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2 1. INTRODUCTION

1. Introduction

Varying coefficient models (VCMs, Hastie and Tibshirani, [1993) are among the popular class
of structured regression models, which have reasonably flexible nonparametric components yet
can be estimated well with a moderate amount of data (Ruppert et al., 2003). In VCMs, the
regression coefficients of predictors vary with an observable exposure variable. VCMs have been
extensively studied in literature and widely used in practice; see, for examples, Hoover et al.
(1998), Huang et al. (2002), Park et al.| (2015)), and the references therein. For settings with a
large number of predictors (possibly larger than the sample size), Wang et al. (2008) adopted
basis function expansions and the SCAD penalty to address the problem of variable selection. Wei
et al. (2011) and |Lian| (2012)) applied adaptive group Lasso and spline function approximations
to simultaneously identify relevant predictors and estimate varying coefficient functions of the
selected ones. For their estimators, these papers obtained the rate of convergence and variable
selection consistency under suitable conditions. Besides, Xue and Qu| (2012)) utilized truncated ¢;-
penalty (TLP) to select variables and obtained the oracle properties for their varying-coefficient
estimator. To enhance the computational scalability, feature screening techniques for the VCM
were considered in [Fan et al.| (2014) and Liu et al.| (2014) by ranking some proposed measures of
the marginal nonparametric contributions of each predictor given the exposure variable, and the
sure independent screening properties were investigated.

In many applications, multiple responses are jointly observed with the predictors and expo-
sure variable. For instance, the Framingham Heart Study (Dawber et al., [1951) collected multiple
phenotype variables from each patient to identify the common factors related to cardiovascular

diseases. Obviously, one can simply model each response variable separately using VCMs. These
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models are together viewed as a regression model for the multivariate response, called (unstruc-
tured) multivariate varying coefficient model (MVCM). One challenge associated with such a
MVCM is the significant number of coefficient functions required to be estimated. More specif-
ically, we need to estimate pq functions, if there are p covariates and g response variables. To
circumvent this problem, structures among these pg functions should be exploited. |[He et al.
(2018) proposed a principal-component-based approach by assuming all the coefficient functions
can be approximated by linear combinations of a much smaller number of unknown functions.
But the authors did not exploit the correlation between the responses and their method can-
not handle the settings with large number of response variables. |Lian and Ma| (2013)), on the
other hand, assumed a low-rank structure in the conditional means of the responses among the
samples. However, their model does not take into account the correlations among the predictors
and/or the varying coefficients. Further, they did not propose an efficient algorithm to solve
their penalized least squares problem.

In this work we propose a novel method based on dimension-reduction tools for tensors (Kolda
and Bader, |2009) to handle the MVCM under high-dimensional settings. In particular, we show
that dimension reductions in the predictors, the space of coefficient functions, and the responses
correspond to the low rankness in the first, second, and third mode of a 3rd-order tensor. We thus
propose to use the idea of Tucker decomposition (Tucker, 1966)) to integrate these three dimension
reductions into a simple notion of low multilinear rank. Both the work of |He et al. (2018)) and
Lian and Ma| (2013)) can be treated as special cases of our proposed model. In addition, sparse
predictor effects, in the sense that only a few of predictors are related to the responses, is often

a reasonable assumption in high-dimensional settings. All the above dimension-reduction and
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sparsity considerations can be incorporated into the estimation procedure through a penalized
least squares problem on the constraint domain of 3rd-order tensors. To compute the proposed
estimator, we design a block updating algorithm with ADMM (Boyd et al., 2011) and manifold
optimization (Edelman et al., |1998 |Absil et al., [2009)). We also establish the oracle inequality
for the prediction risk of the proposed estimator.

The rest of the paper is organized as follows. In Section [2] we introduce the proposed reduced
multivariate varying-coefficient model using Tucker decomposition. The estimation method and
computational details are presented in Sections [3] and [4] respectively. We establish the oracle
inequality for the prediction risk of the proposed estimator in Section[5] We use both a simulation
study and a real data application in Section [0] to illustrate the practical performance of the
proposed method. The main contributions of this paper are summarized in Section [7| with some

concluding remarks. Technical details are provided in a separate online supplemental document.

2. Model

Let y = (y1,---,9,)T, € = (z1,...,2,)7, and ¢t be the g-dimensional vector of responses, the p-
dimensional vector of predictors, and the exposure variable with compact domain 7, respectively.
Without loss of generality, we assume 7 = [0, 1]. Each response is posited to follow the univariate-

response VCM, i.e.,
P
yl:ijl(t)xj+€l> l=1,...,q, (21)
j=1

where f;;(t)’s are the coefficient functions and, ¢’s are the noise variables with mean 0 and

variance o?. These noise variables are independent of (x,t). By setting z; = 1, we can see

that the model can accommodate an intercept function. In vector-matrix notation, (2.1)) can be
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written as

y=F({)'x + €, (2.2)

where F'(t) = (fji(t))pxq and € = (€1,...,¢,)7. We call the full model of MVCM, where
there are in total pg varying coefficient functions to be estimated nonparametrically.

When pq is relatively large, there are huge numbers of nonparametric functions, which are
difficult to estimate accurately with a small or moderate amount of data. To cope with this
challenge, Lian and Ma| (2013) assumed a rank- R3 structure on the matrix of coefficient functions

with R3 < ¢, aiming to reduce the model complexity among the responses. Specifically, Lian and

Ma (2013) proposed to reduce the full MVCM (2.2)) to
y=CF(t)z+e, (2.3)

where C' € R?s with CTC = I, and F(t) is a matrix of p x Rs unknown functions. Model
implies that the means of the responses conditional on the predictors and exposure variable
are assumed to be Rz linearly dependent among the samples. Compared with , the number
of parameters is reduced to pR3 functions together with a ¢ x Rj3 coefficient matrix. He et al.
(2018), on the other hand, proposed a functional principal-component-based approach which
assumes all pg coefficient functions can be well approximated by a small number of Ry unknown
data-driven principal functions 3(t) = (B81(t),...,Br,(t))T. More precisely, they assumed the
vectorized F(t) can be represented by vec{F(t)} = D3(t) with a coefficient matrix D € RP?*F2,

and the conditional mean of responses in the full MVCM (2.2)) is then reduced to

E(y|z,t) = vec{zTF(t)} = (I, @ ")vec{F(t)} = (I, ® 7)D3(t). (2.4)
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For model identifiability, the principal functions B(t) are required to be orthonormal, i.e.,

/ B()B(1)T i = I,
i

Thus, one only needs to estimate R, principal functions together with a p x Ry X ¢ coefficient
tensor for a reduced MVCM in (2.4). In the univariate-response VCM, i.e., ¢ = 1, |Jiang et al.
(2013)) proposed another principal component varying coefficient model. Specifically, treating the

[-th response in (2.1)) as a single response, the model of |Jiang et al.| (2013) is equivalent to
Y = fl<t>TAT.’BT + €, (25)

where f(t) is a vector of Ry unknown functions and A € RP*™ is the principal loading matrix.
Overall, Models , , and encompass dimension reductions within the responses, the
coefficient functions, and the predictors, respectively.

