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Abstract: Regulation is an important feature characterising many dynamical phe-

nomena and is commonly tested within the threshold autoregressive setting, with

the null hypothesis being a global non-stationary process. Nonetheless, this set-

ting is debatable since data are often corrupted by measurement errors. Thus, it

is more appropriate to consider a threshold autoregressive moving-average model

as the general hypothesis. We implement this new setting with the integrated

moving-average model of order one as the null hypothesis. We derive a Lagrange

multiplier test which has an asymptotically similar null distribution and provide

the first rigorous proof of tightness pertaining to testing for threshold nonlinear-

ity against difference stationarity, which is of independent interest. Simulation

studies show that the proposed approach enjoys less bias and higher power in

detecting threshold regulation than existing tests, especially when there are mea-

surement errors. We apply the new approach to the time series of real exchange

rates of a panel of European countries.

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing) 



Key words and phrases: Lagrange multiplier test, Threshold autoregressive

moving-average model, Purchasing power parity.

1. Introduction

Regulation plays a fundamental role in various fields including economics,

finance, biological growth and population fluctuations, etc. Growth pro-

cesses are generally regulation-free until they enter into extreme phases.

For instance, real exchange rates should be regulated through a threshold

that triggers the mean reversion towards zero. However, existing tests fail

to reject the null hypothesis of a random walk resulting in the so called

Purchasing Power Parity (PPP) puzzle, see, e.g., Taylor and Taylor (2004).

The random walk is a simple model for regulation-free dynamics. On

the other hand, regulation from above (below) may be captured by a first-

order threshold autoregressive model (TAR) which follows a random walk

until the process crosses a certain threshold above (below) where mean-

reversion takes place, while the process as a whole is stationary. A non-

linear stationary process generally renders nonlinear and state-dependent

the impulse response to a random shock, which is consequential and could

be leveraged in economic regulation. Hitherto, a standard approach to test

for dynamic regulation is to adopt the preceding threshold model as the
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general model and test whether it reduces to a global random walk. It has

received much attention in the literature (Enders and Granger, 1998; Caner

and Hansen, 2001; Bec et al., 2004; Kapetanios and Shin, 2006; Seo, 2008;

Park and Shintani, 2016; de Jong et al., 2007; Giordano et al., 2017). How-

ever, data are almost always corrupted by measurement error and yet, as far

as we are aware, this important issue has not been addressed in the litera-

ture. In this case, the TAR model is not appropriate and the null hypothesis

should be a global exponential smoothing model instead, i.e., the integrated

moving-average IMA(1,1) model, rather than the IMA(1,0) model. Then,

the general hypothesis may be taken as the first-order threshold autore-

gressive moving-average model, i.e., TARMA(1,1), which is driven by an

IMA(1,1) model in one of its two regimes. See Section S1 of the Supplemen-

tary Material for further justification, which shows that the TARMA(1, 1)

model is approximately invariant w.r.t. data corruption by independent

measurement errors while the IMA(1, 1) model is exactly invariant w.r.t.

adding measurement errors. Above all, we cannot over-emphasize the crit-

ical importance of the role of the moving average term for practical appli-

cations.

Just as ARMA models provide a parsimonious approximation to some

long AR models, so may TARMA models well approximate some high-order
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TAR models parsimoniously Goracci (2020, 2021). Thus, the TARMA

model holds substantial promise as a class of nonlinear time series mod-

els for exploring nonlinear dynamics. Yet, the TARMA model has been

under-explored, partly because of a lack of progress in obtaining conditions

on stationarity and ergodicity. Unlike the AR-ARMA analogy, the incor-

poration of a moving-average part in a nonlinear framework poses major

theoretical challenges and has non-trivial implications on the probabilistic

structure of the process. Recent work by Chan and Goracci (2019) pro-

vides, for the first time, a breakthrough in deriving a set of necessary and

sufficient conditions for the (multi-regime) TARMA(1,1) model to admit an

irreducible and invertible state-space representation and for its stationarity

and ergodicity.

By leveraging on the recent results of Chan and Goracci (2019), we

develop a supremum Lagrange Multiplier test (supLM) for threshold regu-

lation, with the TARMA(1,1) model as the general framework. We specify

an IMA(1, 1) model as the null hypothesis and a TARMA(1, 1) with a unit-

root regime as the alternative. A difficulty arising from testing for a unit-

root against a TARMA model is that the threshold parameters are absent

under the null hypothesis. This non-standard situation, in the nonlinear

time series context, is well recognized both in the TAR setting (Chan, 1990;
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Hansen, 1996; Giannerini et al., 2022) and in the TARMA setting Li and Li

(2011); Goracci et al. (2021). The supLM framework overcomes this prob-

lem. We derive its asymptotic distribution both under the null hypothesis

and local alternatives. We prove that the test is consistent and asymptoti-

cally similar in that its asymptotic null distribution does not depend on the

value of the MA parameter. Moreover, we provide the first rigorous proof of

tightness pertaining to testing for threshold nonlinearity against difference

stationarity, which is of independent interest and constitutes a general the-

oretical framework for ARIMA versus TARMA testing. We also introduce

a wild bootstrap version of the supLM statistic that, for finite samples,

possesses good properties and robustness against heteroskedasticity. We

perform a large scale simulation study to compare our tests with existing

tests, in which the alternative hypothesis is that of a threshold model. In

general, the size of the latter tests is severely biased in a number of cases

to the extent that their use in practical applications remains questionable

unless additional information on the data generating process is available.

In addition, the comparison includes some of the best performing unit-root

tests to date, where the alternative hypothesis does not specify explicitly a

nonlinear process.

The paper is structured as follows. In Section 2 we present some fun-
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damentals of the first-order TARMA model and a parametrization that

reduces to the IMA(1,1) process under the null hypothesis. In Section 3

we present a supremum Lagrange Multiplier test, including the theoreti-

cal framework based on Brownian local time. In Section 4 we develop the

asymptotic distribution of the supLM test statistic under the null hypoth-

esis and show that it is nuisance-parameter-free and depends only on the

search range of the threshold. The results concerning the local power of the

proposed test are summarized in Section 5. In Section 6 we perform a large

scale simulation study to show the performance of the supLM test and a

wild bootstrap version of it and compare them with numerous existing tests

in the recent literature. Section 7 contains an empirical illustration in which

we apply the new tests to the pre-Euro monthly real exchange rates of a set

of European countries. All the proofs are collected in the Supplementary

Material, which contains further results from the Monte Carlo study and

from the real data application.
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2. Threshold autoregressive moving-average model

Consider the following first-order threshold autoregressive moving-average

(TARMA) model:

