
 

 

 

 

 

 

 

 

 

Statistica Sinica Preprint No: SS-2022-0061 

Title Identification of Partial-Differential-Equations-Based 

Models from Noisy Data with Splines 

Manuscript ID SS-2022-0061 

URL http://www.stat.sinica.edu.tw/statistica/ 

DOI 10.5705/ss.202022.0061 

Complete List of Authors Yujie Zhao,  

Xiaoming Huo and  

Yajun Mei 

Corresponding Authors Yujie Zhao 

E-mails yujie.zhao@merck.com 

Notice: Accepted version subject to English editing. 



Statistica Sinica

Identification of Partial-Differential-Equations-Based Models

from Noisy Data via Splines

Yujie Zhao1, Xiaoming Huo2, Yajun Mei2

1 Biostatistics and Research Decision Sciences Department, Merck & Co., Inc

2 H. Milton Stewart School of Industrial and Systems Engineering, Georgia Tech

Abstract: We propose a two-stage method called Spline Assisted Partial Differen-

tial Equation based Model Identification (SAPDEMI) to identify partial differen-

tial equation (PDE)-based models from noisy data. In the first stage, we employ

the cubic splines to estimate unobservable derivatives. The underlying PDE is

based on a subset of these derivatives. This stage is computationally efficient: its

computational complexity is a product of a constant with the sample size; this is

the lowest possible order of computational complexity. In the second stage, we

apply the Least Absolute Shrinkage and Selection Operator (Lasso) to identify

the underlying PDE-based model. Statistical properties are developed, includ-

ing the model identification accuracy. We validate our theory through various

numerical examples and a real data case study. The case study is based on an

National Aeronautics and Space Administration (NASA) data set.

Key words and phrases: partial differential equations, model identification, cubic

splines, Lasso.
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1. Introduction

Partial differential equations (PDE) are widely adopted to model physical

processes in engineering (Wang et al., 2019), physics (Xun et al., 2013),

biology (Lagergren et al., 2020), and more. In these applications, there

are two classes of technical issues: the forward problem and the inverse

problem. The forward problem studies the properties of functions that

PDEs determine. It has been extensively studied by mathematicians (Olver,

2014; Wang et al., 2014). Different from forward problems, inverse problems

aim at identifying PDE-based models from the observed noisy data. The

research on the inverse problem is relatively sparse. The corresponding

statistical property is notably less known. In this paper, we propose a

method to solve the inverse problem. The inverse problem will be called a

PDE identification problem and will be formulated.

Given the rise of the big data, the PDE identification problem becomes

indispensable. A good PDE identification approach generates at least the

following two benefits. First, one can predict future trends by the identified

PDE model, conditioning such a model reflects the underlying processes.

Second, interpretable PDE models allows scientists to validate/reexamine

the underlying physical/biological laws governing the process.

We propose a new method – Spline Assisted Partial Differential Equa-
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tion based Model Identification (SAPDEMI) – for the PDE identification

problem. SAPDEMI can efficiently identify the underlying PDE model

from the noisy data D:

D = {(xi, tn, u
n
i ) : xi ∈ (0, Xmax) ⊆ R, ∀ i = 0, . . . ,M − 1,

tn ∈ (0, Tmax) ⊆ R, ∀ n = 0, . . . , N − 1} ∈ Ω,

(1.1)

where variable xi ∈ R is the spatial variable with xi ∈ (0, Xmax) for i =

0, 1, . . . ,M − 1, and we call M the spatial resolution; variable tn ∈ R is the

temporal variable with tn ∈ (0, Tmax) for n = 0, 1, . . . , N − 1, and we call

N the temporal resolution; we use Tmax, Xmax to denote the upper bound of

the temporal variable and the spatial variable, respectively; variable un
i is a

representation of ground truth u(xi, tn) contaminated by noises that follow

the normal distribution with mean zero and stand deviation σ:

un
i = u(xi, tn) + ϵni , ϵni

i.i.d.∼ N(0, σ2). (1.2)

Here u(x, t) is the ground truth function, which is determined by an under-

lying PDE model. And it is assumed to satisfy the following equation:

∂
∂t
u(x, t) = β∗

00 +
qmax∑
k=0

pmax∑
i=1

β∗
ki

[
∂k

∂kx
u(x, t)

]i
+∑

i+j≤pmax
i,j>0

∑
0<k<l
l≤qmax

β∗
ki,lj

[
∂k

∂kx
u(x, t)

]i [
∂l

∂lx
u(x, t)

]j
.