However, the above models are hard to compare since each model focuses on a different way
of dimension reduction. In this work, we observe that these models can be unified into a general
model, which allows simultaneous reductions and provides a coherent understanding of these
methods. To illustrate this idea, we begin with the form of . Denote S € RP*F2X4 tg be a

3rd-order tensor satisfying 5'(2) = DT7. Model (2.4) can be written as
y={S x28(t)}Tz + e, (2.6)

where X, denotes the 2-mode (vector) product of a tensor with a vector (Kolda and Bader, 2009).
More precisely, the result of the d-mode (vector) product of a generic Nth-order tensor & =
(Girin..iny) € RI2XIN and a vector v € R4 is a tenor of order N — 1 with dimension I; X - - - X

Iy 1X1gp1 %+ -x Iy such that its (i1, ...,%4_1, lgs1, - - - , in)-th element is Zijzl Uiy Girsigin - SuCh
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a reformulation shows that exploring the correlations among the varying coefficients is equivalent
to the dimension reduction on the second mode of a 3rd-order tensor. Figure [1] illustrates the
corresponding matrix of coefficient functions in ({2.6]) using this tensor-vector product. Similarly,

the correlations among the predictors and responses are related to dimension reductions on the

7
,

first and third modes, respectively.

"Z Eijkﬁj(t)
J

S € RP*R2x4 B() € R® 5 X, B(t) € RPX

Figure 1: An illustration plot of the coefficient functions matrix in ([2.6]) using a tensor formulation

and the 2-mode (vector) product.

Therefore, to simultaneously explore all reductions, we propose
y:{S XlAX3C >7<216(t)} >21£C+€, (27)

where X 4 denotes the d-mode (matrix) product of a tensor with a matrix (Kolda and Bader} 2009),
d=1,2,3; B(t) is a vector of Ry unknown principal functions; § € Rfttxf2xfts = A ¢ RP*f1 and
C € R are coefficients to be estimated. We depict S x; A in Figure [2| to illustrate the
d-mode (matrix) product of a tensor with a matrix. Similar to Jiang et al. (2013)), |Lian and Ma

(2013), and He et al.| (2018), we require A, C, and (3(t) are orthonormal, i.e.,

ATA =TI, C'C=Iy, and / BB dt = T, (2.8)
T
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Sc lRRlXRZXR3 Ac [Rple S X1 A€ [RpszxR3

Figure 2: An illustration plot of the d-mode (matrix) product of a tensor and a matrix.

The multilinear structure of the varying coefficients S x; Ax3C X5 B(t) coincides with the Tucker
decomposition (Tucker, [1966)) for a 3rd-order tensor. We observe that Models , , and
(2.5) are all special cases of Model . In particular, removing the first and second mode
reductions in and writing S x; A X, 8(t) = F(t), can recover (2.3). Further,
can be directly obtained by letting S = § x; A x3 C. Finally, singling out A and treating ¢ = 1
in §x3C X, B(t) recovers (2.5). Therefore, each mode in the decomposition S x1 Ax3C x5 3(t)
corresponds to one reduced model mentioned above.

We conclude this section by a remark that the constraint does not guarantee the iden-

tifiability of the proposed model (2.7). Indeed for any U € R®2*%2 with UUT = Ip,, we have
{Sx1 Ax3C %2 8(t) Tz =[(S x2U) x1 A x3C x2 {UB(t)}] .

In other words, (S, A,C,3(t)) and (S x, U, A, C,UB(t)) result in the same reduced MVCM
model. However, only the identification of the regression coefficient functions F'(t) is needed to
understand the reduced MVCM (2.7), which is fulfilled since F(t) = S x1 A x3C x5 3(t). As for
computation, these identifiability issues may lead to algorithmic instability and so some further

regularizations are introduced on (S, A, C, 3(t)) in Section [3| to obtain an efficient algorithm.
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3. Penalized Least Squares Estimation

To estimate the parameters in our reduced MVCM ({2.7), we first approximate the principal
component functions B(¢) using splines. Specifically, let b(t) = (b1(t),...,bk(t))T be a vector
of orthonormal B-spline basis functions with dimension K. For the ro-th principal component
function 5,,(t), we write

K

57"2 (t) ~ Z Bkﬂ“zbk(t)a

k=1
where By ,,’s are the corresponding spline coefficients. Denote B,, = (Bi,,,...,Bk,)T. We
stack B,,, ro = 1,..., Ry, into a matrix of coefficients, and let B = (By, ..., Bg,) € RE*%2,

Moreover, we require B to satisfy the constraint BTB = Ig,, which leads to the orthonormality

of B(t) in (2.8). Ignoring the approximation error, Model (2.7]) can then be written as

Yy = {S X1 A >22 BTb(t) X3 C}Tw + €
(3.9)
= {S X1 A X9 B X3 C >_<2 b(t)}TZD + €.
The above basis expansion enables us to recast the problem of estimating the varying coefficients
of reduced model (2.7)) as the problem of estimating the parameters (S, A, B, C), where S €
RExR2xBs - A ¢ RP*F1 with ATA = Iy, B € REXE2 with BTB = Iy,, and C € R with

C7C = Ig,. Given i.i.d. copies {(y;, @;,t;)}", of (y,x,t), we consider the constrained least

squares estimator:

argmin yl—{S XIAXQBX3C >7<2b<t1>}T$z X
rmn Y| ; -

s.t. ATA = IR1> B™B = IRQ, C’C = IR3.
In (3.9) and (3.10), S x; A X3 B x3 C' is the Tucker decomposition of a 3rd-order tensor.

In particular, letting G = S x; A X3 B X3 C, we have rank;(G) < R, ranky(G) < Ry, and
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ranks;(G) < Rj, where rank,(-) denotes the d-rank of a tensor (Kolda and Bader] 2009), d =

1,2,3. We depict the Tucker decomposition representation of model (3.9)) in Figure . For more

- W ~T
_/
X3 BTh(t):R, x 1
y= < -xte
Ap xRy
o Y,

F()

Figure 3: The Tucker decomposition representation of model ({3.9)).

discussions on the Tucker decomposition and its relationship with other tensor decompositions,

such as CANDECOMP/PARAFAC (CP) decomposition (Harshman, [1970) and Tensor-Train

decomposition (Oseledets, 2011)), we refer the interested readers to Kolda and Bader| (2009).

Using the form of Tucker decomposition, the least squares problem (3.10)) is equivalent to
arg minz |yi — {G % b(tz)}Ta}le s.t. ranky(G) < Rq, d=1,2,3. (3.11)
L

The benefit of using a low-rank structure in tensor regression models against simply flattening

the covariate tensor to a matrix or a vector can also been found in Zhou et al| (2013); |Li et al

(2018)); Ahmed et al| (2020). Note that our problem is different from existing work of Tucker

tensor regression (Li et al., |2018) and its generalizations (Lu et al., 2020; Ahmed et al., 2020)) in

two aspects. First, (3.9) is not the proposed model, but merely an approximation of the target

nonparametric model (2.7)). Second, we study multivariate response y, whereas [Li et al.| (2018);
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Lu et al.|(2020); Ahmed et al.| (2020) all assume the response variable is a scalar.