Xt =


ϕ1,0 + ϕ1,1Xt−1 + εt − θεt−1, if Xt−d ≤ r

ϕ2,0 + ϕ2,1Xt−1 + εt − θεt−1 otherwise,

(2.1)

where ϕ2,1 is fixed at 1 unless stated otherwise, the innovations {εt} are

independent and identically distributed random variables with zero mean

and variance σ2, εt is independent of Xt−j, j ≥ 1, the delay d is a positive

integer which, for simplicity, is taken to be 1 henceforth, r is the real-valued

threshold parameter, and the ϕ’s and θ’s are unknown coefficients. The as-

sumption of independence and identical distribution of the innovations will

be relaxed later to a martingale difference sequence. The preceding (con-

strained) TARMA model assumes that the sub-model in the upper regime

is a first-order IMA model while the lower regime specifies a general first-

order ARMA model. Statistical inference with a TARMA model hinges on

whether the model is invertible. We assume |θ| < 1 since it is a necessary

and sufficient condition for the invertibility of Model (2.1) (Chan and Tong,

2010). By assuming that the innovations admit a positive, continuous prob-

ability density function with finite absolute first moment, Chan and Goracci
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(2019) showed that Model (2.1) is an ergodic Markov chain if and only if

ϕ2,0 < 0 and either (i) ϕ1,1 < 1, or (ii) ϕ1,1 = 1, ϕ1,0 > 0; ergodicity then im-

plies that the first-order TARMA model admits a unique stationary distri-

bution. Furthermore, under the stronger condition that the innovations ad-

mit a finite absolute kth moment for some k > 2, Chan and Goracci (2019)

provides a complete classification of the parametric regions of Model (2.1)

into sub-regions of ergodicity, null recurrence and transience. In particu-

lar, the (constrained) first-order TARMA model defined by Model (2.1) is

null-recurrent if any of the following holds: (iii) ϕ1,1 = 1, ϕ2,0 = 0, ϕ1,0 ≥

0; (iv) ϕ1,1 = 1, ϕ2,0 < 0, ϕ1,0 = 0; (v) ϕ1,1 < 1, ϕ2,0 = 0. If none of the

conditions (i)–(v) holds, then the model is transient. Therefore, Model (2.1)

encompasses both linear and nonlinear processes spanning a wide spectrum

of long-run behaviors including ergodicity, null recurrence and transience.

3. Lagrange multiplier test for threshold regulation

We first formulate a framework for testing for threshold regulation from

below. Let {Xt, t = 0, 1, . . .}, be a time series and assume that, for t ≥ 1,

Xt satisfies the equation

H : Xt = ϕ0 +Xt−1 + εt− θεt−1 + (ϕ1,0 +ϕ1,1Xt−1)× I(Xt−1 ≤ r), (3.2)
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which is a re-parameterization of Model (2.1) with ϕ0 = ϕ2,0 and by an abuse

of notation, ϕ1,0 and ϕ1,1 represent, respectively, the difference of intercept

and slope of the lower regime relative to their upper-regime counterparts;

the initial value X0 can be fixed at, say, 0. Our interest is in testing whether

ϕ1,0 = ϕ1,1 = 0, in which case the data are generated by the IMA(1,1) model

H0 : Xt = ϕ0 +Xt−1 + εt − θεt−1, (3.3)

where |θ| < 1. If the intercept ϕ0 ̸= 0, then the IMA(1,1) process has

a linear trend. If no such linear trend is apparent in the data, it is rea-

sonable to omit the intercept. Henceforth, we assume that ϕ0 = 0 under

H0. The case for ϕ0 ̸= 0 requires non-trivial modification of the test and

its asymptotic distribution so it will be studied elsewhere. However, the

intercept terms on the two regimes of any competing stationary first-order

TARMA model will be required to model the mean of the data. Indeed,

even for mean-deleted data, the intercept terms of the first-order TARMA

model are not necessarily zero. Thus, the intercept terms are essential and

retained in the constrained TARMA model under H. Testing for threshold

regulation from above can be conducted by applying the test to {−Xt}.

Under the null hypothesis, the threshold parameter is absent thereby

complicating the test (Chan, 1990; Hansen, 1996; Li and Li, 2011; Goracci

et al., 2021). Our approach is to develop a Lagrange multiplier test statistic
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for H0 initially with the threshold parameter fixed at some r. Denote the

test statistic as Tn(r). Since r is unknown and indeed absent under H0, we

shall compute Tn(r) for all r over some data-driven interval, say, [a, b] with

the end points being some percentiles of the observed data. For instance, a

could be the 20-th percentile and b the 80-th percentile. Then the overall

test statistic results in Tn = supr∈[a,b] Tn(r). Besides taking the supremum,

other approaches including integration can be employed to derive an overall

test statistic.

The Lagrange multiplier test is developed based on the Gaussian like-

lihood conditional on X0:

ℓ = − log(2πσ2)× n/2−
n∑
t=1

ε2t/(2σ
2), (3.4)

where, by an abuse of notation, ∀t ≥ 1,

εt = Xt − {ϕ0 +Xt−1 + (ϕ1,0 + ϕ1,1Xt−1)× I(Xt−1 ≤ r)}+ θεt−1, (3.5)

with the unknown ε0 set to be zero; εt in the preceding formula is a function

of ϕ0, ϕ1,0, ϕ1,1, θ and r, but the arguments are generally suppressed for

simplicity. Let ψ = (ϕ0, θ, σ
2, ϕ1,0, ϕ1,1)

⊺, with its components denoted

by ψj, j = 1, 2, . . . , 5, and let it be partitioned into ψ1 = (ϕ0, θ, σ
2)⊺ and

ψ2 = (ϕ1,0, ϕ1,1)
⊺. The null hypothesis can be succinctly expressed as H0 :

ψ2 = 0.
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3.1 Gaussian likelihood estimation

First, consider the case of known threshold r. Partition the Fisher

information matrix according to ψi, i = 1, 2 into

In(r) =

I1,1,n(r) I1,2,n(r)

I2,1,n(r) I2,2,n(r)

 . (3.6)

The Lagrange multiplier test statistic is an asymptotic approximation of

twice the Gaussian likelihood ratio statistic, based on a second-order Taylor

expansion. For fixed r, it equals

Tn(r) =
∂ℓ̂

∂ψ⊺2
(r)

{
Î2,2,n(r)− Î2,1,n(r)Î

−1
1,1,n(r)Î1,2,n(r)

}−1 ∂ℓ̂

∂ψ2

(r), (3.7)

where ∂ℓ̂/∂ψ2(r) is equal to ∂ℓ/∂ψ2 evaluated at the constrained estimate

ψ1 = ψ̂1 given ψ2 = 0 and the threshold parameter fixed at r. Simi-

larly defined are Îi,j,n(r), 1 ≤ i, j,≤ 2; see Subsection 3.1 for the formu-

las. Because the threshold r is unknown, the overall supLM statistic is

Tn = supr∈[a,b] Tn(r) with a and b, for instance, being some pre-specified

percentiles of the observed data; see Subsection 3.2. for further discussion

3.1 Gaussian likelihood estimation

In this sub-section, we provide some details on the estimation of the

model parameters under the null hypothesis, as well as the computation of
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3.1 Gaussian likelihood estimation

the score vector and Fisher information matrix. The score vector is

∂ℓ

∂ψj
= −

n∑
t=1

εt
σ2

∂εt
∂ψj

, 1 ≤ j ≤ 5, j ̸= 3,
∂ℓ

∂ψ3

=
∂ℓ

∂σ2
=

n∑
t=1

ε2t − σ2

2σ4

where for t > 1,

∂εt
∂ϕ0

= −1 + θ
∂εt−1

∂ϕ0

= −
t−1∑
j=0

θj, (3.8)

