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We consider the problem of comparing probability densities among multiple groups.

A new probabilistic tensor product smoothing spline framework is developed to model

the joint density of two variables. Under such a framework, the probability density

comparison is equivalent to testing the presence/absence of interactions. We pro-

pose a penalized likelihood ratio test for such interaction testing and show that the

test statistic is asymptotically chi-square distributed under the null hypothesis. Fur-

thermore, we derive a sharp minimax testing rate based on the Bernstein width for

nonparametric multi-sample tests and show that our proposed test statistic is mini-

max optimal. In addition, a data-adaptive tuning criterion is developed to choose the

penalty parameter. Simulations and real applications demonstrate that the proposed

test outperforms the conventional approaches under various scenarios.

Key words: minimax optimality; nonparametric test; penalized likelihood ratio test;

smoothing splines; multi-sample test; Wilks’ phenomenon.
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1. Introduction

A fundamental problem in statistics is to test whether the probability den-

sities underlying U groups of observed data are the same, which is called

the multi-sample test. It plays an essential role in different scientific fields

ranging from modern biological sciences to deep learning. For instance, in

metagenomics studies, comparing densities of specific microbial species (or

strains) from different treatment groups helps researchers gain insights on the

disease and treatments (Bilban et al., 2006; Turnbaugh et al., 2009; Qin et al.,

2012); in genomics, identifying differentially expressed genes among multiple

groups or conditions is fundamental to many downstream analyses; in machine

learning, the multi-sample test is becoming an essential component in some

deep learning algorithms (Li et al., 2017).

In these modern applications, the underlying distributions usually demon-

strate complex patterns, including multi-modality and long-tails. Hence, it is

often difficult to specify their distributional families. Classical normality-based

tests such as the two-sample t-test (Anderson, 1958) and the Shapiro-Wilk test

(Shapiro and Wilk, 1965) are generally inappropriate. Nonparametric ap-

proaches are more appealing due to their distribution-free feature. Classical

examples include distance-based tests such as the Kolmogorov-Smirnov (K-S)

test (Darling, 1957), the Anderson-Darling test (Scholz and Stephens, 1987),
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and their variants. An alternative direction is using discretization (“slicing”)

of continuous random variables (Miller and Siegmund, 1982). Jiang et al.

(2015) proposed the dynamic slicing test (DSLICE), which penalizes the num-

ber of slices to regularize the test statistics. Gretton et al. (2007, 2012) pro-

posed maximum mean discrepancy (MMD) two-sample tests via embedding

the probability distribution into a reproducible kernel Hilbert space (RKHS).

Eric et al. (2008) proposed the regularized MMD test by regularizing eigenval-

ues of the kernel matrix. Kim (2021) extended the MMD test to multi-sample

test using the maximum of pair-wise MMDs. In addition, a class of approaches

based on kernel density estimation was proposed (Anderson et al., 1994; Cao

and Van Keilegom, 2006; Mart́ınez-Camblor et al., 2008; Mart́ınez-Camblor

and de Uña-Álvarez, 2009; Zhan and Hart, 2014). One common challenge for

MMD based and kernel density based testing approaches is the choice of tuning

parameters, e.g., the kernel bandwidth or the roughness penalty parameter,

since these parameters sensitively affect the methods’ power. Furthermore,

they have some drawbacks when applied to data of long-tailed distributions:

since the kernel bandwidth is fixed across the entire sample (Silverman, 1986),

they tend to have a low power in detecting changes at tails. In many ap-

plications such as gene expression analyses, metagenomics, and economics,

long-tailed distributions are very common.
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To overcome these limitations, we propose a likelihood-based test that can

automatically adapt to densities with different shapes and develop a data-

adaptive tuning method to automatically choose the penalization parameter.

In this paper, we consider X as a continuous random vector and Z as a

discrete random variable indicating the group information. Instead of directly

comparing the multiple densities, we characterize the dependence between X

and Z through its log-transformed joint density η(x, z) within a space H. The

key idea is to uniquely decompose the log-transformed joint density η ∈ H

into the main effects ηX , ηZ and the interaction effect ηXZ through a novel

probabilistic decomposition of H so that the magnitude of the interaction

exactly quantifies the density difference between multiple groups. The multi-

sample test is thus equivalent to the interaction test

H0 : ηXZ(x, z) = 0 vs. H1 : ηXZ(x, z) 6= 0. (1.1)

We propose a penalized likelihood ratio (PLR) test by evaluating the penal-

ized log-likelihood functional of η under H0 and H1, and establish its null

distribution as a chi-square distribution. Compared with distance-based test-

ing methods, which are not easily generalizable to handle multi-sample tests

since the asymptotic distribution of the maximum pair-wise distance usually

does not have an explicit form, the proposed PLR test can be directly applied

to multi-sample tests by letting Z ∈ {1, . . . , U}. We further propose a data-
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adaptive rule to select the tuning parameter to guarantee testing optimality.

The PLR test makes a full use of the distribution information and is sensitive

to the density difference between the null and alternative hypotheses.

This work has main contributions sumarized in the following. First, with-

out explicit expression of the function estimate, the classical technical tools

used in Wald-type nonparamatric test in Xing et al. (2020) and Liu et al.

(2021, 2020) can not be generalized to likelihood-based test. We propose a

new probabilistic decomposition of the tensor product RKHS in Section 3. Ex-

isting references on functional decomposition without considering probabilistic

measures (Gu, 2013; Wahba, 1990) mainly focus on estimation while leaving

the hypothesis testing an open problem. Embedding the probability measures

of X and Z into the tensor product decomposition of H, we can transform

the problem of density comparison to the problem of significance test of the

interaction between X and Z, which provides a foundation to establish the

minimax testing principle (see Section 4). This new probabilistic decompo-

sition framework can be generalized to a broader class of dependence tests,

including higher order independence tests and conditional independence tests,

by using the magnitudes of the decomposed terms to measure the correspond-

ing dependency. Second, we establish the minimax lower bound for density

comparison problems based on the Bernstein width (Pinkus, 2012). Existing

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing) 



minimax lower bounds of the testing rate are commonly derived based on

Gaussian sequence models (Ingster, 1989, 1993; Wei and Wainwright, 2018;

Xing et al., 2020) in a simple regression setting, and thus cannot be adapted

to density comparison. In contrast, our result can be easily generalized to a

wide range of dependence testing problems. We further prove the PLR based

multi-sample test is minimax optimal. Compared with our proposed PLR test,

the log-likelihood ratio without a penalty term does not enjoy the minimax

optimality. Parallel to our work, Li and Yuan (2019) proposed a normalized

MMD by choosing scaling parameters of the Gaussian kernel properly, and es-

tablished its minimax property. Similar to the original MMD (Gretton et al.,

2007), the approach in Li and Yuan (2019) is also based on a fixed kernel

bandwidth, which can lead to low sensitivity when the underlying densities

are long-tailed. However, our proposed approach is based on the penalized

likelihood estimators, which can automatically adapt to long-tailed distribu-

tions. As shown in various simulation and real data studies in Sections 5 and

6, our proposed test shows a higher power when the underlying densities have

complex features such as long-tails and multi-modality. In addition, we reveal

an interesting connection between the PLR and MMD tests in our supplime-

nary. Also, we thank our referees for providing some helpful insights on the

connections between MMD test and Hilbert-Schmidt independence criterion
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(HSIC) test. We show that the MMD test (with a particularly selected kernel)

is exactly the squared norm of the gradient of the log-likelihood ratio.