For a large value of pg, the dimension reduction in terms of low-rank Tucker decomposition
may not lead to an accurate estimation for the varying coefficients. In many applications, it
is often expected that the responses have similar/related structures and so many important
predictors associated with them are shared, and the union of important predictors associated
with different responses is of a small size. In other words, we assume that only s (s < p and
unknown) predictors are relevant for predicting all the responses. This assumption is shown to
be suitable for many real-world applications; see, for example, Wang et al.| (2008); Wei et al.
(2011)); He et al| (2018), among many others. We resort to sparsity-inducing penalization to
filter out the irrelevant predictors during estimation. To formulate a suitable penalty function,

we use the Tucker decomposition G = S x; A x5 B x3 C again and rewrite (3.9) as

Yy ={G x2b(t)}Tx + e = {I, 2 b(1) }G], )z + ¢, (3.12)

where G(1) € RP*?¥ is the mode-1 matricization (unfolding) of tensor G and ® is the Kronecker
product of matrices (Kolda and Bader, 2009)). Let Ggl)d. denote the j-throw of G(1), j =1,...,p.
In light of , all unknown coefficients associated with the j-th predictor are contained in
G.(rl),j' Therefore, the j-th predictor becomes irrelevant whenever the coefficient matrix Ggl),j =

0. Borrowing the idea from the group Lasso penalization (Yuan and Lin| 2006), we propose the

following penalized least squares problem
n 9 p
argmin Y [ly; — {G X2 b(t;)} @], + > MG ylla, st ranke(G) < Ry, d=1,2,3,  (3.13)
c “ :
=1 7=1
where || - [|2 is the group Lasso penalty and A > 0 is the penalty parameter. Note that Gy =

AS1)(C ® B)T. Let aj be the j-th row of A, and then G|}, ; = a;S1)(C ® B)T. Due to
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the orthonormal conditions of B and C, we have [|G(1),ll2 = [|ajSq)(C @ B)T[lz = [|a]Sq)|l2.

Therefore, (3.13)) is equivalent to

p
argmlnz [y: = {S x1 A x5 B x5 C X b(t;)}Tai||; + > MlalSq |2
S,A,B,C — (3'14)

s.t. ATA = IR17 B™'B = IRQ, C’C = IR3.
Let (§ , ,21\, E, 6’) be a solution of (3.14]). Correspondingly, a solution of (3.13|) can be constructed
as G = 8 x, A xy B x3C (or equivalently é(l) = A\g(l)(é ® ﬁ)T) The resulting estimated

f;i1(t) becomes

K
fjl Z jxibr (1) (3.15)

k=1

where CA}jkl is the (4, k, [)-th element of G. We will provide a theoretical analysis of the proposed

estimation in Section [l

4. Computation

To calculate the estimator, we propose a block updating algorithm to solve the problem ((3.14)),
i.e., updating S, A, B, and C alternatively while keeping other components fixed. To facilitate
the discussion, we let £(S, A, B, C) be the objective function in (3.14) for a given A\, and denote
the squared loss and the penalty respectively by

H(S,A,B.C) =) ||yi— {8 x1 A x3 B x35C X3b(t;)}7 2| and P(S, A) ZAHaTsmHQ

i=1

Denote S®, A® B® and C® be the t-th iteration (¢ > 1) of S, A, B, and C in the proposed al-
gorithm respectively. When we update one block with the other blocks fixed, we will use H and/or

P with suitable subscripts to simplify the objective functions with respect to the target block.
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For example, when A®, B® C® are fixed, we let H a0 gw cw(S) = H(S, AW BO C®) and
Py (S) = P(S, A®), respectively, as the functions with respect to S. Analogously, we have
Hgwn gy o (A), Hgwr) acn oo (B), and Pge+1)(A). The concrete updating details for each

block are shown in the following subsections.

4.1 Updating S

Using the properties of d-mode product of a tensor (Kolda and Bader] 2009) and vectorization

(unfolding of a tensor), we can respectively rewrite H 4¢) g oo (S) and Py (S) as

Hyo po.ow(S) =Y |lyi — [CY & {b(t;) BV} @ (] AD)]vec{ S} I3
=1

P
and Pao(S) =2 (@) S|,
j=1

where S(1) € RfF1*f283 j5 the mode-1 matricization (unfolding) of tensor S, vec(-) is the vector-

ization operator, and (ag-t))T is the j-th row of A®. Thus, updating S is equivalent to obtaining
the solution of

min HA(t)VB(t)7c(t) (S) + Py (S). (4.16)

SRRy X Rax R
Since P41 (S) is not differentiable, we propose to use a majorization-minimization (MM) al-
gorithm. The acronym can also stand for minorization-maximization if one aims to find the
maximum of an objective function; see, for example, Hunter and Lange (2004). MM algorithms
are useful extensions of the well-known class of EM algorithms in which the E-step is equivalent
to a minorization step. To construct the majorized function for Py (S), we extend the MM
algorithm of the Lasso penalty (Hunter and Li, 2005)) to the group Lasso penalization. Moreover,

since (4.16)) is an objective function with respect to a tensor, some tensor operations need to
b
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be considered and applied to this subproblem. See Section S.1.1 of Supplementary Material for

more details, where Algorithm S.1 summarizes the proposed MM algorithm to update S.

4.2 Updating A

Similar to Section we use the properties of vectorization and d-mode product (Kolda and

Bader, 2009) to Slmphfy Hg(t+1),B(t),C(t> (A) as

1 « ~
H§<t+l),B(t),C(t) (A) = 5 Z ||yl — |:{ [C(t) X {bT(tZ)B(t)}] (S((i;'l))T} () :l:ZT] VeC(A)HQ.
i=1

To simplify the updating procedure for A, we first remove the orthonormal constraint on A and
update A in the Euclidean space. An orthonormalization step will be added in the outer loop
to project the updated A back to an orthonormal matrix. The subproblem of A without the

orthonormal constraint can then be written as

mf’in {H§<t+1>73<t),c<t)(A) + Ps<t+1>(A)} ’ (4.17)

where Pguin(A) = A>78 || (§((Sr1))Taj ||. Since there is no analytic solution to (4.17]), we propose
to use the Alternating Direction Method of Multipliers (ADMM, Gabay and Mercier, 1976)).

Denote g(z) = ||z|| and introduce the slack variable v; € Rf2fs 5 = 1,... p. We rewrite the

optimization problem as

p
121119 {H§<t+1>,3(t),c<t>(A) +A Z 9(’7;’)} , st I'= AS((Srl)a (4.18)
I le

where I' = (y1,72,...,7,)7. In (4.18)), the constraint is equivalent to ~y; = (g((f;rl))Taj, j =

1,2,...,p. The corresponding augmented Lagrangian function is

2

, (4.19)

p
p ~ 1
LA T30) = Hyo o oo () + A Yl + 5 48057 1+ Lo
j=1
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where v € RP*#28s ig the dual variable.