∂εt
∂θ

= εt−1 + θ
∂εt−1

∂θ
=

t−1∑
j=0

θjεt−1−j, (3.9)

∂εt
∂ϕ1,0

= −I(Xt−1 ≤ r) + θ
∂εt−1

∂ϕ1,0

= −
t−1∑
j=0

θjI (Xt−1−j ≤ r) , (3.10)

∂εt
∂ϕ1,1

= −Xt−1I(Xt−1 ≤ r) + θ
∂εt−1

∂ϕ1,1

= −
t−1∑
j=0

θjXt−1−jI (Xt−1−j ≤ r) ,

(3.11)

with initial values given by ∂ε1/∂ϕ0 = −1, ∂ε1/∂θ = 0, ∂ε1/∂ϕ1,0 = −I(X0 ≤

r) and ∂ε1/∂ϕ1,1 = −X0I(X0 ≤ r). Below, we sometimes write, as a typi-

cal example, ∂εt/∂ϕ1,1 = −(1 − θB)−1 {Xt−1I(Xt−1 ≤ r)}, where B is the

backshift operator that shifts the indices backward by 1 unit. The IMA(1,1)

model under the null hypothesis can be estimated by solving the score equa-

tion ∂ℓ/∂ψ1 = 0, yielding ψ̂1 = ψ̂1,n = (ϕ̂0,n, θ̂n, σ̂
2
n)
⊺. Thus, the overall

estimator of ψ under H0 is ψ̂ = (ϕ̂0,n, θ̂n, σ̂
2
n, 0, 0)

⊺, with the residuals given

by

ε̂t = Xt −Xt−1 − ϕ̂0 + θ̂ε̂t−1, ∀t ≥ 1, (3.12)
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3.1 Gaussian likelihood estimation

where ε̂0 = 0. The observed Fisher information (excluding the threshold

parameter) is given by In = − ∂2ℓ
∂ψ∂ψ⊺ , whose (i, j)-th element with i, j ̸= 3

is given by

n∑
t=1

1

σ2

∂εt
∂ψi

∂εt
∂ψj

+
n∑
t=1

εt
σ2

∂2εt
∂ψi∂ψj

= (1 + op(1))×
n∑
t=1

1

σ2

∂εt
∂ψi

∂εt
∂ψj

, (3.13)

its (3, i)-th element with i ̸= 3 equal to
∑n

t=1
εt
σ4

∂εt
∂ψi

= op(n), and the (3, 3)-

th element equal to
∑n

t=1

(
1

2σ4 − ε2t
σ6

)
, where the op(1) and op(n) terms hold

uniformly in r, when the expressions are evaluated at the true parameter

value under the null hypothesis; hence they are asymptotically negligible

(via arguments similar to those in the proof of Theorem 1), and omitted

in all numerical work reported herein. Below, we sometimes write, e.g.,

∂ℓ/∂ψj(ψ; r), to highlight the role of the arguments; we further simplify the

notation, for example, from ∂ℓ/∂ψj(ψ0; r) to ∂ℓ/∂ψj(r), with ψ0 denoting

the true value under H0. Moreover, I1,1,n(ψ0; r) and ∂ℓ/∂ψ1(ψ0; r) are

further simplified as I1,1,n and ∂ℓ/∂ψ1 as they do not depend on r. By an

abuse of notation, the true values of the moving-average coefficient and the

innovation variance under H0 are simply denoted by θ and σ2; no confusion

should arise as the context will make clear whether they stand for the

generic parameters or their true values.
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3.2 The choice of the threshold range

3.2 The choice of the threshold range

For theoretical analysis, the threshold range is specified as Rn = (n1/2(1−

θ)σ×rL, n1/2(1−θ)σ×rU) where rL < rU are two fixed finite numbers. We

now justify this choice of the threshold range. First, some heuristics will be

employed. Under the null hypothesis (with ϕ0 = 0),

Xt = εt + (1− θ)
t−1∑
s=1

εs − θε0 +X0.

Hence, {n−1/2X[sn], 0 ≤ s ≤ 1}, where X[sn] =
∑[sn]

t=1Xt and [sn] is the

largest integer less than or equal to sn, converges in distribution to {(1 −

θ)σWs} where {Ws} is the standard Brownian motion. It is well known

(Björk, 2019, Theorems 3.1 and 3.2) that the Brownian local time {Lxt , t ≥

0,−∞ < x <∞} defined as follows:

Lxt = |Wt − x| − |x| −
∫ t

0

sign(Ws − x)ds,

where sign(x) denotes the sign of x, is essentially the probability density

function of the Brownian realization in the sense that for any bounded

real-valued Borel function f ,∫ 1

0

f(Ws)ds =

∫ ∞

−∞
f(x)Lx1dx. (3.14)

Thus, any quantile of {Xt, t = 0, . . . , n} is asymptotically equal to n1/2(1−

θ)σ times the corresponding quantile of {Ws, 0 ≤ s ≤ 1}. Since the Brow-
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3.2 The choice of the threshold range

nian local time process is a random process, so the quantiles are realiza-

tion specific! This motivates us to set the threshold to be of the form

rn = (1− θ)τσn1/2 for some fixed τ , in which case

n−1/2 ∂ℓ

∂ϕ1,0

(rn) = n−1/2

n∑
t=1

εt
σ2

1

1− θB

{
I

(
Xt−1

n1/2(1− θ)σ
≤ τ

)}
. (3.15)

The right side of (3.15) is a Riemann-Stieltjes sum over [0, 1], with a step

integrator jumping at t/n with jump size (nσ2)−1/2εt and the integrand is a

piecewise constant function which equals
∑t−1

j=0 θ
jI

(
{n1/2(1− θ)σ}−1Xt−1−j ≤ τ

)
over the interval [n−1(t − 1), n−1t], for t = 1, 2, . . . , n. The integrator con-

verges weakly to the standard Brownian motion whereas the integrand to

(1− θ)−1I(Ws ≤ τ) as t, n→ ∞ such that t/n→ s in [0, 1]. Thus, heuristi-

cally, n−1/2∂ℓ/∂ϕ1,0(rn) converges in distribution to (1−θ)−1σ−1
∫ 1

0
I(Ws ≤

τ)dWs under H0 and as n→ ∞, or in symbol,

n−1/2 ∂ℓ

∂ϕ1,0

(rn)⇝
1

(1− θ)σ

∫ 1

0

I(Ws ≤ τ)dWs. (3.16)
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3.2 The choice of the threshold range

This asymptotic result and other heuristic results stated below can be essen-

tially justified using Theorem 7.10 in Kurtz and Protter (1996). Similarly,

n−1 ∂ℓ

∂ϕ1,1

(rn) = n−1/2

n∑
t=1

εt
σ

1

1− θB

[
Xt−1

n1/2σ
I

{
Xt−1

n1/2(1− θ)σ
≤ τ

}]
⇝

∫ 1

0

WsI(Ws ≤ τ)dWs (3.17)

n−1/2 ∂ℓ

∂ϕ0

= n−1/2

n∑
t=1

εt
σ2

1

1− θB
(1)⇝

1

(1− θ)σ

∫ 1

0

dWs =
W1

(1− θ)σ
.