The rest of this paper is organized as follows. In Section 2, we con-

struct our proposed penalized likelihood ratio test. Section 3 introduces the

construction of the probabilistic decomposition of tensor product RHKS and

main theoretical results, including the asymptotic distribution of the PLR test

and its power performance. Section 4 established the minimax lower bound

of density comparisons., we demonstrate the finite sample performance of our

test through simulation studies. Section 6 is the analysis of two real-world ex-

amples using our test. Section 7 contains some discussion. In supplementary,

we extend our PLR test to the case when the number of samples is diver-

gent, and establish the minimax distinguishable rate and build the connection

between our PLR test and the MMD test. Also, the the proofs of the main

results are provided in Supplemenary.

2. Penalized likelihood ratio (PLR) for multi-sample test

The multi-sample problem can be stated as follows. Suppose that we have n

independent d-dimensional observations, Xi ∈ [0, 1]d, i = 1, . . . , n. Each Xi is

associated with a label Zi ∈ {1, . . . , U}, which indicates that Xi is taken from

the population indexed by Zi with a probability density function fZi . We aim
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to test whether f1, . . . , fU are the same. Other than a smoothness constraint,

we will not impose any other constraints on the probability density functions

f1, . . . , fU .

An equivalent formulation of the problem can be given in terms of the

joint distribution of X and Z and their conditional independence. That is,

consider n i.i.d. observations, Yi = (Xi, Zi), i = 1, . . . , n, taken from a

population Y = (X,Z) with a joint probability density f(x, z). Let

η(x, z) = log(f(x, z)).

Let fX|Z=z(x) be the conditional density of X given Z = z for z = 1, . . . , U .

The multi-sample problem is equivalent to testing whether X and Z are in-

dependent, i.e.,

H0 : fX|Z=1(·) = · · · = fX|Z=U(·)

v.s. H1 : ∃ u1 6= u2 such that fX|Z=u1(·) 6= fX|Z=u2(·). (2.1)

We denote n1 = |{i : Zi = 1}|, . . . , nU = |{i : Zi = U}|, and assume that

the nj’s are comparable, i.e., there exist constants 0 < c1 ≤ c2 such that

c1n1 ≤ nu ≤ c2n1, ∀ u = 1, . . . , U . We characterize the dependence between

X and Z by their interaction with respect to their joint density, and show that

testing the significance of such interaction is equivalent to the multi-sample

test. We first consider the case when U is a fixed constant and then extend
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the theory for diverging U .

In order to characterize the interaction between X and Z, we first define

two averaging operators acting on the log-transformed joint density function

η(x, z). For any x, the operator Ax maps η(x, z) to EXη(X, z), a function in

z; and for any z, the operator Az maps η(x, z) to EZη(x, Z). The interaction

term is then characterized through the decomposition

ηXZ(x, z) = (I−Ax)(I−Az)η(x, z) ≡ η(x, z)−(Axη)(z)−(Azη)(x)+AxAzη,

(2.2)

where I is the identity operator. Note that (2.2) is essentially derived from

a functional ANOVA decomposition of η(x, z) where AxAzη is the constant,

(I − Ax)Azη and (I − Az)Axη are respectively the main effects of x and z,

and (I −Ax)(I −Az)η is the interaction effect. A straightforward derivation

shows that the multi-sample test is equivalent to testing whether ηXZ is zero

or not; see Proposition S.4 in the Supplimentary.

We assume that η is in a reproducing kernel Hilbert space (RKHS) H and

let H0 = {η ∈ H | ηXZ = 0} be the subspace of H containing all bivariate

functions whose ANOVA decompositions have a zero interaction term. Based

on Proposition S.4, the multi-sample test problem in (2.1) is equivalent to

testing

H0 : η ∈ H0 v.s. H1 : η ∈ H\H0. (2.3)
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2.1 Penalized likelihood functional under the full model

Consider estimating η by the minimizer of the penalized likelihood

`n,λ(η) = − 1

n

n∑
i=1

η(xi, zi) +
∑

z∈{1,...,U}

∫
X
eη(x,z)dx+

λ

2
J(η), (2.4)

where X = [0, 1]d, the two sums form the negative log-likelihood representing

the goodness-of-fit, J(·) is a quadratic functional enforcing a roughness penalty

on η, and λ > 0 is a tuning parameter controlling the trade-off. We propose

the following PLR test statistic

PLR = inf
η∈H0

`n,λ(η)− inf
η∈H

`n,λ(η), (2.5)

where the first and second terms are respectively the optimal penalized likeli-

hoods under the reduced model H0 and the full model H.

Note that the integrals in (2.4) are to guarantee the unitary constraint

of a probability density function (see Theorem 3.1 in Silverman (1982)). We

choose equation (2.4) instead of the logarithm of the integral in Gu and Qiu

(1993) since the Fréchet derivative of the PLR will include an integral in the

denominator, which makes the theoretical derivation more difficult.

2.1 Penalized likelihood functional under the full model

Under the full model, the minimization of (2.4) is performed in H. Let H〈X〉

be an RKHS of functions on the marginal domain [0, 1]d andH〈Z〉 be an RKHS

of functions on {1, . . . , U}. Then the full spaceH = H〈X〉⊗H〈Z〉 is their tensor

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing) 



2.1 Penalized likelihood functional under the full model

product and also an RKHS, where ⊗ denotes the tensor product of two linear

spaces. Correspondingly, if K〈X〉 and K〈Z〉 are respectively the reproducing

kernels (RKs) uniquely associated with the RKHS H〈X〉 and H〈Z〉, then the

RK for H is simply the product of K〈X〉 and K〈Z〉, that is, K(Yi,Yj) =

K〈X〉(Xi, Xj)K〈Z〉(Zi, Zj).

For the continuous domain [0, 1]d, we consider the mth order Sobolev

space on [0, 1]d, i.e., H〈X〉 = {f ∈ L2([0, 1]d) | f (α) ∈ L2([0, 1]d), ∀ |α| ≤ m}

where |α| =
∑d

l=1 αl. When d = 1, the associated kernel K〈X〉(Xi, Xj) =

1 + (−1)m−1k2m(Xi − Xj), where k2m(x) is the 2m-th order scaled Bernoulli

polynomial (Abramowitz and Stegun, 1948). For m = 2, k4(x) = 1
24

((x −

0.5)4 − 0.5(x − 0.5)2 + 7
240

) and the corresponding K〈X〉 is known as the ho-

mogeneous cubic spline kernel. When d > 2, Novak et al. (2018) showed that

the associated kernel is K〈X〉(Xi, Xj) =
∫
Rd [
∏d

l=1 cos(2π(Xil − Xjl)Gl)]/[1 +∑
0<|α|≤m

∏d
l=1(2πGl)

2αl ]dG where G ∈ Rd. An example for the discrete kernel

is K(Zi, Zj) = 1{Zi=Zj}.

