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Abstract: Covariate-specific treatment effects (CSTEs) represent heterogeneous

treatment effects across subpopulations defined by certain selected covariates. In

this article, we consider marginal structural models where CSTEs are linearly

represented using a set of basis functions of the selected covariates. We develop

a new approach in high-dimensional settings to obtain not only doubly robust

point estimators of CSTEs, but also model-assisted confidence intervals, which

are valid when a propensity score model is correctly specified but an outcome

regression model may be misspecified. With a linear outcome model and sub-

populations defined by discrete covariates, both point estimators and confidence

intervals are doubly robust for CSTEs. In contrast, confidence intervals from

existing high-dimensional methods are valid only when both the propensity score

and outcome models are correctly specified. We establish asymptotic properties of
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the proposed point estimators and the associated confidence intervals. Simulation

studies demonstrate the advantages of the proposed method compared with com-

peting ones. We apply the proposed methods to a large psoriasis clinical dataset

from a national registry in China, Psoriasis Center Data Platform (PCDP), ex-

ploring the effects of biologics versus the conventional therapies across different

subpopulations.

Key words and phrases: Covariate-specific treatment effect, Doubly robust con-

fidence interval, Doubly robust point estimator, High-dimensional data, Model-

assisted confidence interval.

1. Introduction

When analyzing the causal effect of an intervention, the average treatment

effect (ATE) is often taken to be the estimand of interest for simplicity

and interpretation. However, researchers and policymakers can also be in-

terested in the effects of treatments (or policies) at various subpopulation

levels (Lee et al., 2017; Chernozhukov et al., 2018; Semenova and Cher-

nozhukov, 2021). Specifically, let Y be an outcome variable, T be a treat-

ment variable taking values in {0, 1}, and Z be the covariates used to define

subpopulations. Define (Y 0, Y 1) as the potential outcomes under treatment

arms 0 and 1 respectively. Of interest in this paper is the covariate-specific

treatment effect (CSTE) τ(z), defined by E(Y 1 − Y 0 | Z = z) for possible
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values z of Z. For example, in our empirical application, we study the

effects of biologics versus the conventional therapies on Psoriasis Area and

Severity (PASI) improvement in different subpopulations defined by pa-

tient’s age, baseline Dermatology Life Quality Index (DLQI), and baseline

PASI. In clinical settings, CSTEs are useful in precision medicine for the

discovery of optimal treatment regimes that can be tailored to individual’s

characteristics (Chakraborty and Moodie, 2013).

For observational studies, a large set of covariates are often included,

possibly with nonlinear and interaction terms, in statistical analysis to re-

duce confounding bias and enhance the credibility of causal inference. Thus,

we introduce auxiliary covariates V , allowing V to be high-dimensional,

and posit that the unconfoundedness holds conditioning on all covariates

X ≡ (Z, V ) to obtain the identification of CSTEs.

The CSTE τ(z) is in general different from τ(x) ≡ E(Y 1−Y 0 | X = x),

the conditional treatment effect given the full covariates. Conditioning on

a low-dimensional covariate, τ(z) is easier to interpret and communicate in

practice. Moreover, estimation of τ(z) can be more manageable and less

affected by modeling assumptions in statistical analysis. It is known to be

difficult to obtain asymptotic normality and valid confidence intervals for

τ(x) due to the high dimensionality of X, unless some restrictive assump-
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tions are imposed (Tian et al., 2014; Dukes and Vansteelandt, 2020; Guo

et al., 2021).

There has been increasing interest in estimating CSTEs in recent years.

Abrevaya et al. (2015) derived an inverse probability weighting (IPW) esti-

mator of τ(z) using kernel smoothing with continuous Z, Lee et al. (2017)

proposed an AIPW (augmented IPW) estimator based on kernel smoothing,

and Lechner (2019) proposed algorithms to construct causal random forests.

These three approaches estimate τ(z) in low-dimensional settings. Fan

et al. (2021), Zimmert and Lechner (2019) and Semenova and Chernozhukov

(2021) extended the method of Lee et al. (2017) to high-dimensional set-

tings. The authors adopted machine learning algorithms to mitigate model

specification for nuisance parameters (PS and OR models) and used sam-

ple splitting (or cross-fitting) technique to reduce the impact of nuisance

parameters estimation on the resulting estimator of τ(z). A limitation of

these existing high-dimensional methods is that the confidence intervals are

shown to be valid only when both PS and OR models are correctly speci-

fied. This is because Neyman orthogonality condition (Chernozhukov et al.,

2018) cannot ensure the negligibility of first-order approximation error of

τ(z) when only one of the PS and OR models is correctly specified. Further

discussion is provided in Section 2.2.
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In this paper, we consider three desired properties: (a) the point esti-

mator is doubly robust, which is consistent if either the PS model or the OR

model is correctly specified; (b) the confidence intervals are valid if the PS

model is correctly specified but the OR model may be misspecified; (c) the

confidence intervals are valid if the OR model is correctly specified but the

PS model may be misspecified. If either property (b) or (c) is met, then the

confidence intervals are called model-assisted (Tan, 2020a). If properties (2)

and (3) are satisfied, then the confidence intervals are doubly robust. This

article develops a new approach for CSTEs in high-dimensional settings

that possesses the properties (1) and (2) for continuous Z. Furthermore,

with a linear OR model and discrete Z, the proposed method possesses the

properties (1), (2), and (3) simultaneously. To the best of our knowledge,

there is no method for estimating CSTEs that possesses model-assisted or

doubly robust confidence intervals, while retaining double robustness of the

point estimator.

Our proposed method is motivated by Tan (2020a), which is first pro-

posed to estimate ATEs and average treatment effects on treated, and re-

cently extended to estimate local average treatment effects in high-dimensional

settings (Sun and Tan, 2021). In this article, we further extend the method

to tackle the estimation of CSTEs. When Z is discrete with finite support,
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the proposed method is closely related to stratified analysis based on Tan

(2020a), which first splits the sample by Z, and then applies Tan’s method

for ATE estimation separately within each stratum. However, stratified

analysis is troublesome if Z takes many possible categories, together with

a high-dimensional auxiliary covariate vector V , where different tuning pa-

rameters need to be selected by separate cross-validations. In comparison,

without splitting the sample, the proposed method is numerically more

tractable with only two lasso tuning parameters for the PS and OR mod-

els. See Section 3.3 for further discussion. For continuous Z, the direct

extension of Tan’s approach can’t guarantee the model-assisted property.

However, our approach can get the model-assisted confidence intervals.