(3.18)

Note the different rates of normalization. Let Kn be the 5 × 5 diagonal

matrix with the last diagonal elements being n and other diagonal ele-

ments all being n1/2. We can also show that K−1
n In(rn)K

−1
n converges

in probability to a matrix denoted by I(τ) which can be blocked as In;

see Eq. (3.6). In particular, I1,1 is a diagonal matrix comprising (1 −

θ)−2σ−2, (1− θ2)−1, (4σ4)−1 as its diagonal elements,

I2,2(τ) =

 1
(1−θ)2σ2

∫ 1

0
I(Ws ≤ τ)ds 1

(1−θ)σ

∫ 1

0
WsI(Ws ≤ τ)ds

1
(1−θ)σ

∫ 1

0
WsI(Ws ≤ τ)ds

∫ 1

0
W 2
s I(Ws ≤ τ)ds

 ;

I2,1(τ) =

 1
(1−θ)2σ2

∫ 1

0
I(Ws ≤ τ)ds 0 0

1
(1−θ)σ

∫ 1

0
WsI(Ws ≤ τ)ds 0 0

 .

Note that I1,1 does not depend on τ . Thus, θ and σ2 are locally orthog-

onal to the other parameters around the true parametric value under H0.
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3.3 A wild bootstrap approach

Hence, their estimates are expected to be asymptotically independent of

the proposed test statistic, as will be shown below to be the case.

Remark: In practice, the choice of rL and rU must ensure adequate data

for the asymptotic distribution of T to be valid, which requires adequate

data in the left and right tails beyond the threshold range. Simulation

results in Section 6 suggest a rough guideline that for normal innovations,

there should be at least 25 data points below rL (above rU).

3.3 A wild bootstrap approach

In this section we introduce a wild bootstrap version of our supLM statis-

tic. This bootstrap scheme has proved to deliver valid inference under

heteroskedastic disturbances (Liu, 1988; Mammen, 1993; Davidson and

Flachaire, 2008). As also shown in Cavaliere and Taylor (2008) in the

context of unit-root testing, the wild bootstrap is capable of correctly re-

producing the first-order limiting null distribution of the statistics in the

case of non-stationary volatility. The algorithm has the following structure:

1. Compute X̃t = Xt − β̂
⊺
dt, where dt is a vector of deterministic com-

ponents and β̂ is obtained through either OLS or GLS detrending;

2. Obtain θ̂, the maximum likelihood estimate for θ, and the residuals

êt from the following IMA(1,1) model: X̃t = εt − θεt−1;
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3. Compute wild bootstrap errors ê∗t = êtηt, where ηt is a random vari-

able such that E(ηt) = 0 and E(η2t ) = 1. Henceforth, we use the

Rademacher scheme: ηt equals ±1 with equal probability.

4. Obtain the bootstrap resample X̂∗
t =

∑t
j=1

(
ê∗j − θ̂ê∗j−1

)
, and com-

pute the supLM statistic T ∗
n upon it.

5. Repeat steps 3–4 B times so as to obtain the bootstrap test statistic,

T ∗b
n , b = 1, . . . B and compute the bootstrap p-value as the relative

frequency that T ∗b
n is not less than the observed Tn.

4. The null distribution

We now derive the asymptotic distribution of Tn(r) under the null hypoth-

esis of an IMA(1,1) model with zero intercept. Using second-order Taylor

expansion and after some routine algebra, it holds that

∂ℓ̂

∂ψ2

(rn) ≈
∂ℓ

∂ψ2

(rn)− I2,1,n(rn)I
−1
1,1,n

∂ℓ

∂ψ1

. (4.19)

More rigorously, letting

Qn =

n−1/2 0

0 n−1

 , Pn = n−1/2


1 0 0

0 1 0

0 0 1

 ,
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we shall prove below that uniformly for rn = n1/2(1−θ)στ ∈ Rn = (n1/2(1−

θ)σ × rL, n
1/2(1− θ)σ × rU), where rL < rU are fixed numbers,

Qn
∂ℓ̂

∂ψ2

(rn) = Qn
∂ℓ

∂ψ2

(rn)− I2,1(τ)I
−1
1,1Pn

∂ℓ

∂ψ1

+ oP (1)

= Qn
∂ℓ

∂ψ2

(rn)− Ĩ2,1(τ)Ĩ
−1
1,1Pn

∂ℓ

∂ϕ0

+ oP (1), (4.20)

where, owing to the form of I2,1(τ), Ĩ1,1 = (1− θ)−2σ−2 and

Ĩ2,1 =

 1
(1−θ)2σ2

∫ 1

0
I(Ws ≤ τ)ds

1
(1−θ)σ

∫ 1

0
WsI(Ws ≤ τ)ds

 .

The intercept ϕ̂0,n admits the asymptotic representation under H0 (Brock-

well and Davis, 2001, c.f. Eqn. (8.11.5))

P−1
n (ϕ̂0,n − ϕ0) = (Ĩ1,1)

−1Pn
∂ℓ

∂ϕ0

+ oP (1).

A key step in deriving the limiting null distribution of the proposed test is

then to demonstrate that uniformly for rn = n1/2(1− θ)στ ∈ Rn

Qn
∂ℓ̂

∂ψ2

(rn) = Qn
∂ℓ

∂ψ2

(rn)− Ĩ2,1(τ)P
−1
n (ϕ̂0,n − ϕ0) + op(1). (4.21)

Let

H(τ) =

(∫ 1

0

dWs,

∫ 1

0

I(Ws ≤ τ)dWs,

∫ 1

0

WsI(Ws ≤ τ)dWs

)⊺
(4.22)
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and

Λ(τ) =


1

∫ 1

0
I(Ws ≤ τ)ds

∫ 1

0
WsI(Ws ≤ τ)ds∫ 1

0
I(Ws ≤ τ)ds

∫ 1

0
I(Ws ≤ τ)ds

∫ 1

0
WsI(Ws ≤ τ)ds∫ 1

0
WsI(Ws ≤ τ)ds

∫ 1

0
WsI(Ws ≤ τ)ds

∫ 1

0
W 2
s I(Ws ≤ τ)ds

 .