Let η̂n,λ be the penalized likelihood estimator of η under H1, that is,

η̂n,λ = argmin η∈H`n,λ(η). (2.6)

Due to the integration in (2.4), the Representer Theorem (Wahba, 1990) does

not apply here and the exact solution is not computable (Gu, 2013). We

consider an efficient approximation in Gu (2013) by calculating the minimizer
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2.1 Penalized likelihood functional under the full model

of the penalized likelihood functional in H† = span{K(Yi, ·), i = 1, . . . , n}.

By the definition of H†, the minimizer η†(·) of `n,λ(η) for η† ∈ H† has the

form

η†(·) =
n∑
i=1

K(Yi, ·)ci = ζTc, ∀η† ∈ H† (2.7)

where ζT = (K(Y1, ·), · · · ,K(Yn, ·)) is the vector of functions obtained from

kernel K with its first argument fixed at Yi, and c = (c1, · · · , cn) is the

coefficient vector. Since J(η) is 〈η, η〉H where 〈·, ·〉H is the inner product in

H with reproducing kernel K, we have J(η†) = cTQc where Q ∈ Rn×n is the

empirical kernel matrix with its (i, j)-th entry being Qij = K(Yi,Yj). This

representation converts the infinite-dimensional minimization problem of (2.4)

with respect to η to the finite-dimensional optimization problem with respect

to the coefficient vector c by solving

ĉ = argmin
c

{
− 1

n
1TnQc +

∫
Y

exp{ζTc}dy +
λ

2
cTQc

}
. (2.8)

where 1n is an n × 1 vector of ones, and the second term is the same as the

second term in (2.4) with summation and integration over (x, z) replaced by

integration over y for the convenience of presentation. The objective function

in (2.8) is strictly convex (Tapia and Thompson, 1978). Its optimization with

respect to c can be performed via a standard convex optimization procedure

such as the Newton-Raphson algorithm; see, e.g., Gu (2013) and Wang (2011).

The integrals in (2.8) can be calculated by numerical integration (see Section
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2.2 Penalized likelihood functional under the reduced model

7.4.2 in Gu (2013) for details). When n is large, the representation (2.7) in-

volves a large number of coefficients, which may lead to numerical instability.

To tackle this, one may consider only a subsample of {Yi : i = 1, . . . , n} to use

in the presentation (Kim and Gu, 2004; Ma et al., 2015). For the nonparamet-

ric inference problem, subsampling method can maintain the minimax opti-

mality through properly selected subsample size as shown in Liu et al. (2021).

Practically, we follow the guide in Liu et al. (2021) to select the subsample

sample size, which shows comparable power with the full data. In general, we

denote by

η̂†n,λ = ζT ĉ (2.9)

the penalized maximum likelihood estimate under the full model.

2.2 Penalized likelihood functional under the reduced model

Let η̂0
n,λ be the penalized likelihood estimator of η under H0 in (2.3), that is,

η̂0
n,λ = argmin η∈H0

`n,λ(η). (2.10)

In Section 3.1, we show thatH0 is also an RKHS equipped with kernel function

K0(·, ·), which enables us to use a similar reparameterization trick to solve the

problem in (2.10). In the following, we show the kernel function K0(Yi,Yj) =

K〈X〉0 (Xi, Xj)K〈Z〉0 (Zi, Zj)+K〈X〉1 (Xi, Xj)K〈X〉0 (Zi, Zj)+K〈X〉0 (Xi, Xj)K〈X〉1 (Zi, Zj)

where K〈X〉0 (Xi, Xj) = EX [K〈X〉(X,Xj)]+EX [K〈X〉(Xi, X)]−EX,X̃K〈X〉(X, X̃),
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2.2 Penalized likelihood functional under the reduced model

K〈X〉1 = K〈X〉−K〈X〉0 , K〈Z〉0 (Zi, Zj) = ωZi +ωZj −
∑1

`=0 ω
2
` , K

〈Z〉
1 = K〈Z〉−K〈Z〉1 ,

and ωl = P (Z = l) for l = 1, . . . , U . We plug the emprical estimate of

ω̂l = nl/n for l = 1, . . . , U to calculate K〈Z〉. The detailed derivation of K0

depends on our proposed probabilistic decomposition of H, and is deferred to

Section 3.1.

Similar to (2.7), we consider the efficient approximation in Gu (2013)

by calculating the minimizer of the penalized likelihood functional in H0† =

span{K0(Yi, ·), i = 1, . . . , n}, which has the form

η0†(·) =
n∑
i=1

K0(Yi, ·)c0i = ζT0 c0, ∀η0† ∈ H0†. (2.11)

To obtain the penalized likelihood estimators, we first solve the quadratic

program

ĉ0 = argmin
c0

{
− 1

n
1TnQ0c0 +

∫
Y

exp{ζT0 c0}+
λ

2
cT0Q0c0

}
(2.12)

where the (i, j)-th entry of Q0 is K0(Yi,Yj). Numerically, we could express

Q0 = [(In −H)Q〈X〉(In −H)] ◦ [(In −H)Q〈Z〉(In −H)]

+ [HQ〈X〉H] ◦ [(In−H)Q〈Z〉(In−H)] + [(In−H)Q〈X〉(In−H)] ◦ [HQ〈Z〉H]

where Q〈X〉 is the empirical kernel matrix of H〈X〉 with (i, j)-th entry Q
〈X〉
ij =

K〈X〉(Xi, Xj), Q
〈Z〉 is the empirical kernel matrix of H〈Z〉 with (i, j)-th entry

Q
〈Z〉
ij = K〈Z〉(Zi, Zj), and H = In − 1

n
1n1

T
n with In being the n × n identity
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2.3 Test statistics

matrix, 1n the n × 1 vector of ones, and ◦ denotes the Hadamard product.

Then we solve the quadratic optimization similar to (2.8) and output the

function estimate

η̂0,†
n,λ = ζ0T ĉ0. (2.13)

2.3 Test statistics

Plugging the minimizers of the penalized likelihood functional under the full

and reduced models into (2.5), we have the penalized likelihood ratio (PLR)

statistic

PLRn,λ = `n,λ(η̂
0
n,λ)− `n,λ(η̂n,λ). (2.14)

We will show in Section 3.2 that PLRn,λ is asymptotically χ2 distributed

under H0 in the sense that (2bn,λ)
−1/2(2PLRn,λ − bn,λ) → N(0, 1) with bn,λ

diverges for a wide range of λ. Since η̂n,λ and η̂0
n,λ are not computable, we use

their efficient approximations η̂†n,λ and η̂0,†
n,λ. Then an efficient approximation

of the test statistic (2.14) is

PLR†n,λ = `n,λ(η̂
0,†
n,λ)− `n,λ(η̂

†
n,λ).

