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Abstract: Fine particulate matter (PM2.5) has become a great concern worldwide

due to its adverse health effects. PM2.5 concentrations typically exhibit complex

spatio-temporal variations. Both the mean and the spatio-temporal dependence

evolve with time due to seasonality, which makes the statistical analysis of PM2.5

challenging. In geostatistics, Gaussian process is a powerful tool for character-

izing and predicting such spatio-temporal dynamics, for which the specification

of a spatio-temporal covariance function is the key. While the extant literature

offers a wide range of choices for flexible stationary spatio-temporal covariance

models, the temporally evolving spatio-temporal dependence has received scant

attention only. To this end, we propose a time-varying spatio-temporal covari-

ance model for describing the time-evolving spatio-temporal dependence in PM2.5

concentrations. The proposed model is shown to outperform traditionally used

models through simulation studies in terms of predictions. We apply our model
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to analyze the PM2.5 data in the state of Oregon, US. Therein, we show that

the spatial scale and smoothness exhibit noticeable temporal variation. The pro-

posed model is also shown to be beneficial over traditionally used models on this

dataset for predictions.

Key words and phrases: Bernstein functions, Nonstationarity, Matérn covariance

function, Spatio-temporal covariance.

1. Introduction

In the context of air quality control, particulate matter concentrate with

diameter ≤ 2.5µm (PM2.5) is a crucial pollutant of concern because of its

deleterious effects on human health (Dominici et al., 2006; Pope III and

Dockery, 2006). In consequence, PM2.5 has been a focal topic in numerous

air quality control oriented research where it has been studied for its chem-

ical composition (Zhang et al., 2020), risk assessment (de Oliveira et al.,

2012; Amoatey, Omidvarborna, and Baawain, 2018), statistical modeling

and prediction (Qadir and Sun, 2020; Qadir, Euán, and Sun, 2020), etc.

PM2.5 is closely connected to the meteorology (Dawson, Adams, and Pan-

dis, 2007), which causes the seasonality or other time-varying factors to

have a strong influence on it. This strong seasonality effect has been noted

in numerous case studies pertaining to the spatio-temporal variations of

PM2.5 (Bell et al., 2007; Zhao et al., 2019). Much of the literature con-
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cerning the spatio-temporal modeling of PM2.5, such as Li et al. (2017);

Xiao, Lang, and Christakos (2018), account for such time-varying effects

in the mean but ignore those effects in the spatio-temporal covariance of

PM2.5. In order to achieve a more comprehensive spatio-temporal modeling

of PM2.5, both the mean and spatio-temporal dependence should be allowed

to evolve temporally for the seasonality effect. This necessitates the devel-

opment of flexible time-varying model for a beneficial statistical modeling

and prediction of PM2.5.

Statistical modeling of PM2.5 as a spatio-temporal stochastic process

allows us to delve into the associated spatio-temporal uncertainties and

perform predictions at unobserved space-time points, which can be benefi-

cial in planning strategies for air quality control and formulating health care

policies. The Gaussian process models are the typical choice of stochastic

process models in spatio-temporal modeling where the joint distribution

of random variables continuously indexed with space and time is multi-

variate normal. In particular, let X(s, t), (s, t) ∈ Rd × R, be the Gaus-

sian process, indexed by space-time coordinates (s, t), then for any finite

set of space-time pairs {(s1, t1), . . . , (sn, tn)}, n ≥ 1, the random vector

{X(s1, t1), . . . , X(sn, tn)}T ∼ Nn(µ,Σ), where Σ = [Cov{X(si, ti), X(sj, tj)

}]ni,j=1 is the covariance matrix and µ = [E{X(s1, t1)}, . . . ,E{X(sn, tn)}]T
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is the mean vector of the multivariate normal distribution. The entries of Σ

are usually defined through some nonnegative definite parametric function

K(si, sj, ti, tj). The optimal prediction of an unobserved part of X(s, t) is

given by kriging predictor (Cressie, 1993), which is a weighted linear combi-

nation of the observed part of X(s, t). These weights are affected by the co-

variance structure of the process, and therefore, the function K(si, sj, ti, tj)

must be specified diligently.

For practical convenience, it is often assumed that the covariance func-

tion K(si, si + h, ti, ti + u) is stationary in space and time, i.e., K(si, si +

h, ti, ti+u) = C(h, u) depends only on the spatial lag h and temporal lag u.

The particular restrictions C(h, 0) and C(0, u) represent purely spatial and

purely temporal covariance functions, respectively. The existing literature

on stationary spatio-temporal models provides practitioners with numer-

ous alternatives, and those are comprehensively summarized in review pa-

pers by Gneiting, Genton, and Guttorp (2006) and Chen, Genton, and Sun

(2021). A rudimentary approach to build a valid spatio-temporal covariance

function is to impose separabilty, in which C(h, u) can be decomposed into

purely spatial and purely temporal covariance function. This decomposition

can be in the form of a product: C(h, u) = Cs(h)Ct(u), or in the form of a

sum: C(h, u) = Cs(h) + Ct(u). The sum-based model suffers the rendering
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of singular covariance matrices for some configurations of spatio-temporal

data (Myers and Journel, 1990). Besides, a major shortcoming of separable

model is its inability to allow for any space-time interactions which are often

present in real data. For space-time interactions, Cressie and Huang (1999)

introduced some classes of stationary nonseparable spatio-temporal covari-

ance functions based on Fourier transform pairs in Rd. Their approach

led Gneiting (2002) to develop general classes of stationary nonseparable

spatio-temporal covariance functions by using completely monotone func-

tions and positive functions with completely monotone derivatives. Some

further developments of nonseparable models include Stein (2005); De Iaco,

Myers, and Posa (2002)