(4.23)

Let Λ(τ) be partitioned into a 2 × 2 block matrix with the (2, 2)-th block

being 2×2. Similarly partitioned isH(τ) = (H1(τ), H2(τ))
⊺. It follows from

Eq. (4.20) and Eqs. (3.16)–(3.18) that the asymptotic null distribution of

Tn(rn) can be shown to be the same as that of

∥∥({Λ−1(τ)}2,2)1/2 (H2(τ)− Λ2,1(τ)H1(τ))
∥∥2
,

where ∥·∥2 is the squared Euclidean norm of the enclosed vector. It is readily

shown that {Λ−1(τ)}2,2 = {Λ2,2(τ) − Λ2,1(τ)Λ1,2(τ)}−1. The asymptotic

null distribution of Tn is derived in Theorem 1 below, under the following

assumption:

(A1): Let rL < rU be two fixed real numbers. Let

Tn(τ) = n−1/2

n∑
t=2

εt
σ

t−2∑
j=0

θjI

{
rL <

Xt−1−j

n1/2(1− θ)σ
≤ τ

}
,

for rL ≤ τ ≤ rU . Suppose (i) there exists a constant C > 0 such that, for

any fixed rL ≤ τ1 < τ2 ≤ rU ,

E
{
|Tn(τ2)− Tn(τ1)|4

}
≤ C(|τ2 − τ1|3/2 + |τ2 − τ1|/n), (4.24)
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and (ii) uniformly for a ≤ τ1 < τ2 ≤ b,

|Tn(τ2)− Tn(τ1)| ≤ K × L(n)(n log log n)1/2|τ2 − τ1|+ op(1) (4.25)

as n → ∞ where the op(1) term holds uniformly, K is a constant that

may depend on θ, and L(·) is some slowly varying function, i.e., for any

λ > 0, L(λx)/L(x) → 1 as x→ ∞.

Theorem 1. Suppose H0 holds so that {Xt, t = 0, 1, . . . , } is an IMA(1,1)

process satisfying Eq. (3.3), with the intercept ϕ0 = 0, |θ| < 1 and the

innovations are independent and identically distributed with zero mean and

finite positive variance. Suppose there exist two real numbers rL < rU

such that (A1) holds. Then as n → ∞, Tn = sup{Tn(r), r ∈ [n1/2(1 −

θ)σrL, n
1/2(1− θ)σrU ]} converges in distribution to

F (W ; rL, rU) = sup
τ∈[rL,rU ]

∥∥∥[{Λ−1(τ)}2,2
]1/2 {H2(τ)− Λ2,1(τ)H1(τ)}

∥∥∥2

,

(4.26)

whose distribution is parameter-free, although it depends on the search range

of the threshold.

We remark that the assumption of independence and identical distri-

bution of the innovations in the preceding theorem can be relaxed to {εt}

being a stationary, ergodic, martingale difference sequence with respect to

the σ-algebra Ft generated by εt−s, s ≤ 0; the proof is essentially the same.
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Remark 1. Conditions (4.24)–(4.25) provide a new set of general sufficient

conditions for the tightness of a sequence of stochastic processes; specifically

the tightness of {Tn(n1/2(1−θ)τ), rL ≤ τ ≤ rU}. These sufficient conditions

are motivated by the approach taken by Billingsley (1968), Theorem 22.1,

for studying the tightness of empirical processes for stationary, mixing data,

and are tailor made for coping with nonstationarity under the null. To

the best of our knowledge, this is the first rigorous proof of tightness for

testing threshold nonlinearity against difference stationarity and constitutes

a general theoretical framework that can be used in different settings.

The preceding theorem assumes deterministic threshold search interval. It

can be readily extended to the case that the end points are fixed quantiles

of the data, which are realization specific. We omit the proof as it is based

on routine analysis that builds on Theorem 1 and the facts that for any

fixed 0 < p < 1, (i) the p-quantile of {Ws, 0 ≤ s ≤ 1} is Op(1), which

follow from Björk (2019), Proposition 3.2, and the Markov inequality, and

(ii) under H0, the p-quantile of {Xt, t = 0, . . . , n} is asymptotically equal

to its counterpart of {Ws, 0 ≤ s ≤ 1} times n1/2(1− θ)σ; see the discussion

just below (3.14).

The following result shows that Theorem 1 holds for normally dis-

tributed innovations.
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Theorem 2. Conditions (4.24) and (4.25) hold if (i) |θ| < 1 and (ii) {εt}

are independent and identically normally distributed with zero mean and

finite positive variance.

Since the null distribution of Tn is asymptotically similar, its quantiles

can be derived numerically. The tabulated quantiles of the null distribution

for different threshold ranges can be found in Section S4 of the Supplemen-

tary Material.

5. Local Power

In this section we derive the asymptotic distribution of the supLM statistic

under a sequence of local threshold alternatives and prove its consistency

in having power approaching 1 with increasing departure in some direction

from the null hypothesis. The mathematical framework is as follows. For

each positive integer n, the system of hypothesis is:

H0,n: (X0, . . . , Xn) follow the IMA(1,1) model: Xt = Xt−1 + εt − θεt−1.

H1,n: (X0, . . . , Xn) follow the TARMA(1,1) model:

Xt =


n−1/2h1,0 + (1 + n−1h1,1)Xt−1 + εt − θεt−1 if Xt−1

σn1/2(1−θ) ≤ τ0

n−1/2h2,0 + (1 + n−1h2,1)Xt−1 + εt − θεt−1 if Xt−1

σn1/2(1−θ) > τ0,

(5.27)
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where h = (h1,0, h2,0, h1,1, h2,1)
⊺ is a fixed vector with hi,1 ≤ 0, i = 1, 2 and

τ0 is a fixed threshold. Note that if h1,1 < 0 (h2,1 < 0), then the model

is locally stable in the lower (upper) regime, for all n sufficiently large. In

order to derive the local power, we henceforth impose the following mild

regularity conditions:

C1: The innovations are assumed to be independent and identically dis-

tributed, with zero mean, finite positive standard deviation, σ, and

probability density function f(·/σ)/σ, where (i) f is a bounded func-

tion, log(f(x)) is twice differentiable with Lipschitz continuous first

and second derivatives over the support of the probability density

function, (ii) the moment generating function of the innovations ex-

ists and is finite over some open interval around 0, and (iii) If =

−
∫
(f̈f − ḟ 2/f 2)(x) × f(x)dx is a finite positive number, where the

first (second) derivative of f is denoted by ḟ (f̈).

C2: −π/2 < h1,1, h2,1 ≤ 0 and h1,1 + h2,1 < 0.

Note that If is the Fisher information for the location model f(·−µ) where

µ is the location parameter. Let P0,n and P1,n be the probability measures

induced by (X0, . . . , Xn) under H0,n and H1,n, respectively. Condition (C1)

holds for many commonly used innovation distributions including the nor-
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mal distribution and the t-distribution. Condition (C2) ensures that the

local alternative first-order TARMA model is asymptotically locally stable

in at least one regime. These two conditions are imposed to ensure that

{P1,n} is contiguous to {P0,n}. Finally, let ρ be the correlation between εt

and (ḟ/f)(εt), i.e., ρ =
∫
xḟ(x)dx/

√
If where If is the Fisher information

of the innovation distribution with unit σ, as defined in condition (C1).