We show that this efficient approximation has the same asymptotic distribu-

tion as PLRn,λ. In practice, we use the gss package (Gu and Qiu, 1993) to

obtatin the which implement the scalable computation via efficient approxi-

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing) 



2.3 Test statistics

mation in Kim and Gu (2004) with compuation cost of the order O(Nq2) with

q = O(N2/(2m+1)) for the mth order Sobolev space.

For the nonparametric multi-sample test, the parameter space under H0

is infinite-dimensional as n → ∞. The assumptions of the Neyman-Pearson

Lemma cannot be satisfied. Thus the uniformly most powerful test may not

exist in general. We evaluate the power performance by the minimax rate

of testing, which is defined as the minimal distance between the null and

alternative hypotheses such that valid testing is possible (Ingster, 1989). For

any generic 0-1 valued testing rule Φ = Φ(Y1, . . . ,Yn) and a distinguishable

rate dn > 0 measuring the distance between the null and the alternative

hypotheses, we define the total error Err(Φ, dn) of Φ under dn as

Err(Φ, dn) = EH0 {Φ}+ sup
‖ηXZ‖2≥dn

Eη {1− Φ} , (2.15)

where EH0 {·} denotes the expectation with respect to the truth η∗ under H0.

The first and second terms on the right side of (2.15) represent type I and

type II errors of Φ respectively. In Section 3, we show that the distinguishable

rate of our proposed PLR test is related to the tuning parameter λ. We

then derive the optimal distinguishable rate by carefully selecting λ. A data-

adaptive tuning method is developed for practical use. In Section 4, we will use

the information theory to establish the minimum distinguishable rate dn for

general testing rules, which extends the minimax testing principle pioneered
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in Ingster (1989) to density comparison.

3. Theoretical Properties of PLR Test

In this section, we first introduce the probabilistic decomposition of a tensor

product RKHS, enabling us to construct the kernel on the subspace H0. Such

a decomposition is also of independent interest for studying different kinds of

dependence among random variables. Compared with the function ANOVA

decomposition in Wahba (1990) and Gu and Qiu (1993), the proposed proba-

bilistic measure embedded decomposition makes the interaction term in (2.2)

have zero expectation under null hypothesis which plays an essential role in

deriving the limiting distribution of our test statistic. We then derive the

asymptotic null distribution of our proposed test statistic and the optimal

power of the test. Lastly, we develop a data-adaptive tuning procedure to

choose the penalty parameter.

3.1 Probabilistic decomposition of the tensor product RKHS

We assume that the function η(x, z) belongs to a tensor product RKHS H =

H〈X〉⊗H〈Z〉, in which H〈X〉 and H〈Z〉 represent the marginal RKHS of X and

Z respectively. We aim to decompose H into orthogonal subspaces with a

hierarchical structure similar to the main effects and interactions in smooth-
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3.1 Probabilistic decomposition of the tensor product RKHS

ing spline ANOVA (Wahba, 1990; Gu, 2013; Lin, 2000; Wang, 2011), while

embedding the probabilistic distributions of X and Z into the decomposition.

Such decomposition enables us to convert the multi-sample test problem into

testing the presence of the interaction. It includes two steps: decompose each

marginal RKHS into mean and main effects; apply the distributive law to

expand the tensor product of marginal RKHS into a series of subspaces.

We first introduce the probabilistic tensor decomposition of the discrete

domain function space H〈Z〉 := {f(z) : z ∈ {1, . . . , U}} via a probabilistic

averaging operator. Note that H〈Z〉 = RU with the Euclidean inner product

(〈·, ·〉2) and the kernel on H〈Z〉 is K〈Z〉(z, z̃) = 1{z=z̃}. Consider a discrete

probabilistic measure PZ on Z = {1, . . . , U} such that PZ(Z = j) = ωj ≥

0 with
∑U

j=1 ωj = 1. Let ω = (ω1, . . . , ωU), and define the probabilistic

averaging operator as AZ := f → EZf(Z) = 〈ω, f〉H〈Z〉 . Since EZ [K〈Z〉Z ] = ω,

we can rewrite the probabilistic averaging operator as AZ := f → EZf(Z) =

〈EZ [K〈Z〉Z ], f〉2. Then EZ [K〈Z〉Z ] can be treated as a mean embedding of PZ in

H〈Z〉. We further define the tensor sum decomposition of H〈Z〉 as

H〈Z〉 = H〈Z〉0 ⊕H〈Z〉1 := span{EZK〈Z〉Z } ⊕ {f ∈ H : EZ{f(Z)} = 0}, (3.1)

where H〈Z〉0 is the grand mean space, H〈Z〉1 is the main effect space. Each sub-

space in (3.1) is an RKHS with their corresponding kernels stated in Lemma

S.1 in Supplimentary. For fixed design of Z, we set ωj = nj/
∑U

j=1 nj.
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3.1 Probabilistic decomposition of the tensor product RKHS

Next, let us consider the continuous random variable X ∈ X and a prob-

ability measure PX on X . We suppose H〈X〉 is the mth order Sobolev space

with the corresponding inner product 〈·, ·〉H〈X〉 . The results also hold for

its homogeneous subspace. Let K〈X〉 be the corresponding kernel satisfying

〈f,K〈X〉x 〉H〈X〉 = f(x) for any f ∈ H〈X〉. Similarly, the probabilistic averag-

ing operator is AX := f → EXf(X) = EX〈K〈X〉X , f〉H〈X〉 = 〈EXK〈X〉X , f〉H〈X〉 .

EXK〈X〉X has the same role as ω in the Euclidean space. Then, the tensor sum

decomposition of a functional space is defined as

H〈X〉 = H〈X〉0 ⊕H〈X〉1 := span{EXK〈X〉X } ⊕ {f ∈ H
〈X〉 : AXf = 0}. (3.2)

Analogously, we name H〈X〉0 as the grand mean space and H〈X〉1 as the main

effect space. EXK〈X〉X is known as the kernel mean embedding which is well

established in the statistics literature (Berlinet and Thomas-Agnan, 2011).

The construction of the kernel functions for H〈X〉0 and H〈X〉1 are included in

Lemma S.2 in Supplementary.

We are now ready to consider the RKHS H = H〈X〉⊗H〈Z〉 on the product

domain Y = X × Z. Applying the distributive rule, the decomposition of H

is written as

H = (H〈X〉0 ⊕H〈X〉1 )⊗ (H〈Z〉0 ⊕H〈Z〉1 ) ≡ H00 ⊕H10 ⊕H01 ⊕H11, (3.3)

where Hij = H〈X〉i ⊗ H〈Z〉j for i = 0, 1 and j = 0, 1. Analogous to the classic
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3.2 Asymptotic distribution and Wilks’ phenomenon

ANOVA, H10 and H01 are the RKHS’s for the main effects, and H11 is the

RKHS for the interaction. We call the decomposition of H in (3.3) as the

probabilistic decomposition of the tensor product RKHS H since it embeds the

probability measure of the random variable X and Z. Based on Theorems

2.6 in Gu (2013), we can construct the kernels K00,K10,K01 and K11 for the

subspacesH00,H10,H01 andH11 accordingly; see Lemma S.3 in supplimentary

for detailed construction.