The proposed method relies on similar sparsity conditions as in Tan

(2020a). For example, for logistic PS model and linear OR model with co-

efficients γ and α1, suppose the estimators of γ̂ and α̂1 converge to the target

values of γ̄ and ᾱ1. With possible model misspecification, the point estima-

tor is doubly robust provided that (|Sγ̄|+ |Sᾱ1|) log(p) = o(n), and the con-

fidence intervals are model-assisted for continuous Z and doubly robust for

discrete Z provided that (|Sγ̄|+|Sᾱ1 |) log(p) = o(n1/2). The sparsity require-

ments are comparable to those in Belloni et al. (2014, 2017), Farrell (2015)

and Chernozhukov et al. (2018) for ATE based on commonly penalized PS
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and OR models, and those in Athey et al. (2018), Bradic et al. (2019), Ning

et al. (2020) and Wang and Shah (2020) allowing model misspecification.

See Smucler et al. (2019) for a discussion which distinguishes model doubly

robust and rate doubly robust estimations in high-dimensional settings.

The rest of the article is structured as follows. In Section 2, we state

the setup of the problem interested and discuss some existing methods.

Section 3 presents our estimation procedures in details. Section 4.2 shows

the asymptotic results and elucidates why the proposed methods work. In

Section 5, extensive simulations are conducted to evaluate the finite sample

performance of the proposed methods. Section 6 illustrates our methods

with an empirical example. A brief discussion is presented in Section 7.

2. Background

2.1 Setup

Suppose that {(Yi, Ti, Xi) : i = 1, ..., n} is an independent and identically

distributed sample of n observations, where Y is an outcome variable, T is

a binary treatment variable, and X = (V T , ZT )T is a vector of measured

covariates, where Z is the covariates used to define subpopulations, V is

auxiliary covariates. In the potential outcomes framework (Rubin, 1974;

Neyman, 1990), let (Y 0, Y 1) be the potential outcomes under the treatment
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2.2 Existing doubly robust estimators and theirs limitations

arms 0 and 1 respectively. By the consistency assumption, Y = (1−T )Y 0 +

TY 1. The causal parameter of interest is the CSTE defined by τ(z) =

E(Y 1 − Y 0 | Z = z) = µ1(z) − µ0(z) with µt(z) = E(Y t | Z = z) for

t = 0, 1. For identification, Assumption 1 is imposed throughout:

Assumption 1. T ⊥ Y 0 | X and T ⊥ Y 1 | X (Rubin, 1976); 0 < π∗(x) < 1

for all x, where π∗(x) = P (T = 1 | X = x) is called propensity score

(Rosenbaum and Rubin, 1983).

Under Assumption 1, letting m∗t (X) = E(Y | T = t,X), we have

µ1(z) = E[TY/π∗(X)− (T/π∗(X)− 1)m∗1(X) | Z = z]. (2.1)

Similar equations can be derived for µ0(z) and τ(z). Then, (µ0(z), µ1(z))

and τ(z) can be estimated by imposing additional modeling assumptions

on the outcome regression (OR) function m∗t (X) or the propensity score

(PS) π∗(X). We mainly discuss estimation of µ1(z) and put the discussion

about µ0(z) and τ(z) in Supplementary Material.

2.2 Existing doubly robust estimators and theirs limitations

Consider a conditional mean working model for OR in the treated group,

E(Y | T = 1, X) = m1(X;α1) = ψ{αT1 g(X)}, (2.2)
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2.2 Existing doubly robust estimators and theirs limitations

and a logistic regression working model for PS

P (T = 1 | X) = π(X; γ) = [1 + exp{−γTf(X)}]−1, (2.3)

where g(X) = {1, g1(X), ..., gq(X)}T and f(X) = {1, f1(X), ..., fp(X)}T

are two vectors of known functions, ψ(·) is a known inverse link function.

In high-dimensional settings, let α̂1,RML and γ̂RML are lasso regularized

maximum likelihood estimators (Tibshirani, 1996) of α1 and γ. Denote

m̂1,RML(X) = m1(X; α̂1,RML) and π̂RML(X) = π(X; γ̂RML). Let

ϕ(Yi, Ti, Xi; m̂1,RML, π̂RML) = TiYi/π̂RML(Xi)−(Ti/π̂RML(Xi)−1)m̂1,RML(Xi).

(2.4)

Equation (2.1) implies that the doubly robust AIPW estimator of µ1(z)

can be obtained via regressing ϕ(Yi, Ti, Xi; m̂1,RML, π̂RML) on Z. See Lee

et al. (2017) in low-dimensional settings, and Fan et al. (2021), Zimmert and

Lechner (2019) and Semenova and Chernozhukov (2021) in high-dimensional

settings. For instance, for a continuous covariate Z, a local constant esti-

mator of µ1(z) is

µ̂1(z; m̂1,RML, π̂RML) =
n∑
i=1

Kh(Zi−z)ϕ(Yi, Ti, Xi; m̂1,RML, π̂RML)/
n∑
i=1

Kh(Zi−z),

where Kh(t) = K(t/h)/h, K(t) is a kernel function and h is a bandwidth.

These authors also adopted machine learning algorithms to fit flexible PS

and OR models, and used sample splitting technique to reduce the impact
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of parameter estimation in PS and OR models on the resulting estimator

of µ1(z).

According to Fan et al. (2021), if both models (2.2) and (2.3) are cor-

rectly specified or with negligible biases, µ̂1(z; m̂1,RML, π̂RML) converges to

µ1(z) at rate Op((nh)−1/2) and admits an asymptotic expansion

µ̂1(z; m̂1,RML, π̂RML) =
n∑
i=1

Kh(Zi−z)ϕ(Yi, Ti, Xi;m
∗
1, π

∗)/
n∑
i=1

Kh(Zi−z)+Rn(z),

where Rn(z) = op((nh)−1/2). However, when only one of the models (2.2)

or (2.3) is correctly specified, the asymptotic expansion or the associated

confidence interval for µ1(z) does not in general hold.

3. Methods

We develop new methods to obtain both doubly robust point estimators

and model-assisted confidence intervals for (µ1(z), µ0(z)) and τ(z). We first

discuss the estimation of µ1(z). Let Φ(z) = (φ1(z), ..., φK(z))T be a vector

of basis functions excluding the constant. Consider a marginal structural

model (Robins, 1999; Tan, 2010) where µ1(z) is linearly represented as

µ1(z) = β∗0 + β∗T1 Φ(z), (3.5)

where β∗ = (β∗0 , β
∗T
1 )T is a vector of parameters. Different choices of Φ(z)

can be used, to accommodate different data types of the covariates Z as
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follows:

(i) Z is a binary variable. Let Φ(z) = z, then model (3.5) is saturated.