Theorem 3. Suppose all the conditions stated in Theorem 1 hold. Assume

(C1) and (C2) hold. Under H1,n and as n → ∞, Tn = sup{Tn(r), r ∈

[n1/2(1− θ)σrL, n
1/2(1− θ)σrU ]}, where rL, rU are two fixed numbers, con-

verges in distribution to F (W ; rL, rU) defined in Eq. (4.26) but with W now

being a threshold diffusion process satisfying the following stochastic differ-

ential equation (SDE):

dWs = dW †
s +


ρ
√
If

{
h1,0

σ(1−θ) + h1,1Ws

}
ds, if Ws ≤ τ0,

ρ
√
If

{
h2,0

σ(1−θ) + h2,1Ws

}
ds, otherwise,

(5.28)

where W0 = 0 almost surely and {dW †
s , s ≥ 0} is a standard Brownian

motion.

Henceforth in this section, W denotes the threshold diffusion satisfying

Eq. (5.28). Note that if hi,0 = hi,1 = 0, i = 1, 2, then we get back the

limiting null distribution for Tn. Otherwise, W is a threshold diffusion
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process (Su and Chan, 2015). Thus, the building block W determining

the limiting distribution of the supLM statistic changes from a standard

Brownian motion under H0,n to a threshold diffusion under H1,n, if ρ ̸=

0. Consequently, the proposed test would have power to detect the local

threshold alternatives. Since the functional F (·; rL, rU) is quite complex,

in Section S2.4 of the Supplementary Material we detail an example to

demonstrate the consistency of the proposed test.

6. Finite sample performance

To better approximate the finite sample distribution of Tn, we have sim-

ulated the null distributions for the sample sizes in use. Moreover, since

we have found that the finite sample distribution of Tn changes appreciably

only when |θ| is close to one, we have adopted the following, conservative,

approach: if |θ̂| > 0.3, we use the quantiles of the simulated null with

θ = sign(θ̂) · 0.9. Furthermore, wild bootstrap (see § 3.3) is also added to

improve the empirical size of the test. We denote our asymptotic test and

its wild bootstrap version by sLM and sLMb, respectively.

We compare the empirical performance of the proposed test with several

competing tests – those designed for threshold alternatives and those with-

out specific nonlinear alternative. The former tests include those proposed
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by Kapetanios and Shin (2006) (KS), Enders and Granger (1998) (EG) and

Bec et al. (2004) (BBC), with their bootstrap variants (if implemented)

denoted as KSb, etc. The latter set includes the ADF test of Dickey and

Fuller (1979), the class of M tests of Ng and Perron (2001) (M̄g), the M̄P
GLS
T

test of Ng and Perron (2001) (MPT) and the GLS detrended version of the

ADF test (ADFg), and the test MGLS of Perron and Qu (2007) (Mg). We

have obtained the results for these preceding tests, although only the best

performing ones are reported.

Table 1: Rejection percentages from the TARMA model of Eq.(6.29), with
nominal size at α = 5%. Sizes over 15% are highlighted in bold font.

asymptotic bootstrap

θ sLM M̄g Mg MPT ADF ADFg KS BBC EG sLMb KSb

n = 100

-0.9 2.2 7.7 7.0 7.1 2.5 3.8 8.1 11.2 7.1 5.1 4.9

-0.5 1.6 6.3 6.1 5.8 4.8 5.1 7.0 6.1 5.7 5.0 5.6

0.0 1.6 5.1 5.1 4.6 5.3 5.6 8.1 2.7 5.0 4.5 5.3

0.5 1.7 5.6 5.9 5.1 6.7 7.4 64.5 10.2 57.5 5.2 58.6

0.9 11.3 6.5 17.7 6.4 77.9 17.8 100.0 92.4 100.0 5.7 99.8

n = 300

-0.9 5.5 6.7 6.3 6.1 3.3 4.2 6.3 14.0 6.5 5.3 3.8

-0.5 4.7 5.2 5.1 4.8 4.5 4.5 5.1 8.5 5.4 5.0 4.5

0.0 2.9 4.9 4.9 4.4 5.1 4.6 6.9 3.2 4.4 5.6 4.3

0.5 2.3 5.5 5.4 5.1 5.4 5.8 74.5 19.0 61.1 4.9 67.7

0.9 4.9 1.9 2.4 1.9 86.0 15.8 100.0 99.7 100.0 4.9 100.0

n = 500

-0.9 8.1 6.4 6.1 6.0 7.4 4.7 5.7 16.0 6.1 5.5 4.0

-0.5 5.3 5.5 5.3 5.0 5.1 4.8 5.2 9.2 5.4 4.7 4.2

0.0 3.5 4.9 4.8 4.5 4.9 4.6 7.3 3.5 5.0 3.8 4.5

0.5 2.5 5.2 5.1 4.8 5.1 5.3 78.4 23.7 62.3 4.5 71.7

0.9 3.3 1.3 1.4 1.4 83.2 14.5 100.0 99.9 100.0 5.4 100.0
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The sample sizes considered are 100, 300 and 500. The rejection per-

centages are derived with a nominal size α = 5% and based upon 10000

replications. In order to reduce the computational burden, for the bootstrap

tests we select 1000 replications and B = 1000 bootstrap resamples. The

threshold search ranges from the 25% to the 75% of the sample distribution.

We simulate data from the following first-order TARMA model

Xt =


ϕ1,0 + ϕ1,1Xt−1 + εt − θεt−1, if Xt−1 ≤ 0,

ϕ2,0 + ϕ2,1Xt−1 + εt − θεt−1, otherwise,

(6.29)

where (ϕ1,0, ϕ1,1, ϕ2,0, ϕ2,1) = τ × (0, 0.7,−0.02, 0.99) + (1 − τ) × (0, 1, 0, 1)

with τ increasing from 0 to 1.5 with increments 0.5. When τ = 0, the

model is an IMA(1,1) model with zero intercept. When τ > 0, the model

becomes a stationary first-order TARMA model that is increasingly distant

from the IMA(1,1) model with increasing τ . As for the MA parameter we

set θ = −0.9,−0.5, 0, 0.5, 0.9. The empirical sizes of the tests are displayed

in Table 1. Note that we have partitioned the set of 11 tests according to

their nature: the first 9 are asymptotic and the last 2 are bootstrap tests.

Clearly, the ADF, the KS, the BBC and the EG tests are severely oversized

as θ approaches unity. Moreover, the wild bootstrap sLMb test is the only

test that shows a correct size in all the settings, whereas both the sLM and

the M class of tests show some bias, albeit small. Note that, when θ = 0
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the TARMA model reduces to a TAR model. In this case, the auxiliary

model of the KS, BBC, EG tests is correctly specified and their size is

correct; however, when θ becomes positive their size is severely biased and

this raises issues concerning their practical utility.

