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Abstract: Multivariate varying-coefficient models (MVCM) are popular statistical tools for analyzing the

relationship between multiple responses and covariates. Nevertheless, estimating large numbers of coefficient

functions is challenging, especially with a limited amount of samples. In this work, we propose a reduced-

dimension model based on the Tucker decomposition, which unifies several existing models. In addition,

sparse predictor effects, in the sense that only a few predictors are related to the responses, are exploited

to achieve an interpretable model and sufficiently reduce the number of unknown functions to be estimated.

All the above dimension-reduction and sparsity considerations are integrated into a penalized least squares

problem on the constraint domain of 3rd-order tensors. To compute the proposed estimator, we propose a

block updating algorithm with ADMM and manifold optimization. We also establish the oracle inequality

for the prediction risk of the proposed estimator. A real data set from Framingham Heart Study is used to

demonstrate the good predictive performance of the proposed method.
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2 1. INTRODUCTION

1. Introduction

Varying coefficient models (VCMs, Hastie and Tibshirani, 1993) are among the popular class

of structured regression models, which have reasonably flexible nonparametric components yet

can be estimated well with a moderate amount of data (Ruppert et al., 2003). In VCMs, the

regression coefficients of predictors vary with an observable exposure variable. VCMs have been

extensively studied in literature and widely used in practice; see, for examples, Hoover et al.

(1998), Huang et al. (2002), Park et al. (2015), and the references therein. For settings with a

large number of predictors (possibly larger than the sample size), Wang et al. (2008) adopted

basis function expansions and the SCAD penalty to address the problem of variable selection. Wei

et al. (2011) and Lian (2012) applied adaptive group Lasso and spline function approximations

to simultaneously identify relevant predictors and estimate varying coefficient functions of the

selected ones. For their estimators, these papers obtained the rate of convergence and variable

selection consistency under suitable conditions. Besides, Xue and Qu (2012) utilized truncated `1-

penalty (TLP) to select variables and obtained the oracle properties for their varying-coefficient

estimator. To enhance the computational scalability, feature screening techniques for the VCM

were considered in Fan et al. (2014) and Liu et al. (2014) by ranking some proposed measures of

the marginal nonparametric contributions of each predictor given the exposure variable, and the

sure independent screening properties were investigated.

In many applications, multiple responses are jointly observed with the predictors and expo-

sure variable. For instance, the Framingham Heart Study (Dawber et al., 1951) collected multiple

phenotype variables from each patient to identify the common factors related to cardiovascular

diseases. Obviously, one can simply model each response variable separately using VCMs. These
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3 1. INTRODUCTION

models are together viewed as a regression model for the multivariate response, called (unstruc-

tured) multivariate varying coefficient model (MVCM). One challenge associated with such a

MVCM is the significant number of coefficient functions required to be estimated. More specif-

ically, we need to estimate pq functions, if there are p covariates and q response variables. To

circumvent this problem, structures among these pq functions should be exploited. He et al.

(2018) proposed a principal-component-based approach by assuming all the coefficient functions

can be approximated by linear combinations of a much smaller number of unknown functions.

But the authors did not exploit the correlation between the responses and their method can-

not handle the settings with large number of response variables. Lian and Ma (2013), on the

other hand, assumed a low-rank structure in the conditional means of the responses among the

samples. However, their model does not take into account the correlations among the predictors

and/or the varying coefficients. Further, they did not propose an efficient algorithm to solve

their penalized least squares problem.

In this work we propose a novel method based on dimension-reduction tools for tensors (Kolda

and Bader, 2009) to handle the MVCM under high-dimensional settings. In particular, we show

that dimension reductions in the predictors, the space of coefficient functions, and the responses

correspond to the low rankness in the first, second, and third mode of a 3rd-order tensor. We thus

propose to use the idea of Tucker decomposition (Tucker, 1966) to integrate these three dimension

reductions into a simple notion of low multilinear rank. Both the work of He et al. (2018) and

Lian and Ma (2013) can be treated as special cases of our proposed model. In addition, sparse

predictor effects, in the sense that only a few of predictors are related to the responses, is often

a reasonable assumption in high-dimensional settings. All the above dimension-reduction and
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4 2. MODEL

sparsity considerations can be incorporated into the estimation procedure through a penalized

least squares problem on the constraint domain of 3rd-order tensors. To compute the proposed

estimator, we design a block updating algorithm with ADMM (Boyd et al., 2011) and manifold

optimization (Edelman et al., 1998; Absil et al., 2009). We also establish the oracle inequality

for the prediction risk of the proposed estimator.

The rest of the paper is organized as follows. In Section 2 we introduce the proposed reduced

multivariate varying-coefficient model using Tucker decomposition. The estimation method and

computational details are presented in Sections 3 and 4, respectively. We establish the oracle

inequality for the prediction risk of the proposed estimator in Section 5. We use both a simulation

study and a real data application in Section 6 to illustrate the practical performance of the

proposed method. The main contributions of this paper are summarized in Section 7 with some

concluding remarks. Technical details are provided in a separate online supplemental document.

2. Model

Let y = (y1, . . . , yq)
ᵀ, x = (x1, . . . , xp)

ᵀ, and t be the q-dimensional vector of responses, the p-

dimensional vector of predictors, and the exposure variable with compact domain T , respectively.

Without loss of generality, we assume T = [0, 1]. Each response is posited to follow the univariate-

response VCM, i.e.,

yl =

p∑
j=1

fjl(t)xj + εl, l = 1, . . . , q, (2.1)

where fjl(t)’s are the coefficient functions and, εl’s are the noise variables with mean 0 and

variance σ2
l . These noise variables are independent of (x, t). By setting x1 = 1, we can see

that the model can accommodate an intercept function. In vector-matrix notation, (2.1) can be
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5 2. MODEL

written as

y = F (t)ᵀx+ ε, (2.2)

where F (t) = (fjl(t))p×q and ε = (ε1, . . . , εq)
ᵀ. We call (2.2) the full model of MVCM, where

there are in total pq varying coefficient functions to be estimated nonparametrically.

When pq is relatively large, there are huge numbers of nonparametric functions, which are

difficult to estimate accurately with a small or moderate amount of data. To cope with this

challenge, Lian and Ma (2013) assumed a rank-R3 structure on the matrix of coefficient functions

with R3 < q, aiming to reduce the model complexity among the responses. Specifically, Lian and

Ma (2013) proposed to reduce the full MVCM (2.2) to

y = CF̃ (t)ᵀx+ ε, (2.3)

where C ∈ Rq×R3 with CᵀC = IR3 and F̃ (t) is a matrix of p × R3 unknown functions. Model

(2.3) implies that the means of the responses conditional on the predictors and exposure variable

are assumed to be R3 linearly dependent among the samples. Compared with (2.2), the number

of parameters is reduced to pR3 functions together with a q × R3 coefficient matrix. He et al.

(2018), on the other hand, proposed a functional principal-component-based approach which

assumes all pq coefficient functions can be well approximated by a small number of R2 unknown

data-driven principal functions β(t) = (β1(t), . . . , βR2(t))
ᵀ. More precisely, they assumed the

vectorized F (t) can be represented by vec{F (t)} = Dβ(t) with a coefficient matrix D ∈ Rpq×R2 ,

and the conditional mean of responses in the full MVCM (2.2) is then reduced to

E(y|x, t) = vec{xᵀF (t)} = (Iq ⊗ xᵀ)vec{F (t)} = (Iq ⊗ xᵀ)Dβ(t). (2.4)
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6 2. MODEL

For model identifiability, the principal functions β(t) are required to be orthonormal, i.e.,

∫
T
β(t)β(t)ᵀ dt = IR2 .

Thus, one only needs to estimate R2 principal functions together with a p × R2 × q coefficient

tensor for a reduced MVCM in (2.4). In the univariate-response VCM, i.e., q = 1, Jiang et al.