(ii) Z is a categorical variable taking multiple values. For example,

suppose that Z is a trichotomous variable encoded as two dummy variables

(Z1, Z2). Let Φ(z) = (z1, z2)T , then model (3.5) saturated.

(iii) Z consists of multiple binary variables. Suppose that Z = (Z1, Z2),

where Z1 and Z2 are two binary variables. Let Φ(z) = (z1, z2, z1z2)T , then

model (3.5) is saturated. Importantly, when Z consists of multiple discrete

variables, it can be encoded as multiple binary variables.

(iv) Z is a continuous variable. Then Φ(z) can be specified using spline

basis (Schumaker, 2007) and Fourier basis (Ramsay and Silverman, 2005)

similarly as in the nonparametric estimation of a regression curve.

(v) Z is a discrete variable with infinite support such as being poisson

distributed. Then Φ(z) can be specified using the same basis functions as

the continuous Z.

(vi) Z is a combination of discrete and continuous variables, for exam-

ple, Z = (Z1, Z2), where Z1 is a binary variable and Z2 is a continuous

variable. Then we can set Φ(z) = (z1, B
T (z2), z1B

T (z2))T , where B(z2)

consists of basis functions of Z2.

Model (3.5) can be made to be saturated by a proper choice of Φ(z)
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3.1 Regularized calibrated estimation

for a discrete Z with finite support. But for a continuous Z or discrete

Z with infinite support, model (3.5) with a fixed set of basis functions

may not hold exactly, i.e., µ1(z) may not fall in the working model class

{β0+βT1 Φ(z) : (β0, β1) ∈ RK+1}. In this case, model (3.5) can be interpreted

such that β∗0 + β∗T1 Φ(z) gives the best linear approximation of µ1(z) using

basis functions (1,Φ(z)), where

(β∗0 , β
∗
1) = arg min

β0,β1
E(µ1(Z)− β0 − βT1 Φ(Z))2. (3.6)

As shown in our simulation study (Section 5), the proposed method per-

forms well when β∗0 +β∗T1 Φ(z) provides a sufficiently accurate approximation

of µ1(z).

3.1 Regularized calibrated estimation

Instead of using regularized likelihood estimation in Section 2.2, we adopt

the regularized calibrated (RCAL) estimator of γ and regularized weighted

likelihood (RWL)estimator of α1 (Tan, 2020a,b). For PS model (2.3), the

RCAL estimator γ̂RCAL is defined as a minimizer of

LRCAL(γ) = LCAL(γ) + λ||γ1:p||1, (3.7)

where LCAL(γ) = Ẽ[T exp{−γTf(X)}+ (1− T )γTf(X)], Ẽ(·) denotes the

sample average, || · ||1 denotes the L1 norm, γ1:p is γ excluding the intercept,
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3.2 Model-assisted confidence intervals of µ1(z)

λ ≥ 0 is a tuning parameter. For OR model (2.2), the RWL estimator

α̂1,RWL is defined as a minimizer of

LRWL(α1; γ̂RCAL) = LWL(α1; γ̂RCAL) + λ||(α1)1:q||1, (3.8)

where LWL(α1; γ̂RCAL) = Ẽ[Tw(X; γ̂RCAL){−Y αT1 g(X) + Ψ(αT1 g(X))}],

Ψ(u) =
∫ u

0
ψ(u′)du′, w(X; γ) = {1 − π(X; γ)}/π(X; γ) = exp{−γTf(X)}.

Let π̂RCAL(X) = π(X; γ̂RCAL) and m̂1,RWL(X) = m1(X; α̂1,RWL) be the

fitted PS and OR functions respectively; several interesting properties al-

gebraically associated with π̂RCAL(X) and m̂1,RWL(X) are presented in

Supplementary Material. As indicated by (3.8), m̂1,RWL(X) depends on

π̂RCAL(X), in contrast with the recent papers of Fan et al. (2021) and Se-

menova and Chernozhukov (2021), where the propensity score and outcome

regression functions are estimated separately.

3.2 Model-assisted confidence intervals of µ1(z)

For ease of exposition hereafter, we let γ̂ = γ̂RCAL, α̂1 = α̂1,RWL, π̂ =

π̂RCAL(X), m̂1 = m̂1,RWL(X), ϕ̂ = ϕ(Y, T,X; m̂1, π̂), ϕ∗ = ϕ(Y, T,X;m∗1, π
∗),

and Φ†(z) = (1,Φ(z)T )T . By the identity (2.1) for µ1(z) and the ex-

pression (3.6) for (β∗0 , β
∗
1), A natural estimator of β∗ is β̂ = (β̂0, β̂

T
1 )T =

Ẽ−1{Φ†(Z)Φ†(Z)T}Ẽ{Φ†(Z)ϕ̂}. The corresponding estimator of µ1(z) is

µ̂1(z; m̂1, π̂) = β̂TΦ†(z), (3.9)
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3.2 Model-assisted confidence intervals of µ1(z)

which is easily shown to be a doubly robust point estimator of µ1(z) (Tan,

2010).

Remarkably, model-assisted confidence intervals can be derived by a

careful specification of g(X) in fitting OR model (2.2). Define f(X)⊗Φ(Z)

as the vector of all the interactions between f(X) and Φ(Z). To obtain

model-assisted confidence intervals, we set

g(X) = (f(X)T , (f(X)⊗ Φ(Z))T )T . (3.10)

There may be same functions repeated in g(X). In that case, we let

g(X) be the vector (f(X)T , (f(X) ⊗ Φ(Z))T )T after excluding the dupli-

cated elements. The choice of f(X) can be flexible. For instance, it is

possible to include full interactions between V and Φ(Z) in f(X), namely,

f(X) = (1, V T ,Φ(Z)T , (V ⊗ Φ(Z))T )T . Interestingly, this choice of f(X)

can be applied to construct doubly robust confidence intervals for µ1(z) with

discrete Z, as shown in Section 3.3. In addition, it is possible to include

more covariates, such as nonlinear terms of V , in f(X). These additional

terms are easily accommodated under sparsity conditions.