We defer the detailed analysis of to Section S.1.2 of Supplementary Material, in which
Algorithm S.2 summarizes the proposed ADMM algorithm. Let A denote the output of
Algorithm S.2 for A. To project the updated A to be an orthonormal matrix, we further
let qr.Q(ADY) and qr.R(A®D) be the Q and R factors of the QR decomposition of A+,
respectively. Here we require the R factor to have positive diagonal elements for QR identifiability.
We update AT+ as qr.Q(AH), and S((i)ﬂ) is then updated as qr.R(ACHD) . §((i;r1) (so for
S1) . Further note that the direct output of Algorithm S.2 does not result in the exact row
sparsity of At+D S(ﬁrl) To achieve the variable selection in our algorithm, we can further output
the slack variable T'**1) in Algorithm S.2 as an auxiliary result and replace A+ S((SLU by T+
which indeed fulfills the constraint of the slack variable in and the difference of these two

terms is close enough. The output of T**Y in Algorithm S.2 remains unchanged when the above

orthonormalization step is applied.

4.3 Updating B

We let the orthogonal Stiefel manifold be
St(Ry, K) = {B € R**™ . BTB = I }. (4.20)

Using the properties of the d-mode product of a tensor and a matrix (Kolda and Bader, |2009),
we can rewrite Hge+1) a1 o (B) and update B from solving the optimization problem

2

(421

B = ({CY @ (@] AT D) HSEVYT] @ b (1))vec(B)

BeSt(Ra,K
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where S() is the mode-2 matricization of tensor S. Note that the objective function in (4.21])
is a smooth function with respect to B on the Stiefel manifold , so we can use manifold
gradient method (Absil et al., 2009), which is an extension of the gradient descent algorithm in
the manifold space. Algorithm S.3 in Section S.1.3 of Supplementary Material specializes our

implementation for using the gradient decent algorithm on the Stiefel manifold.

4.4 Updating C
Using S(3) as the mode-3 matricization (unfolding) of tensor S, we can rewrite (3.9) as
y=CSu{(b'(1)B) ® (z7A)}T + €.

Denote Y = (y1,...,4,)7 € R and MY = (MY,...,MY)T € RV, where M) =
{b7(t;) BV (mZTA(tH))}(S((Srl)) € R i =1,...,n. We then focus the following subproblem
to update C

C*Y = arg min HY — Mg)C'T
cic=1

2
[ (4.22)
which is known as the Orthonormal Procrustes problem (Gower and Dijksterhuis, [2004), and

the solution to this problem is equivalent to finding the nearest orthonormal matrix of YTMg ),

Therefore, write the singular value decomposition of YTM((; ) as
Yy MY =UsvT, (4.23)

where U € R?Fs and V' € RF*%s are orthonormal matrices, and ¥ € R%*fs ig a diagonal
matrix with non-negative values in its diagonal. The analytic solution to (4.22) can be obtained

as

ctH) =pyvr, (4.24)
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4.5 Summary and Initializations

We summarize the procedure of the block updating algorithm in Algorithm [T, To achieve a
sparse solution, the output of Algorithm [1|is é(l) = f‘(é’ ® E)T We can then reconstruct G
through the estimated (A;(l) by the inverse of the mode-1 unfolding and obtain the estimator of
the varying coefficients using .

Here are some notable remarks for Algorithm (Il For the subproblems of S and A, due to
convexity, we can show that the corresponding MM algorithm can generate a sequence converg-
ing to the unique minimizer of each subproblem using similar arguments as in Corollary 3.3 of
Hunter and Li (2005). We thus use random initializations for S and A at their first iteration of
outer loop. Afterwards, we let the outputs of S and A obtained from the preceding iteration of
the outer loop be the initialization values, respectively, of the next iteration of the outer loop.
As for C, the corresponding subproblem for this component can be written as an Orthogonal
Procrustes problem which has a closed-form solution, and thus, no initialization is needed for
C. Finally, the subproblem for B is not convex due to the orthonormal constraint, and the pro-
posed manifold gradient descent algorithm uses only the first-order information on the objective
function, which may not guarantee the convergence to a local minimizer (Absil et al., 2009).
Therefore, although Algorithm [I] can guarantee to obtain a sequence of decreasing values of the
objective function, it is unclear whether this algorithm would guarantee the convergence to a
global minimizer. Nevertheless, |Absil et al. (2009)) also shows that using any sub-sequence of the
iterations generated by the manifold gradient descent algorithm can converge to the stationary
point of the subproblem. We can thus run Algorithm (1| from multiple initializations of B and

return the best result. However, this is computationally expensive. Instead, we propose to use
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a rough estimator B™! as an initial point for the manifold optimization of B. Specifically, at

(t 4+ 1)-th iteration, define

B := argmin Hgu+1) a1 oo (B),
BeREXxE2

which can be easily solved since the objective function is differentiable with respect to B in the
Euclidean space. Next, we simply project B onto the Stiefel manifold and let the projection be
the initial point, i.e.,

pBinit — PSt(R27K)(§) _ g(éTg)—l/g

We use the above B™t as the initial value in Algorithm S.3 when we update B. Our numer-
ical experiments show that this strategy is not only faster than the use of multiple random

initializations but also generates stable iteration sequences.

4.6 Tuning Parameters

Our model has totally six tuning parameters (m, K, Ry, Rs, R3, \), where m is the order of the
spline basis, K is the number of basis, (R, Rs, R3) are the Tucker ranks, and A is the regular-
ization parameter. We first fix the spline order m = 4 (cubic spline) which is commonly used
to alleviate the computational burden for estimating nonparametric functions (Ruppert et al.,
2003)). For the number K of the spline basis functions, there exist many recommended data-
driven methods to decide K based on the sample size (see, for example, Huang et al., 2002} |2004;
Ruppert et al., 2003 and references therein) for empirical studies. To be computationally simple,
we follow the strategy used in [Fan et al.| (2014) to let K = [2n!/°], where [-] denotes rounding

to the nearest integer. The knots of spline basis functions are also data-driven and chosen as
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Algorithm 1: Block Updating Algorithm to Solve (3.14)).
Input: Dataset {y;, X;,t;} ,; Random initial points

SO) ¢ RExFexBs  A0) ¢ Rpxfi BO) € St(Ry, K),C) € St(R3,q), and t = 0.

~ ~

Output: é(l) = f(C ® B)T.
repeat

1. Update S®+D using Algorithm S.1.
2. Update A+ using Algorithm S.2 as well as T'*+1) for variable selection.

3. After the QR decomposition of At let AC+D and S((SLI) be qr.Q(AMD) and

qr.R(A+D) . :S’v((ﬁl), repectively.
4. Update B using manifold gradient optimization method (Algorithm S.3).
5. Update C**Y) = UVT as in ([#.24) with U and V being defined in (4.23).