Among the existing stationary nonseparable spatio-temporal covari-

ance functions, Gneiting (2002)’s classes have been notably popular and

are explored for further generalizations (Porcu, Gregori, and Mateu, 2006;

Bourotte, Allard, and Porcu, 2016). Specifically, Gneiting’s class is defined

as:

C(h, u) =
σ2

ψ(|u|2)d/2
ϕ

(
‖h‖2

ψ(|u|2)

)
, (h, u) ∈ Rd × R, (1.1)

where σ > 0 is the standard deviation of the process, ϕ(w), w ≥ 0, be any

completely monotone function and ψ(w), w ≥ 0, be any positive function

with a completely monotone derivative which is commonly termed as Bern-

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



stein function (Bhatia and Jain, 2015). Table 1 and Table 2 of Gneiting

(2002) provide different choices of ϕ(·) and standardized ψ(·), ψ(0) = 1, re-

spectively. For a particular choice ϕ(w) = (αw1/2)νKν(αw
1/2)/{2ν−1Γ(ν)},

α > 0, ν > 0, where Kν(·) is a modified Bessel function of the second kind

of the order ν (Abramowitz and Stegun, 1965), (1.1) reduces to:

C(h, u) =
1

ψ(|u|2) d2
σ2

2ν−1Γ(ν)

(
α‖h‖
ψ(|u|2) 1

2

)ν

Kν

(
α‖h‖
ψ(|u|2) 1

2

)
, (h, u) ∈ Rd × R.

(1.2)

The purely spatial covariance function in (1.2) reduces to: C(h, 0) =

σ2(α‖h‖)νKν(α‖h‖)21−ν/Γ(ν), which belongs to the Matérn class (Matérn,

1986), henceforth denoted as σ2M(h | α, ν), where α > 0 and ν > 0 rep-

resent spatial scale and smoothness parameters, respectively. The Matérn

class has become an extremely preferred and important class of isotropic co-

variance functions for modeling spatial data (Stein, 1999; Gneiting, Kleiber,

and Schlather, 2010), and therefore, (1.2), which we hereafter refer as

“Gneiting-Matérn” class is also particularly important.

The class of stationary spatio-temporal models which does not allow

covariance to evolve either in space or time, can be restrictive for many real

applications. Therefore, while this class of models is essential, its relevance

to the considered data must be assessed individually. Moreover, the spatio-

temporal data which is likely to demonstrate heterogeneity of dependence
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(nonstationarity) in space and/or time must be served with flexible space

and/or time-varying models for satisfactory inference and prediction. Con-

sequently, numerous nonstationary spatio-temporal models with varied fun-

damental constructions have been proposed in the last two decades. Stroud,

Müller, and Sansó (2001) proposed a state-space model in which the nonsta-

tionarity operates through locally-weighted mixture of regression surfaces

with time-varying regression coefficients. Ma (2002) proposed nonstation-

ary spatio-temporal covariance model constructions through scale and pos-

itive power mixtures of stationary covariance functions. Set in the spectral

domain, Fuentes et al. (2008) derived the nonstationary spatio-temporal

covariance model via mixture of locally stationary spatio-temporal spectral

densities. Shand and Li (2017) extended the idea of dimension expansion

by Bornn et al. (2012) to the spatio-temporal case, resulting in nonsta-

tionary spatio-temporal covariances. Some other important works in the

nonstationary spatio-temporal modeling include Huang and Hsu (2004);

Sigrist, Künsch, and Stahel (2012); Xu and Gardoni (2018). The nonsta-

tionary extension of the Gneiting-Matérn class is also of particular inter-

est and have been explored by Porcu et al. (2006) and Porcu, Mateu, and

Bevilacqua (2007) for spatial anisotropy and spatial nonstationarity, respec-

tively, but the resulting models in those approaches are stationary in time.
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Alternatively, one can impart space-time nonstationarity to the Gneiting-

Matérn class through the process convolution-based spatio-temporal covari-

ance model of Garg, Singh, and Ramos (2012), however, their model does

not allow for evolving smoothness.

We propose a time-varying spatio-temporal covariance model by gener-

alizing the Gneiting-Matérn class (1.2) to include temporally varying spa-

tial scale and smoothness. The foundational idea of the proposed model is

analogous to the work of Ip and Li (2015), however, our model construction

significantly differs from that of Ip and Li (2015). The time-varying model

of Ip and Li (2015) requires computing the square root of purely spatial co-

variance matrices for the evaluation of the full space-time covariance matrix,

which can be a computationally expensive evaluation for a large number of

spatial locations. In contrast, the proposed model avoids computing the

square root of matrices and provides a simple parametric functional form

for evaluation of the spatio-temporal covariance. Additionally, since the

proposed model is a generalization of the Gneiting-Matérn class, it inherits

all the desirable properties of the original class and beyond.