We provide a high-dimensional analysis of µ̂1(z; m̂1, π̂) in (3.9), allowing

for possible model misspecification. Define γ̄ = arg minγ E{LCAL(γ)} and

ᾱ1 = arg minα1 E{LWL(α1; γ̄)}. Let π̄ = π(X; γ̄), m̄1 = m(X; ᾱ1) and

ϕ̄ = ϕ(Y, T,X; m̄1, π̄). The purpose of defining γ̄ and ᾱ1 is to facilitate
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3.2 Model-assisted confidence intervals of µ1(z)

discussing the asymptotic properties of the proposed estimator when the

propensity score model or outcome regression model is misspecified. By the

definitions, γ̂ and α̂1 alway converge to γ̄ and ᾱ1 regardless of whether the

working models (2.3) and (2.2) are correctly specified or not. In addition, If

model (2.3) is correctly specified, then π̄ = π∗; otherwise, π̄ 6= π∗. Likewise,

if model (2.2) is correctly specified, then m̄1 = m∗1; m̄1 6= m∗1 otherwise.

Let β̄ = (β̄0, β̄
T
1 )T = Ẽ−1{Φ†(Z)Φ†(Z)T}Ẽ{Φ†(Z)ϕ̄}, and µ̂1(z; m̄1, π̄) =

β̄TΦ†(z). Our main result shows that under regularity conditions,

µ̂1(z; m̂1, π̂) = µ̂1(z; m̄1, π̄) +Rn(z), (3.11)

with |Rn(z)| = op(n
−1/2) for both discrete Z and continuous Z. For a vector

b = (b0, b1, ..., bp)
T , denote Sb = {0} ∪ {j : bj 6= 0, j = 1, ..., p} and the size

of the set Sb as |Sb|.

Proposition 1 (Model-assisted confidence intervals). Suppose that regu-

larity assumptions 1–2 in Supplementary Material hold, g(X) is chosen as

in (3.10), and (|Sγ̄|+ |Sᾱ1|) log(q) = o(n1/2). If PS model (2.3) is correctly

specified, then asymptotic expansion (3.11) is valid. Furthermore, for any

given z0, the following results hold:

(i) n1/2{µ̂1(z0; m̂1, π̂)− µ1(z0)} D−→ N(0, V (z0)), where

V (z0) = var[Φ†(z0)TE−1{Φ†(Z)Φ†(Z)T}Φ†(Z)ϕ(Y, T,X; m̄1, π̄)].
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3.3 Doubly robust confidence intervals of µ1(z) for discrete Z

(ii) a consistent estimator of V (z0) is

V̂ (z0) = Φ†(z0)TM−1ĜM−1Φ†(z0)/n,

where Ĝ = n−1
∑n

i=1[Φ†(Zi)Φ
†(Zi)

T{ϕ(Yi, Ti, Xi; m̂1, π̂)− β̂TΦ†(Zi)}2], and

M = Ẽ{Φ†(Z)Φ†(Z)T}. That is, a model-assisted confidence interval for

µ1(z0) is obtained.

For simplicity, the preceding result is stated under model (3.5). If model

(3.5) does not hold exactly, then the model-assisted confidence interval

remains valid when evaluated against the approximate value µ̃1(z) = β∗0 +

β∗T1 Φ(z) for (β∗0 , β
∗
1) defined in (3.6). In Section 5, our simulation study

shows that the approximate confidence intervals perform very well.

3.3 Doubly robust confidence intervals of µ1(z) for discrete Z

We derive doubly robust confidence intervals for µ1(z) with discrete Z when

a linear OR model is used. Consider the linear OR working model

E(Y | T = 1, X) = m1(X;α1) = αT1 g(X) (3.12)

and the PS working model (2.3). Remarkably, doubly robust confidence

intervals for µ1(z) can be obtained merely by including full interactions
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3.3 Doubly robust confidence intervals of µ1(z) for discrete Z

between V and Φ(Z) in f(X), that is, setting

f(X) = (1, V T ,Φ(Z)T , (V⊗Φ(Z))T )T , g(X) = (f(X)T , (f(X)⊗Φ(Z))T )T .

(3.13)

We show some specific forms of f(X) and g(X) for different types of discrete

Z:

(i) Z is a binary variable, f(X) = g(X) = (1, V T , Z, V TZ)T ;

(ii) Z is trichotomous variable encoded as two dummy variables (Z1, Z2),

f(X) = g(X) = (1, V T , Z1, Z2, V
TZ1, V

TZ2)T ;

(iii) Z consists of two binary variables Z1 and Z2, f(X) = g(X) =

(1, V T , Z1, Z2, Z1Z2, V
TZ1, V

TZ2, V
TZ1Z2)T .

It can be seen that the configuration of (3.13) will make the dimension

of f(X) the same as g(X). In addition, the proposed setup of f(X) is

intuitively sensible, in the sense that the OR and PS models should include

interaction terms between V and Z. Proposition 2 presents the large sample

properties of µ̂1(z0; m̂1, π̂) for discrete Z.

Proposition 2 (Doubly robust confidence intervals). Suppose that regu-

larity assumptions 1–2 in Supplementary Material hold, f(X) and g(X)

are chosen as in (3.13), and (|Sγ̄| + |Sᾱ1|) log(q) = o(n1/2). Then asymp-

totic expansion (3.11) is valid. Moreover, if either PS model (2.3) or linear

OR model (3.12) is correctly specified, then for any given z0, the following
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3.3 Doubly robust confidence intervals of µ1(z) for discrete Z

results hold for discrete Z:

n1/2{µ̂1(z0; m̂1, π̂)− µ1(z0)} D−→ N(0, V (z0)),

and a consistent estimator of V (z0) is V̂ (z0), where V (z0) and V̂ (z0) are

the same as those in Proposition 1. That is, a doubly robust confidence

interval for µ1(z0) is obtained.

It is noteworthy that asymptotic expansion (3.11) holds in Proposition

2 without the need for correctly specified PS model (2.3), while such a

result does not hold in Proposition 1. The reasons for this phenomenon

involve essential ideas about why the proposed methods work. A heuristic

interpretation is given in Section 4.1. The results presented in Propositions

1 and 2 mainly focus on estimation of µ1(z), we extend it to estimate µ0(z)

and τ(z) in Supplementary Material.