6. t=1t+ 1.

until £(SED, AGH) B cD) _ £(80 A B® CW) < €. Denote T' = T+,

C = CtY, and B = B,

equally spaced quantiles. We find this empirical rule works well in all of our experiments. For the
choice of R3, which is corresponding to the dimension reduction associated with the responses,
we conduct a singular value decomposition of the response matrix Y € R"*9. We then choose Rj
such that the first R3 dominant singular values, which together account for at least 90% of the
sum of all singular values. For (R, Ry) and A, we apply the hold-out method (He et al., 2018}

Hannun et al) 2019)) in our numerical study for its computational efficiency. More precisely,
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we randomly split our available data into two subsets: a training set with 75% samples and a
validation set with 25% samples. We set the validation samples aside, and use Algorithm (1| to
fit our proposed method on the training set. The parameters (R, Ry) and A are selected by

minimizing the validation error:

1 Mvalid

~ 2
(yvalid,i - yvalid,i) s
i=1

Nyalid

over the grids of corresponding tuning parameters, where n.,;q is the size of the validation set,

Uvalid,; is the prediction value of the i-th observation yy.jq,; in the validation set.

5. Theory

In this section, we establish the oracle inequality for the prediction accuracy of the proposed
estimator. For readability, we first show the oracle inequality under a fized-design setting, where
the predictors and the exposure variable are fixed. Similarly, we say a setting is random design
if these variables are randomly distributed. To extend to random design settings, we show that
the corresponding assumption on the design (Condition M(J,d7)) can be satisfied with high
probability (tending to one) when & and t are random under some mild regularity conditions.
The result under the fixed-design setting is presented below, while we defer the theoretical result
for random design to Section S.4 of Supplementary Material.

Let ¥ = Z7Z/n, Z = (z1,...,2,)7, where z; = x; @ b(t;) € RPE. We use A\pax(-) and
Amin(+) to denote the maximum and minimum eigenvalue of a matrix, respectively. Denote by
So, Ao, Cy, and By the true values of S, A, C, and B in (2.7)), respectively. Denote by s
the number of non-zero rows in Ag, which corresponds to the relevant predictors. We also

write Hy = Sy x; Ay x3 Cy € RP*E2X4and correspondingly the true coefficient functions are
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(fo1(t))pxq = Fo(t) = Ho X2 Bo(t). Let
Y:(ylv'”)yn)T € R"™9 and E:(Gl,...,ﬁn)TERan.

Now we state a condition that will be required to describe the oracle inequality in our theoretical

results.

Condition M(J,07). We say the design matriz 3 satisfies Condition M(J,07) for an index
set J C{1,...,p} and a positive number 0z, if
tr(MTSM) > 67 || M]3
JjET

for all M € RP"*4 satisfying 23, [|M;llr > 3 | M| F, where M is the collection of

bisJ ©

rows related to the j-th predictor in M and tr(-) denotes the trace of a matriz.

Condition M(J,07) is similar to the one used in Bunea et al. (2012) for reduced rank
regression models. In particular, Condition M(J,d7) is motivated by the “restricted eigenvalue”
(RE) condition introduced in Bickel et al.| (2009) for studying the asymptotic properties of high-
dimensional linear regression. It implies that the least eigenvalue of relevant predictors is greater
than or equal to 057 by letting M; = 0, j € J°. Note that the constant 2 in the inequality
2 ier IMGllr = 325 7 | M| 7 of Condition M(J,d7) is merely chosen for neat presentation
of the statements, and it can be replaced by any positive constant greater than 1. Lemma
S.3 of Supplementary Material shows that when n is at least as large as the magnitude of
\TIP¢*K? + |T|*qK log p, Condition M(J,d7) holds for a constant 7 > 0 with probability
tending to one under some mild conditions of random design.

The following assumptions are needed in our analysis.
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Assumption 1. The entries of the noise matrix E are independent and identically distributed

Gaussian random variables with mean zero and variance o2.

Assumption 2. The columns of the true parameters Hj (o) (mode-2 matricization of Hj) has

Euclidean norms bounded by a constant.

Assumption 3. The domain of the exposure variable t is 7 = [0, 1]. The order of the B-spline
used in this paper satisfies ( > 74 1/2. Let 0 =& < & < -+ < {x_¢4+2 = 1 denote the knots of

B-spline basis. Furthermore, there exists a positive constant S such that

h, = ma —&| < K™t and h/ min — & < 8.
n k:1,...,K)EC+1 ‘gk-‘rl gkl n k1Kt |fk+1 §k| < o1

Assumption 4. The true principal functions fy,, € H, ro = 1,..., Ry. Here H is the space of

functions from [0, 1] to R satisfying the Holder condition of order w, i.e.,

H={g:3C € (0,00) s.t. 199 (1) — g9 (23)] < Clay — 2|, V 21,25 € [0, 1]},

where ¢ is a nonnegative integer and g is the (-th derivative of g, such that w € (0,1] and

T=14+w>1/2.

Assumptions are commonly seen in the literature of nonparametric regressions (Huang
et al., 2010; He et al., 2018). Specifically, Assumption [1is used to control the stochastic error.

Under Assumptions [ and [4] it follows from Lemma 5 of [Stone| (1985) that there exists By, =

(Bo.sy 15 - - - s Bors.ic)T such that for some constant Ss,
3 Bosusbs| <2 =1,...,R 5.25
50,r2—; O,r‘g,kkoo_F> o =1,..., g, ( )
where || - ||« is the uniform norm of functions. Let By = (By1,. .., Bor,)T € RF¥*f2 and

G() = S() X1 AO X9 BO X3 C() S RPXKXQ.
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Note that {Gg X2 b(t)}Tx is only an approximation to the true regression function, due to the
nonparametric nature of the multivariate varying-coefficient model. Using the matricization

operator of a tensor (Kolda and Bader| 2009), it can be shown that
{GO >22 b(tz>}T$z = G07(3)Zi, 1= ]., e, N, (526)

where Gy (3 is the mode-3 matricization of Go. By (.25)), (5.26), and Assumption , the

approximation error over n observations, R:=Y — E — ZG| @) satisfies

nsq
IRIG =Y — B = ZGj ) [F < S375, (5.27)

for some positive constant S3, where we recall s is the number of relevant predictors.

Further, for any G € RP*EX? with rank restrictions ranky(G) < Ry, d = 1,2,3, we write

n 1/2
Ag = { Z I{G x2b(t;)}Tx; — {Go X2 b(ti)}TwiHQ} (5.28)

as the discrepancy between G and Gy in terms of prediction. Similarly, we write

n 1/2
Ap = { Z | F(t:)Tx; — Fo(ti)T:ciHQ} (5.29)

as the discrepancy between the coefficient functions F(-) with F(-) = G X3 b(-) and Fy(-). The
following Theorem |[1| shows the prediction accuracy for a solution G of (3.13), and its proof is

deferred to Section S.2 of Supplementary Material.

