and (n0, p) = (100, 400). The settings of µµµ1 and µµµ2 were

the same as those in the AR model with the normally distributed error.

Table 2 and Figure 4 show the empirical sizes and the empirical powers of the proposed

test, the APR test and the CQ test with the error terms having the multivariate t dis-

tribution and the Gamma distribution, respectively. Compared with the case of normally

distributed errors, here, the sizes of the APR test were nearly zero in all cases, while our

proposed test displayed reasonable sizes around the nominal level 5% compared with the

APR test and the CQ test. The critical values used to compute powers were adjusted

according to the distribution of the test statistic under the null hypothesis. It can be seen

from Figure 4 that the powers of the APR test were quite sensitive to the error distribution.

When the errors have the multivariate t distribution or the Gamma distribution, the powers

of the APR test stayed small and flat as the signal strength increased and the sparsity level

decreased. Under all settings of temporal dependence, the proposed test exhibited better

performances with higher powers than the APR test, which become more pronounced when
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the sparsity level decreased. Here, the superiority of the proposed test was more visible

than that in the case with normally-distributed errors.

Table 2: Empirical sizes of the proposed test, the APR test (Ayyala et al., 2017) and

the CQ test (Chen and Qin, 2010) for the two-sample hypotheses under the temporal

dependence parameter ρtime = 0.1, 0.3, 0.5, (n0, p) = (100, 400), and the error term with the

multivariate t distribution and the Gamma distribution.

Method
ρtime under t distribution ρtime under Gamma distribution

0.1 0.3 0.5 0.1 0.3 0.5

Proposed 0.052 0.046 0.030 0.072 0.054 0.036

APR 0.000 0.000 0.000 0.000 0.000 0.000

CQ 0.732 1.000 1.000 0.804 1.000 1.000

Next, we compare the proposed test with the SN test of Wang and Shao (2020) in

the one-sample testing problem. We used one time series generated from the MA model

and the AR model respectively in the two-sample setting as the observed data. Table 3

reports the empirical sizes of the proposed and the SN tests under the MA and AR models.

It shows that both of the tests could control their sizes under the model settings for the

sample sizes and dimensions experimented. Figures 5 and 6 report the empirical powers of

the two tests. To make the power comparison fair, we conducted the same adjustment on

the critical values of the tests as the two-sample simulation to make the two tests have the

same empirical size of 0.05.

It can be seen that our proposed test has considerably higher power than the SN test

for all the cases. Although the SN test is able to control its size around the nominal level,

it suffers some power loss by avoiding estimating the long-run covariance matrix of the

test statistic. This is consistent with the theoretical power comparison of the two tests in

Section 6. Our testing procedure is based on a novel kernel smoothing estimator for the

variance of the L2 type BEU-statistic under high-dimensional time series data. Comparing

to the self-normalization approach, the advantage in power is a main contribution of our
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Figure 4: Empirical powers of the proposed test (red) and the APR test (blue) with

respect to the signal strength r0 (horizontal axis) for the two-sample hypotheses under the

AR model with the multivariate-t-distributed errors and the Gamma-distributed errors,

the sample size n0 = 100, the dimension p = 400, three levels of the temporal dependence

ρtime and two values of the signal proportions.

proposed test.

8. Real Data Analysis

In this section, we apply the proposed test to detect changes in the stock return and

volatility before and after the financial crisis of 2008. We analyze the daily returns of

S&P 500 stocks from 2 January 2007 to 31 December 2010, and consider the capital asset

pricing model for the performance of individual stock compared with a market index.

Due to acquisitions and companies growing or shrinking in value, the list of the S&P 500

components changes over time. After excluding the new and drop-outs stocks in the S&P
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Figure 5: Empirical powers of the proposed test (red) and the self-normalized test (blue,

denoted by SN) with respect to the signal strength r0 (horizontal axis) for the one-sample

hypotheses under the AR model, the sample size n0 = 100, 150, the dimension p = 100, 400,

three levels of the temporal dependence ρtime and two values of the signal proportions.
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Figure 6: Empirical powers of the proposed test (red) and the self-normalized test (blue,

denoted by SN) with respect to the signal strength r0 (horizontal axis) for the one-sample

hypotheses under the MA model, the sample size n0 = 100, 150, the dimension p = 100, 400,

three levels of the temporal dependence ρtime and two values of the signal proportions.
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Table 3: Empirical sizes of the proposed test and the SN test (Wang and Shao, 2020) for

the one-sample hypotheses under the temporal dependence parameter ρtime = 0.1, 0.3, 0.5,

n0 = 100, 150, p = 100, 400, and the MA and AR models.