For discrete Z, stratified analysis is a routinely used method to estimate

µ1(z) (Abrevaya et al., 2015). It first splits the sample by Z, and then for

each subclass, obtains the estimations of m̂1 and π̂, and uses the sample

average of ϕ̂ as the estimator of µ1(z). Next, we show the connections

between the proposed method and stratified analysis for discrete Z and

elucidate the advantages of the proposed approach. Without of generality,

consider the case of binary Z, and take f(X) = g(X) = (1, V T , Z, V TZ)T
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3.3 Doubly robust confidence intervals of µ1(z) for discrete Z

according to (3.13). We rewrite f(X) as its equivalent expression f(X) =

g(X) = (I{Z = 0}, I{Z = 0}V T , I{Z = 1}, I{Z = 1}V T )T . Then by

setting the gradient of LCAL(γ) and LWL(α1) to zero gives that

Ẽ[{Tπ−1(X; γ)− 1}f(X)] = 0, (3.14)

Ẽ[T{1− π(X; γ̂)}π−1(X; γ̂)(Y − αT1 f(X))f(X)] = 0. (3.15)

which are the sample estimating equations for γ and α1 (up to the lasso

penalties in high-dimensional settings). We focus on analyzing equation

(3.14), and equation (3.15) can be discussed similarly. Equation (3.14) can

be divided into two equations

Ẽ[{T{1 + exp(−γT0 f0(X))} − 1}f0(X)] = 0, (3.16)

Ẽ[{T{1 + exp(−γT1 f1(X))} − 1}f1(X)] = 0, (3.17)

where f0(X) = I{Z = 0}(1, V T )T , f1(X) = I{Z = 1}(1, V T )T , γ =

(γT0 , γ
T
1 )T that satisfies γTf(X) = γT0 f0(X) + γT1 f1(X). (3.16) and (3.17)

are the sample estimating equations in stratified analysis. However, if there

are multiple categories, stratified analysis is troublesome, especially in high-

dimensional settings, where stratified analysis may select different tuning

parameters for lasso penalties and different covariates in different strata.

The proposed method is numerically more tractable with only two lasso

tuning parameters for the PS and OR models, while still allowing different
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covariates selected in different strata.

4. Asymptotic properties

4.1 Heuristic discussion

We delineate basic ideas underlying the construction of the estimators γ̂

and α̂1, and point out why we need careful specification of f(X) and

g(X) in (3.10) or (3.13), such that the estimator µ̂1(z0; m̂1, π̂) satisfies

asymptotic expansion (3.11) under possible model misspecification. The

discussion here is heuristic. For a given z0, µ̂1(z0; m̂1, π̂) = µ̂1(z0; m̄1, π̄) +

Φ†(z0)T Ẽ−1{Φ†(Z)Φ†(Z)T}Ẽ{Φ†(Z)(ϕ̂− ϕ̄)}. For (3.11) to hold, it is suffi-

cient to show that

Ẽ{Φ†(Z)(ϕ̂− ϕ̄)} = op(n
−1/2). (4.18)

By a Taylor expansion, Ẽ{Φ†(Z)ϕ̂} = Ẽ{Φ†(Z)ϕ̄} + (α̂1 − ᾱ1)T∆1 + (γ̂ −

γ̄)T∆2 + op(n
−1/2), where the remainder is taken to be op(n

−1/2) under

suitable conditions, and

∆1 =
∂

∂α1

Ẽ(Φ†(Z)ϕ(Y, T,X;α1, γ))
∣∣∣
(α1,γ)=(ᾱ1,γ̄)

,

∆2 =
∂

∂γ
Ẽ(Φ†(Z)ϕ(Y, T,X;α1, γ))

∣∣∣
(α1,γ)=(ᾱ1,γ̄)

.

To show (4.18), it suffices to show that (α̂1 − ᾱ1)T∆1 = op(n
−1/2) and

(γ̂ − γ̄)T∆2 = op(n
−1/2) with possible model misspecification. In general,
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4.1 Heuristic discussion

α̂1− ᾱ1 and γ̂− γ̄ are no smaller than Op(n
−1/2) in low- or high-dimensional

settings. To get the desired convergence rates, the crucial point is that ∆1

and ∆2 should be op(1), and their corresponding population version should

satisfy

∂

∂α1

E(Φ†(Z)ϕ(Y, T,X;α1, γ))
∣∣∣
(α1,γ)=(ᾱ1,γ̄)

= 0, (4.19)

∂

∂γ
E(Φ†(Z)ϕ(Y, T,X;α1, γ))

∣∣∣
(α1,γ)=(ᾱ1,γ̄)

= 0. (4.20)

Hence a natural approach is to solve (4.19) and (4.20) being in low-dimensional

settings and add lasso penalties in high-dimensional settings. Nevertheless,

this method will encounter with a basic problem: there are more equations

than parameters. It is easy to see that (4.19) includes (K + 1)(q+ 1) equa-

tions and (4.20) contains (K + 1)(p+ 1) equations, while the dimensions of

γ and α1 are p+ 1 and q+ 1, respectively. Therefore, the coefficients γ and

α1 cannot be identified by solving (4.19) and (4.20) without further con-

sideration. Fortunately, this difficulty can be overcome by simply a careful

specification of f(X) and g(X).

Specifically, with PS model (2.3) and linear OR model (3.12), ∆1 and

∆2 reduces to

∆1 = Ẽ{(T π̄−1(X)− 1)g(X)⊗ Φ†(Z)},

∆2 = Ẽ{T (1− π̄(X))π̄−1(X)(Y − ᾱT1 g(X))f(X)⊗ Φ†(Z)}.
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4.2 Theoretical analysis

If g(X) satisfies the form of (3.10), then according to the definition of ᾱ1,

(4.20) holds regardless of whether the OR model is specified correctly. In

addition, (4.19) holds provided that PS model (2.3) is correctly specified but

OR model (3.12) may be misspecified, which elucidates why Proposition 1

can be derived. Furthermore, if f(X) and g(X) are specified as in (3.13),

then ∆1 and ∆2 have a simpler form with discrete Z:

∆1 = Ẽ{(T π̄−1(X)− 1)f(X)},

∆2 = Ẽ{T (1− π̄(X))π̄−1(X)(Y − ᾱT1 g(X))g(X)},

which exactly are the gradients of LCAL(γ̄) and LWL(α1; γ̄), respectively.

In this case, (4.19) and (4.20) hold just by the definition of γ̄ and ᾱ1,

irrespective of the model specifications for PS and OR, which explains why

Proposition 2 can be obtained.

4.2 Theoretical analysis

Suppose that the lasso tuning parameters are specified as A0λ0 for γ̂ and

A1λ1 for α̂1, where A0 and A1 are two sufficiently large positive constants,

(λ0, λ1) are set as λ0 = [log{(1 + p)/ε}/n]1/2, λ1 = [log{(1 + q)/ε}/n]1/2 (≥

λ0), where 0 < ε < 1 is a tail probability for the error bound. For example,

λ0 = {2 log(1 + p)/n}1/2 by taking ε = 1/(1 + p). Tan (2020a) showed

that the convergence rates for (γ̂, α̂1), ||γ̂− γ̄||1 = Op(1) · |Sγ̄|{log(p)/n}1/2,
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4.2 Theoretical analysis

||α̂1 − ᾱ1||1 = Op(1) · (|Sγ̄|+ |Sᾱ1|){log(q)/n}1/2. The following Theorem 1

presents the large sample properties of µ̂1(z; m̂1, π̂) for discrete Z.