3.2 Asymptotic distribution and Wilks’ phenomenon

In this section, we present the asymptotic distribution of our PLR test statistic

in Theorem 3.1. The proof relies on a technical lemma about the eigen-

structures of H0 and H; see Lemma 1 below. For any η, η̃ ∈ H, define

〈η, η̃〉 = V (η, η̃) + λJ(η, η̃), (3.4)

where V (η, η̃) = Eη∗{η(Y)η̃(Y)} with the expectation taken under the true

η∗, and J is a bilinear form corresponding to (2.4). It holds that H and H0,

endowed with the inner product (3.4), are both RKHSs; see Lemma 2. In

the following lemma, we characterize the eigenvalues and eigenvectors of the

Rayleigh quotient V/J .

Lemma 1. (a) There exist a sequence of functions {ξp}∞p=1 ⊂ H and a se-

quence of nonnegative eigenvalues {ρp}∞p=1 with ρp � p2m/d such that
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3.2 Asymptotic distribution and Wilks’ phenomenon

V (ξp, ξp′) = δp,p′ , J(ξp, ξp′) = ρpδp,p′, for all p, p′ ≥ 1, and that any η ∈

H can be written as η =
∑∞

p=1 V (η, ξp)ξp.

(b) Moreover, there exists a proper subset {ρ0
p, ξ

0
p}∞p=1 of {ρp, ξp}∞p=1 satisfying

{ξ0
p}∞p=1 ⊂ H0 and for any η ∈ H0, η =

∑∞
p=1 V (η, ξ0

p)ξ
0
p. Convergence of

both series holds under (3.4).

(c) ρ⊥p � p2m/d, where {ρ⊥p }∞p=1 ⊂ {ρp}∞p=1 is a subset of eigenvalues corre-

sponding to {ξ⊥p }∞p=1 ≡ {ξp}∞p=1\{ξ0
p}∞p=1. The set {ξ⊥p }∞p=1 generates the

orthogonal complement of H0 under the inner product (3.4).

Lemma 1 introduces an eigensystem that simultaneously diagonalizes the

bilinear forms V and J . This eigensystem does not depend on the unknown

null density, but only depends on the functional space H. Moreover, H0 can

be generated by a proper subset of the eigenfunctions, which is crucial for

analyzing the likelihood ratios.

Let 〈·, ·〉0 denote the restriction of 〈·, ·〉 on the subspace H0. Specifically,

for any η, η̃ ∈ H0, 〈η, η̃〉0 = 〈η, η̃〉. Then H and H0 are both RKHS’s endowed

with these inner products.

Lemma 2. (H, 〈·, ·〉) and (H0, 〈·, ·〉0) are both RKHS’s with the corresponding

inner products.

Following Lemma 2, there exist reproducing kernel functions K̃(·, ·) and
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3.2 Asymptotic distribution and Wilks’ phenomenon

K̃0(·, ·) defined on Y × Y satisfying, for any y ∈ Y , η ∈ H, η̃ ∈ H0:

K̃y(·) ≡ K̃(y, ·) ∈ H, K̃0
y(·) ≡ K̃0(y, ·) ∈ H0,

〈K̃y, η〉 = η(y), 〈K̃0
y, η̃〉0 = η̃(y). (3.5)

We further introduce positive definite self-adjoint operators Wλ : H → H

and W 0
λ : H0 → H0 such that

〈Wλη, η̃〉 = λJ(η, η̃) for all η, η̃ ∈ H,

〈W 0
λη, η̃〉0 = λJ0(η, η̃) for all η, η̃ ∈ H0, (3.6)

where J0(η, η̃) = θ−1
01 J01(η, η̃) + θ−1

10 J10(η, η̃) is the restriction of J over H0. By

(3.6) we get 〈η, η̃〉 = V (η, η̃) + 〈Wλη, η̃〉, 〈η, η̃〉0 = V (η, η̃) + 〈W 0
λη, η̃〉0. In the

following, we give the explicit expression of K̃y(·) and Wλξp(·).

Proposition 1. For any y ∈ Y and η ∈ H, we have

‖η‖2 =
∞∑
p=1

|V (η, ξp)|2(1 + λρp),

K̃y(·) =
∞∑
p=1

ξp(y)

1 + λρp
ξp(·), K̃0

y(·) =
∞∑
p=1

ξ0
p(y)

1 + λρ0
p

ξ0
p(·),

Wλξp(·) =
λρp

1 + λρp
ξp(·), W 0

λξ
0
p(·) =

λρ0
p

1 + λρ0
p

ξ0
p(·).

where {ρ0
p, ξ

0
p}∞p=1 and {ρp, ξp}∞p=1 are eigensystems defined in Lemma 1.

As shown in Proposition 1, the eigenvalues for K̃ are {(1 + λρp)
−1}∞p=1,

having a slower decay rate than the decay rate of eigenvalues for K due to
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3.2 Asymptotic distribution and Wilks’ phenomenon

the scaling by λ. In particular, K̃ can be viewed as a scaled kernel comparing

with the product kernel KH = K00 + K01 + K10 + K11 introduced in Lemma

S.3 in supplimentary. Note that trace(K̃) =
∑∞

p=1(1 + λρp)
−1 � λ−d/(2m) is

the effective dimension that measures the complexity of H; see Bartlett et al.

(2005); Mendelson (2002).

Next, we will derive the null asymptotic distribution of the PLR statistics,

which relies on the Taylor expansion of the PLR functional. First, we introduce

the Frechét derivatives of the log-likelihood functional. Denote by D,D2, D3

the first-, second- and third-order Frechét derivatives of `n,λ(η). Let Sn,λ(η)

and S0
n,λ be respectively the score functions of the log-likelihood functionals

`n,λ and `0
n,λ. Define y = (x, z). Then these derivatives can be summarized as

follows.

For any η,∆η1,∆η2,∆η3 ∈ H,

D`n,λ(η)∆η1 = − 1

n

n∑
i=1

∆η1(Yi) +

∫
Y

∆η1(y)eη(y)dy + λJ(η,∆η1)

= 〈− 1

n

n∑
i=1

K̃Yi
+ EηK̃Y +Wλη,∆η1〉

≡ 〈Sn,λ(η),∆η1〉, (3.7)

D2`n,λ(η)∆η1∆η2 =

∫
Y

∆η1(y)∆η2(y)eη(y)dy + λJ(∆η1,∆η2), (3.8)

D3`n,λ(η)∆η1∆η2∆η3 =

∫
Y

∆η1(y)∆η2(y)∆η3(y)eη(y)dy. (3.9)
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3.2 Asymptotic distribution and Wilks’ phenomenon

The second equality of (3.7) is due to the reproducing property (3.5) and that∫
Y

∆η(y)eη(y)dy = Eη∆η1(Y) = Eη〈K̃Y,∆η1〉 = 〈EηK̃Y,∆η1〉.