(1.3)

The left-hand side of the above equation is the first-order partial deriva-

tive of the underlying function with respect to the temporal variable t,
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while the right-hand side is the pmaxth order polynomial of the deriva-

tives with respect to the spatial variable x up to the qmaxth total or-

der. For notational simplicity, we denote the ground truth coefficient vec-

tor, β∗ = (β∗
00, β

∗
01 , β

∗
11 , . . . , β

∗
qpmax
max

), as β∗ = (β∗
1 , β

∗
2 , β

∗
3 , . . . , β

∗
K)

⊤, where

K = 1 + (pmax + 1)qmax +
1
2
qmax(qmax + 1)(pmax − 1)! is the total number

of coefficients on the right hand side. It is noted that, in practice, the ma-

jority of the entries in β∗ are zero. For instance, in the transport equation

∂
∂t
u(x, t) = a ∂

∂x
u(x, t) with any a ̸= 0, we only have β∗

3 ̸= 0 and β∗
i = 0

for any i ̸= 3 (see Olver, 2014, Section 2.2). Therefore, it is reasonable to

assume that the coefficient β∗ in (1.3) is sparse.

To identify the above model, one needs to overcome two technical chal-

lenges. First, the derivatives in (1.3) are unobservable and need to be

estimated from the noisy observations. Second, the underlying model –

which is presumably simple (i.e., sparse) – need to be identified.

We design our proposed SAPDEMI method to be a two-stage method to

identify the underlying PDE models from the noisy data D. The first stage

is called a functional estimation stage, where we estimate all the derivatives

from the noisy data D, including ∂
∂t
u(x, t), ∂

∂x
u(x, t), and so on. In this

stage, we first use the cubic splines (Shridhar and Balatoni, 1974) to fit the

noisy data D, and then we approximate the derivatives of the underlying
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1.1 Literature Review

function via the derivatives of the estimated cubic splines. The second stage

is called the model identification stage, where we apply the Least Absolute

Shrinkage and Selection Operator (Lasso) (Tibshirani, 1996) to identify the

derivatives (or their combinations) that should be included in the PDE-

based models. To ensure the accuracy, we develop sufficient conditions for

correct identification and the asymptotic properties of the identified models.

The main tool used in our theoretical analysis is the primal-dual witness

(PDW) method (see Hastie et al., 2015, Chapter 11).

The rest of this section is organized as follows. In Section 1.1, we review

the existing methods that relates to the PDE identification problem. In

Section 1.2, we summarize our contributions.

1.1 Literature Review

A pioneering work of identifying the underlying dynamic models from noisy

data is Liang and Wu (2008). This method is also a two-stage method,

where in the functional estimation stage, Liang and Wu (2008) use the

local polynomial regression to estimate the value of the function and its

derivatives. Subsequently, in the model identification stage, Liang and Wu

(2008) use the least squares method. Following this pioneering work, various

extensions have been proposed.
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1.1 Literature Review

The first class of extensions is to modify the functional estimation

stage of Liang and Wu (2008), and we can divide these existing exten-

sions into three categories. (F1). In the numerical differentiation cate-

gory (Wu et al., 2012), the derivative ∂
∂x
u(x, t) is simply approximated as

∂
∂x
u(x, t) ≈ u(x+∆x,t)−u(x−∆x,t)

2∆x
, where (x+∆x, t), (x−∆x, t) are two closest

points of (x, t) in x-domain. The essence of numerical differentiation is to

approximate the first order derivative as the slope of a nearby secant line.

Although the implementation is easy, the approximation results could be

highly biased, because its accuracy highly depends on ∆x: a small value

of ∆x yield large rounding errors in the subtraction (Ueberhuber, 2012);

while a large value of ∆x leads to poor performance in the estimation of

tangent slope by secants. Thus, this naive numerical differentiation is not

the preferred due to its bias. (F2). In the basis expansion category, re-

searchers first approximate the unknown functions by the basis expansion

methods and then approximate the derivatives of underlying function as

the derivatives of the approximated functions. As for the choice of bases,

there are multiple options in the existing literature. The most popular

basis is the local polynomial basis (see Liang and Wu, 2008; Bär et al.,

1999; Schaeffer, 2017; Rudy et al., 2017; Parlitz and Merkwirth, 2000). An-

other popular choice of basis is the spline basis (see Wu et al., 2012; Xun
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1.1 Literature Review

et al., 2013; Wang et al., 2019). Our proposed method belongs to here. In

this category, the major limitation of the existing approaches is the poten-

tially high computational complexity. For instance, the local polynomial

basis requires computational complexity of order max{O(M2N), O(MN2)}

in the functional estimation stage. However, we will show that our pro-

posed SAPDEMI method only requires O(MN). And notice the sample

size of the dataset D is MN , so it takes at least MN numerical operations

to read D. Consequently, the lowest possible bound in theory is O(MN),

and this is what achieved by our proposed SAPDEMI method. (F3). In

the machine or deep learning category, researchers first fit unknown func-

tions by certain machine/deep learning methods and then approximate the

derivatives of underlying functions as the derivatives of the approximated

functions. One of the popular machine/deep learning methods is the neu-

ral network (NN) approach. For instance, Srivastava et al. (2020) use the

artificial neural network (ANN). Its limitation is the potential overfitting

as well as the selection of the hyper-parameters.