Theorem 1 (doubly robust confidence intervals). Suppose that regularity

assumptions 1–2 in Supplementary Material hold, if linear OR model (3.12)

is used, f(X) and g(X) are specified as in (3.13), then for any given z0 of

discrete Z,

(a) we have with probability at least 1− c0ε,

∣∣µ̂1(z0; m̂1, π̂)− µ̂1(z0; m̄1, π̄)
∣∣ ≤M0(|Sγ̄|λ0 + |Sᾱ1|λ1)λ1, (4.21)

where c0 and M0 are positive constants.

(b) if (|Sγ̄+ |Sᾱ1|){log(q)}1/2 = o(n1/2), we have with probability at least

1− (c0 + 4)ε,

V̂ (z0)− V (z0) = op(1), (4.22)

where V (z0) and V̂ (z0) are defined in Proposition 2.

Since µ̂1(z; m̄1, π̄) is a doubly robust point estimator of µ1(z), µ̂1(z; m̂1, π̂)

is also a doubly robust point estimator of µ1(z), provided that (|Sγ̄|λ0 +

|Sᾱ1 |λ1)λ1 = o(1), that is, (|Sγ̄| + |Sᾱ1|) log(q) = o(n). In addition, to

obtain a valid confidence interval, it requires the asymptotic expansion

(3.11) to hold, which implies that (|Sγ̄|λ0 + |Sᾱ1|λ1)λ1 = o(n−1/2), namely,
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4.2 Theoretical analysis

(|Sγ̄|+ |Sᾱ1|) log(q) = o(n1/2). In summary, Theorem 1 shows that, for dis-

crete Z with linear OR model (3.12) and specification of f(X) and g(X) as

in (3.13), the proposed method obtains both doubly point estimators and

doubly confidence intervals for µ1(z), provided that (|Sγ̄| + |Sᾱ1|) log(q) =

o(n1/2), which leads to the Proposition 2. Similar to Theorem 1, the fol-

lowing Theorem 2 implies the results presented in Proposition 1.

Theorem 2 (Model-assisted confidence intervals). Suppose that regularity

assumptions 1–2 in Supplementary Material hold, if OR model (2.2) is used,

g(X) is specified as in (3.10), and PS model (2.3) is correctly specified, then

for a given value z0 of discrete/continuous Z,

(a) we have with probability at least 1− (c0 + 8)ε,

∣∣µ̂1(z0; m̂1, π̂)− µ̂1(z0; m̄1, π̄)
∣∣ ≤M1(|Sγ̄|λ0 + |Sᾱ1|λ1)λ1, (4.23)

where M1 is a positive constant.

(b) if (|Sγ̄+ |Sᾱ1|){log(q)}1/2 = o(n1/2), we have with probability at least

1− (c0 + 12)ε,

V̂ (z0)− V (z0) = op(1), (4.24)

where V (z0) and V̂ (z0) are defined in Proposition 1.

The preceding theoretical analysis focuses on µ̂1(z; m̂1, π̂). Similar re-

sults can be derived for µ̂0(z; m̂0, π̂0) and µ̂1(z; m̂1, π̂) − µ̂0(z; m̂0, π̂0) by
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analogous arguments.

5. Simulation studies

Extensive simulation studies are carried out to evaluate the finite sample

performance of the proposed methods. We consider three scenarios of Z:

binary variable Z, continuous variable Z, and Z consists of two binary

variables Z1 and Z2. The RCAL estimation for the PS model and RWL

estimation for OR model can be implemented by using R package RCAL

(Tan, 2019), and the corresponding tuning parameters are determined via

using 5-fold cross-validations. Throughout this simulation, the data gen-

erating processes of covariates are as follows: V = (V1, ..., Vd) ∼ N(0,Σ)

with Σj,k = 2−|j−k| for 1 ≤ j, k ≤ d, and independently, Z ∼ Ber(0.5) or

Z ∼ Unif(−0.5, 0.5) for discrete or continuous Z. For Z = (Z1, Z2), Z1 and

Z2 are independent and identically distributed from Ber(0.5). The error

term is ε ∼ N(0, 1). Let γ = 0.5(1,−1,−1, 1,−1)T , X = (ZT , V T )T and Vi

be i-th element of V .

Discrete Z. We consider three scenarios (C1)-(C3) with binary Z,

which can help to assess the doubly robust properties for both point esti-

mators and confidence intervals.

(C1) Z is binary variable, P (T = 1|X) = {1+exp(−(Z, V1, V2, V3, V4)Tγ)}−1,
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Y 1 = 1 + Z +
∑4

i=1{ViZ + 2Vi(1− Z)}+ ε.

(C2) Generate Z, V and T as in case (C1), Y 1 = 1 + Z +
∑4

i=1{ViZ +

2Vi(1− Z) + V 3
i /2

i}+ ε.

(C3) Generate Z, V and Y 1 as in case (C1), P (T = 1|X) = {1 +

exp(−(Z, V 2
1 , V

2
2 , V

2
3 , V

2
4 )Tγ)}−1. The three scenarios can be classified as

follows: (C1), both PS and OR models are correctly specified; (C2), PS

model is correctly specified, but OR model is misspecified; (C3), PS model

is misspecified, but OR model is correctly specified.

The true curve of µ1(z) is 1+z for all cases of (C1)-(C3). We set f(X) =

g(X) = (1, V T , Z, V TZ)T as discussed in Section 3.3. Each simulation

study is based on 1000 replicates with sample size n = 500. Bias and

Var are the Monte Carlo bias and variance over the 1000 simulations of

the points estimates. EVar is the mean of the variance estimates. CP90

and CP95 are the coverage proportions of the 90% and 95% confidence

intervals, respectively. Table 1 summarizes the results of µ̂1(z) for scenarios

(C1)-(C3).