Table 2: Size-corrected power of the asymptotic and bootstrap tests at
nominal size α = 5%
n = 300 asymptotic bootstrap

τ ; θ sLM M̄g Mg MPT ADF ADFg KS BBC EG sLMb KSb

0.0;-0.9 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0

0.5;-0.9 25.7 17.6 17.8 18.2 10.2 19.4 5.1 16.5 1.6 23.7 8.3

1.0;-0.9 52.5 26.7 26.9 27.7 15.8 30.4 17.4 31.9 3.8 54.3 27.0

1.5;-0.9 77.1 33.5 34.0 35.1 22.1 38.2 36.9 50.1 8.2 75.6 45.5

0.0;-0.5 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.1

0.5;-0.5 21.7 22.8 22.8 22.7 11.6 22.4 11.2 15.6 3.3 23.5 9.1

1.0;-0.5 48.3 34.5 34.9 34.9 18.2 35.0 32.3 31.1 8.2 47.8 29.1

1.5;-0.5 72.6 45.0 45.8 46.1 25.9 45.7 55.5 50.1 17.1 74.9 53.6

0.0;0.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.1 5.1

0.5;0.0 22.4 25.8 26.1 26.9 11.0 26.6 37.9 15.2 22.6 22.5 40.7

1.0;0.0 50.5 41.3 42.0 41.7 18.0 42.0 66.7 33.6 43.5 46.9 69.7

1.5;0.0 75.3 54.7 55.7 55.7 27.7 55.7 84.8 55.8 65.8 73.8 84.7

0.0;0.5 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.1 0.0

0.5;0.5 20.6 25.0 25.1 24.5 12.9 25.6 42.9 18.8 35.3 21.8 0.0

1.0;0.5 50.1 39.5 40.1 39.2 26.2 40.9 70.9 45.1 65.8 49.2 0.0

1.5;0.5 76.9 49.8 51.9 49.9 43.1 53.1 88.9 72.5 88.0 77.3 0.0

0.0;0.9 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 4.9 0.0

0.5;0.9 24.8 16.2 19.9 16.0 14.9 18.2 6.4 34.6 29.6 14.3 0.0

1.0;0.9 62.8 22.9 34.5 22.5 32.8 26.5 12.4 63.6 52.4 36.1 0.0

1.5;0.9 86.3 25.3 44.9 25.0 47.8 29.5 23.5 77.2 65.8 61.7 0.0

The size-corrected power of the tests is presented in Table 2. Here, the

sample size is 300; see Section S5 of the Supplementary Material for results

for n = 100, 500. The rows for τ = 0 correspond to the size and other rows
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6.1 Measurement error and heteroskedasticity

give size-corrected power. The size correction for bootstrap tests is achieved

by calibrating the p-values. In some cases, the corrected size deviates from

the nominal 5% due to discretization effects on the empirical distribution

of bootstrap p-values. Clearly, the supLM tests are almost always more

powerful than the other tests, especially as τ increases. For instance, when

τ = 1.5 the sLM test has almost double the power of M tests in several

instances. As mentioned before, the case θ = 0 (central panel) corresponds

to a TAR model and this is one of two instances where the KS tests are

slightly more powerful than the supLM tests. The power of the bootstrap

version of the KS test is zero in three cases, due to its 100% oversize. See

the Supplementary Material for further simulation results.

6.1 Measurement error and heteroskedasticity

In this section we assess the effect of measurement error and heteroskedastic-

ity on the behaviour of the tests. We simulate from the following IMA(1,1)

model

Xt = Xt−1 + θεt−1 + εt, (6.30)

where θ = −0.9 (model M1), -0.5 (model M2), 0.5 (model M3), 0.9 (model

M4). We add measurement noise as follows

Yt = Xt + ηt, (6.31)
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6.1 Measurement error and heteroskedasticity

where the measurement error ηt ∼ N(0, σ2
η) is such that the signal to noise

ratio SNR = σ2
X/σ

2
η is equal to {+∞, 50, 10, 5}. Here, σ2

X is the variance

of Xt computed by means of simulation. Since the variance in the non-

stationary case depends upon the sample size n we have computed it on

simulated trajectories for varying values of n as to be able to replicate it

for the sample size in use. The case without noise (SNR = +∞) is taken

as the benchmark. The empirical sizes (rejection percentages) for models

M1–M4 are presented in Table 3 for n = 300 and the results for n = 100 and

500 can be found in Section S5 of the Supplementary Material. Clearly, the

measurement noise has little effect upon the size of the supLM tests. On the

contrary, the size bias of the tests KS, BBC and EG increases appreciably

when θ is positive (Models M3–M4). Worst still, the bias does not reduce

when the sample size increases. The results shown in Section S6 of the

Supplementary Material show that supLM tests are well behaved in the

presence of heteroskedasticity and measurement error, with the sLMb wild

bootstrap test being more so. The KS, BBC, and EG tests are severely

affected by the combined presence of heteroskedasticity and measurement

error and their size bias gets worse with increasing sample size. Also the

sLM and sLMb are affected non-trivially. For instance, in Tables 6–8 of the

Supplementary Material for Model M7 (integrated AR-GARCH) the two
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Table 3: Empirical size (rejection percentage) at nominal α = 5% and n =
300 for the IMA(1,1) models M1–M4 with increasing levels of measurement
error.

asymptotic bootstrap

snr sLM M̄g Mg MPT ADF ADFg KS BBC EG sLMb KSb

M1

∞ 4.4 7.1 6.7 6.8 3.4 4.8 6.2 12.5 6.7 5.0 5.3

50 3.6 6.4 6.4 5.4 4.8 4.9 5.8 10.4 6.5 3.8 4.7

10 2.8 5.0 5.0 4.2 6.1 4.7 4.9 5.7 5.1 5.0 4.0

5 5.5 5.3 5.0 4.8 5.2 4.8 4.9 3.1 3.1 5.3 3.8

M2

∞ 4.0 6.4 6.2 5.6 5.6 5.4 4.2 5.5 5.6 5.2 3.4

50 4.7 6.3 5.9 5.9 5.8 5.4 4.0 4.8 5.4 6.1 3.2

10 5.9 6.3 6.1 5.1 6.6 5.3 3.6 4.1 4.6 6.4 2.3

5 5.4 5.5 5.3 5.1 6.3 5.2 5.4 2.5 5.6 5.4 3.8

M3

∞ 2.8 5.8 5.8 4.4 5.6 6.3 67.8 14.1 59.9 5.2 62.0

50 3.4 5.6 5.7 4.2 5.7 5.9 68.2 15.7 60.9 5.0 62.7

10 2.4 6.2 6.0 5.0 5.8 7.0 74.2 19.7 67.4 4.8 66.7

5 2.5 5.6 5.5 4.2 5.2 6.7 84.3 28.4 77.6 5.3 76.7

M4

∞ 6.1 1.2 2.1 0.9 86.6 15.4 100.0 98.5 100.0 4.3 99.5

50 5.8 1.2 1.8 1.1 87.8 15.6 100.0 98.8 100.0 3.6 99.6

10 4.2 2.5 2.7 1.4 89.8 17.1 100.0 99.3 100.0 2.2 99.9

5 6.7 3.5 4.5 2.9 94.9 19.5 100.0 99.8 100.0 3.6 100.0

tests present a size that varies both with sample size and SNR but, overall,

the tests are well behaved. The class of M tests is also robust in this respect

but they can display low power in a number of instances, especially when

the DGP is nonlinear. See also Chan et al. (2020).