The second class of extension is to modify the model identification stage

of Liang and Wu (2008). The existing methods fall in the framework of the

(penalized) least squares method, and we can again divide them into three

categories. (M1). In the least squares category, research is done in or-
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1.1 Literature Review

dinary differential equation (ODE) identification (Miao et al., 2009) and

PDE identification (Bär et al., 1999; Wu et al., 2012) with problems in re-

ported overfitting issues. (M2). In the ℓ2-penalized least squares category,

Xun et al. (2013); Wang et al. (2019) penalize the smoothness of the un-

known function, which is assumed to be in a prescribed reproducing kernel

Hilbert space (RKHS). Essentially, this method falls in the framework of

the ℓ2-penalized least squares method. Although this method helps to avoid

overfitting by introducing the ℓ2-penalty, it has limited power to do “model

selection”. (M3). In the ℓ1-penalized least squares method category, Scha-

effer (2017) identifies the unknown dynamic models (i.e., functions) through

the ℓ1-penalized least squares method, and later the author discusses the

design of an efficient algorithm, which is based on the proximal mapping

method. However, the author does not discuss the statistical property of the

identified model. Recently, Kang et al. (2019) utilize the similar method as

Schaeffer (2017) and demonstrate empirical successes. However, the deriva-

tion of the statistical theory is still missing; and this paper fills the gap.

In addition to the ℓ2 or ℓ1 penalized least-squares methods, there are

some other methods that have been proposed in the model selection stage.

However, these methods are not as widely used as the ℓ2/ℓ1 penalized least-

squares method. Some examples are the Akaike information criterion (AIC)
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1.1 Literature Review

in Mangan et al. (2017), smoothly clipped absolute deviation (SCAD) in

Lu et al. (2011), and hard-thresholding in Rudy et al. (2017). The first two

approaches may lead to NP-hard problems in the numerical implementa-

tion. The last one is ad-hoc, and may be hard to analytically analyze. So

this paper won’t focus on these alternative approaches.

In this paper, our proposed SAPDEMI method applies to the PDE

model. Yet, we also acknowledge that in addition to PDEs, there are other

non-parametric models. Here, we take PDEs as an initial research project

majorly because it is deterministic. Thus, we can compare our identified

model with the true model, and show the model notification accuracy. As

our initial research project, we prefer PDE over machine learning (ML)

models (e.g., neural network, random forest) because PDE offers insight

into the physical law. Yet, the ML models usually are black-box methods

(Loyola-Gonzalez, 2019). We also prefer PDE over the time series models

because it behaves like a “continuous version” of the time series model

(Perona et al., 2000; Chen et al., 2018) at a high level. Furthermore, we

prefer PDE over the Gaussian process (GP) model because GP restricts

its response variables to follow Gaussian distribution (Liu et al., 2020; Wei

et al., 2018). Again, although we take PDE as our initial research project,

we are open to the aforementioned non-parametric models, as promising
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1.2 Our Contributions

future work.

1.2 Our Contributions

We summarize the contributions of our proposed method. (1) In the func-

tional estimation stage, our proposed SAPDEMI method is computation-

ally efficient. Specifically, we require computational complexity of order

O(MN), which is the lowest possible order in this stage. In comparison,

the aforementioned local polynomial regression would require the computa-

tional complexity of order max{O(M2N), O(MN2)}, which is higher. (2)

In this paper, for our proposed SAPDEMI method, we established a theoret-

ical guarantee of model identification accuracy. And we didn’t find another

occurrence of such a result. (3) We extend to PDE-based model identifi-

cation, comparing to ODE-based model identification. The latter has more

related work, while the former is not well understood in the literature.

The rest of the paper is organized as follows. In Section 2, we describe

the technical details of our proposed SAPDEMI method. In Section 3,

we present our main theory, including the sufficient conditions for correct

identification, and the statistical properties of the identified models. In

Section 4, we conduct numerical experiments to validate the theory from

Section 3. In Section 5, we apply SAPDEMI to a real-world case study with
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data downloaded from the National Aeronautics and Space Administration

(NASA). In Section 6, we summarize and discuss some future research.

2. Proposed Method: SAPDEMI

The proposed SAPDEMI method is a two-stage method to identify the

underlying PDE model from the noisy data D. The first stage is called

a functional estimation stage, where we estimate the function and their

derivatives from the noisy data D in (1.1) and input them in the second

stage. The second stage is called a model identification stage, where we

identify the underlying PDE-based model.