The Taylor expansion of the PLR functional gives

PLRn,λ = `n,λ(η̂
0
n,λ)− `n,λ(η̂n,λ)

= D`n,λ(η̂n,λ)g +

∫ 1

0

∫ 1

0

sD2`n,λ(η̂n,λ + ss′g)ggdsds′

=

∫ 1

0

∫ 1

0

s{D2`n,λ(η̂n,λ + ss′g)gg −D2`n,λ(η
∗)gg}dsds′ + 1

2
D2`n,λ(η

∗)gg

≡ I1 + I2 (3.10)

where g = η̂0
n,λ− η̂n,λ and η∗ is the underlying truth. In the proof of Theorem

3.1, we will show that I2 is a leading term compared with I1. From (3.8),

we have that I2 = 1
2
‖g‖2 = 1

2
‖η̂0

n,λ − η̂n,λ‖2. As we will see, the asymptotic

distribution of ‖η̂n,λ− η̂0
n,λ‖2 relies on the Bahadur representations of η̂0

n,λ and

η̂n,λ.

We further prove the following Bahadur representations for the difference

of the two penalized likelihood estimators, by adapting an empirical processes

technique in Shang and Cheng (2013). Lemma 3 is crucial for proving Theorem

3.1.

Lemma 3. Suppose h = λ
d

2m and nh2 →∞. Then we have

n1/2‖η̂n,λ − η̂0
n,λ‖ = n1/2‖S0

n,λ(η
∗)− Sn,λ(η∗)‖+ oP (1).
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3.2 Asymptotic distribution and Wilks’ phenomenon

where Sn,λ(η
∗) and S0

n,λ(η
∗) are the score functions for `n,λ and `0

n,λ, respec-

tively.

This lemma shows that the main term I2 in Taylor’s expansion of the

PLR functional is determined by the norm of the difference between the score

function of `n,λ and the score function of `0
n,λ. Since the score functions have

explicit expressions through Proposition 1, we can characterize the asymptotic

null distribution of I2 by the eigensystem introduced in Lemma 1.

Before stating our main theorem, we introduce an assumption commonly

used in literature for deriving the rates of density estimates; see, e.g., Theorem

9.3 of Gu (2013).

Assumption 1. There exists a convex set B ⊂ H around η∗ and a constant

c1 > 0 such that, for any η ∈ B, cEη∗{η̃2(Y)} ≤ Eη{η̃2(Y)}. Furthermore,

with probability approaching one, η̂n,λ ∈ B; and under H0, with probability

approaching one, η̂0
n,λ ∈ B.

This condition is satisfied when η̂n,λ and η̂0
n,λ are stochastically bounded

and the members of B have uniform upper and lower bounds on the domain

Y . The following theorem provides the asymptotic distribution for the PLR

test statistic under Assumption 1. The proof of Theorem 3.1 and Corollary

3.1.1 are in Supplimentary S.6.3.
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3.2 Asymptotic distribution and Wilks’ phenomenon

Theorem 3.1. Suppose m ≥ 1 and Assumption 1 holds. Let h = λ
d

2m and

nh2m+d = O(1), nh2 →∞ as n→∞. Under H0, we have

2n · PLRn,λ − θλ√
2σλ

d−→ N(0, 1), n→∞, (3.11)

where θλ =
∑∞

p=1
1

1+λρ⊥p
, σ2

λ =
∑∞

p=1
1

(1+λρ⊥p )2 .

We notice that h � n−c with 1
2m+d

≤ c ≤ 1
2

satisfying the rate conditions in

Theorem 3.1, so the asymptotic distribution (3.11) holds under a wide range

of choices of h. The quantities θλ and σλ solely depend on the eigenvalues

ρ⊥p ’s and λ. Based on (3.11), we propose the following decision rule Φn,λ at

the significance level α:

Φn,λ(α) = 1(|2n · PLRn,λ − θλ| ≥ z1−α/2
√

2σλ) (3.12)

where 1(·) is the indicator function, z1−α/2 is the 1−α/2 quantile of the stan-

dard normal distribution. Hence, we reject H0 at the significance level α if

Φn,λ = 1. Wilks’ phenomenon is also observed here similar to the nonparamet-

ric/semiparametric regression framework (Fan et al., 2001; Shang and Cheng,

2013). Specifically, let rλ = θλ
σ2
λ
, then (3.11) implies that, as n→∞,

2nrλ · PLRn,λ − rλθλ√
2rλθλ

d−→ N(0, 1).

Therefore, 2nrλ·PLRn,λ is asymptotically distributed as a χ2 distribution with

degrees of freedom rλθλ. In the following corollary, we extend our asymptotic

theory to the emiprical version of ρ⊥p ’s.
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3.3 Power analysis and minimaxity

Corollary 3.1.1. Assume that Assumption 1 holds. Let h = λ
d

2m and

nh2m+d = O(1), nh2 →∞ as n→∞. Under H0, we have

2n · PLR†n,λ − θλ√
2σλ

d−→ N(0, 1), n→∞, (3.13)

where θ̂λ =
∑n

p=1
1

1+λρ̂⊥p
, σ̂2

λ =
∑n

p=1
1

(1+λρ̂⊥p )2 , {ρ̂⊥p }np=1 are empirical eigenval-

ues for K11.

In Corollary 3.1.1, we show the asymptotic distribution of the efficient

approximation PLR†n,λ. The proof of Corollary 3.1.1 is based on the local

Radamacher complexity (Liu et al., 2021; Bartlett et al., 2005) to bound the

tail sum of eigenvalues for H† and H0†, and is also based on the accurate error

bound for the eigenvalues of the kernel matrix in Braun (2006).

3.3 Power analysis and minimaxity

In this section, we investigate the power of PLR under local alternatives.

Define the distinguishable rate as

dn :=
√
λ+ σλ/n. (3.14)

The distinguishable rate is used to measure the distance between the null and

alternative hypotheses. Theorem 3.2 shows that the power of PLR approaches

one, provided that the norm of η∗XZ , the interaction term in the probabilistic
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3.3 Power analysis and minimaxity

decomposition of η∗, has a norm bounded below by dn. The squared dis-

tinguishable rate d2
n consists of two components: λ representing the squared

bias of the estimator, and σλ/n with the order of n−1h−1/2 representing the

standard derivation of PLRn,λ. Since σλ decreases with λ, the minimal dis-

tinguishable rate for the PLR test is achieved by choosing an appropriate λ

such that λ � σλ/n. Our result owes much to the analytic expression of inde-

pendence (in terms of interactions) based on the proposed probabilistic tensor

product decomposition framework.

Let Pη∗ denote the probability measure induced under η∗, ‖η‖sup the supre-

mum norm over Y , and ‖η‖2 =
√
V (η).

Theorem 3.2. Suppose Assumption 1 holds and let dn be the distinguishable

rate defined in (3.14), m > 3/2, η∗ ∈ H with ‖η∗XZ‖sup = o(1), J(η∗XZ) < ∞,

‖η∗XZ‖2 & dn. For any ε ∈ (0, 1), there exists a positive Nε such that, for any

n ≥ Nε, Pη∗(Φn,λ(α) = 1) ≥ 1 − ε. When λ � λ∗ ≡ n−4m/(4m+d), dn is upper

bounded by d∗n ≡ n−2m/(4m+d).