The rest of the paper is organized as follows: we introduce the consid-

ered PM2.5 data and perform a preliminary data analysis in Section 2 to

motivate time-varying model construction. In Section 3, we describe the
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proposed time-varying model and its properties. We conduct a simulation

study to compare the performance of the proposed model with Gneiting-

Matérn class and separable model in Section 4. The proposed time-varying

model is then applied to analyze the PM2.5 data in Section 5. We conclude

with discussion and potential future extensions in Section 6.

2. The PM2.5 Data and the Preliminary Analysis

The PM2.5 data in consideration is sourced from the Environmental Protec-

tion Agency (EPA), which provides daily average measurements of PM2.5

across the United States. To generate the PM2.5 measurements, the EPA in-

tegrates the monitoring data from National Air Monitoring Stations/State

and Local Air Monitoring Stations (NAMS/SLAMS) with the Community

Multiscale Air Quality (CMAQ) modeling system (https://www.epa.gov/

cmaq), which generates 12 km gridded output. For our analysis, we focus on

the weekly average data for the year 2017. Prior to calculating the weekly

averages, we apply a log transformation to the PM2.5 values. Through the

log transformation, we aim to normalize the data, which in turn makes it

suitable for Gaussian process modeling. For the rest of our study, we use the

term PM2.5 synonymously with the weekly averaged and log transformed

PM2.5, for simplicity.
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While the raw dataset covers the entire United States, our analysis

focuses specifically on the state of Oregon for the year 2017. We choose

the state of Oregon due to its susceptibility to wildfires, making the study

of PM2.5 concentration in this region particularly relevant. The dataset

consists of 41,860 observations, representing weekly time series data (52

weeks) at 805 spatial locations. These spatial locations are depicted in

Figure 1 and are denoted by the setDs ⊂ R2. Additionally, we define a set of

52 equally spaced points in the interval [0, 1], denoted by Dt ⊂ R. Figure 1

visualizes the spatial fields of the considered PM2.5 data. Clearly, the 805

observed spatial locations shown in Figure 1 are not uniformly distributed

across the state of Oregon. These observed locations are concentrated in

the western, northwestern, and southwestern regions of Oregon, which have

higher population density. Conversely, the eastern region has limited or no

observations available. Therefore, the primary objective of our analysis is

to effectively model the spatio-temporal dependence of the PM2.5 data and

accordingly develop an accurate predictive model that can predict PM2.5

levels in the space-time continuum of the unobserved regions of the study

area.

The accuracy of any predictive model must be assessed through cross-

validation, and as such, we conduct multiple rounds of cross-validation to
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Figure 1: Observed PM2.5 data over the state of Oregon, US.
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ensure a robust analysis. To achieve this, we create 100 random spatial

splits of the complete dataset, which consists of 805 spatial locations, into

training sets comprising 322 spatial locations and validation sets comprising

483 locations. Specifically, we randomly generate 100 distinct combinations

of training and validation sets based on the training locations T is ⊂ Ds and

validation locations V is ⊂ Ds, respectively, such that T is ∪ V is = Ds, i =

1, . . . , 100.

Let Y (s, t), (s, t) ∈ Ds×Dt, denote the PM2.5 indexed at spatial location

s = (Longitude, Latitude) ∈ Ds and the time t = (week of the year 2017−

1)/(52 − 1) ∈ Dt, where time t is scaled such that t = 0 and t = 1

represent the first and the last week of the year 2017, respectively. We

aim to model Y (s, t), as a spatio-temporal Gaussian process such that

E{Y (s, t)} = µ(s, t), and Cov{Y (s1, t1), Y (s2, t2)} = K(s1, s2, t1, t2). To

capture the spatio-temporal trends and seasonality in the mean, we model

the mean function µ(s, t) independently across the 100 training sets, as the

following linear combination of spatial trend and temporal harmonic terms:

µ(s, t) = β0 + βT
s s + β1 cos (3πt) + β2 sin (3πt) , β0, β1, β2 ∈ R, βs ∈ R2.

We fit the specified linear model for µ(s, t) to detrend the process Y (s, t)

with the fitted µ̂(s, t) and obtain the residual process ε(s, t) = Y (s, t) −

µ̂(s, t), for each of the 100 training sets. The residual process is then stan-
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dardized and further investigated to explore the properties ofK(s1, s2, t1, t2).

For simplicity, we assume that the process is stationary in space, and there-

fore, the covariance function K(s1, s2, t1, t2) = C(s2 − s1, t1, t2), depends

only on spatial lag s2 − s1 and time-points t1, t2. Furthermore, we also as-

sume that the purely spatial covariance function for any arbitrary time t:

C(s2 − s1, t, t) is of the Matérn class. Next, we want to explore the time-

varying properties of C(s2 − s1, t, t); and therefore, we fit a purely spatial

Matérn covariance function, σ2M(h | α, ν), independently for each t ∈ Dt,

on the residual processes from the 100 training sets, using the maximum

likelihood estimation (MLE) method. Figure 2 presents the boxplots il-

lustrating the weekly estimates of the spatial scale parameter α and the

smoothness parameter ν obtained from fitting the spatial Matérn covari-

ance function across 100 training sets. Notably, both parameters, α and ν,

display a clear temporal evolution. During the middle of the year, there

is a noticeable dip in the values of both α and ν. This temporal pattern

suggests a change in the spatial structure and smoothness of the underlying

process during that period. Hence, it is crucial to consider the time-varying

nature of the spatial dependence when defining the spatio-temporal co-

variance function K(s1, s2, t1, t2). Neglecting this aspect can result in the

misrepresentation of the underlying process, potentially leading to subopti-
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mal inference and prediction. This serves as the motivation for developing

our time-varying class of spatio-temporal covariance functions, which are

discussed in detail in Section 3. The analysis of the data, as presented here,

is continued in Section 5.
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Figure 2: Boxplots illustrating the Maximum Likelihood estimates for (left) the

spatial scale parameter α and (right) the smoothness parameter ν of the covari-

ance function σ2M(h | α, ν). The estimates are obtained by fitting the covariance

function independently over the standardized residuals for each week on the 100

training sets.

3. Time-varying Spatio-temporal Covariance Model

In this section, we introduce our proposed class of time-varying spatio-

temporal covariance functions with discussion on its properties and validity

conditions. We consider the Gneiting-Matérn class (1.2), and provide its

time-varying generalization in the following theorem:
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Theorem 1. Let αs(t) > 0, t ∈ R and νs(t) > 0, t ∈ R, be any positive real

valued functions, then the following time-varying spatio-temporal covariance

function in (3.3):

Cov{X(s, ti), X(s + h, tj)} = C(h, ti, tj) = σ2 Γ{νs(ti)+νs(tj)
2

}√
Γ{νs(ti)}Γ{νs(tj)}

× (3.3)

1

{α2
s(ti)}d/4{α2

s(tj)}d/4{
ψ(|ti−tj |2)

α2
s

+
1/α2

s(ti)+1/α2
s(tj)

2
− ψ(0)

α2
s
}d/2
×

M[h | 1

{ψ(|ti−tj |
2)

α2
s

+
1/α2

s(ti)+1/α2
s(tj)

2
− ψ(0)

α2
s
}1/2

,
νs(ti) + νs(tj)

2
],

is valid for any Bernstein function ψ(w) > 0, w ≥ 0, and αs > 0.

While the spatio-temporal covariance function in (3.3) is valid for any

positive value of the parameter αs, we now onwards choose to constrain it

as αs =
∑

ti∈T αs(ti)/T, where T represents the set of all the training time-

points. This constraint is beneficial for two reasons: (i) it renders a simpler

model with one less parameter to be estimated, and (ii) include (1.2) as a

special case when αs(ti) and νs(ti) are constant over time. Specifically, with

any standardized Bernstein function ψ(w), w ≥ 0, ψ(0) = 1, let αs(t) = α >

0, νs(t) = ν > 0, t ∈ R, in (3.3), then αs = α and (3.3) reduces to:

C(h, ti, tj) =
σ2

{ψ(|ti − tj|2)}d/2

(
α‖h‖

ψ(|ti − tj|2)1/2

)ν

Kν

(
α‖h‖

ψ(|ti − tj|2)1/2

)
,

which is a Gneiting-Matérn class (1.2), and on that account, (3.3) is a

time-varying generalization of (1.2). The time-varying properties of the
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spatio-temporal covariance model in (3.3) become intelligible in its purely

spatial and purely temporal restrictions. In particular, let ti = tj = t in

(3.3) to evaluate the purely spatial covariance at any arbitrary time point t,

we get: C(h, t, t) = σ2M{h | αs(t), νs(t)}, which is a spatial Matérn covari-

ance function with spatial scale αs(t) and smoothness νs(t) as a function

of time t, thus allowing the temporal evolution of spatial dependence. As

an immediate consequence of functions αs(t) and νs(t), the following purely

temporal restriction of (3.3) becomes nonstationary in time:

C(0, ti, tj) =
σ2Γ{νs(ti)+νs(tj)

2
}{α2

s(ti)}−d/4{α2
s(tj)}−d/4√

Γ{νs(ti)}Γ{νs(tj)}{ψ(|ti−tj |
2)

α2
s

+
1/α2

s(ti)+1/α2
s(tj)

2
− ψ(0)

α2
s
}d/2

.

(3.4)

While the nonstationary behavior of the purely temporal covariance

in (3.4) is entirely controlled by nontrivial interactions of functions αs(t)

and νs(t), the individual interpretation of those functions in the context of

temporal nonstationarity becomes clear when we vary them singly in (3.4).

The detailed discussion on the nonstationarity effects of αs(t) and νs(t) on

(3.4) is provided in Supplementary Material S3. The proper specification of

functional forms for αs(t) and νs(t) in (3.3), which can flexibly capture the

time-varying dependence of any considered spatio-temporal data, is con-

sequential to achieve an advantageous modeling and inference. Thus, the

definition of the functions αs(t) and νs(t) should ideally be based on empiri-

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



cal evidence from some exploratory data analysis. One such alternative is to

follow the analysis of Section 2 and utilize the boxplots or estimates analo-

gous to Figure 2 for defining the functions αs(t) and νs(t) as those estimated

boxplots are indeed an empirical counterpart of the corresponding functions

αs(t) and νs(t). While there can be innumerable possible constructions of

positive real-valued functions for αs(t) and νs(t), we consider the follow-

ing definition of αs(t) and νs(t) for the time-varying model estimation in

our work: αs(t) = exp(pαn.α(t)), n.α ≥ 0, and νs(t) = exp(pνn.ν(t)), n.ν ≥ 0,

where pαk (t) and pνk(t), both are k−order polynomial of t. The polyno-

mial based specification requires an informed choices for the polynomial

orders n.α ≥ 0, and n.ν ≥ 0, which should be guided by an objective

criteria. To this end, we provide a stepwise polynomial regression based

exploratory analysis in Supplementary Material Section S5, where we also

give the detailed explanations on the specific polynomial order choices con-

sidered in our simulation study and the data application. For the choice of

ψ(w) > 0, w ≥ 0 in (3.3), there are several options available from the list of

Bernstein functions given in Van Den Berg and Forst (2012) and Gneiting

(2002). In this work, we only consider the following choice of Bernstein

function: ψ(w) = (awγ + 1)β, a > 0, 0 < γ ≤ 1, 0 ≤ β ≤ 1. Moreover, to

impart additional flexibility in the temporal part similar to Example 2 of
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Gneiting (2002), we multiply (3.3) with a purely temporal covariance func-

tion: (a|ti−tj|2γ+1)−δ, δ ≥ 0, where a and γ are the parameters common to

the chosen function ψ(w). Consequently, the time-varying spatio-temporal

model in (3.3) reduces to:

C(h, ti, tj) = σ2 Γ{νs(ti)+νs(tj)}
2

}√
Γ{νs(ti)}Γ{νs(tj)}

× (3.5)

{α2
s(ti)}−d/4{α2

s(tj)}−d/4

{ (a|ti−tj |
2γ+1)β

α2
s

+
1/α2

s(ti)+1/α2
s(tj)

2
− 1

α2
s
}d/2(a|ti − tj|2γ + 1)δ

×

M[h | 1

{ (a|ti−tj |
2γ+1)β

α2
s

+
1/α2

s(ti)+1/α2
s(tj)

2
− 1

α2
s
}1/2

,
νs(ti) + νs(tj)}

2
],

where σ > 0, δ ≥ 0, 0 ≤ β ≤ 1, a > 0, 0 < γ ≤ 1, αs(t) > 0, νs(t) >

0, t ∈ R, and αs =
∑

ti∈T αs(ti). Now, if we set αs(t) = α, t ∈ R and

νs(t) = ν, t ∈ R, then (3.5) reduces to the following Gneiting-Matérn class:

C(h, ti, tj) = σ2 1

(a|ti − tj|2γ + 1)βd/2+δ
M{h | α

(a|ti − tj|2γ + 1)β/2
, ν}, (3.6)

where β represents the parameter to control the degree of nonseparability

such that β = 1 corresponds to fully nonseparable model and β = 0 leads

to the following separable model:

C(h, ti, tj) = σ2 1

(a|ti − tj|2γ + 1)δ
M(h | α, ν). (3.7)

The three spatio-temporal covariance models in (3.5), (3.6) and (3.7)

are considered as the candidate models in the simulation study and data
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application presented in Section 4 and Section 5, respectively. The model in

(3.5) can be made arbitrarily flexible through parametric functions for αs(t)

and νs(t), however, the estimation of model parameters through Gaussian

MLE also then becomes increasingly challenging. Higher values of n.α and

n.ν in our polynomial-based specification lead to increased flexibility in the

proposed time-varying model. In principle, large volume of data is preferred

to fit a highly parameterized complex model such as (3.5) to avoid over-

fitting, but at the same time the Gaussian MLE becomes time-prohibitive

and computationally infeasible with a high volume of spatio-temporal data.

The main issue lies in storing and performing the Cholesky factorization

of the large covariance matrix. To overcome this, we implement a random

composite likelihood (RCL)-based estimation procedure, which is described

in Supplementary Material Section S2.

4. Simulation Study

In this section, we conduct a simulation study to empirically evaluate the

advantage of using the proposed time-varying class of spatio-temporal co-

variance models against the commonly used Gneiting-Matérn class and

the separable class of spatio-temporal covariance models. For this simu-

lation study, we particularly consider the three nested models (3.5), (3.6)
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and (3.7), which now onwards, are referred as “Tvar.M”, “Gneit.M” and

“Sep.M”, respectively, for brevity. These models are compared on the basis

of interpolation and forecasting performance under four different cases.

The spatial domain of interest, Ds, is set to be 25× 25 equally spaced

grid points on a unit square, i.e., [0, 1]2 and temporal domain of interest,

Dt, is set as 21 equally spaced points in [0, 1]. We simulate 100 realizations

of a zero mean spatio-temporal Gaussian process Z(s, t), s ∈ Ds ⊂ R2, t ∈

Dt ⊂ R, with Tvar.M covariance model, under four different parameter

settings listed as Cases 1–4 in Table 1. Observe that for Case 1, 2 and 3,

the true functions αs(t) and νs(t) are time-varying, whereas, for Case 4,

αs(t) and νs(t) are constant; therefore, true data generating model for Case

4 is in fact Gneit.M. The true functions αs(t) and νs(t), for t ∈ Dt, are also

shown in Figure 3. As a consequence of specified αs(t) and νs(t), the purely

spatial dependence of Z varies periodically over time in Case 1, linearly

over time in Case 2, nonlinearly over time in Case 3, and stays constant

over time in Case 4. The resulting temporal nonstationarity is discussed in

the Supplementary Material Section S4.

For comparison of interpolation and forecasting performance, we per-

form cross-validation, and accordingly, we split the data into a training

set, a validation set for interpolation Vi and a validation set for forecast-
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Table 1: Parameter settings for the four simulation cases. For all the four cases,

the true values of the parameters {σ, γ, β, a, δ} ={1, 0.60, 0.80, 10, 0.10}.

Functional Case 1 Case 2 Case 3 Case 4

αs(t) 20 + 15 sin(πt
20

) 25− 10t 20− 10 exp(10t−5)
1+exp(10t−5) 20

νs(t) 0.5 + sin(πt
20

) 0.5 + t 0.5 + exp(10t−5)
1+exp(10t−5) 1

ing Vf . The entire spatial field at the last two time points of Dt, i.e., at

t = {0.95, 1.00}, constitute Vf . We randomly select 125 spatial locations as

our validation locations for interpolation and the data at those locations for

the remaining 19 time-points of Dt, i.e., t = {0.00, 0.05, . . . , 0.90}, form Vi.

All the data that remains after removing the two validation sets make our

training data. For each of the four simulation cases, we fit three candidate

models Tvar.M, Gneit.M and Sep.M by using the RCL estimation, on the

training data in each of the 100 simulation runs. During estimation, the

functions αs(t) and νs(t) in the candidate model Tvar.M are specified as:

αs(t) = exp(pα2 (t)), νs(t) = exp(pν2(t)), t ∈ Dt for Case 1, Case 2 and Case

4, whereas for Case 3, αs(t) = exp(pα3 (t)), νs(t) = exp(pν3(t)), t ∈ Dt. Note

that the specification of functions αs(t) and νs(t) in the candidate model

Tvar.M are different from that data generating model Tvar.M. Addition-

ally, we fix a to its true value, i.e., a = 10, in all the three candidate models

during the estimation to slightly reduce the optimization burden.
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The RCL parameter estimates and their description can be found in the

Supplementary Material Section S4. The estimated αs(t) and νs(t) from the

candidate Tvar.M shown in Figure 3 display conspicious comparability with

the corresponding true functions in all the four cases. Although, it is worth

noting that, in Case 3, the estimate for νs(t) displays increasing offset from

the true values for the time period t outside the training data, i.e. t > 0.90.

This points out to the fact that, outside the training temporal domain,

the estimated functions αs(t) and νs(t) should be interpreted with caution.

Note that the candidate Tvar.M model is also slightly misspecified in Cases

1–3 due to its functional specification of αs(t) and νs(t), which is different

from that of the true model; however, the estimated functions αs(t) and

νs(t), in general, still recover the corresponding true functions because the

specification in the candidate Tvar.M is flexible enough.

We now perform spatio-temporal prediction at validation space-time

coordinates through kriging with the estimated three candidate covari-

ance models to achieve cross-validation in all the four simulation cases.

Specifically, we predict Z at the space-time coordinates in Vi and Vf to

obtain the interpolation and forecast of Z, respectively. Under Gaussian

process framework, the predictive distribution of any unobserved Z(s0, t0)

is the conditional Gaussian distribution where conditioning is over all the
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Figure 3: Casewise comparison of the pointwise average of the estimated func-

tions α̂s(t) and ν̂s(t) from the candidate Tvar.M model with their corresponding

true functions of the data generating Tvar.M model. The average is taken over

the 100 simulation runs. The 95% pointwise-interval is also shown in grey bands.

observed Z(s, t). Kriging provides us with prediction value Ẑ(s0, t0) and

prediction variance σ̂2
s0,t0 of the unobserved Z(s0, t0), which, under Gaus-

sian process assumption, defines the predictive distribution of Z(s0, t0) as

N
(
Ẑ(s0, t0), σ̂2

s0,t0
)
. The predictive distribution enables us to construct

p−prediction intervals (p-PI) for Z(s0, t0) as
(
Q̂ 1−p

2
(s0, t0), Q̂ 1+p

2
(s0, t0)

)
,

where Q̂p(s
0, t0) denote the p quantile of N

(
Ẑ(s0, t0), σ̂2

s0,t0
)
, and by con-

struction, the p−PI includes the true value of Z(s0, t0) with probability

0 < p < 1. For a thorough assessment of prediction quality, the accuracy of

the predicted value, prediction variance and the p−PI should be evaluated.

Accordingly, we consider the following commonly used metrics to quantify
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prediction performance in our cross-validation: (i) root mean squared er-

ror (RMSE), (ii) mean continuous ranked probability score (mCRPS), (iii)

mean logarithmic score (mLogS) (Gneiting and Raftery, 2007), (iv) good-

ness statistic (G) (Deutsch, 1997), (iv) accuracy plot and (v) the average

width plot (Qadir et al., 2021). While the RMSE considers accuracy of

only the prediction value, mCRPS and mLogS consider both the predic-

tion value and prediction variance to assess the prediction quality. Lower

values of RMSE, mCRPS and mLogS indicate superior predictions. The

remaining other metrics G, accuracy plot and the average width plot ex-

plore the accuracy of the p−PI. In particular, G ∈ [0, 1] quantifies coverage

accuracy of the p−PI, the accuracy plot visualizes the coverage accuracy

through scatter plot of theoretical vs. empirical coverage of the p−PI over

p ∈ (0, 1), and average width plot display the width of the p−PI as a func-

tion of p ∈ (0, 1). As a rule, higher value of G and points closer to the

identity line in the accuracy plot indicates better coverage; and for a fixed

coverage accuracy, narrower p-PI is preferred. We compute all these met-

rics on Vi and Vf to provide a comprehensive juxtaposition of the three

candidate models in terms of their predictive power.

Figure 4 shows the casewise boxplots for the RMSE, mCRPS, mLogS

and G, computed over Vi for all the three candidate models and Figure 5
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Figure 4: Boxplots of 100 simulation run-based RMSE, mCRPS, mLogS and G,

computed over the interpolation validation set (Vi).

shows the same set of boxplots which are computed over Vf instead. Figure

6 shows the corresponding casewise accuracy plots and average width plots

over Vi and Figure 7 shows those plots for Vf . In terms of interpolation ac-

curacy, the Tvar.M model significantly outperforms the other two candidate

models in Cases 1–3 as it produces noticeably higher G and lower RMSE,

mCRPS and mLogs against Gneit.M and Sep.M (see Figure 4). In addition,

the Tvar.M model exhibits the highest accuracy of interpolation p−PI (see

accuracy plot in Figure 6) with narrowest p-PI width (see average width

plot in Figure 6) among the three candidate models for Cases 1–3. These

results are expected since the true underlying spatio-temporal dependence
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Figure 5: Boxplots of 100 simulation run-based RMSE, mCRPS, mLogS and G,

computed over the forecasting validation set (Vf ).

of the simulated data in Cases 1–3 is time-varying, and such dependence can

be satisfactorily captured only by the Tvar.M among the three candidate

models. Furthermore, between Gneit.M model and Sep.M model, the for-

mer exhibits better interpolation accuracy, although only slightly, in terms

of RMSE, mCRPS and mLogS, but strongly, in terms of G (see Figure 4) for

Cases 1–3. The candidate Tvar.M model does not exhibit any improvement

in interpolation accuracy over Gneit.M in any of the assessment metrics for

Case 4, which is not surprising since the true underlying spatio-temporal

dependence in Case 4 is not time-varying. Also, the interpolation accuracy

of Sep.M model in Case 4 is lowest among the three candidate models, and
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Figure 6: The accuracy plot and the average width plot computed over the

validation set for interpolation (Vi) and averaged over the 100 simulation runs.

this is attributed to the high degree of nonseparability (β = 0.8) in the sim-

ulated data. In terms of forecasting accuracy, the improvements by Tvar.M

against other candidate models are clearly observed in Cases 1–3, on all

the metrics (see Figure 5 and Figure 7), except for RMSE in which the

improvement are less evident. By and large, these results endorse the use

of Tvar.M against Gneit.M and Sep.M for modeling spatio-temporal data,

as the Tvar.M can potentially lead to improved predictions.

5. Data Analysis

In this section, we continue with the data analysis started in Section 2, us-

ing the same notations as defined therein. As mentioned earlier in Section

2, it is crucial to consider a class of time-varying spatio-temporal models to
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Figure 7: The accuracy plot and the average width plot computed over the

validation set for forecasting (Vf ), and averaged over the 100 simulation runs.

adequately capture the dependence structure of ε(s, t). In line with this, we

have developed the class of time-varying spatio-temporal covariance models

(3.3) in Section 3, thoroughly tested its performance on the simulated data

in Section 4, and we now illustrate its application for the PM2.5 predic-

tion in the context of Gaussian process modeling. Accordingly, we employ

the proposed time-varying class of spatio-temporal covariance functions to

model ε(s, t) as a zero-mean Gaussian process. Moreover, to explore the

relative suitability of the proposed model for this dataset, we also consider

the Gneiting-Matérn class and the separable class of models as candidates

for comparison.

We fit the candidate models: Tvar.M, Gneit.M, and Sep.M, indepen-
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Figure 8: The estimated mean functions αs(t) (left) and νs(t) (right) along with

their respective 95% pointwise-intervals. These mean functions and intervals are

overlaid on boxplots representing the independent weekly maximum likelihood

estimates of α and ν obtained from the covariance function σ2M(h | α, ν). The

mean function and 95% pointwise-intervals are calculated based on the pointwise

mean and standard deviation of the estimated functions derived from the 100

training sets.

dently over the 100 training sets using the RCL estimation on the ε(s, t)

data. For the Tvar.M model, we need to select appropriate values for n.α

and n.ν to determine the degree of the polynomials in the temporally vary-

ing functions αs(t) and νs(t), respectively. To determine appropriate values

for n.α and n.ν, we perform a stepwise polynomial regression-based ex-

ploratory analysis. The detailed procedure for this analysis is provided in

Supplementary Material Section S5. Based on the results of the exploratory
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analysis, we decide to set n.α = 5 and n.ν = 5 in the Tvar.M model.

Next, we perform the RCL estimation for the three candidate models

independently on the 100 training sets. Figure 8 displays the mean and 95%

pointwise-interval of the estimated functions αs(t) and νs(t), respectively,

obtained from the three candidate models based on the 100 training sets.

The boxplots from Figure 2 are also included in Figure 8 for the reference.

In the Tvar.M model, the mean values of the estimated functions, αs(t) and

νs(t), manifest a general trend that echoes the weekly estimates of α and

ν. In particular, the estimated values peak at the boundaries of Dt and

diminish towards the center, suggesting a pattern reminiscent of seasonal

variations. Yet, it’s essential to acknowledge that the estimated αs(t) and

νs(t) don’t perfectly correspond with the nuanced fluctuations observed in

the respective weekly estimates. This deviation likely stems from the joint

estimation of all parameters, leading to a constrained and smoother behav-

ior that helps prevent discontinuities in spatio-temporal predictions. This

suggests that the Tvar.M model captures the temporally evolving nature of

the spatio-temporal process ε(s, t), which can potentially lead to improved

spatio-temporal predictions. The other two candidate models, Gneit.M

and Sep.M, do not incorporate the time-varying dependence of ε(s, t) due

to their inherent theoretical limitations. As a result, they estimate constant
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values for αs(t) and νs(t) throughout the entire time period.
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Figure 9: Prediction quality assessment metrics based on the 100 validation sets

for the three candidate models. The top row shows the accuracy plot and the

average width plot. The bottom row shows the boxplots of RMSE, mCRPS,

mLogS and G based on the 100 runs.

While the estimated candidate model, Tvar.M, acceptably conform to

the underlying time-varying spatio-temporal dependence of ε(s, t) (see Fig-

ure 8), its usefulness in terms of spatio-temporal prediction still needs to

be validated empirically. To this end, we now examine and compare the

prediction performance of all the three candidate models for this dataset

through a cross-validation study, similar to the one conducted in Section
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4. We perform spatio-temporal prediction of ε(s, t) across the 100 val-

idations sets, through Kriging with their respective estimated candidate

models. We evaluate the prediction performance of the three candidate

models: Tvar.M, Gneit.M, and Sep.M, on the 100 validation sets, following

the prediction quality assessment metrics described in Section 4. These

metrics are computed based on the models estimated on the corresponding

100 training sets. Figure 9 shows the boxplots of RMSE, mCRPS, mLogS

and G based on the 100 validation sets, for the three candidate models.

Additionally, the corresponding accuracy plots and the average width plots

are also included in Figure 9.

The accuracy plot and average width plot clearly indicate that among

the three candidate models, Tvar.M provides the best prediction inter-

vals in terms of calibration and sharpness. Furthermore, the joint assess-

ment of RMSE, mCRPS, mLogS, and G reveals that Tvar.M outperforms

both Gneit.M and Sep.M. Specifically, in terms of mCRPS, mLogS, and G,

Tvar.M demonstrates superior performance, while the boxplots of RMSE

show that all three candidate models exhibit similar point prediction per-

formance. These findings align with the empirical findings of Fuglstad et al.

(2015), highlighting the improvement offered by the nonstationary model,

Tvar.M, over the stationary models, Gneit.M and Sep.M, is primarily due
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to the improved uncertainty quantification, since the point prediction per-

formance is similar across the three candidate models.

Overall, these results provide substantial support for the modeling of

spatio-temporal processes using proposed class of time-varying spatio-temporal

covariance model over stationary models. The time-varying model effec-

tively captures subtle nonstationarity features, leading to improved predic-

tion accuracy.

6. Discussion

In this article, we have developed a time-varying class of spatio-temporal

models which includes the commonly used Gneiting-Matérn class and sep-

arable Matérn class of models as particular cases. Through our simulation

study and the PM2.5 data application, we have established modeling advan-

tages of our proposed class. Although, the proposed model is stationary in

space and nonstationary in time, at the cost of additional complexity it can

easily be made nonstationary in space as well by modifying the time-varying

functions αs(t) and νs(t) to the space-time-varying functions αs(s, t) and

νs(s, t), respectively. Specifically, if we replace αs(t) > 0 and νs(t) > 0

with functions αs(s, t) > 0 and νs(s, t) > 0, respectively, in Theorem 1, the

resulting model is still valid and is nonstationary both in space and time.
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In addition to the potential prediction improvements by using a non-

stationary model against stationary model, it also reveals some important

subtle features of the spatio-temporal data. Moreover, it can help us to de-

termine the sources of nonstationarity which can be then infused in simpler

models that can lead to equally well performance (Fuglstad et al., 2015).

The statistical analysis of the PM2.5 data revealed its time-varying spatio-

temporal dependence in which the spatial scale and smoothness are gener-

ally lower in the middle of the year, (i.e in spring and summer), and attain

peaks near the beginning and the end of the year (i.e., fall and winter). Such

a spatio-temporal dependence is paramatrically modeled by the proposed

class of time-varying model, and the result of which is an improvement in

spatio-temporal predictions of PM2.5.

A particular downside of the proposed model is that the time-varying

functions αs(t) and νs(t) can be sometimes misleading for the time point

t which is far from the training time-periods. For instance, suppose that

the estimated νs(t) is linearly increasing in training time-period, then that

would not necessarily mean that the process smoothness will be extremely

high for an extremely far time point. The estimated νs(t) in Case 3 of

simulation study illustrate this particular downside, since the estimated

function νs(t) becomes increasingly misleading as t moves away from the
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REFERENCES

training time period. Additionally, the proposed model disregards the

space-time asymmetry which is a commonly inherited feature in spatio-

temporal datasets, therefore, introducing space-time asymmetry to the pro-

posed class is plausible extension to this work. Lastly, it is desirable to

extend the proposed class for multivariate setting, a possible direction for

which is the development of multivariate analgous of Bernstein functions

ψi,j(w), i, j = 1, . . . , p, p ≥ 1, and using it to appropriately redefine (3.3).

Supplementary Materials

Section S1 gives the proof for Theorem 1. Section S2 discusses RCL es-

timation. Section S3 discusses properties of the proposed model. Section

S4 provides an extended discussion on the simulation study. Section S5

details the exploratory analysis for the polynomial order selection and its

implementation for the simulation study and the data application.
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