7. A real application: testing the PPP hypothesis

In this section we apply our supLM tests to the post-Bretton Woods and

pre-euro real exchange rates of a panel of European countries. Based on

macroeconomic theory, there is some consensus on the fact that price gaps
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(measured in a common currency) for the same goods in different countries

should rapidly disappear. However, empirical evidence points to a strong

persistence and unit root tests generally fail to reject the null hypothesis of

a random walk. As also pointed out in Taylor (2001) this can be ascribed

to the incorrect linear specification for the price dynamics. The presence

of trading costs implies that the mechanisms governing price adjustments

are nonlinear and threshold autoregressive models provide a solution to

the problem by allowing a “band of inaction” random walk regime, where

arbitrage does not occur, and other regimes where mean reversion takes

place so that the model is globally stationary (see Bec et al., 2004, and

references therein for further discussion). For a review on how TAR models

are used to analyse the exchange rates dynamics see also Hansen (2011).

A critical investigation on the practical usefulness of combining unit-root

tests and other stationarity tests in the PPP debate is put forward in Caner

and Kilian (2001).

We consider the monthly log10 real exchange rates for the following

countries: Portugal (PT), Germany (DE), France (FR), Belgium (BE),

Austria (AT), Great Britain (GB), Netherland (NL), Italy (IT). The series

range from 1973:09 to 1998:12 (n = 304) and are produced by the Bank of

International Settlements (BIS) by taking the geometric weighted average
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Table 4: Results for the set of unit root tests applied to the 8 monthly
series of real exchange rates. The first two rows report the p-value for the
supLM tests; the remaining rows show the checkmark ✓if the test results
significant at 1%.

PT DE FR BE AT GB NL IT

sLM 0.167 0.002 0.126 0.900 0.329 0.318 0.900 0.874
sLMb 0.384 0.009 0.292 0.833 0.417 0.259 0.802 0.836

M̄g . . . . . . . .
Mg . . . . . . . .
MPT . . . . . . . .
ADF . . . . . . . .
ADFg . . . . . . . .
KS . . . . . . . .
BBC . . . . . . . ✓
EG . . . . . . . .

of a basket of bilateral exchange rates (27 economies), adjusted with the

corresponding relative consumer prices. Such weights are constructed from

manufacturing trade flows so as to encompass both third-market compe-

tition and direct bilateral trade through a double-weighting scheme. See

Klau and Fung (2006) and https://www.bis.org/ for more details on the

construction of the indexes.

Table 4 reports the results of the application of the battery of unit

root tests described in the previous section on the 8 monthly series of real

exchange rates. The first two rows show the p-values from our supLM

tests, where the threshold search ranges from quantiles 15th to 85th of the

data. Also, for the sLMb test, we chose 9999 bootstrap resamples and the

Rademacher auxiliary distribution. To enhance readability, the remaining
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rows show a checkmark ✓ if the corresponding test rejects the null hypoth-

esis at level 1%. Based upon our tests, we can reject the null hypothesis

with some confidence for Germany (DE) (p-values in bold). Interestingly,

all the other tests fail to reject and the finding is somehow consistent with

that of Bec et al. (2004) where the authors rejected the null hypothesis

for the pairwise real exchange rates of Germany versus France, Italy, Bel-

gium, Netherland and Portugal. The BBC test leads to rejecting also for

Italy but our tests do not and this might be due to the oversize of the

latter. Moreover, as shown in Table 2, the M tests have very little power

against some TARMA alternatives and this explains their failure to reject

the null hypothesis. This result suggests an exploration to see if a TARMA

model is plausible for the series for Germany. Hence, we fit the following

TARMA(1,1) model

Xt =


ϕ1,0 + ϕ1,1Xt−1 + εt − θεt−1, if Xt−1 > r

ϕ2,0 + ϕ2,1Xt−1 + εt − θεt−1, if Xt−1 ≤ r

(7.32)

In Figure 2(left) of the Supplementary Material we plot the values of

the LM statistic Tr computed over a threshold grid that ranges from the

15th to the 85th percentiles of the data. The estimated threshold r̂ = 4.700,

that maximizes Tr, is also the value that minimizes the AIC criterion over

the same grid. In the right panel of the figure we plot the time series

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing) 



Table 5: Parameter estimates from the TARMA(1,1) fit of Eq. (7.32) on
the monthly real exchange rates for Germany (DE) with r̂ = 4.700.

θ ϕ1,0 ϕ1,1 ϕ2,0 ϕ2,1

estimate 0.31 -1.25 0.74 -0.15 0.97
s.e. (0.06) (0.28) (0.06) (0.09) (0.02)

of the monthly real exchange rates for Germany, where we have indicated

the selected threshold with a red line. The gray shaded area indicates

the months associated with the upper regime. The parameter estimates

are presented in Table 5 and point to a lower regime with a possible unit

root and an upper regime where the slope is strictly smaller than 1. This is

consistent with the idea of a nonlinear adjustment mechanism that activates

when the rate crosses the threshold. Figure 2(right) of the Supplementary

Material shows that the intervention regime is visited mostly before 1980

and after 1995. This is in general agreement with the results of Bec et al.

(2004), as well as those that Bec et al. (2008) obtained on the real exchange

rate series of French Franc against Deutsche Mark. The MA parameter θ

greatly enhances the fitting ability of the model while retaining parsimony.

This is witnessed by the diagnostics computed on the residuals that do not

show any unaccounted dependence or deviation from normality, see Figure 3

and Figure 4, of the Supplementary Material.
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8. Conclusion

In this paper, we argue that measurement errors are often neglected in the

regulation/unit-root literature with serious consequences, and their ubiq-

uity implies that to test for regulation in dynamics, it is more appropri-

ate and perhaps even crucially important to formulate the test within a

TARMA specification. We adopt the TARMA(1,1) model as the gen-

eral hypothesis and the IMA(1,1) model as the null hypothesis. As far

as we know, this is the first time that a TARMA specification is used in

the present context although it was previously utilized in a very different

context, namely for linearity testing under stationarity (Li and Li, 2011;

Goracci et al., 2021). We derive a Lagrange multiplier test which is asymp-

totically similar given the threshold search range. Empirical studies confirm

that the proposed approach enjoys much higher power in detecting regu-

lation in dynamics than existing tests that do not address measurement

errors. The surprisingly good size property of our tests may be owing to

the versatility of an IMA(1,1) model in approximating general non-seasonal

difference stationary processes. In particular, empirical results reported in

Chan et al. (2020) and in the Supplementary Material indicate that, thanks

to the wild bootstrap scheme, our new tests generally perform well under

heteroskedasticity, even when the null hypothesis entails a non-stationary
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REFERENCES

process different from the IMA(1,1) model, and remain powerful for other

forms of regulation. Finally, the application of our tests to real exchange

rates shows that TARMA models could well represent a modest step to-

wards a positive resolution of the PPP puzzle.

Supplementary Material

The Supplementary Material (pdf format) contains all the proofs, further

results from the real data analysis, the tabulated quantiles of the null dis-

tribution and further Monte Carlo investigations.
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