The proof of Theorem 3.2 is in Supplimentary S.6.3. Theorem 3.2 demon-

strates that, when λ � λ∗, PLR can successfully detect any local alternatives,

provided that they separate from the null by at least d∗n. In Section 4, we

show that this upper bound is unimprovable by establishing the minimax

lower bound for the distinguishable rate of a general multi-sample test. It

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing) 



means that no test can successfully detect the local alternatives if they sepa-

rate from the null by a rate faster than d∗n. Therefore, we claim that our PLR

test is minimax optimal.

For any ε ∈ (0, 1) and α ∈ (0, ε), Theorem 3.1 shows that EH0{Φn,λ∗(α)}

tends to α; Theorem 3.2 shows that Eη∗{1−Φn,λ∗(α)} ≤ ε−α, provided that

‖η∗XZ‖2 ≥ Cε−αd
∗
n for a large constant Cε−α. That means, asymptotically,

Err(Φn,λ∗(α), Cε−αd
∗
n) ≤ ε. (3.15)

In other words, the total error of PLR can be controlled by an arbitrary ε

provided that the null and local alternatives are separated by d∗n.

4. Minimax Lower Bound of the Distinguishable Rate

For any ε ∈ (0, 1), define the minimax distinguishable rate d�n(ε) as

d�n(ε) = inf{dn > 0 : inf
Φ

Err(Φ, dn) ≤ ε}, (4.1)

where the infimum in (4.1) is taken over all 0-1 valued testing rules based on

the sample Yi’s. Note that d�n(ε) characterizes the smallest separation between

the null and local alternatives such that there exists a testing approach with

a total error of at most ε. Next we establish a lower bound for d�n, i.e., if dn is

smaller than a certain lower bound, there exists no test that can distinguish

the alternative from the null.
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We first introduce a geometric interpretation of the hypothesis testing

(2.3). Here we consider the local alternatives residing in E = {η ∈ H : ‖η‖H <

1/2}. Geometrically, E is an ellipsoid with axis lengths equal to eigenvalues

of H. For any η ∈ E , the projection of η on E11 := H11 ∩ E is ηXZ where H11

is defined in (3.3). The magnitude of the interaction ηXZ can be qualified by

‖ηXZ‖2. The distinguishable rate dn is the radius of the sphere centered at

ηXZ = 0 in E11.

Intuitively, the testing will be harder when the projection of η on H11 is

closer to the original point ηXZ = 0. We then introduce the Bernstein width

in Pinkus (2012) to characterize the testing difficulty. For a compact set C,

the Bernstein k-width is defined as

bk,2(C) := argmax
r≥0

{Bk+1
2 (r) ⊂ C ∩ S for some subspace S ∈ Sk+1} (4.2)

where Sk+1 denotes the set of all k + 1 dimensional subspace, and Bk+1
2 (r) is

the (k + 1)-dimensional L2-ball with radius r and center at ηXZ = 0 in H11.

Based on the Bernstein width, we give an upper bound of the testing radius,

i.e., for any η projected in the ball with radius less than this bound, the total

error is larger than 1/2.

Lemma 4. For any η ∈ H, we have Err(Φ, dn) ≥ 1/2 for all dn � rB(δ∗) :=

sup{δ | δ ≤ 1
2
√
n
(kB(δ))1/4}, where kB(δ) := argmaxk{b2

k−1,2(H11) ≥ δ2} is the
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Bernstein lower critical dimension and rB(δ∗) is called the Bernstein lower

critical radius.

In Lemma 4, we show that when dn is less than rB(δ∗), there is no test

that can distinguish the alternative from the null. In order to achieve a non-

trivial power, we need dn to be larger than the Bernstein lower critical radius

rB(δ∗). The critical radius rB(δ∗) depends on the shape of the space H11.

The lower bound of kB(δ) depends on the decay rate of the eigenvalues for

H11. According to the Liebig’s law, the radius of a k-dimensional ball that can

be embedded into H11 is determined by the kth largest eigenvalue. Lemma

5 characterizes the lower bound of kB(δ) by the largest k such that the kth

largest eigenvalue is larger than δ2.

Lemma 5. Let γk be the kth largest eigenvalue of H11. Then we have

kB(δ) > argmax
k
{√γk ≥ δ} (4.3)

Note that γk � k−2m/d, then argmaxk{
√
γk ≥ δ} � δ−d/m. Plug in the

lower bound of kB(δ) to Lemma 4, we achieve rB(δ∗), which is the minimax

lower bound for the distinguishable rate in the following theorem.

Theorem 4.1. Suppose η ∈ H. For any ε ∈ (0, 1), the minimax distinguish-

able rate for the testing hypotheses (2.3) is d�n(ε) & n−2m/(4m+d).

Theorem 4.1 provides a general guidance to justify a local minimax test for
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testing ηXZ = 0. The proof of Theorem 4.1 is presented in the Supplimentary

S.6.4. Comparing d�n(ε) with d∗n derived in Theorem 3.2, we see that the PLR

test is minimax optimal.

5. Simulation Studies

In this section, we demonstrate the finite sample performance of the pro-

posed test alongside its competitors through simulation studies. We choose

the Kolmogorov-Smirnov (K-S) test and Anderson-Darling (AD) test as two

representatives of the most popular CDF-based tests, the normalized MMD

test (Li and Yuan, 2019) as a representative of kernel-based tests, the empir-

ical likelihood tests (ELT) (Cao and Van Keilegom, 2006) and kernel density

test (KDT) (Zhan and Hart, 2014) as representatives of density-based tests,

and the dynamic slicing test (DSLICE) (Jiang et al., 2015) as a representa-

tive of discretization-based tests. We use the function ad.test() provided in

the kSamples R package for the AD test, conduct the MMD test using the

dHSIC R package with the default Gaussian kernel, use dslice R package for

DSLICE test, and implement the ELT and KDT test using the code provided

by the authors. For our proposed PLR test, we choose the roughness param-

eter based on the data-adaptive tuning parameter selection criteria in Section

S.1 in supplimentary. Also, we have additional simulation studies for Beta,
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Beta Mixtures, multivariate distribution (d > 2) and multiple distributions

(U > 2) in Supplimentary S.4.

The samples Yi = (Xi, Zi), i = 1, . . . , n, were generated as follows. We

first generated Zi
iid∼ Bernoulli(0.5), with 0/1 representing the control/treatment

group. Then Xi’s were independently generated from the conditional distribu-

tion fX|Z(x) in the following settings. In each setting, we chose the averaged

sample size n in each group as 125, 250, 375, 500, 625, 750, 875, 1000. Size

and power were calculated as the proportions of rejection based on 1000 inde-

pendent trials.

Setting 1: Gaussian distributions with mean zero and a group-specific vari-

ance: X | Z = z ∼ N (0, (1 + δ11z=1)2) where δ1 = 0, 0.2, 0.3.