Method (n0, p)
ρtime under MA ρtime under AR

0.1 0.3 0.5 0.1 0.3 0.5

Proposed

(100,100) 0.065 0.077 0.068 0.062 0.073 0.076

(150,100) 0.066 0.062 0.071 0.082 0.079 0.077

(100,400) 0.066 0.063 0.036 0.075 0.054 0.046

(150,400) 0.081 0.054 0.044 0.071 0.077 0.050

SN

(100,100) 0.045 0.038 0.047 0.052 0.058 0.051

(150,100) 0.052 0.055 0.066 0.045 0.052 0.065

(100,400) 0.061 0.057 0.058 0.072 0.046 0.088

(150,400) 0.044 0.051 0.050 0.072 0.045 0.058

500 from 2 January 2007 to 31 December 2010, we end up with 429 stocks for the analysis.

Those stocks are divided into 11 sectors: Consumer Discretionary (64 stocks), Consumer

Staples (31), Energy (17), Financials (60), Health Care (55), Industrials (58), Information

Technology (66), Materials (22), Real Estate (25), Telecommunications Services (4), and

Utilities (27). We apply the proposed high-dimensional test on the entire included stocks

and on the 10 sectors without the Telecommunications Services sector due to its rather

small dimension.

To evaluate the short, median and long term effects of financial crisis on the stock

returns and volatility, we consider three designs regarding the time periods: (i) Design 1:

March to August 2008 as period 1 and November 2008 to April 2009 as period 2; (ii) Design

2: January to August 2008 as period 1 and the whole year of 2009 as period 2; and (iii)

Design 3: the whole years of 2007 and 2010 as periods 1 and 2, respectively. In Designs 1

and 2, the two months in September and October 2008 were excluded to avoid the extreme

high volatility in the heat of the financial crisis. Design 3 offers a baseline setting with the

study periods far away from the heat of the crisis. The sample sizes of the two periods
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under the three designs are n1 = 126, 164, 242 and n2 = 121, 244, 242, respectively.

For each of Designs 1–3, let YYY i,t = (Yi,t,1, . . . , Yi,t,p)
T be the closing prices of stocks on

the tth day of the ith periods, where i = 1, 2 with 1 and 2 indicating one of the two period,

t = 1, . . . , ni and the dimension p equals to 429. Let X̃i,t,j = log Yi,t,j − log Yi,t−1,j be the

return of the jth stock, and Xi,t,j be the excess return of X̃i,t,j, which is equal to X̃i,t,j minus

the risk-free cash interest rate at the time. Similarly, let {Zi,t}ni
t=1 be the excess return of

the S&P 500 index in the ith period. We consider the single-index model (Sharpe, 1963)

Xi,t,j = αi,j + βi,jZi,t + εi,t,j and Var(εi,t,j) = σi,j (81)

to adjust the portfolio return by the S&P 500 market index, where j = 1, . . . , p. Under

this model, the stock excess return is influenced by the market index through the beta

coefficient of this stock, the alpha coefficient αi,j indicates how the stock performs after

accounting for the market risk, and the error variance σi,j refers to the stock specific risk.

Let S0 and Sk for k = 1, . . . , 10 denote the index set of all stocks and the stocks in the kth

sector, respectively.

Let αααi,(k) = (αi,j : j ∈ Sk) and σσσi,(k) = (σi,j : j ∈ Sk) be the vectors of the alpha

coefficients and error variances of the kth sector. During the financial crisis in 2007–2008,

many financial markets suffered from the worst stock crash in history, reflected by the

sudden dramatic decline of the stock price and extreme increase of volatility across almost

all sections of the stock markets (Bates, 2012; Bardgett et al., 2019). We are interested in

testing the change of the stock adjusted return and specific volatility before and after the

start of the financial crisis for each sector. Namely, consider testing for the hypotheses

H0,α,k : ααα1,(k) = ααα2,(k) vs. Ha,α,k : ααα1,(k) 6= ααα2,(k) and (82)