For notations throughout the paper, scalars are denoted by lowercase

letters (e.g., β). Vectors are denoted by lowercase bold face letters (e.g., β),

and its ith entry is denoted as βi. Matrices are denoted by uppercase bold-

face letter (e.g., B), and its (i, j)th entry is denoted as Bij. For the vector

β ∈ Rp, its kth norm is defined as ∥β∥k :=
(∑p

i=1 |βi|k
)1/k

. For the matrix

B ∈ Rm×n, its Frobenius norm is defined as ∥B∥F =
√∑m

i=1

∑n
j=1 |Bij|2.

We write f(n) = O(g(n)), if there exists a G ∈ R+ and a n0 such that

|f(n)| ≤ Gg(x) for all n > n0.

This section is organized as follows. In Section 2.1, we introduce the

functional estimation stage, and in Section 2.2, we articulate the model
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2.1 Functional Estimation Stage

identification stage.

2.1 Functional Estimation Stage

In this section, we describe the functional estimation stage of our proposed

SAPDEMI method. In this stage, we estimate the functional values and

their derivatives from the noisy data D in (1.1). These derivatives include

the derivatives with respect to the spatial/temporal variable x/t. We take

derivatives with respect to spatial variable x as an example, and the deriva-

tives with respect to the temporal variable t can be derived similarly.

The main tool that we use is the cubic spline. Suppose there is a cubic

spline s(x) over the knots {(xi, u
n
i )}i=0,1,...,M−1 satisfying the properties in

McKinley and Levine (1998): (1). s(x) ∈ C2[x0, xM−1], where C
2[x0, xM−1]

denotes the sets of function whose 0th, first and second derivatives are

continuous in [x0, xM−1]; (2). For any i = 1, . . . ,M−1, s(x) is a polynomial

of degree 3 in [xi−1, xi]; (3). For the two end-points, x0, xM−1, we have

s′′(x0) = s′′(xM−1) = 0, where s′′(x) is the second derivative of s(x).

By fitting data {(xi, u
n
i )}i=0,1,...,M−1 (with a general fixed n ∈ {0, 1, . . . , N−

1}) into the above cubic spline s(x), one can solve s(x) as the minimizer of

the following optimization problem:

Jα(s) = α
M−1∑
i=0

wi[u
n
i − s(xi)]

2 + (1− α)

∫ xM−1

x0

s′′(x)2dx, (2.4)
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2.1 Functional Estimation Stage

where the first term α
∑M−1

i=0 wi[u
n
i − s(xi)]

2 is the weighted sum of squares

for residuals, and we take the weight w0 = w1 = . . . = wM−1 = 1 in our

paper. In the second term (1 − α)
∫ xM−1

x0
s′′(x)2dx, function s′′(x) is the

second derivative of s(x), and this term is the penalty of the smoothness.

In the above optimization problem, the parameter α ∈ (0, 1] controls the

trade off between the goodness of fit and the smoothness of the cubic spline.

By minimizing the above optimization problem, we can get the estimate

of s(x), together with its first derivative s′(x) and its second derivative

s′′(x). If the cubic spline approximates the underlying PDE curves well,

we can declare that the derivatives of the underlying dynamic system can

be approximated by the derivatives of the cubic spline s(x), i.e., we have

û(x, tn) ≈ ŝ(x), ̂∂
∂x
u(x, tn) ≈ ŝ′(x), ̂∂2

∂x2u(x, tn) ≈ ŝ′′(x) (Ahlberg et al., 1967;

Rubin and Graves Jr, 1975; Rashidinia and Mohammadi, 2008). Following

the similar procedure to get the derivatives with respect to the spatial

variable x, we can get the derivatives with respect to the temporal variable

t, i.e., ̂∂
∂t
u(xi, tn) for any i = 0, . . . ,M − 1, n = 0, . . . , N − 1.

A nice property of the cubic spline is that, there is a closed-form so-

lution for (2.4). First of all, the value of cubic spline s(x) at the point

{x0, x1, . . . , xM−1}, i.e., ŝ =
(
ŝ(x0), ŝ(x1), . . . , ̂s(xM−1)

)⊤
, can be solved as

ŝ = [αW + (1− α)A⊤MA]−1αWun
: . (2.5)
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2.1 Functional Estimation Stage

The above closed-form estimation can be used to approximate the function

that corresponds to the underlying PDE model, i.e., ŝ ≈ f̂

=
(

̂u(x0, tn), ̂u(x1, tn), . . . , ̂u(xM−1, tn)
)⊤

.Here,W = diag(w0, . . . , wM−1) ∈

RM×M , vector un
: =

(
un
0 , . . . , u

n
M−1

)⊤ ∈ RM , and matrixA ