
 

 

 

 

 

 

 

 

 

Statistica Sinica Preprint No: SS-2022-0062 

Title Bayesian Consistency with the Supremum Metric 

Manuscript ID SS-2022-0062 

URL http://www.stat.sinica.edu.tw/statistica/ 

DOI 10.5705/ss.202022.0062 

Complete List of Authors Nhat Ho and  

Stephen G. Walker 

Corresponding Authors Stephen G. Walker 

E-mails s.g.walker@math.utexas.edu 

Notice: Accepted version subject to English editing. 



Statistica Sinica

Bayesian Consistency with the Supremum Metric

Nhat Ho and Stephen G. Walker

University of Texas at Austin

Abstract: We present conditions for Bayesian consistency in the supremum met-

ric. The key to the technique is a triangle inequality which allows us to explicitly

use weak convergence, a consequence of the standard Kullback–Leibler support

condition for the prior. A further condition is to ensure that smoothed versions

of densities are not too far from the original density, thus dealing with densities

which could track the data too closely. A key result of the paper is that we

demonstrate supremum consistency using conditions comparable to those cur-

rently used to secure L1 consistency.

Key words and phrases: Prokhorov metric, Sinc kernel, Fourier integral theorem,

Weak convergence.

1. Introduction

Bayesian consistency remains an open topic and has seen much progress and ideas since the

seminal papers of Barron et al. [1999] and Ghosal et al. [1999]. A dominating sufficient, but not

necessary, condition is a Kullback–Leibler support condition for the prior;

Π
(
D(f0, f) < ε

)
> 0 (1.1)
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for all ε > 0. Here D(f0, f) =
∫
f0 log(f0/f) denotes the Kullback–Leibler divergence between

f0 and f and f0 represents the true density function from which the identically distributed

(Xi)i=1:n are observed. Furthermore, we write Π(df) to denote the prior distribution on a space

of probability density functions; say P.

It is well known that condition (1.1) is not sufficient for strong consistency. Strong consis-

tency holds if

Πn(Aε) := Π(Aε | X1:n)→ 0 a.s. P∞0 (1.2)

for all ε > 0, where Aε = {f : dH(f0, f) > ε} and dH is the Hellinger distance between f0 and

f . Note the the Hellinger distance is equivalent to the L1 distance. There is a counter example

in Barron et al. [1999] which shows that a posterior is not strongly consistent given only the

Kullback–Leibler support condition.

The standard additional sufficient condition for consistency involves the existence of an

increasing sequence of sieves (Fn), which become P as n → ∞, such that the size of Fn, as

measured by some suitable entropy, is bounded by enκ, for some κ > 0, and Π(F′n) < e−nξ for

some ξ > 0.

On the other hand, Walker [2004] found a sieve, based on Π itself, which automatically

satisfies the entropy condition, and the F′n condition is satisfied when
∑
j=1:∞

√
Π(Aj) < ∞,

where the (Aj)
∞
j=1 form a partition of P with respect to Hellinger neighborhoods. A recent

survey of Bayesian consistency is provided in Ghosal and van der Vaart [2017].

A new approach to Bayesian consistency was developed by Chae and Walker [2017]. The

idea is to rely on the weak convergence of the posterior and to find a minimal extension to secure

strong consistency. The triangle inequality, for some strong metric d, the L1 metric, yields

d(f0, f) ≤ d(f0, f̄0) + d(f, f̄) + d(f̄0, f̄),

where f̄ indicates a smoothed version of f . Specifically in Chae and Walker [2017] f̄(x) =
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[F (x+h)−F (x−h)/(2h) is used for some smoothing parameter h > 0 in the univariate setting.

The triangle inequality is perfect for understanding the key aspects of strong consistency.

The idea is that weak convergence can deal with the d(f̄ , f̄0) term, an assumption on f0 can

deal with the d(f̄0, f0) term, and a condition on f not being too oscillating can deal with the

d(f̄ , f) term.

In this paper we obtain conditions for strong consistency with respect to the supremum

metric on Rd; i.e., L∞(Rd). We believe that we are the first to consider this problem for density

estimation. Previous work on the supremum metric has been done on [0, 1]d and includes work

by Castillo [2014], who considered contraction rates, assuming the true density on (0, 1) is

bounded away from 0 and the true density satisfies log f0 ∈ Cα(0, 1); i.e., Hölder smooth with

coefficient α. Other papers on [0, 1]d include Shen and Ghosal [2017] who consider densities

of the form f(x | θ) ∝ Ψ(θ′b(x)) for some bases functions b and some fixed continuously

differentiable function Ψ. Assumptions made include Ψ−1(f0) ∈ Cα for a known α and f0 is

bounded away from 0. Other papers on consistency and rates using the Lr metrics and others

include [Gine and Nickl, 2011], [Hoffmann et al., 2015] and [Scricciolo, 2014], and Li and Ghosal

[2021]. Related, though of fundamental difference, are papers looking at the supremum metric

for consistency with respect to the standard nonparametric regression model yi = f(xi) + εi;

including Yoo and Ghosal [2016], Yoo et al. [2018] and Li and Ghosal [2020].

In this paper we focus on supremum consistency on Rd and particularly for d = 1. We

start with the triangle inequality

|f0(x)− f(x)| ≤ |f0(x)− f0,R(x)|+ |f0,R(x)− fR(x)|+ |f(x)− fR(x)|, (1.3)

where fR is an alternative kernel smoothed version of f ; specifically using the sinc kernel. That
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is

fR(x) :=
1

πd

∫
Rd

d∏
j=1

sin(R(xj − yj))
xj − yj

f(y) dy, (1.4)

for any x = (x1, . . . , xd) ∈ Rd. As R approaches infinity and f ∈ L1(Rd), fR(x) converges to

f(x) according to the Fourier integral theorem [Wiener, 1933, Bochner, 1959].

The present paper focuses solely on consistency. The idea being that weakening the con-

ditions on prior distributions for consistency to be achieved is and remains an important topic.

These weakened conditions can then be used to achieve benchmark rates of convergence, it is

argued, with some technical applications; but the insights are coming from how the weakening

of assumptions required for consistency arise.

The layout of the paper is as follows. In Section 2 we outline the assumptions and initial

results for the general theory. Section 3 provides an illustration for establishing posterior supre-

mum consistency for the widely used infinite normal mixture model. We conclude the paper

with a discussion in Section 4. Additional proofs are provided in the Appendix.

2. General Theory

We start with equation (1.3) and consider the posterior Πn(d∞(f0, f) > ε) which is upper

bounded by

Πn(d∞(f0, f) > ε) ≤ Πn

(
d∞(f0,R, fR) > (ε− d̄)/2

)
+ Πn

(
d∞(f, fR) > (ε− d̄)/2

)
,

where d̄ = d∞(f0, f0,R). Our assumption is that for any ε > 0 there exists an R <∞ for which

d∞(f0, f0,R) < ε/2. Equivalently, limR→∞ d∞(f0, f0,R) = 0. Establishing for what f0 this holds

forms the main theoretical content of the paper.

In the second subsection we consider the term d∞(f, fR) and motivate the need to have

R to be sample size dependent, written as Rn. We show how a prior condition allows for us to
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2.1 The Term d∞(f0, f0,R)

achieve Πn(d∞(f, fRn) > ε) → 0. In the final subsection we look at the term d∞(fRn , f0,Rn).

Indeed, we need the Rn to be related to the Prokhorov rate ε̃n, i.e., Πn(dP (f, f0) > ε̃n) → 0,

guaranteed by the Kullback–Leibler support condition.

2.1 The Term d∞(f0, f0,R)

First we consider d∞(f0, f0,R) and to make progress with our aim for supremum consistency,

we will require that

lim
R→∞

d∞(f0,R, f0) = 0. (2.5)

For f0,R to exist and be close to f0 we require the very mild condition that f(x+) and f0(x−)

exist for all x and

∫ δ

0

f0(x+ t)− f0(x−)

t
dt and

∫ δ

0

f0(x+ t)− f0(x−)

t
dt

both exist for some δ > 0, for then

1
2
(f0(x+) + f0(x−)) = π−1 lim

R→∞

∫
sin(R(x− y))

x− y f0(y) dy.

At points of discontinuity we can define the value of f0(x) as 1
2
(f0(x+) + f0(x−)), though to

keep things simple we will assume all density functions are continuous; i.e., f(x+)− f(x−) = 0

for all x.

To obtain bounds for d∞(f0, f0,R) we make certain smoothness assumptions. We define

the following notion of supersmooth and ordinary smooth density functions. To simplify the

presentation, f̂ denotes the Fourier transform of the function f . Though we use f , strictly the

following is only required for f0, and we drop the subscript 0 temporarily.

Definition 1. (1) We say that the density function f is supersmooth of order α with scale
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2.1 The Term d∞(f0, f0,R)

parameter σ if there exist universal constants C,C1 such that for almost all x ∈ Rd, we obtain

∣∣∣f̂(x)
∣∣∣ ≤ C exp

(
−C1σ

2

(
d∑
j=1

|xj |α
))

.

(2) The density function f is ordinary smooth of order β with scale parameter σ if there exists

universal constant c such that for almost all x ∈ Rd, we have

∣∣∣f̂(x)
∣∣∣ ≤ c · d∏

j=1

1

(1 + σ2|xj |β)
.

The supersmooth and ordinary smooth notions have been used in deconvolution problems;

see for examples [Fan, 1991, Zhang, 1990]. Examples of supersmooth functions include mixtures

of location Gaussian distributions or mixture of location Laplace distributions with similar scale

parameter. In particular, when we have f(x) =
∑k
j=1 ωiN(x|µj , σ2Id) where 1 ≤ k ≤ ∞, then

f is a supersmooth density function of order 2 with scale parameter σ. When f is a mixture of

location Cauchy distribution with same scale parameter σ2Id, then f is a supersmooth density

function of order 1 with scale parameter σ. Examples of ordinary smooth functions include

mixtures of location Cauchy distributions with similar scale parameter σ2Id. In this case, these

mixtures are ordinary smooth functions of order 2 with scale parameter σ.

Based on Definition 1, we have the following results regarding the difference between fR

and f . These are fundamental to our approach by setting a sup bound between f and fR.

Proposition 1. (1) Assume that f is a supersmooth density function of order α > 0 with scale

parameter σ. Then, there exist universal constants C and C′ such that for R ≥ C′, we have

that

sup
x∈Rd

|fR(x)− f(x)| ≤ CR
max{1−α,0}

σ2d
exp

(
−C1σ

2Rα
)
,

where C1 is a universal constant associated with the supersmooth density function f from Defi-

nition 1.
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2.1 The Term d∞(f0, f0,R)

(2) Assume that f is an ordinary smooth density function of order β > 1 with scale parameter

σ. Then, there exists a universal constants c such that

sup
x∈Rd

|fR(x)− f(x)| ≤ c

σ2+2(d−1)/βRβ−1
.

The proof of Proposition 1 is in Appendix B. The results of Proposition 1 entail that for

sufficiently large R, we have that supx∈Rd |f0(x)− f0,R(x)| is arbitrarily small.

There is literature relating smoothness of f with the tail behavior of Fourier transforms,

see [Nissila, 2021]. One of the results from Theorem 2.1 in [Nissila, 2021] is that if f ∈W1,1(R)

and f ∈ Cβ(R), for any β > 0, then f is ordinary smooth. That is, if
∫
|f ′| <∞ and f is Hölder

smooth with coefficient β then f is ordinary smooth.

We now discuss a direct result which avoids the use of tails of Fourier transforms.

Proposition 2. If f is Hölder smooth on R for some positive coefficient and
∫
|f ′| <∞ then

lim
R→∞

sup
x
|fR(x)− f(x)| = 0.

Proof. We can write

fR(x) =

∫ +∞

−∞
f ′(s)

∫ R(x−s)

−∞

sin z

πz
dz ds.

Now split the outer integral into three parts; between (−∞, x − εR), (x − εR, x + εR) and

(x+εR,∞), where εR → 0 andRεR →∞. For the first part, the inner integral hasR(x−s) > RεR

and so for all x it is that this inner integral acts as 1− δR, where δR = 1/(RεR), based on the

asymptotic result ∫ ξ

−∞

sin z

πz
dz = 1− c/ξ + o(1/ξ) as ξ →∞

for some c > 0. For the third part, R(x− s) < −RεR and so the inner integral now acts as δR

for all x. Hence, we can write

fR(x) =

∫ x−εR

−∞
f ′(s) ds (1− δR) +

∫ ∞
x+εR

f ′(s) ds δR +

∫ x+εR

x−εR
f ′(s)

∫ R(x−s)

−∞

sin z

πz
dz ds+ o(δR).
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2.1 The Term d∞(f0, f0,R)

Since the sinc integral is bounded and
∫
|f ′| <∞ we have

fR(x) = f(x+ εR) +M {f(x+ εR)− f(x− εR)}+O(δR),

for some M <∞. Hence,

sup
x
|fR(x)− f(x)| ≤M∗ sup

x
|f(x+ εR)− f(x)|+O(δR),

for some finite M∗, and this goes to 0 as R→∞ under the assumption that f is Hölder smooth

for some coefficient. This is precisely the result appearing in Nissila [2021]. It is also to be noted

that Hölder smoothness arises from the condition ||f ′||∞ < ∞, which can be proven using the

mean value theorem.

Another smoothness assumption is provided in Shen et al. [2013]. For some envelope

function L(x) the density f ∈ C(β, L, τ) if

|Dkf(x+ y)−Dkf(x)| ≤ L(x) exp(τ y2) |y|β−bβc

for some τ > 0, β > 0 and for all k ≤ bβc where Dk denotes the kth derivative. To obtain the

desired result for this class, we would ask that L(x) is bounded so that f is bounded. If not, for

example, if f(0) =∞, then we will not be able to establish supx |fR(x)− f(x)| → 0 as R→∞

since f(0) =∞. If L is bounded and β is not an integer then we have

sup
x
|f(x+ ε)− f(x)| ≤ exp(τ) sup

x
L(x) |ε|β−bβc → 0 as ε→ 0.

If β is an integer, for example β = 1, then the smoothness assumption amounts to |f(x+ε)−f(x)|

and |f ′(x+ ε)− f ′(x)| being bounded by some constant, which is not sufficiently smooth.

Hence, with the appropriate smoothness conditions, for any ε > 0, we can find an R large

enough such that d∞(f0, f0,R) < ε/2, so now we only need to consider

Πn(d∞(f0, f) > ε) ≤ Πn

(
d∞(f0,R, fR) > ε/4

)
+ Πn

(
d∞(f, fR) > ε/4

)
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2.2 The Term d∞(f, fR)

which we focus on in the following two subsections.

To deal with these two terms, we introduce the notion that allows R to be sample size

dependent. So we set R = Rn → ∞ and as we shall see we require Rn to be connected to the

Prokhorov rate of convergence, guaranteed to exist under the assumption of weak convergence,

via the assumption that f0 is in the Kullback–Leibler support of the prior, the same assumption

made in Theorem 7 of Ghosal et al. [1999].

2.2 The Term d∞(f, fR)

For this part we will have Rn to be sample size dependent and we need to ensure the posterior

satisfies Πn(d∞(f, fRn) > ε) → 0 a.s. To achieve this we rely on the notion that Rn satisfies

a prior condition of the type

Π
(
d∞(f, fRn) > ε

)
< exp(−n cε) (2.6)

for some cε > 0. It is well known that equation (2.6) with the KL support condition implies that

the posterior satisfies Πn(d∞(f, fRn) > ε)→ 0 a.s.; i.e. if the prior mass on a sequence of sets is

exponentially small then the posterior mass on the sequence of sets tends to 0. The setting of Rn

is therefore problem specific, though we will be assuming that d∞(f, fR) > ε⇒ τ(f) < α(R, ε)

for some functional τ .

2.3 The Term d∞(fR, f0,R)

If the prior puts positive mass on all Kullback–Leibler neighborhoods of f0; i.e., equation (1.1),

then the posterior converges on weak neighborhoods of f0 [Schwartz, 1965]. Hence, there exists

a ε̃n for which Πn(dP (f0, f) > ε̃n) → 0 a.s., where dP denotes the Prokhorov distance, given

by

dP (g, f) = inf
ε>0
{G(A) ≤ F (Aε) + ε and F (A) ≤ G(Aε) + ε for all A} ,

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing) 



2.3 The Term d∞(fR, f0,R)

where Aε = {b | ∃a ∈ A, |b − a| < ε}. We also define A/R = {b | ∃a ∈ A, b = a/R} and

A− x = {b | ∃a ∈ A, b = a− x}. Our first result here is the following:

Theorem 1. If dP (f, f0) < ε and fx,R(t) = f(t/R− x)/R then supx dP (fx,R, f0,x,R) < Rε.

Proof. Given the assumption for f and f0, it is that F (A) ≤ F0(Aε) + ε for all sets A. Now

Fx,R(A) = F (A/R− x) ≤ F0((A/R− x)ε) + ε

and (A/R− x)ε = ARε/R− x. For example, if A = (a, b) then

(A/R− x)ε = (a/R− x− ε, b/R− x+ ε) = (a−Rε, b+Rε)/R− x.

So for all x, A and R we have Fx,R(A) ≤ F0,x,R(ARε) + ε and since R→∞ we can put the last

term ε as Rε. This implies supx dP (fx,R, f0,x,R) < Rε, completing the proof.

Theorem 1 yields

Πn

(
sup
x

∣∣∣∣∫ sin t

t
(fx,Rn(t)− f0,x,Rn(t)) dt

∣∣∣∣ & ε̃nRn

)
→ 0,

since (sin t)/t is a continuous and bounded function. Hence,

Πn

(
sup
x

∣∣∣∣ sin(Rn(x− y))

x− y (f(y)− f0(y)) dy

∣∣∣∣ & ε̃nR
2
n

)
→ 0;

i.e., Πn(d∞(fRn , f0,Rn) > ε)→ 0 for all ε > 0 under the constraint on Rn that ε̃nR
2
n → 0.

Putting all these conditions together, we see the assumptions required are extremely mild. Other

than a smoothness condition on f0, the only substantial requirement is that of (2.6). Another

issue is the Prokhorov rate of convergence which we discuss briefly. An upper bound for the

rate is needed. Given a prior Π with the Kullback–Leibler support condition there exists a rate

ε̃n such that Πn(dP (f, f0) > ε̃n)→ 0. Additional conditions, specifically setting the parameters
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of the prior to ensure L1 consistency would not disturb the Prokhorov rate. The posterior L1

rates, say ε∗n are typically known and are well documented in the literature. So an upper bound

for ε̃n, which is required, is provided by ε∗n. This easily follows due to the Prokhorov distance

being upper bounded by the L1 distance. We therefore obtain the following general consistency

result.

Theorem 2. Suppose the prior has f0 in the Kullback–Leibler support of the prior Π, and f0

satisfies limR→∞ d∞(f0, f0,R) = 0 (see Section 2.1 for details). If ε̃n is the Prokhorov posterior

rate and Rn is set to satisfy ε̃nR
2
n → 0, with the prior satisfying Π(d∞(f, fRn) > ε) < exp(−ncε)

for some cε > 0, and c0 = 0 with cε increasing as ε increases, then the posterior is consistent

with respect to the supremum metric.

We now present an illustration of Theorem 2 with the popular mixture of normal model.

3. Illustration: Mixture of Normal Distribution

Here we consider normal mixtures, one of the most widely used nonparametric models. To keep

things simple, we consider the normal mixture model in dimension d = 1; whereby

f(x) =

∞∑
j=1

wj φ((x− µj)/σ)/σ, (3.7)

the (wj)
∞
j=1 are a set of weights, the (µj)

∞
j=1 are a set of locations and the σ is a common

variance term to each normal component. Further, φ represents the usual standard normal

density function. In a Bayesian model, prior distributions are assigned to the weights, locations

and the variance. The conditions we require for consistency for all f0 in the Kullback–Leibler

support of the prior amount to a condition on the prior for σ. For the f0 to be found in the

Kullback–Leibler support, we refer the reader to Wu and Ghosal [2008]. In the following we
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have three main parts corresponding to the three subsections in section 2. We will label them

as (i), (ii) and (iii).

(i) First, we find an appropriate upper bound for supx |fR(x)− f(x)|. Note that the bound for

supx |fR(x) − f(x)| falls within the supersmooth setting in Proposition 1 and can be proved

via bounding the tail of the Fourier transform of normal mixtures; nevertheless, in this section

we show a different approach for deriving this bound for the normal mixture models via some

closed–form computations.

Theorem 3. If f is a mixture model as in (3.7) then

sup
x∈R
|fR(x)− f(x)| < 1

πσ2R
e−

1
2
σ2R2

.

Proof. We first show that

I(R) =

∫ ∞
−∞

cos(Rx)φ(x) dx = e−
1
2
R2

(3.8)

for all R ≥ 0. Now, I ′(R) = −
∫∞
−∞ sin(Rx)xφ(x) dx, and using integration by parts, with

xφ(x) = −φ′(x), we have I ′(R) = −RI(R) and hence equation (3.8) holds since I(0) = 1. Now

we consider

I(R) =

∫ ∞
−∞

cos(Rx)φ(x− µ) dx =

∫ ∞
−∞

cos(R(x+ µ))φ(x) dx

and recall that cos(R(x+ µ)) = cos(Rx) cos(Rµ)− sin(Rx) sin(Rµ), so, I(R) = cos(Rµ) e−
1
2
R2

since sin(Rx) is an odd function. Further, it is straightforward to show that

∫ ∞
−∞

cos(R(y − x))φ((x− µ)/σ)/σ dx = cos(R(y − µ)) e−
1
2
σ2R2

, (3.9)

using suitable transforms. If we denote

J(R) =

∫ ∞
−∞

sin(Rx)

x
φ(x) dx,
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then J ′(R) is given by equation (3.8), so J(R) =
∫ R
0
e−

1
2
s2 ds since J(0) = 0. Hence, we find

that

J(y;µ, σ,R) =

∫ ∞
−∞

sin(R(y − x))

y − x φ((x− µ)/σ)/σ dx

=

∫ R

0

e−
1
2
σ2s2 cos(s(y − µ)) ds.

We want to look at fR(x) − f(x) = 1
π
J(x;µ, σ,R) − φ((x − µ)/σ)/σ, and from equation (3.8),

we have that ∫ ∞
0

e−
1
2
σ2s2 cos(s(x− µ)) ds = π φ((x− µ)/σ)/σ.

Therefore, for all x ∈ R we have

π|fR(x)− f(x)| =
∣∣∣∣∫ ∞
R

e−
1
2
σ2s2 cos(s(x− µ)) ds

∣∣∣∣ ≤ ∫ ∞
R

e−
1
2
σ2s2 ds <

1

σ2R
e−

1
2
σ2R2

.

As a consequence, for any R > 0 we obtain that

sup
x∈R
|fR(x)− f(x)| < 1

πσ2R
e−

1
2
σ2R2

. (3.10)

(ii) To set the Rn, as a consequence of (3.10), we are requiring

Π
(
e−

1
2
σ2R2

n/(πσ2R2
n) > ε/Rn

)
< exp(−ncε)

for all large n for some cε > 0. Ignoring the π term, we are looking for Π on σ2 for which

Π

(
exp(−0.5σ2R2

n)/(σ2R2
n) & ε/Rn

)
< Π

(
σ2 .

1

εR
3/2
n

)
.

We then take Π(σ2 < ξ) = exp(−(1/ξ)b), an Inverse Weibull distribution, for some b > 0 and

so we can take Rn = n2/(3b̃) for any b̃ ≤ b.

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing) 



(iii) To investigate the L1 rate, which gives an upper bound for the Prokhorov rate and will

provide a possible range of b values, we turn to the paper Ghosal and van der Vaart [2007]

who consider mixture of normal distributions under assumed smooth conditions for the true f0.

Specifically, they assume f0 is twice continuously differentiable and

∫ (
f ′′0 /f0

)2
f0 <∞ and

∫ (
f ′0/f0

)4
f0 <∞

and F0[−a, a]c < exp(−caγ) for some c, γ > 0. These imply one of our conditions, i.e.,
∫
|f ′0| <

∞. Our conditions are covered by those in Ghosal and van der Vaart [2007] and the rate

of convergence is in Theorem 2 from Ghosal and van der Vaart [2007] and is of the form

(logn)κ n−(1/2−δ) for some δ > 0. Hence, we require Rn < n1/4−δ/2/(logn)κ, and so overall we

have n1/(2b̃) < Rn < n1/4−δ/2/(logn)κ, implying we must take b > 1/( 1
2
− δ).

To summarize; we assume
∫
|f ′0| <∞ and f0 is Hölder smooth on R and with Π(σ2 < ξ) =

exp(−1/ξb) with 1/b < 1
2
− δ, where δ determines the L1 rate of convergence, yields consistency

with respect to the supremum metric. This we would argue is comparable to the conditions

under which L1 consistency is guaranteed.

4. Discussion

At the heart of the paper is the inequality

sup
x
|f(x)− f0(x)| ≤ sup

x
|fR(x)− f(x)|+ sup

x
|f0,R(x)− f0(x)|+ sup

x
|f0,R(x)− fR(x)|,

valid for all R > 0. The first term in the inequality is about enforcing smoothness on f ,

the second term provides smoothness conditions on f0, and the final term is handled by weak

convergence.

For the one dimensional setting, another inequality based on the triangle inequality involves

using fh(x) = [F (x+ h)− F (x− h)] /(2h), as used by Chae and Walker [2017]. We can now
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determine that supx |fh(x) − f(x)| ≤ sup|x−y|<h |f(x) − f(y)| and so if f and f0 belong to a

Hölder class with radius L and smoothness parameter β, then

sup
x
|f(x)− f0(x)| ≤ dK(f, f0)/h+ 2hβ ,

for any h > 0. Here, we define dK(f, f0) := supx |F (x)− F0(x)| to be the Kolmogorov distance

where F and F0 are cumulative distribution functions of f and f0. This can be upper bounded

by the Prokhorov metric, dK(f, f0) ≤ dP (f, f0) (1+min{||f ||∞, ||f0||∞}). See for example [Gibbs

and Su, 2002].

Hence, we should also be able to demonstrate sup norm consistency for a β Hölder class of

density once we have established weak consistency. The only condition for which we might need

to construct a specific suitable prior for is the required boundedness of ||f ||∞. See Appendix A

for a detailed discussion.

It is possible to think of using an alternative kernel to the sinc, for example, the Gaussian

kernel. We would then consider dh = supx |f0,h(x)− f0(x)| where

f0,h(x) = h−1

∫
φ((x− y)/h) f0(y) dy

and it is straightforward to show that if f0 is Hölder smooth then dh < C hβ where β > 0

is the coefficient of smoothness. However, for f a mixture of normal distributions, we obtain

supx |fh(x)− f(x)| ≤ c h2/σ3 which does does not compare well with the bound from the sinc

kernel, see equation (3.10).
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A. Appendix

In this appendix, we continue our discussion in Section 4. Since Prokhorov consistency fol-

lows directly from equation (1.1), our first result is moving from Prokhorov consistency to

Kolmogorov consistency. Here we use the inequality,

dK(f, f0) ≤ dP (f, f0) (1 + max{||f ||∞, ||f0||∞});

see, for example, [Gibbs and Su, 2002], and we assume ||f0||∞ < ∞. Define the increasing

sequence (Mn) to be such that Πn(dP (f, f0) > ε/(1 +Mn))→ 0 a.s. for all ε > 0. For example,

since the Prokhorov rate of convergence will not be slower than 1/ logn we can take Mn = log n.

In fact, any sequence converging to ∞ slow enough works.

Theorem 4. If we take the sample size dependent prior to be Π(||f ||∞ > Mn) < exp(−nτ) for

all large n and for some τ > 0, then Πn(dK(f, f0) > ε)→ 0 a.s. for all ε > 0.
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Proof. Now Πn(dK(f, f0) > ε) < Πn(dP (f, f0) (1 + max{||f ||∞, ||f0||∞}) > ε), which can be

written as:

Πn(dP (f, f0) > ε/(1 + max{||f ||∞, ||f0||∞}) ∩ ||f ||∞ < Mn)

+Πn(dP (f, f0) > ε/(1 + max{||f ||∞, ||f0||∞}) ∩ ||f ||∞ > Mn).

The second term on the right is bounded above by Πn(||f ||∞ > Mn), which converges to 0. The

first term on the right is, for all large n, upper bounded by Πn (dP (f, f0) > ε/(1 +Mn)) . This

converges to 0 by virtue of weak consistency and that for large n the ε/(1 +Mn) is greater than

the Prokhorov rate.

The second result is concerned with the supremum norm; i.e., d∞(f, f0) = supx |f(x) −

f0(x)|, assuming the posterior is consistent with respect to the Kolmogorov metric, which we

have just established in Theorem 4. Recall that we define fh(x) = (F (x+ h)−F (x− h))/(2h),

which is also a density function on R, as used by Chae and Walker [2017]. We then exploit the

following triangle inequality:

|f(x)− f0(x)| ≤ |fh(x)− f(x)|+ |fh(x)− fh,0(x)|+ |f0(x)− fh,0(x)|. (A.11)

Looking at the terms on the right side, the first can be made small with a suitable condition on

f , the second term can be made small using the notion that f and f0 are close with respect to

a weak metric, and the final term will be small with a continuity condition on f0.

Now |fh(x) − f(x)| ≤ supy:|x−y|<h |f(x) − f(y)|, which follows using F (x + h) = F (x) +

h f(xh), for some xh lying between x and x+ h. Further, we have

|fh(x)− fh,0(x)| = 1

2h
|F (x+ h)− F0(x+ h)− F (x− h) + F0(x− h))| .

We can bound this using the Kolmogorov metric; i.e., |fh(x) − fh,0(x)| ≤ dK(f, f0)/h. Hence,

for all h > 0, d∞(f, f0) ≤ dK(f, f0) + φh(f) + φh(f0), where φh(f) := sup|x−y|<h |f(x)− f(y)|
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and φh(f0) is assumed to converge to 0 as h→ 0. In the following we let h depend on n, written

as hn, and choose the sequence to ensure that Πn(dK(f, f0) > chn)→ 0 a.s. for any c > 0. We

can assume that hn is any slow enough sequence going to 0 and take it formally as hn = 1/ logn.

Theorem 5. If we take the sample size dependent prior Π(φhn(f) > ε) < exp(−nε) for all

ε > 0 then Πn(d∞(f, f0) > ε)→ 0 a.s.

Proof. Using the triangle inequality we get

Πn(d∞(f, f0) > ε) ≤ Πn(dK(f, f0)/hn + φhn(f) > ε− φhn(f0)).

The right term is easily seen to be bounded by Πn(dK(f, f0) > hnεn) + Πn(φhn(f) > εn) where

εn = 1
2
(ε− φhn(p0)). Both terms can be easily shown to converge to 0.

B. Proof of Proposition 1

The proof of Proposition 1 follows the proof argument of Theorem 1 in Ho and Walker [2021].

Here, we provide the proof for the completeness.

Since the function f is supersmooth or ordinary smooth, its Fourier transform f̂ is in-

tegrable. Therefore, the Fourier inversion transform and integral theorem hold. The Fourier

integral theorem [Wiener, 1933, Bochner, 1959] indicates that

|fR(x)− f(x)| =

∣∣∣∣∣ 1

(2π)d

∫
Rd\[−R,R]d

∫
Rd

cos(s>(x− t))f(t)dsdt

∣∣∣∣∣
=

∣∣∣∣∣ 1

(2π)d

∫
Rd\[−R,R]d

[
cos(s>x)Re(f̂(s))− sin(s>x)Im(f̂(s))

]
ds

∣∣∣∣∣
≤ 1

(2π)d

∫
Rd\[−R,R]d

[∣∣∣cos(s>x)
∣∣∣ ∣∣∣Re(f̂(s))

∣∣∣+
∣∣∣sin(s>x)

∣∣∣ ∣∣∣Im(f̂(s))
∣∣∣] ds

≤
√

2

(2π)d

∫
Rd\[−R,R]d

|f̂(s)|ds ≤
√

2

(2π)d

d∑
i=1

∫
Ai

|f̂(s)|ds, (B.12)
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where the second inequality in equation (B.12) is based on Cauchy-Schwarz inequality. Here,

we respectively denote Re(f̂), Im(f̂) the real and imaginary parts of the Fourier transform f̂ .

Furthermore, we define Ai = {x ∈ Rd : |xi| ≥ R} for all i ∈ [d].

(a) Since f is supersmooth density function of order α with scale parameter σ, we have

∫
Ai

|p̂0(s)|ds ≤ C
∫
Ai

exp

(
−C1σ

2

(
d∑
i=1

|si|α
))

ds

=
Cαd−1

(2C1σ2Γ(1/α))d−1
·
∫
|t|≥R

exp(−C1σ
2|t|α)dt,

where C and C1 are universal constants from Definition 1.

When α ≥ 1, we obtain that

∫ ∞
R

exp
(
−C1σ

2tα
)
dt ≤

∫ ∞
R

tα−1 exp
(
−C1σ

2tα
)
dt =

exp(−C1σ
2Rα)

C1σ2α
.

When α ∈ (0, 1), we find that

∫ ∞
R

exp(−C1σ
2tα)dt =

∫ ∞
R

t1−αtα−1 exp(−C1σ
2tα)dt

=
R1−α exp

(
−C1σ

2Rα
)

C1σ2α
+

1− α
C1σ2α

∫ ∞
R

t−α exp(−C1σ
2tα)dt

≤
R1−α exp

(
−C1σ

2Rα
)

C1σ2α
+

1− α
C1σ2αRα

∫ ∞
R

exp(−C1σ
2tα)dt.

We choose R such that Rα ≥ 2(1−α)
C1σ2α

. Then, the inequality in the above display becomes

∫ ∞
R

exp(−C1σ
2tα)dt ≤

2R1−α exp
(
−C1σ

2Rα
)

C1σ2α
.

Collecting the above results, we obtain

∫
|t|≥R

exp(−C1σ
2|t|α)dt ≤ 4Rmax{1−α,0}

C1σ2α
exp(−C1σ

2Rα).

Hence, for each i ∈ [d], we have the following upper bound:

∫
Ai

|f̂(s)|ds ≤ Cαd−2Rmax{1−α,0}

2d−3Cd1σ
2d(Γ(1/α))d−1

exp(−C1σ
2Rα). (B.13)
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The results from equations (B.12) and (B.13) lead to

|fR(x)− f(x)| ≤
√

2Cd · αd−2Rmax{1−α,0}

πd22d−3Cd1σ
2d(Γ(1/α))d−1

exp(−C1σ
2Rα).

As a consequence, we reach the conclusion of part (a).

(b) Since the density function is ordinary smooth of order β with scale parameter σ, for

each i ∈ [d] we obtain

∫
Ai

|f̂(s)|ds ≤ c
∫
Ai

d∏
j=1

1

(1 + σ2|sj |β)
ds = c

(∫ ∞
−∞

1

1 + σ2|t|β dt
)d−1

·
∫
|t|≥R

1

1 + σ2|t|β dt

=
c

σ2(d−1)/β

(∫ ∞
−∞

1

1 + |t|β dt
)d−1

·
∫
|t|≥R

1

1 + σ2|t|β dt.

Since β > 1, Iβ =
∫∞
−∞

1
1+|t|β dt <∞. Furthermore, we have

∫
|t|≥R

1

1 + σ2|t|β dt ≤ 2

∫ ∞
R

1

σ2tβ
ds =

2

(β − 1)σ2
R−β+1.

Combining the above results, we find that

∫
Ai

|f̂(s)|ds ≤
2cId−1

β

(β − 1)σ2+2(d−1)/β
R1−β . (B.14)

The results from equations (B.12) and (B.14) lead to the conclusion of part (b).
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