Theorem 1. Let J(G) be the index set of nonzero rows of Gy, the mode-1 matricization of
G with rank,(G) < Ry, d = 1,2,3, and denote R = min(Ry Ry, R3). Suppose Assumptions
hold. Taking

M = S R3RnAmax (Z) Ko {1 + log(p)} (5.30)
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for some constant S, > 0, we then have

R3RK | T (G)|Amax(B)0?1
AL < S3AL + SsqRo? + ;R ( )5’J(G)( T 8®) |, — (5.31)
with probability at least
8exp(—q/2)
- .32
3K log(p) ’ (5:32)

provided 3 satisfies Condition M(J(G),67(a)), where Ss, ..., Ss are positive constants.

Theorem [I| shows the finite-sample oracle inequality for the prediction error between the
proposed estimator and its oracle spline approximation. Since the proposed Algorithm [1| cannot
guarantee the generated sequence converges to a global minimum of the optimization problem,
we remark that there exists a gap between the oracle inequality for the global optimizer and the
practical output from the proposed block updating algorithm.

For the coefficient functions, we correspondingly denote I?’(t) = G %, b(t), where G is
a solution to (3.13). Theorem [l| can then be generalized to the prediction error for ﬁ(t) in
terms of as the following corollary. The proof of Corollary (1] is deferred to Section S.3 of

Supplementary Material.

Corollary 1. We have

R3sRK|J (G)|Amax (X)o7 log(p)
6J(G)

A% < 25;A% + 255qRo> + 25 + (285 + 253)%

with probability at least (5.32) under the same conditions of Theorem .

One direct application of Theorem (1} is to obtain the rate of convergence for the prediction
accuracy of the proposed estimator. We can also show that the relevant predictors can be

identified with probability tending to one. In the following, let || fo j||2 be the Lo norm of fj
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under the Lebesgue measure and ]/C;-l be the estimated coefficient function of fy ;; from (3.15)).

The proof of Corollary [2|is deferred to Section S.3 of Supplementary Material.

Corollary 2. Suppose Assumptions hold and X satisfies Condition M(J(Go),67(c0))- If

we let

K { 'I’L(SJ Go)q }1/(27’—1—1)
R3RApax (X) log(p) ’

and \? as in (5.30), then the prediction error A%/n of estimated coefficient functions F satisfies

R R3RAmax(3)log(p) /Y
A2/ =0, [ 22 3 1/@r+1) | 5.33
F/n p ( n + { néj(Go) sq ( )

Further, if
q(47'+1)/(2‘r+2)5 1/(27""2 R{Rg max(z) log(p)}fT/(T+l)

(27+1)/ 1/(271)5—(4 +1)/(27) Amax (2) log(p) (5.34)
s\eT T(] (" . T RSR max by og\p
_'_ j(GO) 0

n

asn — 0o and > 1, | foull3 > Se for some constant Sy > 0, Vj € T(Gy), we then have

P{F;(t) #0, j € J(Go)} = 1 asn — oo,
where IAWjT(t) = (]/“;-1, | ,f/’;q) is the j-th row F.

As we presented in Section [2, Models (Lian and Maj 2013)) and (He et al., |2018)
can be regarded as special cases of our proposed all-mode reduction method. The derived rate of
convergence in include those in He et al.| (2018)) and Lian and Ma/ (2013)) as special cases
with an extra log p term due to the use of different penalization method. Condition for the
variable selection consistency indicates that the sample size n should be large enough compared

with the numbers of relevant predictors s and responses g. A simple and sufficient condition for

(5-34) to hold is that n should be larger than the magnitude of ¢*s* Rs RAmax(X) log(p)d (g,
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6. Experiments

6.1 Synthetic Data

We conduct a simulation study to evaluate the performance of the proposed model. The data

were simulated from the model:

p
yil:ijl<ti>xil+€il; i217...,n;121,...,q,
j=1

where {g;} are i.i.d. random variables with normal distribution N(0,0%). We set z;; = 1 as
the intercept for all ¢, and the remaining p — 1 predictors were generated from a multivariate
Gaussian distribution with mean zero and covariance Cov(z;j,, %j,) = P2l 1 gy < p—1.
The exposure variable ¢; was generated from the uniform distribution on [0,1], i = 1,... n.
{fu} were generated according to the all-mode reduction model as in . In particular, the
elements of § € RF1*F2xfts and C € R were i.i.d. N'(0,1) random variables. We let the first
s predictors, including the intercept, be the truly relevant predictor variables, and the rest p — s
predictors have no effect on the responses {y; }. Therefore, we generated the entries of the first
s rows of A € RP*®1 independently from A(0, 1) and the remaining rows were set as zero.

We set R{ = Ry = R3 = 2, p =51 or 201, s = 11, ¢ = 15, and p = 0.3. As for o2, it
was chosen according to the signal-to-noise ratio (SNR), trace{Var(3_7_, fj(t;)xu)}/qo® More
specifically, two SNRs, 20 and 2, were investigated in our simulation study. The normalized
principal functions were specified as B(t) = (B1(t), B2(t))T = (V2 cos(wt), v2sin(27t))T on the
domain ¢ € [0,1], which satisfy [ B(¢)3(¢)T dt = I, a 2 x 2 identity matrix. Two sample sizes,
200 and 400 were considered. For each scenario, 50 replicates were generated.

To fit our model, all the tuning parameters of the proposed method were selected as discussed
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in Section [4.6] We referred to our proposed method as the all-mode reduction in the following
discussion.

We compared the all-mode reduction with four different methods: the mode-3 reduction
model (Lian and Ma), [2013)), the mode-2 reduction model (He et al., 2018), the full model, and
the linear model. Here, the full model refers to with the group Lasso method (Yuan and
Lin|, [2006) to select the relevant predictors. We can set Ry = p, Ry = K, and R3 = ¢ in our model
and use Algorithm S.1 of Supplementary Material to solve its estimator. In the linear model, the
regression coefficients are assumed to be constants and the group Lasso method is also employed.
Both the full model and the linear model have the tuning parameter A. To select A\, we used the
same validation criteria as our model for the full model and cross-validation for the linear model.
The mode-3 reduction model corresponds to dimension reduction in the responses. Therefore, its
estimator can be obtained by setting Ry = p and Ry, = K in our model and iteratively updating
S and C using Algorithm S.1 of Supplementary Material and (4.24). The tuning parameters R
and A were selected by the hold-out method. As for the mode-2 reduction model, we applied
the implementation provided in [He et al. (2018), where cross-validation was used to select the
tuning parameters Ry and .

In terms of variable selection, we calculated “True Discovery” as the average number of
predictors selected by the methods which in fact are relevant ones, and used “False Discovery” to
stand for the average number of predictors selected by the methods which in fact are irrelevant
ones. The variable selection performance of the competing methods is summarized in Tables
and [2| for sample sizes n = 250 and n = 400, respectively, together with the performance of the

rank selection ]?21, fig, and ﬁg for corresponding methods. Note that the reported selected ranks
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are the average values of 50 replicates. Tables|l|and [2|show that the proposed all-mode reduction
model can identify all the non-zero varying coefficient functions with fewest false discovery among
competing methods. Though the full and linear models have high accuracy on identifying relevant
predictors, their poor performance on false discovery indicate that these methods falsely include
many irrelevant predictors in their estimators. The mode-2 and mode-3 reduction methods have
similar performance that they sometimes cannot correctly identify the true non-zero varying
coefficients, especially when SNR is relatively small. As for the rank selections, it’s show that
the third rank can be correctly selected as ﬁg = 2 by our proposed model. For the first and
second ranks, we find that more than 75% for the case SNR=20 and 60% for the case SNR=2 are
selected as 2 (the true value) among 50 replicates. On average, the proposed all-mode method
may tend to select ﬁl and ﬁg slightly larger than their true values.

To evaluate the estimation accuracy, we calculated the average integrated squared error

(AISE) of various methods as

AISE =233 [ 4Rt = ey

j=1 1=1

where ]?jl(t) denotes a generic estimator of f;(¢) using different methods. The above integrals
were computed by Monte-Carlo method. Table [3| reports the AISEs of competing methods
with corresponding standard errors. For benchmark, we also added the oracle estimator which
only included the true relevant predictors in its model. In the oracle setting, the true relevant
predictors were assumed to be known, and therefore we did not include the penalization in the
objective function, which enabled us to use least squares method to estimate S and A. We
used the same framework of block updating Algorithm [1] to compute the oracle estimator. The

boxplot of AISEs for different methods with sample size n = 400 was depicted at Figure |4l We
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~

Ry R Rs  True Discovery False Discovery
All-mode Reduction 2.34 2.14  2.00 11.00 (0.00) 3.26 (0.28)
Mode-3 Reduction - - 200  10.86 (0.55) 10.45 (0.83)
SNR=20 Mode-2 Reduction - 219 - 11.00 (0.00) 11.39 (0.70)
Full Model - - - 11.00 (0.00) 13.48 (0.93)
Linear Model - - - 11.00 (0.00) 19.07 (1.19)
p=ot Allmode Reduction 2.64 234 2.00  11.00 (0.00) 3.65 (0.34)
Mode-3 Reduction - - 200 10.34 (0.95) 14.43 (1.14)
SNR=2  Mode-2 Reduction - 225 - 11.00 (0.00) 18.75 (1.40)
Full Model _ - ; 11.00 (0.00) 21.31 (1.54)
Linear Model - - - 11.00 (0.00) 24.87 (1.60)
All-mode Reduction 2.67 2.58 2.00 11.00 (0.00) 12.08 (0.59)
Mode-3 Reduction - - 200 10.96 (0.54) 19.40 (1.15)
SNR=20 Mode-2 Reduction ~ - 241 - 11.00 (0.00) 25.86 (1.46)
Full Model - - - 11.00 (0.00) 28.47 (1.96)
Linear Model ; - ; 11.00 (0.00) 31.51 (2.57)
p =201
Allmode Reduction 2,57 2.60 2.00  10.44 (0.39) 15.42 (1.32)
Mode-3 Reduction - - 2.00 9.96 (1.21) 19.87 (1.47)
SNR=2  Mode-2 Reduction - 284 - 9.83 (0.81) 23.17 (1.74)
Full Model - - - 11.00 (0.00) 36.48 (2.18)
Linear Model - - - 11.00 (0.00) 44.87 (2.45)

Table 1: Dimension reduction and variable selection results for group Lasso penalized estimators

for n = 200. The numbers in the brackets are the standard errors based on 50 replicates.
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~

Ry R Rs  True Discovery False Discovery
All-mode Reduction 2.31 2.15 2.00 11.00 (0.00) 2.42 (0.28)
Mode-3 Reduction - - 200  11.00 (0.00) 8.64 (0.61)
SNR=20 Mode-2 Reduction - 220 - 11.00 (0.00) 8.78 (0.66)
Full Model - ; 11.00 (0.00) 11.52 (0.84)
Linear Model - - - 11.00 (0.00) 17.87 (1.15)
p=ot All-mode Reduction  2.39 2.21  2.00  11.00 (0.00) 3.71 (0.34)
Mode-3 Reduction - - 2.00 10.52 (0.78) 10.72 (0.90)
SNR=2  Mode-2 Reduction - 223 - 11.00 (0.00) 12.38 (0.92)
Full Model . - = 1100 (0.00) 16.86 (1.01)
Linear Model - - - 11.00 (0.00) 21.87 (1.45)
All-mode Reduction 2.45 2.50 2.00 11.00 (0.00) 10.71 (0.58)
Mode-3 Reduction - - 200 11.00 (0.00) 18.85 (1.02)
SNR=20 Mode-2 Reduction -  2.38 - 11.00 (0.00) 20.32 (1.38)
Full Model - ; 11.00 (0.00) 23.10 (1.82)
Linear Model - - - 11.00 (0.00) 30.51 (2.47)
p =201
All-mode Reduction 2.45 2.70 2.00 10.50 (0.24) 11.83 (1.00)
Mode-3 Reduction - - 2.00 10.12 (1.11) 17.57 (1.16)
SNR=2  Mode-2 Reduction - 249 - 10.33 (0.93) 19.48 (1.36)
Full Model . - = 1100 (0.00) 31.59 (2.28)
Linear Model - - - 11.00 (0.00) 43.07 (1.82)

Table 2: Similar to Table [I] but for n = 400.

can conclude from Table [3] and Figure [4] that all-mode reduction model outperforms the non-

oracle estimators with smallest AISE. For example, when the sample size n = 400, the all-mode
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reduction method reduces AISE by 48%-94% compared with the mode-3 reduction and by 78%—
98% compared with the mode-2 reduction. The performance of the all-mode reduction method is
improved when the sample size increases, which is consistent with our theoretical investigation.

Among the competing methods, the full model and the linear model show the worst performance.

All-mode Mode-3 Mode-2 Full Linear
n P SNR  Oracle

Reduction Reduction Reduction Model Model

20 0.007 0.011 0.237 0.782 3.459 6.761
- (0.002) (0.003) (0.019) (0.082) (0.339) (0.674)

) 0.031 0.085 0.314 1.484 6.348  10.197
200 (0.004) (0.007) (0.015) (0.104) (0.454)  (0.568)
%0 0.008 0.223 0.496 0.794 4.327  15.192
201 (0.004) (0.051) (0.052) (0.084) (0.453) (0.961)

) 0.042 0.293 0.615 2.940 10.361  20.387
(0.006) (0.009) (0.063) (0.281) (0.972) (1.623)

%0 0.004 0.010 0.164 0.501 2.240 4.933
- (0.001) (0.002) (0.011) (0.042) (0.268)  (0.469)

. 0.018 0.022 0.281 0.841 4.418 8.910
100 (0.002) (0.002) (0.016) (0.065) (0.399) (0.457)
20 0.005 0.101 0.403 0.679 4.229  14.584
201 (0.001) (0.007) (0.042) (0.049) (0.532)  (0.567)

) 0.022 0.286 0.549 1.306 9.061  17.178
(0.002) (0.009) (0.065) (0.118) (0.895) (1.340)

Table 3: AISEs for competing methods. The numbers in brackets are the standard errors based

on 50 replicates.