Setting 2: Uni-modal Gaussian distribution versus bi-modal Gaussian distri-

bution: X | Z = z ∼ 0.5N (−δ21z=1, (1 + δ2
21z=0))+0.5N (δ21z=1, (1 + δ2

21z=0))

where we set δ2 = 0, 1, 1.2.

Setting 3: Asymmetric mixture Gaussian distributions: X | Z = z ∼

0.5N(2, 1) + 0.5N(−2, (1− δ31z=1)2) where δ3 = 0, 0.3, 0.45.

Setting 4: Symmetric mixture distributions: X | Z = z ∼ 0.5N(2, (1 −

δ41z=1)2) + 0.5N(−2, (1− δ41z=1)2) where δ4 = 0, 0.3, 0.6.

Note that δ1 = 0, δ2 = 0, δ3 = 0 or δ4 = 0 corresponds to the true

H0 which will be used to examine the size of the test statistics. Nonzero δ’s
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represent different levels of heterogeneity between the two groups.

Figures S1 in supplimentary displays the powers of the six tests. For

Setting 1, Figure S1(a)-(b) show that the powers of the PLR, MMD, ELT,

AD, DSLICE, and KDT tests rapidly approach one when n or δ1 increases.

The power of the K-S test increases slightly slower than the other five tests.

DSLICE appears to be slightly less powerful than the other four tests, maybe

because of its discrete nature and its challenges in choosing a proper penal-

ization parameter in their penalized slicing approach. For Setting 2, as shown

in Figure S1(c)-(d), the MMD and PLR tests show comparable power. The

PLR test has slightly higher power when the heterogeneity is higher. The

power difference between these two tests increases as δ2 increases. AD and

K-S show significantly lower power. For Setting 3, Figure S1(e)-(f) show again

that the PLR test has the highest power. DSLICE performs quite well here,

maybe due to its flexibility in slicing. In contrast, the powers of K-S, MMD,

ELT, AD, and KDT are significantly lower than both PLR and DSLICE. For

Setting 4, PLR and DSLICE show similar power in Figure S1(g)-(h). The

powers of MMD, K-S and AD tests are significantly lower than the others.

The results demonstrate that both PLR and DSLICE are more adaptive to

differently shaped distributions than the other four methods, while PLR en-

joys additional advantages than DSLICE when the underlying distribution is
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smooth.

Figure S2 in supplimentary displays the size of K-S, MMD, ELT, AD,

DSLICE, KDT, and PLR tests. It can be seen that the sizes of the six tests

are all around the nominal level 0.05 in Settings 1 and Setting 2, confirming

that all tests are asymptotically valid. In Setting 3 and Setting 4, the size of

the PLR test is still asymptotically correct, and that for DSLICE is reasonably

close; while the sizes of K-S, MMD and ELT are way below 0.05, showing that

these three tests are too conservative in handling bimodal distributions. We

also test the performance under multivariate distribution (d > 2) and multiple

distributions in Supplemenary, the proposed tests maintains highest power

with controlled type-I error. In simulation studies with Beta and mixtrure of

Beta distribution in Supplimentary, our proposed test also shows the highest

power.

6. Real Data Analysis

In this section, application on metagenomic analysis of type II diabetes is

provided to compare our PLR test with the Kolmogorov-Smirnov (K-S) and

maximum mean discrepancy (MMD) tests. We also conduct another real

example about gene expression analysis of chronic lymphocytic leukaemia in

Supplementary S.5.2.
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Recent studies have indicated that gut microbiota play an important role

in many human diseases such as obesity and diabetes, and have observed

significant association between diseases and gut microbial composition (Turn-

baugh et al., 2009; Qin et al., 2012). Due to the rapid development of metage-

nomics, it is possible to study microbial DNA contents through environmental

samples directly. Compared with traditional culture-based methods, metage-

nomics can study unculturable microorganisms and are much more scalable.

Recently, several metagenomic binning algorithms such as MetaGen (Xing

et al., 2017) were proposed to estimate the abundance of microbial species

with high accuracy. As observed in Turnbaugh et al. (2009), the microbial dis-

tributions demonstrate large cross-individual differences since there are many

environmental factors, such as age, dietary habits, and antibiotic usage, that

can alter the composition of gut microbiota. A powerful test that can detect

such distributional differences between different populations would be useful

in metagenomic analysis.

This study aims to detect whether the microbial species have different

distributions between case and control groups. For a particular microbial

species, let Xi be the log-transformed abundance for the ith individual, and

let Zi = 1/0 represent the case/control group. We applied the proposed

PLR test to a metagenomic data set with 145 sequenced gut microbial DNA

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing) 



samples from 71 T2D patients (case group) and 74 individuals unaffected by

T2D (control group) using Illumina Genome Analyzer and obtained 378.4

gigabase paired-end reads. We used MetaGen (Xing et al., 2017) to do the

metagenomic binning in which DNA fragments were clustered into species-

level bins and estimated the abundance of 2450 identified species bins. We

applied the KS, MMD, and PLR tests on 1005 species clusters that have an

abundance larger than 1% of the mean abundance in more than 50% of the

total samples. The 1005 p-values were calculated by K-S, MMD and PLR for

each species. We adjusted the p-values by the Benjamini-Hochberg method

(Benjamini and Hochberg, 1995). Through controlling the false discovery rate

at 5%, we compared the identified species from the three methods in Figure

S7 in supplimentary. The PLR, K-S, and MMD tests identified 101, 4, and

13 species, respectively. The species identified by PLR cover those by K-S or

MMD.

Moreover, we highlighted two species that were identified only by the PLR

test in Figure S7 (B-C). The densities of these two species are both bimodal

in both the case and the control groups. Figure S7(B) plots the conditional

density of the log-transformed abundance of Roseburia intestinalis. The ma-

jority of the case group has a significantly low abundance. In Figure S7(C),

the other species, Faecalibacterium prausnitzii has a lower abundance for a
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subgroup of patients in the case group. Both species are butyrate-producing

bacteria which can exert profound immunometabolic effects, and thus are pro-

biotic less abundant in T2D patients. Our finding is consistent with Tilg and

Moschen (2014) who also observed that the two species’ concentrations are

lower in T2D subjects. Also, we found several Lactobacillus species are in-

creased in T2D patients which are also found in De La Vega-Monroy et al.

(2013); Qin et al. (2012).

7. Discussion

In this paper, we proposed a probabilistic decomposition approach for proba-

bility densities based on the penalized likelihood ratio (PLR). As demonstrated

in simulation studies, our method performs well under various families of den-

sity functions of different modalities. Notably, our test possesses the Wilks’

phenomenon and testing minimaxity. Such results are not easy to derive for

distance-based methods. Furthermore, the Wilks’ phenomenon leads to an

easy-to-execute testing rule that does not involve resampling.

Supplementary Materials Contain figures for simulation studies, fig-

ures real data analysis, additional simulated and real examples, the data-

adaptive tuning parameter selection, extension to the case with a divergent

number of samples, connection to maximum mean discrepancy, all technical

proofs, and additional numerical reuslts.
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