As shown in Table 1, for all the cases (C1)-(C3), the Bias is small,

√
EVar is close to

√
Var and the coverage proportions CP90 and CP95 are

around the nominal levels 0.90 and 0.95, respectively. Because case (C2)

involves a misspecified OR model and case (C3) involves a misspecified
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Table 1: Estimations of µ1(z) for binary variable Z

n = 500, p = 200 n = 500, p = 400

µ̂1(z) Bias
√

Var
√

EVar CP90 CP95 Bias
√

Var
√

EVar CP90 CP95

(C1)

µ̂1(0) -0.032 0.370 0.371 0.905 0.954 -0.034 0.366 0.368 0.897 0.950

µ̂1(1) -0.040 0.201 0.200 0.879 0.952 -0.038 0.202 0.200 0.889 0.943

(C2)

µ̂1(0) -0.054 0.516 0.501 0.896 0.944 -0.063 0.515 0.498 0.884 0.941

µ̂1(1) -0.081 0.348 0.337 0.887 0.935 -0.072 0.336 0.336 0.898 0.951

(C3)

µ̂1(0) 0.019 0.377 0.361 0.888 0.938 0.033 0.375 0.357 0.874 0.935

µ̂1(1) -0.003 0.195 0.202 0.905 0.955 -0.016 0.203 0.200 0.888 0.947

Note: the dimensions of f(X) and g(X) are both p+ 1.

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



PS model, the results of cases (C2) and (C3) justify that both the point

estimators and confidence intervals are doubly robust.

Continuous Z. We consider two data generation mechanisms with

continuous Z:

(C4) Z is a continuous variable, Y 1 = Z +
∑4

i=1 Vi + ε, P (T = 1|X) =

{1 + exp(−(Z, V1, V2, V3, V4)Tγ)}−1. Both PS and OR models are correctly

specified.

(C5) Generate Z, V and T as in case (C4), Y 1 = Z(1 + 2Z)2(Z − 1)2 +∑4
i=1(V 2

i + Vi)/2
i+1 + ε. PS model is correctly specified, but OR model is

misspecified.

We set f(X) = (1, V T , Z)T , g(X) is specified as in (3.10), and let

Φ(Z) be cubic spline basis functions with three knots selected by the 25%,

50% and 75% sample quantiles of Z, which can be implemented using R

package gam (Hastie, 2018). Since Z is continuous for cases (C4) and

(C5), we report the simulation results at five representative points of Z :

−0.4,−0.2, 0, 0.2, 0.4. Table 2 shows the numerical results of µ̂1(z) for cases

(C4) and (C5). Both of them have a similar performance to those of discrete

Z.

We compare the proposed method with competing AIPW methods of
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Table 2: Estimations of µ1(z) for continuous Z, n = 500, p = 60, q = 420

µ̂1(z) Bias
√

Var
√

EVar CP90 CP95 Bias
√

Var
√

EVar CP90 CP95

(C4) cor PS, cor OR (C5) cor PS, mis OR

µ̂1(−0.4) 0.011 0.409 0.400 0.886 0.942 -0.027 0.201 0.199 0.882 0.942

µ̂1(−0.2) -0.035 0.359 0.341 0.881 0.936 -0.020 0.172 0.170 0.884 0.944

µ̂1(0.0) -0.036 0.339 0.331 0.892 0.940 -0.025 0.179 0.166 0.866 0.928

µ̂1(0.2) -0.013 0.341 0.342 0.899 0.948 -0.036 0.173 0.177 0.894 0.948

µ̂1(0.4) -0.034 0.414 0.403 0.883 0.941 -0.028 0.208 0.207 0.880 0.938

Note: the dimensions of f(X) and g(X) are p+ 1 and q + 1 , respectively.
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0.8882

0.8488

0.8486

AIPW.Full

AIPW.SS

Proposed

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
CP90

0.9414

0.9072

0.9106

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
CP95

Figure 1: Average values of CP90 and CP95 at five representative points

based on 1000 simulations, where CP90 and CP95 are the coverage propor-

tions of the 90% and 95% confidence intervals, AIPW.Full means Fan et

al. (2021)’s AIPW method with full sample (without sample splitting), and

AIPW.SS represents Fan et al. (2021)’s and Zimmert and Lechner (2019)’s

AIPW method with four-fold cross-fitting (sample splitting).

Fan et al. (2021) and Zimmert and Lechner (2019) discussed in Section 2.2

for continuous Z. The implement details and associated results are given

in Table S1 of Supplemental Material. Figure 1 presents the average values

of CP90 and CP95 at five representative points for case (C5), suggesting

that the competing methods do not enjoy the property of model-assisted

confidence intervals, while the proposed method does.

The setups for all preceding numeric results are in exact sparsity set-
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tings. A more common scenario in modern applications is approximate

sparsity, i.e., all covariates are relevant associated with nonzero coefficients

but only a few are truly important with large coefficients. We also conduct

numeric experiments to assess the finite sample performance of proposed

methods under approximate sparsity settings. The corresponding results

are similar to those of in exact sparsity settings and are presented in Table

S2 of Supplementary Material.

6. Application

Psoriasis is a chronic immune-mediated inflammatory disease that can dam-

age patients quality of life severely and increase the burden on society sub-

stantially (Griffiths and Barker, 2007; Griffiths et al., 2021). Immunolog-

ical and genetic studies have discovered that the key drivers of psoriasis

are pathogenesis proinflammatory cytokines (tumor necrosis factor-alpha

(TNFα), interleukin-17 (IL-17) and interleukin-23 (IL-23))(Park et al., 2005).

The new generation of biologics IL-17 inhibitors (secukinumab, ixekizumab,

and brodalumab) and IL-23 inhibitors (guselkumab, risankizumab, and

tildrakizumab) were developed successively. In 2020, Secukinumab has been

added into the national drug reimbursement list (NDRL) of China for treat-
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6.1 Data description

ing psoriasis. Since then clinical use of secukinumab increased significantly.

In China, biologics are used only for patients unresponsive, intolerant,

or contraindicated for systemic therapy to cure severe plaque psoriasis or

arthropathic psoriasis. (Menter et al., 2019; Comittee on Psoriasis Chi-

nese Society of Dermatology, 2019). Evidence of the efficacy of biologics

is limited, especially for mild-to-moderate psoriasis. In addition, with the

increase of clinical usage, how to use biologics effectively and appropriately

is becoming a major concern of therapists (Chen et al., 2020). In this study,

we aim to explore the heterogeneous effects of biologics versus conventional

therapies across different subpopulations.

6.1 Data description

Data were collected from Psoriasis Center Data Platform (PCDP), which

was led by the National Clinical Research Center for Skin and Immune

Disease and covered patients of 237 tertiary hospitals in about 100 cities

in the mainland of China. In this study, data is restricted to patients who

enrolled from Sep 2020 to Sep 2021 and were diagnosed with plaque psoriasis

and had at least one follow-up visit. In addition, we include patients treated

with IL-inhibitor biologics (mainly IL-17 inhibitor, Secukinumab) or the

conventional therapies (topic drugs, systemic medicines, or phototherapy),
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6.1 Data description

and eliminate patients with other treatments. The use of biologics can be

divided into the induction period and the maintained period, we assess the

treatment heterogeneity in the maintained period, i.e., excluding patients

with follow-up time less than 4 weeks. The final analytical dataset with a

total of 2356 samples, where 708 (30.05%) use biologics and 1648 (69.95%)

do not.