(2013) proposed another principal component varying coefficient model. Specifically, treating the

l-th response in (2.1) as a single response, the model of Jiang et al. (2013) is equivalent to

yl = fl(t)
ᵀAᵀxᵀ + εl, (2.5)

where fl(t) is a vector of R1 unknown functions and A ∈ Rp×R1 is the principal loading matrix.

Overall, Models (2.3), (2.4), and (2.5) encompass dimension reductions within the responses, the

coefficient functions, and the predictors, respectively.

However, the above models are hard to compare since each model focuses on a different way

of dimension reduction. In this work, we observe that these models can be unified into a general

model, which allows simultaneous reductions and provides a coherent understanding of these

methods. To illustrate this idea, we begin with the form of (2.4). Denote S̄ ∈ Rp×R2×q to be a

3rd-order tensor satisfying S̄(2) = Dᵀ. Model (2.4) can be written as

y = {S̄ ×̄2 β(t)}ᵀx+ ε, (2.6)

where ×̄2 denotes the 2-mode (vector) product of a tensor with a vector (Kolda and Bader, 2009).

More precisely, the result of the d-mode (vector) product of a generic Nth-order tensor G =

(gi1,i2,...,iN ) ∈ RI1×I2×···IN and a vector v ∈ RId is a tenor of order N −1 with dimension I1×· · ·×

Id−1×Id+1×· · ·×IN such that its (i1, . . . , id−1, id+1, . . . , iN)-th element is
∑Id

id=1 vid ·gi1,i2,...,iN . Such
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7 2. MODEL

a reformulation shows that exploring the correlations among the varying coefficients is equivalent

to the dimension reduction on the second mode of a 3rd-order tensor. Figure 1 illustrates the

corresponding matrix of coefficient functions in (2.6) using this tensor-vector product. Similarly,

the correlations among the predictors and responses are related to dimension reductions on the

first and third modes, respectively.

Figure 1: An illustration plot of the coefficient functions matrix in (2.6) using a tensor formulation

and the 2-mode (vector) product.

Therefore, to simultaneously explore all reductions, we propose

y = {S ×1 A×3 C ×̄2 β(t)} ×̄1 x+ ε, (2.7)

where×d denotes the d-mode (matrix) product of a tensor with a matrix (Kolda and Bader, 2009),

d = 1, 2, 3; β(t) is a vector of R2 unknown principal functions; S ∈ RR1×R2×R3 , A ∈ Rp×R1 , and

C ∈ Rq×R3 are coefficients to be estimated. We depict S ×1 A in Figure 2 to illustrate the

d-mode (matrix) product of a tensor with a matrix. Similar to Jiang et al. (2013), Lian and Ma

(2013), and He et al. (2018), we require A, C, and β(t) are orthonormal, i.e.,

AᵀA = IR1 , CᵀC = IR3 , and

∫
T
β(t)β(t)ᵀ dt = IR2 . (2.8)
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8 2. MODEL

Figure 2: An illustration plot of the d-mode (matrix) product of a tensor and a matrix.

The multilinear structure of the varying coefficients S×1A×3C ×̄2 β(t) coincides with the Tucker

decomposition (Tucker, 1966) for a 3rd-order tensor. We observe that Models (2.3), (2.4), and

(2.5) are all special cases of Model (2.7). In particular, removing the first and second mode

reductions in (2.7) and writing S ×1 A ×̄2 β(t) = F̃ (t), (2.7) can recover (2.3). Further, (2.4)

can be directly obtained by letting S̄ = S×1A×3C. Finally, singling out A and treating q = 1

in S×3C ×̄2 β(t) recovers (2.5). Therefore, each mode in the decomposition S×1A×3C ×̄2 β(t)

corresponds to one reduced model mentioned above.

We conclude this section by a remark that the constraint (2.8) does not guarantee the iden-

tifiability of the proposed model (2.7). Indeed for any U ∈ RR2×R2 with UU ᵀ = IR2 , we have

{S ×1 A×3 C ×̄2 β(t)}ᵀx =
[
(S ×2 U)×1 A×3 C ×̄2 {Uβ(t)}

]ᵀ
x.

In other words, (S,A,C,β(t)) and (S ×2 U ,A,C,Uβ(t)) result in the same reduced MVCM

model. However, only the identification of the regression coefficient functions F (t) is needed to

understand the reduced MVCM (2.7), which is fulfilled since F (t) = S×1A×3C ×̄2 β(t). As for

computation, these identifiability issues may lead to algorithmic instability and so some further

regularizations are introduced on (S,A,C,β(t)) in Section 3 to obtain an efficient algorithm.

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing) 



9 3. PENALIZED LEAST SQUARES ESTIMATION

3. Penalized Least Squares Estimation

To estimate the parameters in our reduced MVCM (2.7), we first approximate the principal

component functions β(t) using splines. Specifically, let b(t) = (b1(t), . . . , bK(t))ᵀ be a vector

of orthonormal B-spline basis functions with dimension K. For the r2-th principal component

function βr2(t), we write

βr2(t) ≈
K∑
k=1

Bk,r2bk(t),

where Bk,r2 ’s are the corresponding spline coefficients. Denote Br2 = (B1,r1 , . . . , BK,r2)
ᵀ. We

stack Br2 , r2 = 1, . . . , R2, into a matrix of coefficients, and let B = (B1, . . . ,BR2) ∈ RK×R2 .

Moreover, we require B to satisfy the constraint BᵀB = IR2 , which leads to the orthonormality

of β(t) in (2.8). Ignoring the approximation error, Model (2.7) can then be written as

y = {S ×1 A ×̄2B
ᵀb(t)×3 C}ᵀx+ ε

= {S ×1 A×2 B ×3 C ×̄2 b(t)}ᵀx+ ε.

(3.9)

The above basis expansion enables us to recast the problem of estimating the varying coefficients

of reduced model (2.7) as the problem of estimating the parameters (S,A,B,C), where S ∈

RR1×R2×R3 , A ∈ Rp×R1 with AᵀA = IR1 , B ∈ RK×R2 with BᵀB = IR2 , and C ∈ Rq×R3 with

CᵀC = IR3 . Given i.i.d. copies {(yi,xi, ti)}ni=1 of (y,x, t), we consider the constrained least

squares estimator:

arg min
S,A,B,C

n∑
i=1

∥∥yi − {S ×1 A×2 B ×3 C ×̄2 b(ti)}ᵀxi
∥∥2
2

s.t. AᵀA = IR1 , B
ᵀB = IR2 , C

ᵀC = IR3 .

(3.10)

In (3.9) and (3.10), S ×1 A ×2 B ×3 C is the Tucker decomposition of a 3rd-order tensor.

In particular, letting G = S ×1 A ×2 B ×3 C, we have rank1(G) ≤ R1, rank2(G) ≤ R2, and
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10 3. PENALIZED LEAST SQUARES ESTIMATION

rank3(G) ≤ R3, where rankd(·) denotes the d-rank of a tensor (Kolda and Bader, 2009), d =

1, 2, 3. We depict the Tucker decomposition representation of model (3.9) in Figure 3. For more

Figure 3: The Tucker decomposition representation of model (3.9).

discussions on the Tucker decomposition and its relationship with other tensor decompositions,

such as CANDECOMP/PARAFAC (CP) decomposition (Harshman, 1970) and Tensor-Train

decomposition (Oseledets, 2011), we refer the interested readers to Kolda and Bader (2009).

Using the form of Tucker decomposition, the least squares problem (3.10) is equivalent to

arg min
G

n∑
i=1

∥∥yi − {G ×̄2 b(ti)}ᵀxi
∥∥2
2

s.t. rankd(G) ≤ Rd, d = 1, 2, 3. (3.11)

The benefit of using a low-rank structure in tensor regression models against simply flattening

the covariate tensor to a matrix or a vector can also been found in Zhou et al. (2013); Li et al.