32 6. EXPERIMENTS

1e+00- | $\ | $
LT T
1e-02- $ I % i

1e-04-

AISE

Oracle All-mode Mode-3 Mode-2 Full  Linear Oracle All-mode Mode-3 Mode-2  Full  Linear

Figure 4: The boxplot of AISEs for different models when n = 400 with signal-to-noise ratio
being 20. The left and right panels represent the AISEs for p = 51 and for p = 201, respectively.

The y-axis is measured in logarithmic scale.

6.2 Real Data

We further illustrate the proposed method on the dataset of Framingham Heart Study (FHS;
Dawber et al.|1951), which aims to identify the common factors that leads to cardiovascular
diseases. We used a subset of the data collected from 325 patients, that contains measurements
on 15 phenotypes in addition to the Single Nucleotide Polymorohism (SNP) information. All
the variables were standardized with mean 0 and variance 1. After matching the SNP data with
phenotypes and deleting observations with missing values and outliers, there were 258 patients in
our analysis. We preselected 6 phenotypes that we were interested in. They are height, bi-deltoid
girth, right arm girth-upper third, waist girth, hip girth, and thigh girth. The exposure variable
is set to be the weight. We followed the screening procedure in |[Fan et al. (2014)) to select 200

SNPs as predictors (the intercept was also included in the model). To fit our proposed method,
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all the tuning parameters were selected as discussed in Section [f.6] Specifically, the dataset was
randomly split into three subsets, i.e., a training set, a validation set, and a test set, of size 150,
50, and 58, respectively. The training and validation sets were used to determine (R;, Ry) and
A, and the test set was for evaluating the out-sample prediction performance. The recommended
rule K = [2n'/?] for the number of basis functions leads to K = 6. To evaluate the performance,

the corresponding prediction error was defined as

1 Ntest
Prediction Error = Z lly; — .@Hga
Ntest i=1

where y;’s were the observed responses in the test set, §; = {G X3 b(t)}T@; with G from var-
ious methods and @; the corresponding predictors, and n.s was the size of the test set. We
compared the proposed model, the all-mode reduction, with 4 non-oracle alternatives in Section
[6.1 Furthermore, we additionally implement the elementwise-sparsity method on the full model
to fit the dataset of Framingham Heart Study. Here, a full model with elementwise-sparsity
method can be achieved by using the group Lasso penalization (Yuan and Lin) |2006) on each
coefficient function in to select the relevant predictors for different response variables. The
performance of each method was evaluated based on 50 random splittings of training, validation,
and test sets.

Table {| records the average prediction error of competing methods on the test data and the
performance of the dimension reduction. We observe in Table {4 that the full model with row-
sparsity method outperforms that of elementwise-sparsity method, which implies that the dataset
of Framingham Heart Study may be better fitted under the row-sparsity method rather than the
elementwise-sparsity method. It also shows that the proposed all-mode reduction model has the

highest prediction accuracy, and also reveals significant dimensionality reduction on each mode.
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This result is consistent with that of synthetic data. To investigate biological interpretation
on the identified SNPs, we input the submitted ssfi of the identified SNPs to NCBI database
(Sherry et al.l [2001)) to retrieve the reference rsf records. The proposed all-mode reduction
method identified 30 SNPs by combing the variable selection results of 50 random splits and
some of them have been scientifically confirmed. For example, the reference SNP rs4896044
is found to be associated with hypertension (Consortium, 2007), and rs9321440 has links with
multiple heart diseases (Gagliardi, 2011)). Meanwhile, the mode-3 reduction method identified
51 SNPs, including all of the 30 SNPs selected by the all-mode reduction method. On the
other hand, the mode-2 reduction method identified 47 SNPs. 25 SNPs selected by the all-mode
reduction method are among these 47 SNPs, including the scientifically confirmed rs4896044 and

r$9321440.

Prediction error ﬁl Ry Rj3

All-mode Reduction 0.4542 (0.0071) 2.7 3.1 20
Mode-3 Reduction 0.6011 (0.0196) - - 20
Mode-2 Reduction 0.6385 (0.0357) - 43 -

Full Model (row-sparsity) 1.0181 (0.0417) - - -

Full Model (elementwise-sparsity)  1.2106 (0.0403) - - -

Linear Model 1.2578 (0.0488) - - -

Table 4: Prediction error of the test data. The numbers in brackets are the standard errors based

on 50 random splitting.
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6.3 Additional Numerical Results

To further demonstrate the utility of the proposed all-mode reduction method, we conducted
additional numerical experiments and present the results in Section S.5 of Supplementary Mate-
rial. More precisely, we extended our simulation settings to larger numbers of response variables
q, and plot the trend of the performance of the proposed method when ¢ increases in Section
S.5.1 of Supplementary Material. In Section S.5.2 of Supplementary Material, we depict the
fitted coefficient functions of the biologically confirmed SNP rs9321440 based on 50 replicates
of random splitting. It shows that rs9321440 may have different effects on the phenotypes of
height, bi-deltoid girth, right arm girth-upper third, hip girth, and thigh girth given distinct body
weights. As for the phenotype of waist girth, the effect of this SNP may not vary with body
weights significantly. We refer the interested readers to Section S.5 of Supplementary Material

for details.

7. Discussion

In this paper, a dimension-reduction method based on Tucker decomposition of a 3rd-order tensor
is proposed to estimate the varying coefficients of multivariate varying-coefficient models under
high-dimensional settings. The proposed model unifies dimensionality reductions in three as-
pects: relevant predictors, coefficient functions, and responses. A sparsity-inducing penalization
is also integrated into the estimation due to sparsity consideration. The oracle inequality for
the prediction risk of the proposed estimator is derived under the settings of fixed and random
designs. We have used both simulated and real data sets to evaluate the empirical performance

of the proposed model with some comparison methods, and the results illustrate the superior



36 REFERENCES

performance of our method.

One difficulty of applying the proposed method is the need to tune the ranks of Tucker
decomposition, which may become computationally expensive when the dimension is extremely
high. Developing an efficient way to tune the ranks requires further investigation. Furthermore,
in some applications, the relationships between responses can be determined by some external
covariates, such as spatial locations. The external covariates, sometimes, provide extra infor-
mation for measuring the similarity between responses and thus induces a (weighted) graphical
structure among tasks. Thus, another interesting future research topic is extending the pro-
posed model to the problem of graph regularized multi-task learning. Finally, incorporating the
elementwise-sparsity method with our proposed all-mode reduction model may be useful in other

real applications. We also leave this approach as a future research topic.
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