H0,σ,k : σσσ1,(k) = σσσ2,(k) vs. Ha,σ,k : σσσ1,(k) 6= σσσ2,(k) (83)

for k = 0, . . . , 10.
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Using the estimated beta coefficient β̂i,j from fitting (81), let Ri,t,j = Xi,t,j − β̂i,jZi,t

be the adjusted return of the jth stock, and R̃i,t,j = Ri,t,j − R̄i,j be the centered adjusted

return, where R̄i,j =
∑ni

t=1 Ri,t,j/ni. We apply the proposed method on {Ri,t,j} and {R̃2
i,t,j}

to test for the hypotheses (82) and (83), respectively. Here, we treat the estimation of

the beta coefficient βi,j is accurate enough such that the estimation error can be ignored

for testing αi,j and σi,j. The proposed work may be extended to testing for regression

coefficients under high-dimensional time series data, which is left as a future investigation.
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Figure 7: Time series plots of the averages adjusted returns {R̄sec
i,t,k}

ni
t=1 for three selected

sectors in Design 1 (top panel) over two periods, the box plots of the estimated alpha

coefficients α̂i,j (bottom left panel), and the density contour plot of the estimated stock

specific variance σ̂i,j (bottom right panel) with the 45◦ line. Two lower panels are based

on all selected 429 stocks.
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Figure 7 displays the time series plot of the average adjusted return R̄sec
i,t,k = |Sk|−1

∑
j∈Sk Ri,t,j

for three selected sectors, the boxplot of the estimated alpha coefficients α̂i,j, and the con-

tour plot of the estimated variance σ̂i,j for all selected 429 stocks. From Figure 7, we see

that the overall means of the adjusted returns were centered around zero both before and

after the start of the economic crisis. The top panel also indicates an obvious increase of

volatility in the first six months after the crisis, especially in the sector of Real Estate. The

boxplot and the contour plot also demonstrate that the economic crisis led to an extremely

volatile market in the short term as reflected by Design 1. However, the volatility gradually

decreased to slightly lower than the pre-crisis level as shown in Designs 2 and 3.

Table 4: Average differences of the estimates α̂i,j and σ̂i,j between the two periods in

Designs 1–3 within each sector and the significance level of testing the hypotheses (82) for

equality of the alpha coefficients and the hypotheses (83) for equality of the stock specific

volatility for the 10 sectors. The number of ∗ represents the level of significance, where 1-3

numbers of ∗ represent the p-values of the proposed test within [0.025, 0.05), [0.01, 0.025)

and [0, 0.01), respectively.

Sector
Diff. of average alpha coefficient Diff. of average volatility

Design 1 Design 2 Design 3 Design 1 Design 2 Design 3

Consumer Discretionary 16.434 2.319 15.753*** 9.851*** 1.342*** -2.742**

Consumer Staples -0.188 1.621 0.81 -2.131 -3.069 -0.626

Energy 1.346 -3.816 -6.152 2.071* -2.346*** -4.056

Financials -3.755 -9.998 1.977** 22.504*** 13.591* 9.695

Health Care -3.589 2.77 -2.744 2.546 -0.43 -1.709

Industrials -2.652 -7.334 3.432 3.173*** -1.235*** -2.285

Information Technology 9.31 8.366 1.221 3.949*** -0.858 -2.302***

Materials 12.093 -0.736 -2.759*** 5.292*** 0.017*** -1.339

Real Estate -9.889 -18.526 10.887 17.137*** 4.593*** -0.676

Utilities -6.282 3.39 -2.109 2.941*** -0.683 -2.366

Overall 2.324 -1.402 3.204** 7.381*** 1.67*** -0.424

Table 4 reports the average differences of the estimates α̂i,j and σ̂i,j between the two

periods for each sector with marked significance of the test. It shows that in Designs 1

and 2, the changes of the expected adjusted returns (alpha coefficient) over the two periods
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were all not significant. This is expected since the expected value of the alpha coefficient

should be zero in an efficient market (Jensen, 1969). However, the financial crisis greatly

affected the stock volatility, as shown in Design 1 which had 8 out of 10 sectors exhibited

significant increase in the volatility, and in Design 2 that had 6 sectors with significant

elevated volatility. There were also significant increases in the volatility after the financial

crisis for the overall stocks under Designs 1 and 2. In contrast, under the baseline Design

3, there were only two sectors with significant differences between the two periods, and the

difference was largely in reduced rather than increased volatility.

Supplementary Materials

The supplementary material contains the proofs of all theorems and lemmas, and additional

results not reported in the main paper due to space limit.
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