(2018); Ahmed et al. (2020). Note that our problem is different from existing work of Tucker

tensor regression (Li et al., 2018) and its generalizations (Lu et al., 2020; Ahmed et al., 2020) in

two aspects. First, (3.9) is not the proposed model, but merely an approximation of the target

nonparametric model (2.7). Second, we study multivariate response y, whereas Li et al. (2018);
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11 3. PENALIZED LEAST SQUARES ESTIMATION

Lu et al. (2020); Ahmed et al. (2020) all assume the response variable is a scalar.

For a large value of pq, the dimension reduction in terms of low-rank Tucker decomposition

may not lead to an accurate estimation for the varying coefficients. In many applications, it

is often expected that the responses have similar/related structures and so many important

predictors associated with them are shared, and the union of important predictors associated

with different responses is of a small size. In other words, we assume that only s (s < p and

unknown) predictors are relevant for predicting all the responses. This assumption is shown to

be suitable for many real-world applications; see, for example, Wang et al. (2008); Wei et al.

(2011); He et al. (2018), among many others. We resort to sparsity-inducing penalization to

filter out the irrelevant predictors during estimation. To formulate a suitable penalty function,

we use the Tucker decomposition G = S ×1 A×2 B ×3 C again and rewrite (3.9) as

y = {G ×̄2 b(t)}ᵀx+ ε = {Iq ⊗ b(t)ᵀ}Gᵀ
(1)x+ ε, (3.12)

where G(1) ∈ Rp×qK is the mode-1 matricization (unfolding) of tensor G and ⊗ is the Kronecker

product of matrices (Kolda and Bader, 2009). LetGᵀ
(1),j denote the j-th row ofG(1), j = 1, . . . , p.

In light of (3.12), all unknown coefficients associated with the j-th predictor are contained in

Gᵀ
(1),j. Therefore, the j-th predictor becomes irrelevant whenever the coefficient matrix Gᵀ

(1),j =

0. Borrowing the idea from the group Lasso penalization (Yuan and Lin, 2006), we propose the

following penalized least squares problem

arg min
G

n∑
i=1

∥∥yi − {G ×̄2 b(ti)}ᵀxi
∥∥2
2

+

p∑
j=1

λ‖G(1),j‖2, s.t. rankd(G) ≤ Rd, d = 1, 2, 3, (3.13)

where ‖ · ‖2 is the group Lasso penalty and λ ≥ 0 is the penalty parameter. Note that G(1) =

AS(1)(C ⊗ B)ᵀ. Let aᵀ
j be the j-th row of A, and then Gᵀ

(1),j = aᵀ
jS(1)(C ⊗ B)ᵀ. Due to
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12 4. COMPUTATION

the orthonormal conditions of B and C, we have ‖G(1),j‖2 = ‖aᵀ
jS(1)(C ⊗B)ᵀ‖2 = ‖aᵀ

jS(1)‖2.

Therefore, (3.13) is equivalent to

arg min
S,A,B,C

n∑
i=1

∥∥yi − {S ×1 A×2 B ×3 C ×̄2 b(ti)}ᵀxi
∥∥2
2

+

p∑
j=1

λ‖aᵀ
jS(1)‖2

s.t. AᵀA = IR1 , B
ᵀB = IR2 , C

ᵀC = IR3 .

(3.14)

Let (Ŝ, Â, B̂, Ĉ) be a solution of (3.14). Correspondingly, a solution of (3.13) can be constructed

as Ĝ = Ŝ ×1 Â ×2 B̂ ×3 Ĉ (or equivalently Ĝ(1) = ÂŜ(1)(Ĉ ⊗ B̂)ᵀ). The resulting estimated

fjl(t) becomes

f̂jl(t) =
K∑
k=1

Ĝjklbk(t), (3.15)

where Ĝjkl is the (j, k, l)-th element of Ĝ. We will provide a theoretical analysis of the proposed

estimation in Section 5.

4. Computation

To calculate the estimator, we propose a block updating algorithm to solve the problem (3.14),

i.e., updating S, A, B, and C alternatively while keeping other components fixed. To facilitate

the discussion, we let L(S,A,B,C) be the objective function in (3.14) for a given λ, and denote

the squared loss and the penalty respectively by

H(S,A,B,C) =
n∑
i=1

∥∥yi − {S ×1A×2B ×3 C ×̄2 b(ti)}ᵀxi
∥∥2
2

and P (S,A) =

p∑
j=1

λ‖aᵀ
jS(1)‖2.

Denote S(t),A(t),B(t), andC(t) be the t-th iteration (t ≥ 1) of S,A,B, andC in the proposed al-

gorithm respectively. When we update one block with the other blocks fixed, we will useH and/or

P with suitable subscripts to simplify the objective functions with respect to the target block.
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13 4. COMPUTATION

For example, when A(t),B(t),C(t) are fixed, we let HA(t),B(t),C(t)(S) = H(S,A(t),B(t),C(t)) and

PA(t)(S) = P (S,A(t)), respectively, as the functions with respect to S. Analogously, we have

HS(t+1),B(t),C(t)(A), HS(t+1),A(t+1),C(t)(B), and PS(t+1)(A). The concrete updating details for each

block are shown in the following subsections.

4.1 Updating S

Using the properties of d-mode product of a tensor (Kolda and Bader, 2009) and vectorization

(unfolding of a tensor), we can respectively rewrite HA(t),B(t),C(t)(S) and PA(t)(S) as

HA(t),B(t),C(t)(S) =
n∑
i=1

‖yi − [C(t) ⊗ {bᵀ(ti)B(t)} ⊗ (xᵀ
iA

(t))]vec{S(1)}‖22

and PA(t)(S) = λ

p∑
j=1

‖(a(t)
j )ᵀS(1)‖2,

where S(1) ∈ RR1×R2R3 is the mode-1 matricization (unfolding) of tensor S, vec(·) is the vector-

ization operator, and (a
(t)
j )ᵀ is the j-th row of A(t). Thus, updating S is equivalent to obtaining

the solution of

min
S∈RR1×R2×R3

HA(t),B(t),C(t)(S) + PA(t)(S). (4.16)

Since PA(t)(S) is not differentiable, we propose to use a majorization-minimization (MM) al-

gorithm. The acronym can also stand for minorization-maximization if one aims to find the

maximum of an objective function; see, for example, Hunter and Lange (2004). MM algorithms

are useful extensions of the well-known class of EM algorithms in which the E-step is equivalent

to a minorization step. To construct the majorized function for PA(t)(S), we extend the MM

algorithm of the Lasso penalty (Hunter and Li, 2005) to the group Lasso penalization. Moreover,

since (4.16) is an objective function with respect to a tensor, some tensor operations need to
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14 4. COMPUTATION

be considered and applied to this subproblem. See Section S.1.1 of Supplementary Material for

more details, where Algorithm S.1 summarizes the proposed MM algorithm to update S.

4.2 Updating A

Similar to Section 4.1, we use the properties of vectorization and d-mode product (Kolda and

Bader, 2009) to simplify HS̃(t+1),B(t),C(t)(A) as

HS̃(t+1),B(t),C(t)(A) =
1

2

n∑
i=1

∥∥yi − [{[C(t) ⊗ {bᵀ(ti)B(t)}
](
S̃

(t+1)
(1)

)ᵀ}⊗ xᵀ
i

]
vec(A)

∥∥2.
To simplify the updating procedure for A, we first remove the orthonormal constraint on A and

update A in the Euclidean space. An orthonormalization step will be added in the outer loop

to project the updated A back to an orthonormal matrix. The subproblem of A without the

orthonormal constraint can then be written as

min
A

{
HS̃(t+1),B(t),C(t)(A) + PS(t+1)(A)

}
, (4.17)

where PS(t+1)(A) = λ
∑p

j=1 ‖(S̃
(t+1)
(1) )ᵀaj‖. Since there is no analytic solution to (4.17), we propose

to use the Alternating Direction Method of Multipliers (ADMM, Gabay and Mercier, 1976).