The clinical benefit is measured by the improvement on Psoriasis Area

and Severity Index (PASI). In this study, the outcome variable Y is the

indicator of 80% or more improvement from baseline PASI (Y = PASI 80)

in the first follow-up visits. The exposure variable T = 1 represents that

the patient was treated with IL-inhibitor biologics and T = 0 means the

conventional therapies. The covariates X include the patients demograph-

ics, clinical characteristics, and theirs interactions. Description of these

variables were given in Table S3 of Supplementary Material. The sub-

populations of interest are defined by covariates Z, which are taken to

be baseline PASI, baseline DLQI, Age, Employment, Martial status,

Education, Insurance and Sex, respectively. The first three variables are

continuous and the last five are binary. Since there are only a few samples

available at extremely high values of baseline PASI, we set the baseline
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6.2 Results

PASI above 45 to 45. Similarly, we set Age above 75 to 75.

As suggested in Sections 3.3 and 3.2, we set f(X) = g(X) = (1, V T , Z, V TZ)T

for binary Z, and f(X) = (1, V T ,Φ(Z)T )T , g(X) = (1, V T ,Φ(Z)T , (V ⊗

Φ(Z))T , (Φ(Z) ⊗ Φ(Z))T )T for continuous Z, where V is all the covariates

excluding variable Z. All variables in f(X) and g(X) are standardized to

have sample mean 0 and sample variance 1. As done in simulation studies,

the lasso tuning parameter λ is selected by five-fold cross validation.

6.2 Results

Discrete Z. Figure 2 presents the estimated causal effects of biologics on

the improvement of PASI conditional on different binary variables Z. The

result shows that higher education and free or commercial insurance groups

have larger biologics benefits than the corresponding lower education and

general government funded insurance groups, respectively. In addition, the

causal effects have no large difference among subgroups with different values

of Employment, Martial status, and Sex.

Continuous Z. To estimate a CSTE curve when Z is continuous, we

apply the propose method using cubic spline to approximate τ(z) and find

the optimal number of knots by using grid search with Akaike information

criterion (AIC) (Akaike, 1974) and Bayesian information criterion (BIC)
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6.2 Results

Full-time
Part-time

Unmarried
Married

High school or lower
College or higher

General government funded
Free or commercial

Male
Female

Sex

Insurance

Education

Martial status

Employment

0.0 0.1 0.2 0.3 0.4 0.5
Effect on PASI 80

Figure 2: Estimated CSTE (the height of the bar plot) and the associated

95% CI (error bar) for PASI 80 with discrete Z.

(Schwarz, 2005). Specifically, we first fix the number of knots is 3, that

is, f(X) = (1, V T ,Φ(Z)T )T , g(X) = (1, V T ,Φ(Z)T , (V ⊗ Φ(Z))T , (Φ(Z) ⊗

Φ(Z))T )T with Φ(Z) being cubic spline basis functions with 3 knots. Then

we use f(X) and g(X) to estimate propensity score and outcome regression

functions. Finally, we conduct least squares by regressing ϕ(Y, T,X; m̂1, π̂)−

ϕ(Y, 1 − T,X; m̂0, 1 − π̂0) on Φ̃(Z) to get the values of where Φ̃(Z) is cu-

bic spline basis functions with number of knots ranging from 1 to 10. The

corresponding results are given in Table S4 in Supplementary Material.

Figure 3 displays the estimated CSTE curves and corresponding 95%

confidence intervals (CI) for different continuous Z. It indicates that bio-

logics have a positive effect over conventional therapies and heterogeneity

is ubiquitous in different subpopulations. As the baseline PASI increased
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6.2 Results
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Figure 3: Estimated CSTE and the associated 95% CI for PASI 80 with

continuous Z.

from 0 to 5, the relative advantage of biological agents over conventional

therapy increased; When the score exceeds 5 points, the CSTE is a V-

shaped curve, with a trough near the PASI value of 10 (Figure 1A). Our

results indicate that biologics also is effective in mild-to-moderate psoria-

sis (baseline PASI ≤ 10). A higher value Self-reported Dermatology Life

Quality Index (baseline DLQI) means a worse quality of life, where DLQI

= 0 means the life quality is not affected at all by psoriasis. As shown in

Figure 1B, the CSTE is a V-shaped curve as the value of DLQI increases.

In addition, the effect first decreases slightly with age ranging from 12-30,

then flattenes from 30-60, and then decreases rapidly from 60-75. Overall,

patients with larger age indicate higher benefits of biologics.
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7. Discussion

This article develops new methods to obtain both doubly robust point es-

timators and model-assisted confidence intervals for conditional average

treatment effects in high-dimensional settings. In addition, with a linear

OR model and discrete Z, the confidence intervals are also doubly robust.

Theoretical properties are established for the proposed methods with dif-

ferent data types of outcome Y and covariates Z, and the corresponding

variances can be estimated by a sandwich method.

Further work is desired to extend our method and theory by relax-

ing the parametric structural model (3.5) to be nonparametric subject

to smoothness conditions, while allowing the basis functions Φ(z) to be

data-adaptively chosen, instead of pre-specified. Another interesting ques-

tion is that whether doubly robust confidence intervals can be derived for

continuous Z. To deal with this question, a possible approach is to dis-

cretize Z. For example, for two knots t1 < t2, we can discretize Z as

(Z1, Z2) = (I{t1 < Z ≤ t2}, I{Z > t2}) or (Z1, Z2) = (I{Z > t1}, I{Z >

t2}). With either choice of (Z1, Z2), the proposed method using f(X) =

(1, V T , Z1, Z2, V
TZ1, V

TZ2)T achieves desired doubly robust confidence in-

tervals in the discretized model µ1(Z) = E(Y 1|Z) = β0 + (Z1, Z2)β1. The
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method can be easily extended to multiple knots, corresponding to piecewise

constant model for µ1(z). Then various theoretical questions need to be in-

vestigated. For example, it is interesting to study convergence and whether

doubly confidence intervals can be achieved, depending on the number of

knots used.

Another extension is to consider the case that Z is composed of multiple

continuous variables. A possible strategy is to postulate an additive model

(Hastie and Tibshirani, 1990). Alternatively, we may consider a single index

model (Guo et al., 2021). It is interesting to study how to incorporate such

strategies in future research.

Supplementary Materials

Supplementary Material available online includes technical proofs and ad-

ditional numerical results from the simulation study and empirical applica-

tion.
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