Denote g(x) = ‖x‖ and introduce the slack variable γj ∈ RR2R3 , j = 1, . . . , p. We rewrite the

optimization problem (4.17) as

min
A,Γ

{
HS̃(t+1),B(t),C(t)(A) + λ

p∑
j=1

g(γj)

}
, s.t. Γ = AS̃

(t+1)
(1) , (4.18)

where Γ = (γ1,γ2, . . . ,γp)
ᵀ. In (4.18), the constraint is equivalent to γj = (S̃

(t+1)
(1) )ᵀaj, j =

1, 2, . . . , p. The corresponding augmented Lagrangian function is

Lρ(A,Γ;ν) = HS̃(t+1),B(t),C(t)(A) + λ

p∑
j=1

g(γj) +
ρ

2

∥∥∥∥AS̃(t+1)
(1) − Γ +

1

ρ
ν

∥∥∥∥2
2

, (4.19)
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15 4. COMPUTATION

where ν ∈ Rp×R2R3 is the dual variable.

We defer the detailed analysis of (4.19) to Section S.1.2 of Supplementary Material, in which

Algorithm S.2 summarizes the proposed ADMM algorithm. Let Ã(t+1) denote the output of

Algorithm S.2 for A. To project the updated A to be an orthonormal matrix, we further

let qr.Q(Ã(t+1)) and qr.R(Ã(t+1)) be the Q and R factors of the QR decomposition of Ã(t+1),

respectively. Here we require the R factor to have positive diagonal elements for QR identifiability.

We update A(t+1) as qr.Q(Ã(t+1)), and S
(t+1)
(1) is then updated as qr.R(Ã(t+1)) · S̃(t+1)

(1) (so for

S(t+1)). Further note that the direct output of Algorithm S.2 does not result in the exact row

sparsity of Ã(t+1)S̃
(t+1)
(1) . To achieve the variable selection in our algorithm, we can further output

the slack variable Γ(t+1) in Algorithm S.2 as an auxiliary result and replace Ã(t+1)S̃
(t+1)
(1) by Γ(t+1),

which indeed fulfills the constraint of the slack variable in (4.18) and the difference of these two

terms is close enough. The output of Γ(t+1) in Algorithm S.2 remains unchanged when the above

orthonormalization step is applied.

4.3 Updating B

We let the orthogonal Stiefel manifold be

St(R2, K) = {B ∈ RK×R2 : BᵀB = IR2}. (4.20)

Using the properties of the d-mode product of a tensor and a matrix (Kolda and Bader, 2009),

we can rewrite HS(t+1),A(t+1),C(t)(B) and update B from solving the optimization problem

B(t+1) = arg min
B∈St(R2,K)

n∑
i=1

∥∥∥yi − ([{C(t) ⊗ (xᵀ
iA

(t+1))}{S(t+1)
(2) }

ᵀ]⊗ bᵀ(ti))vec(B)
∥∥∥2
2
, (4.21)

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing) 



16 4. COMPUTATION

where S(2) is the mode-2 matricization of tensor S. Note that the objective function in (4.21)

is a smooth function with respect to B on the Stiefel manifold (4.20), so we can use manifold

gradient method (Absil et al., 2009), which is an extension of the gradient descent algorithm in

the manifold space. Algorithm S.3 in Section S.1.3 of Supplementary Material specializes our

implementation for using the gradient decent algorithm on the Stiefel manifold.

4.4 Updating C

Using S(3) as the mode-3 matricization (unfolding) of tensor S, we can rewrite (3.9) as

y = CS(3){(bᵀ(t)B)⊗ (xᵀA)}ᵀ + ε.

Denote Y = (y1, . . . ,yn)ᵀ ∈ Rn×q and M
(t)
C = (M

(t)
C,1, . . . ,M

(t)
C,n)ᵀ ∈ Rn×R3 , where M

(t)
C,i =

{bᵀ(ti)B(t+1)⊗ (xᵀ
iA

(t+1))}(S(t+1)
(3) ) ∈ RR3 , i = 1, . . . , n. We then focus the following subproblem

to update C

C(t+1) = arg min
CᵀC=I

∥∥Y −M (t)
C C

ᵀ
∥∥2
F
, (4.22)

which is known as the Orthonormal Procrustes problem (Gower and Dijksterhuis, 2004), and

the solution to this problem is equivalent to finding the nearest orthonormal matrix of Y ᵀM
(t)
C .

Therefore, write the singular value decomposition of Y ᵀM
(t)
C as

Y ᵀM
(t)
C = UΣV ᵀ, (4.23)

where U ∈ Rq×R3 and V ∈ RR3×R3 are orthonormal matrices, and Σ ∈ RR3×R3 is a diagonal

matrix with non-negative values in its diagonal. The analytic solution to (4.22) can be obtained

as

C(t+1) = UV ᵀ. (4.24)
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17 4. COMPUTATION

4.5 Summary and Initializations

We summarize the procedure of the block updating algorithm in Algorithm 1. To achieve a

sparse solution, the output of Algorithm 1 is Ĝ(1) = Γ̂(Ĉ ⊗ B̂)ᵀ. We can then reconstruct Ĝ

through the estimated Ĝ(1) by the inverse of the mode-1 unfolding and obtain the estimator of

the varying coefficients using (3.15).

Here are some notable remarks for Algorithm 1. For the subproblems of S and A, due to

convexity, we can show that the corresponding MM algorithm can generate a sequence converg-

ing to the unique minimizer of each subproblem using similar arguments as in Corollary 3.3 of

Hunter and Li (2005). We thus use random initializations for S and A at their first iteration of

outer loop. Afterwards, we let the outputs of S and A obtained from the preceding iteration of

the outer loop be the initialization values, respectively, of the next iteration of the outer loop.

As for C, the corresponding subproblem for this component can be written as an Orthogonal

Procrustes problem which has a closed-form solution, and thus, no initialization is needed for

C. Finally, the subproblem for B is not convex due to the orthonormal constraint, and the pro-

posed manifold gradient descent algorithm uses only the first-order information on the objective

function, which may not guarantee the convergence to a local minimizer (Absil et al., 2009).

Therefore, although Algorithm 1 can guarantee to obtain a sequence of decreasing values of the

objective function, it is unclear whether this algorithm would guarantee the convergence to a

global minimizer. Nevertheless, Absil et al. (2009) also shows that using any sub-sequence of the

iterations generated by the manifold gradient descent algorithm can converge to the stationary

point of the subproblem. We can thus run Algorithm 1 from multiple initializations of B and

return the best result. However, this is computationally expensive. Instead, we propose to use
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18 4. COMPUTATION

a rough estimator Binit as an initial point for the manifold optimization of B. Specifically, at

(t+ 1)-th iteration, define

B̃ := arg min
B∈RK×R2

HS(t+1),A(t+1),C(t)(B),

which can be easily solved since the objective function is differentiable with respect to B in the

Euclidean space. Next, we simply project B̃ onto the Stiefel manifold and let the projection be

the initial point, i.e.,

Binit = PSt(R2,K)(B̃) = B̃(B̃ᵀB̃)−1/2.

We use the above Binit as the initial value in Algorithm S.3 when we update B. Our numer-

ical experiments show that this strategy is not only faster than the use of multiple random

initializations but also generates stable iteration sequences.

4.6 Tuning Parameters

Our model has totally six tuning parameters (m,K,R1, R2, R3, λ), where m is the order of the

spline basis, K is the number of basis, (R1, R2, R3) are the Tucker ranks, and λ is the regular-

ization parameter. We first fix the spline order m = 4 (cubic spline) which is commonly used

to alleviate the computational burden for estimating nonparametric functions (Ruppert et al.,

2003). For the number K of the spline basis functions, there exist many recommended data-

driven methods to decide K based on the sample size (see, for example, Huang et al., 2002, 2004;

Ruppert et al., 2003, and references therein) for empirical studies. To be computationally simple,

we follow the strategy used in Fan et al. (2014) to let K = [2n1/5], where [·] denotes rounding

to the nearest integer. The knots of spline basis functions are also data-driven and chosen as
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19 4. COMPUTATION

Algorithm 1: Block Updating Algorithm to Solve (3.14).

Input: Dataset {yi,Xi, ti}ni=1; Random initial points

S(0) ∈ RR1×R2×R3 ,A(0) ∈ Rp×R1 ,B(0) ∈ St(R2, K),C(0) ∈ St(R3, q), and t = 0.

Output: Ĝ(1) = Γ̂(Ĉ ⊗ B̂)ᵀ.

repeat

1. Update S̃(t+1) using Algorithm S.1.

2. Update Ã(t+1) using Algorithm S.2 as well as Γ(t+1) for variable selection.

3. After the QR decomposition of Ã(t+1), let A(t+1) and S
(t+1)
(1) be qr.Q(Ã(t+1)) and

qr.R(Ã(t+1)) · S̃(t+1)
(1) , repectively.

4. Update B(t+1) using manifold gradient optimization method (Algorithm S.3).

5. Update C(t+1) = UV ᵀ as in (4.24) with U and V being defined in (4.23).

6. t = t+ 1.

until L(S(t+1),A(t+1),B(t+1),C(t+1))− L(S(t),A(t),B(t),C(t)) < ε. Denote Γ̂ = Γ(t+1),

Ĉ = C(t+1), and B̂ = B(t+1).

equally spaced quantiles. We find this empirical rule works well in all of our experiments. For the

choice of R3, which is corresponding to the dimension reduction associated with the responses,

we conduct a singular value decomposition of the response matrix Y ∈ Rn×q. We then choose R3

such that the first R3 dominant singular values, which together account for at least 90% of the

sum of all singular values. For (R1, R2) and λ, we apply the hold-out method (He et al., 2018;

Hannun et al., 2019) in our numerical study for its computational efficiency. More precisely,
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20 5. THEORY

we randomly split our available data into two subsets: a training set with 75% samples and a

validation set with 25% samples. We set the validation samples aside, and use Algorithm 1 to

fit our proposed method on the training set. The parameters (R1, R2) and λ are selected by

minimizing the validation error:

1

nvalid

nvalid∑
i=1

(yvalid,i − ŷvalid,i)2,

over the grids of corresponding tuning parameters, where nvalid is the size of the validation set,

ŷvalid,i is the prediction value of the i-th observation yvalid,i in the validation set.

5. Theory

In this section, we establish the oracle inequality for the prediction accuracy of the proposed

estimator. For readability, we first show the oracle inequality under a fixed-design setting, where

the predictors and the exposure variable are fixed. Similarly, we say a setting is random design

if these variables are randomly distributed. To extend to random design settings, we show that

the corresponding assumption on the design (Condition M(J , δJ )) can be satisfied with high

probability (tending to one) when x and t are random under some mild regularity conditions.

The result under the fixed-design setting is presented below, while we defer the theoretical result

for random design to Section S.4 of Supplementary Material.

Let Σ = ZᵀZ/n, Z = (z1, . . . ,zn)ᵀ, where zi = xi ⊗ b(ti) ∈ RpK . We use λmax(·) and

λmin(·) to denote the maximum and minimum eigenvalue of a matrix, respectively. Denote by

S0, A0, C0, and β0 the true values of S, A, C, and β in (2.7), respectively. Denote by s

the number of non-zero rows in A0, which corresponds to the relevant predictors. We also

write H0 = S0 ×1 A0 ×3 C0 ∈ Rp×R2×q, and correspondingly the true coefficient functions are

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing) 



21 5. THEORY

(f0,jl(t))p×q = F0(t) = H0 ×̄2 β0(t). Let

Y = (y1, . . . ,yn)ᵀ ∈ Rn×q and E = (ε1, . . . , εn)ᵀ ∈ Rn×q.

Now we state a condition that will be required to describe the oracle inequality in our theoretical

results.

Condition M(J , δJ ). We say the design matrix Σ satisfies Condition M(J , δJ ) for an index

set J ⊂ {1, . . . , p} and a positive number δJ , if

tr(M ᵀΣM ) ≥ δJ
∑
j∈J

‖Mj‖2F

for all M ∈ RpK×q satisfying 2
∑

j∈J ‖Mj‖F ≥
∑

j∈J c ‖Mj‖F , where Mj is the collection of

rows related to the j-th predictor in M and tr(·) denotes the trace of a matrix.

Condition M(J , δJ ) is similar to the one used in Bunea et al. (2012) for reduced rank

regression models. In particular, ConditionM(J , δJ ) is motivated by the “restricted eigenvalue”

(RE) condition introduced in Bickel et al. (2009) for studying the asymptotic properties of high-

dimensional linear regression. It implies that the least eigenvalue of relevant predictors is greater

than or equal to δJ by letting Mj = 0, j ∈ J c. Note that the constant 2 in the inequality

2
∑

j∈J ‖Mj‖F ≥
∑

j∈J c ‖Mj‖F of Condition M(J , δJ ) is merely chosen for neat presentation

of the statements, and it can be replaced by any positive constant greater than 1. Lemma

S.3 of Supplementary Material shows that when n is at least as large as the magnitude of

|J |2q2K2 + |J |2qK log p, Condition M(J , δJ ) holds for a constant δJ > 0 with probability

tending to one under some mild conditions of random design.

The following assumptions are needed in our analysis.
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Assumption 1. The entries of the noise matrix E are independent and identically distributed

Gaussian random variables with mean zero and variance σ2.

Assumption 2. The columns of the true parameters H0,(2) (mode-2 matricization of H0) has

Euclidean norms bounded by a constant.

Assumption 3. The domain of the exposure variable t is T = [0, 1]. The order of the B-spline

used in this paper satisfies ζ ≥ τ + 1/2. Let 0 = ξ1 < ξ2 < · · · < ξK−ζ+2 = 1 denote the knots of

B-spline basis. Furthermore, there exists a positive constant S1 such that

hn = max
k=1,...,K−ζ+1

|ξk+1 − ξk| � K−1 and hn

/
min

k=1,...,K−ζ+1
|ξk+1 − ξk| ≤ S1.

Assumption 4. The true principal functions β0,r2 ∈ H, r2 = 1, . . . , R2. Here H is the space of

functions from [0, 1] to R satisfying the Hölder condition of order ω, i.e.,

H =
{
g : ∃C ∈ (0,∞) s.t. |g(ι)(x1)− g(ι)(x2)| ≤ C|x1 − x2|ω, ∀ x1, x2 ∈ [0, 1]

}
,

where ι is a nonnegative integer and g(ι) is the ι-th derivative of g, such that ω ∈ (0, 1] and

τ = ι+ ω > 1/2.

Assumptions 1–4 are commonly seen in the literature of nonparametric regressions (Huang

et al., 2010; He et al., 2018). Specifically, Assumption 1 is used to control the stochastic error.

Under Assumptions 3 and 4, it follows from Lemma 5 of Stone (1985) that there exists B0,r2 =

(B0,r2,1, . . . , B0,r2,K)ᵀ such that for some constant S2,∥∥∥∥β0,r2 − K∑
k=1

B0,r2,kbk

∥∥∥∥
∞
≤ S2

Kτ
, r2 = 1, . . . , R2, (5.25)

where ‖ · ‖∞ is the uniform norm of functions. Let B0 = (B0,1, . . . ,B0,R2)
ᵀ ∈ RK×R2 and

G0 = S0 ×1 A0 ×2 B0 ×3 C0 ∈ Rp×K×q.
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Note that {G0 ×̄2 b(t)}ᵀx is only an approximation to the true regression function, due to the

nonparametric nature of the multivariate varying-coefficient model. Using the matricization

operator of a tensor (Kolda and Bader, 2009), it can be shown that

{G0 ×̄2 b(ti)}ᵀxi = G0,(3)zi, i = 1, . . . , n, (5.26)

where G0,(3) is the mode-3 matricization of G0. By (5.25), (5.26), and Assumption 2, the

approximation error over n observations, R := Y −E −ZGᵀ
0,(3), satisfies

‖R‖2F = ‖Y −E −ZGᵀ
0,(3)‖

2
F ≤ S3

nsq

K2τ
, (5.27)

for some positive constant S3, where we recall s is the number of relevant predictors.

Further, for any G ∈ Rp×K×q with rank restrictions rankd(G) ≤ Rd, d = 1, 2, 3, we write

∆G =

{ n∑
i=1

‖{G ×̄2 b(ti)}ᵀxi − {G0 ×̄2 b(ti)}ᵀxi‖2
}1/2

(5.28)

as the discrepancy between G and G0 in terms of prediction. Similarly, we write

∆F =

{ n∑
i=1

‖F (ti)
ᵀxi − F0(ti)

ᵀxi‖2
}1/2

(5.29)

as the discrepancy between the coefficient functions F (·) with F (·) = G ×̄2 b(·) and F0(·). The

following Theorem 1 shows the prediction accuracy for a solution Ĝ of (3.13), and its proof is

deferred to Section S.2 of Supplementary Material.

Theorem 1. Let J (G) be the index set of nonzero rows of G(1), the mode-1 matricization of

G with rankd(G) ≤ Rd, d = 1, 2, 3, and denote R = min(R1R2, R3). Suppose Assumptions 1–4

hold. Taking

λ2 = S4R3Rnλmax(Σ)Kσ2{1 + log(p)} (5.30)
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for some constant S4 > 0, we then have

∆2
Ĝ
≤ S5∆

2
G + S6qRσ

2 + S7
R3RK|J (G)|λmax(Σ)σ2 log(p)

δJ (G)

+ S8
nsq

K2τ
(5.31)

with probability at least

1− 8 exp(−q/2)

3K log(p)
, (5.32)

provided Σ satisfies Condition M(J (G), δJ (G)), where S5, . . . , S8 are positive constants.

Theorem 1 shows the finite-sample oracle inequality for the prediction error between the

proposed estimator and its oracle spline approximation. Since the proposed Algorithm 1 cannot

guarantee the generated sequence converges to a global minimum of the optimization problem,

we remark that there exists a gap between the oracle inequality for the global optimizer and the

practical output from the proposed block updating algorithm.

For the coefficient functions, we correspondingly denote F̂ (t) = Ĝ ×̄2 b(t), where Ĝ is

a solution to (3.13). Theorem 1 can then be generalized to the prediction error for F̂ (t) in

terms of (5.29) as the following corollary. The proof of Corollary 1 is deferred to Section S.3 of

Supplementary Material.

Corollary 1. We have

∆2
F̂
≤ 2S5∆

2
G + 2S6qRσ

2 + 2S7
R3RK|J (G)|λmax(Σ)σ2 log(p)

δJ (G)

+ (2S8 + 2S3)
nsq

K2τ

with probability at least (5.32) under the same conditions of Theorem 1.

One direct application of Theorem 1 is to obtain the rate of convergence for the prediction

accuracy of the proposed estimator. We can also show that the relevant predictors can be

identified with probability tending to one. In the following, let ‖f0,jl‖2 be the L2 norm of f0,jl
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under the Lebesgue measure and f̂jl be the estimated coefficient function of f0,jl from (3.15).

The proof of Corollary 2 is deferred to Section S.3 of Supplementary Material.

Corollary 2. Suppose Assumptions 1–4 hold and Σ satisfies Condition M(J (G0), δJ (G0)). If

we let

K �
{

nδJ (G0)q

R3Rλmax(Σ) log(p)

}1/(2τ+1)

,

and λ2 as in (5.30), then the prediction error ∆2
F̂
/n of estimated coefficient functions F̂ satisfies

∆2
F̂
/n = Op

(
qR

n
+

{
R3Rλmax(Σ) log(p)

nδJ (G0)

}2τ/(2τ+1)

sq1/(2τ+1)

)
. (5.33)

Further, if

q(4τ+1)/(2τ+2)δ
−1/(2τ+2)
J (G0)

R{R3λmax(Σ) log(p)}−τ/(τ+1)

n

+
s(2τ+1)/τq1/(2τ)δ

−(4τ+1)/(2τ)
J (G0)

R3Rλmax(Σ) log(p)

n
→ 0

(5.34)

as n→∞ and
∑q

l=1 ‖f0,jl‖22 ≥ S9 for some constant S9 > 0, ∀j ∈ J (G0), we then have

P
{
F̂j(t) 6= 0, j ∈ J (G0)} → 1 as n→∞,

where F̂ ᵀ
j (t) = (f̂j1, . . . , f̂jq) is the j-th row F̂ .

As we presented in Section 2, Models (2.3) (Lian and Ma, 2013) and (2.4) (He et al., 2018)

can be regarded as special cases of our proposed all-mode reduction method. The derived rate of

convergence in (5.33) include those in He et al. (2018) and Lian and Ma (2013) as special cases

with an extra log p term due to the use of different penalization method. Condition (5.34) for the

variable selection consistency indicates that the sample size n should be large enough compared

with the numbers of relevant predictors s and responses q. A simple and sufficient condition for

(5.34) to hold is that n should be larger than the magnitude of q2s4R3Rλmax(Σ) log(p)δ−2J (G0)
.
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6. Experiments

6.1 Synthetic Data

We conduct a simulation study to evaluate the performance of the proposed model. The data

were simulated from the model:

yil =

p∑
j=1

fjl(ti)xil + εil, i = 1, . . . , n; l = 1, . . . , q,

where {εil} are i.i.d. random variables with normal distribution N (0, σ2). We set xi1 = 1 as

the intercept for all i, and the remaining p − 1 predictors were generated from a multivariate

Gaussian distribution with mean zero and covariance Cov(xij1 , xij2) = ρ|j1−j2|, 1 6 j1, j2 6 p− 1.

The exposure variable ti was generated from the uniform distribution on [0, 1], i = 1, . . . , n.

{fjl} were generated according to the all-mode reduction model as in (2.7). In particular, the

elements of S ∈ RR1×R2×R3 and C ∈ Rq×R3 were i.i.d. N (0, 1) random variables. We let the first

s predictors, including the intercept, be the truly relevant predictor variables, and the rest p− s

predictors have no effect on the responses {yil}. Therefore, we generated the entries of the first

s rows of A ∈ Rp×R1 independently from N (0, 1) and the remaining rows were set as zero.

We set R1 = R2 = R3 = 2, p = 51 or 201, s = 11, q = 15, and ρ = 0.3. As for σ2, it

was chosen according to the signal-to-noise ratio (SNR), trace{Var(
∑p

j=1 fjl(ti)xil)}/qσ2. More

specifically, two SNRs, 20 and 2, were investigated in our simulation study. The normalized

principal functions were specified as β(t) = (β1(t), β2(t))
ᵀ = (

√
2 cos(πt),

√
2 sin(2πt))ᵀ on the

domain t ∈ [0, 1], which satisfy
∫
β(t)β(t)ᵀ dt = I2, a 2 × 2 identity matrix. Two sample sizes,

200 and 400 were considered. For each scenario, 50 replicates were generated.

To fit our model, all the tuning parameters of the proposed method were selected as discussed
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in Section 4.6. We referred to our proposed method as the all-mode reduction in the following

discussion.

We compared the all-mode reduction with four different methods: the mode-3 reduction

model (Lian and Ma, 2013), the mode-2 reduction model (He et al., 2018), the full model, and

the linear model. Here, the full model refers to (2.2) with the group Lasso method (Yuan and

Lin, 2006) to select the relevant predictors. We can set R1 = p, R2 = K, and R3 = q in our model

and use Algorithm S.1 of Supplementary Material to solve its estimator. In the linear model, the

regression coefficients are assumed to be constants and the group Lasso method is also employed.

Both the full model and the linear model have the tuning parameter λ. To select λ, we used the

same validation criteria as our model for the full model and cross-validation for the linear model.

The mode-3 reduction model corresponds to dimension reduction in the responses. Therefore, its

estimator can be obtained by setting R1 = p and R2 = K in our model and iteratively updating

S and C using Algorithm S.1 of Supplementary Material and (4.24). The tuning parameters R3

and λ were selected by the hold-out method. As for the mode-2 reduction model, we applied

the implementation provided in He et al. (2018), where cross-validation was used to select the

tuning parameters R2 and λ.

In terms of variable selection, we calculated “True Discovery” as the average number of

predictors selected by the methods which in fact are relevant ones, and used “False Discovery” to

stand for the average number of predictors selected by the methods which in fact are irrelevant

ones. The variable selection performance of the competing methods is summarized in Tables 1

and 2 for sample sizes n = 250 and n = 400, respectively, together with the performance of the

rank selection R̂1, R̂2, and R̂3 for corresponding methods. Note that the reported selected ranks
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are the average values of 50 replicates. Tables 1 and 2 show that the proposed all-mode reduction

model can identify all the non-zero varying coefficient functions with fewest false discovery among

competing methods. Though the full and linear models have high accuracy on identifying relevant

predictors, their poor performance on false discovery indicate that these methods falsely include

many irrelevant predictors in their estimators. The mode-2 and mode-3 reduction methods have

similar performance that they sometimes cannot correctly identify the true non-zero varying

coefficients, especially when SNR is relatively small. As for the rank selections, it’s show that

the third rank can be correctly selected as R̂3 = 2 by our proposed model. For the first and

second ranks, we find that more than 75% for the case SNR=20 and 60% for the case SNR=2 are

selected as 2 (the true value) among 50 replicates. On average, the proposed all-mode method

may tend to select R̂1 and R̂2 slightly larger than their true values.

To evaluate the estimation accuracy, we calculated the average integrated squared error

(AISE) of various methods as

AISE =
1

q

p∑
j=1

q∑
l=1

∫ 1

0

{f̂jl(t)− fjl(t)}2 dt,

where f̂jl(t) denotes a generic estimator of fjl(t) using different methods. The above integrals

were computed by Monte-Carlo method. Table 3 reports the AISEs of competing methods

with corresponding standard errors. For benchmark, we also added the oracle estimator which

only included the true relevant predictors in its model. In the oracle setting, the true relevant

predictors were assumed to be known, and therefore we did not include the penalization in the

objective function, which enabled us to use least squares method to estimate S and A. We

used the same framework of block updating Algorithm 1 to compute the oracle estimator. The

boxplot of AISEs for different methods with sample size n = 400 was depicted at Figure 4. We
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R̂1 R̂2 R̂3 True Discovery False Discovery

p = 51

SNR=20

All-mode Reduction 2.34 2.14 2.00 11.00 (0.00) 3.26 (0.28)

Mode-3 Reduction - - 2.00 10.86 (0.55) 10.45 (0.83)

Mode-2 Reduction - 2.19 - 11.00 (0.00) 11.39 (0.70)

Full Model - - - 11.00 (0.00) 13.48 (0.93)

Linear Model - - - 11.00 (0.00) 19.07 (1.19)

SNR=2

All-mode Reduction 2.64 2.34 2.00 11.00 (0.00) 3.65 (0.34)

Mode-3 Reduction - - 2.00 10.34 (0.95) 14.43 (1.14)

Mode-2 Reduction - 2.25 - 11.00 (0.00) 18.75 (1.40)

Full Model - - - 11.00 (0.00) 21.31 (1.54)

Linear Model - - - 11.00 (0.00) 24.87 (1.60)

p = 201

SNR=20

All-mode Reduction 2.67 2.58 2.00 11.00 (0.00) 12.08 (0.59)

Mode-3 Reduction - - 2.00 10.96 (0.54) 19.40 (1.15)

Mode-2 Reduction - 2.41 - 11.00 (0.00) 25.86 (1.46)

Full Model - - - 11.00 (0.00) 28.47 (1.96)

Linear Model - - - 11.00 (0.00) 31.51 (2.57)

SNR=2

All-mode Reduction 2.57 2.60 2.00 10.44 (0.39) 15.42 (1.32)

Mode-3 Reduction - - 2.00 9.96 (1.21) 19.87 (1.47)

Mode-2 Reduction - 2.84 - 9.83 (0.81) 23.17 (1.74)

Full Model - - - 11.00 (0.00) 36.48 (2.18)

Linear Model - - - 11.00 (0.00) 44.87 (2.45)

Table 1: Dimension reduction and variable selection results for group Lasso penalized estimators

for n = 200. The numbers in the brackets are the standard errors based on 50 replicates.
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R̂1 R̂2 R̂3 True Discovery False Discovery

p = 51

SNR=20

All-mode Reduction 2.31 2.15 2.00 11.00 (0.00) 2.42 (0.28)

Mode-3 Reduction - - 2.00 11.00 (0.00) 8.64 (0.61)

Mode-2 Reduction - 2.20 - 11.00 (0.00) 8.78 (0.66)

Full Model - - - 11.00 (0.00) 11.52 (0.84)

Linear Model - - - 11.00 (0.00) 17.87 (1.15)

SNR=2

All-mode Reduction 2.39 2.21 2.00 11.00 (0.00) 3.71 (0.34)

Mode-3 Reduction - - 2.00 10.52 (0.78) 10.72 (0.90)

Mode-2 Reduction - 2.23 - 11.00 (0.00) 12.38 (0.92)

Full Model - - - 11.00 (0.00) 16.86 (1.01)

Linear Model - - - 11.00 (0.00) 21.87 (1.45)

p = 201

SNR=20

All-mode Reduction 2.45 2.50 2.00 11.00 (0.00) 10.71 (0.58)

Mode-3 Reduction - - 2.00 11.00 (0.00) 18.85 (1.02)

Mode-2 Reduction - 2.38 - 11.00 (0.00) 20.32 (1.38)

Full Model - - - 11.00 (0.00) 23.10 (1.82)

Linear Model - - - 11.00 (0.00) 30.51 (2.47)

SNR=2

All-mode Reduction 2.45 2.70 2.00 10.50 (0.24) 11.83 (1.00)

Mode-3 Reduction - - 2.00 10.12 (1.11) 17.57 (1.16)

Mode-2 Reduction - 2.49 - 10.33 (0.93) 19.48 (1.36)

Full Model - - - 11.00 (0.00) 31.59 (2.28)

Linear Model - - - 11.00 (0.00) 43.07 (1.82)

Table 2: Similar to Table 1 but for n = 400.

can conclude from Table 3 and Figure 4 that all-mode reduction model outperforms the non-

oracle estimators with smallest AISE. For example, when the sample size n = 400, the all-mode
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reduction method reduces AISE by 48%–94% compared with the mode-3 reduction and by 78%–

98% compared with the mode-2 reduction. The performance of the all-mode reduction method is

improved when the sample size increases, which is consistent with our theoretical investigation.

Among the competing methods, the full model and the linear model show the worst performance.

n p SNR Oracle
All-mode

Reduction

Mode-3

Reduction

Mode-2

Reduction

Full

Model

Linear

Model

200

51

20
0.007

(0.002)

0.011

(0.003)

0.237

(0.019)

0.782

(0.082)

3.459

(0.339)

6.761

(0.674)

2
0.031

(0.004)

0.085

(0.007)

0.314

(0.015)

1.484

(0.104)

6.348

(0.454)

10.197

(0.568)

201

20
0.008

(0.004)

0.223

(0.051)

0.496

(0.052)

0.794

(0.084)

4.327

(0.453)

15.192

(0.961)

2
0.042

(0.006)

0.293

(0.009)

0.615

(0.063)

2.940

(0.281)

10.361

(0.972)

20.387

(1.623)

400

51

20
0.004

(0.001)

0.010

(0.002)

0.164

(0.011)

0.501

(0.042)

2.240

(0.268)

4.933

(0.469)

2
0.018

(0.002)

0.022

(0.002)

0.281

(0.016)

0.841

(0.065)

4.418

(0.399)

8.910

(0.457)

201

20
0.005

(0.001)

0.101

(0.007)

0.403

(0.042)

0.679

(0.049)

4.229

(0.532)

14.584

(0.567)

2
0.022

(0.002)

0.286

(0.009)

0.549

(0.065)

1.306

(0.118)

9.061

(0.895)

17.178

(1.340)

Table 3: AISEs for competing methods. The numbers in brackets are the standard errors based

on 50 replicates.
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Figure 4: The boxplot of AISEs for different models when n = 400 with signal-to-noise ratio

being 20. The left and right panels represent the AISEs for p = 51 and for p = 201, respectively.

The y-axis is measured in logarithmic scale.

6.2 Real Data

We further illustrate the proposed method on the dataset of Framingham Heart Study (FHS;

Dawber et al. 1951), which aims to identify the common factors that leads to cardiovascular

diseases. We used a subset of the data collected from 325 patients, that contains measurements

on 15 phenotypes in addition to the Single Nucleotide Polymorohism (SNP) information. All

the variables were standardized with mean 0 and variance 1. After matching the SNP data with

phenotypes and deleting observations with missing values and outliers, there were 258 patients in

our analysis. We preselected 6 phenotypes that we were interested in. They are height, bi-deltoid

girth, right arm girth-upper third, waist girth, hip girth, and thigh girth. The exposure variable

is set to be the weight. We followed the screening procedure in Fan et al. (2014) to select 200

SNPs as predictors (the intercept was also included in the model). To fit our proposed method,
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all the tuning parameters were selected as discussed in Section 4.6. Specifically, the dataset was

randomly split into three subsets, i.e., a training set, a validation set, and a test set, of size 150,

50, and 58, respectively. The training and validation sets were used to determine (R1, R2) and

λ, and the test set was for evaluating the out-sample prediction performance. The recommended

rule K = [2n1/5] for the number of basis functions leads to K = 6. To evaluate the performance,

the corresponding prediction error was defined as

Prediction Error =
1

ntest

ntest∑
i=1

‖yi − ŷi‖22,

where yi’s were the observed responses in the test set, ŷi = {Ĝ ×̄2 b(t)}ᵀxi with Ĝ from var-

ious methods and xi the corresponding predictors, and ntest was the size of the test set. We

compared the proposed model, the all-mode reduction, with 4 non-oracle alternatives in Section

6.1. Furthermore, we additionally implement the elementwise-sparsity method on the full model

to fit the dataset of Framingham Heart Study. Here, a full model with elementwise-sparsity

method can be achieved by using the group Lasso penalization (Yuan and Lin, 2006) on each

coefficient function in (2.2) to select the relevant predictors for different response variables. The

performance of each method was evaluated based on 50 random splittings of training, validation,

and test sets.

Table 4 records the average prediction error of competing methods on the test data and the

performance of the dimension reduction. We observe in Table 4 that the full model with row-

sparsity method outperforms that of elementwise-sparsity method, which implies that the dataset

of Framingham Heart Study may be better fitted under the row-sparsity method rather than the

elementwise-sparsity method. It also shows that the proposed all-mode reduction model has the

highest prediction accuracy, and also reveals significant dimensionality reduction on each mode.
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This result is consistent with that of synthetic data. To investigate biological interpretation

on the identified SNPs, we input the submitted ss] of the identified SNPs to NCBI database

(Sherry et al., 2001) to retrieve the reference rs] records. The proposed all-mode reduction

method identified 30 SNPs by combing the variable selection results of 50 random splits and

some of them have been scientifically confirmed. For example, the reference SNP rs4896044

is found to be associated with hypertension (Consortium, 2007), and rs9321440 has links with

multiple heart diseases (Gagliardi, 2011). Meanwhile, the mode-3 reduction method identified

51 SNPs, including all of the 30 SNPs selected by the all-mode reduction method. On the

other hand, the mode-2 reduction method identified 47 SNPs. 25 SNPs selected by the all-mode

reduction method are among these 47 SNPs, including the scientifically confirmed rs4896044 and

rs9321440.

Prediction error R̂1 R̂2 R̂3

All-mode Reduction 0.4542 (0.0071) 2.7 3.1 2.0

Mode-3 Reduction 0.6011 (0.0196) - - 2.0

Mode-2 Reduction 0.6385 (0.0357) - 4.3 -

Full Model (row-sparsity) 1.0181 (0.0417) - - -

Full Model (elementwise-sparsity) 1.2106 (0.0403) - - -

Linear Model 1.2578 (0.0488) - - -

Table 4: Prediction error of the test data. The numbers in brackets are the standard errors based

on 50 random splitting.
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6.3 Additional Numerical Results

To further demonstrate the utility of the proposed all-mode reduction method, we conducted

additional numerical experiments and present the results in Section S.5 of Supplementary Mate-

rial. More precisely, we extended our simulation settings to larger numbers of response variables

q, and plot the trend of the performance of the proposed method when q increases in Section

S.5.1 of Supplementary Material. In Section S.5.2 of Supplementary Material, we depict the

fitted coefficient functions of the biologically confirmed SNP rs9321440 based on 50 replicates

of random splitting. It shows that rs9321440 may have different effects on the phenotypes of

height, bi-deltoid girth, right arm girth-upper third, hip girth, and thigh girth given distinct body

weights. As for the phenotype of waist girth, the effect of this SNP may not vary with body

weights significantly. We refer the interested readers to Section S.5 of Supplementary Material

for details.

7. Discussion

In this paper, a dimension-reduction method based on Tucker decomposition of a 3rd-order tensor

is proposed to estimate the varying coefficients of multivariate varying-coefficient models under

high-dimensional settings. The proposed model unifies dimensionality reductions in three as-

pects: relevant predictors, coefficient functions, and responses. A sparsity-inducing penalization

is also integrated into the estimation due to sparsity consideration. The oracle inequality for

the prediction risk of the proposed estimator is derived under the settings of fixed and random

designs. We have used both simulated and real data sets to evaluate the empirical performance

of the proposed model with some comparison methods, and the results illustrate the superior
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performance of our method.

One difficulty of applying the proposed method is the need to tune the ranks of Tucker

decomposition, which may become computationally expensive when the dimension is extremely

high. Developing an efficient way to tune the ranks requires further investigation. Furthermore,

in some applications, the relationships between responses can be determined by some external

covariates, such as spatial locations. The external covariates, sometimes, provide extra infor-

mation for measuring the similarity between responses and thus induces a (weighted) graphical

structure among tasks. Thus, another interesting future research topic is extending the pro-

posed model to the problem of graph regularized multi-task learning. Finally, incorporating the

elementwise-sparsity method with our proposed all-mode reduction model may be useful in other

real applications. We also leave this approach as a future research topic.
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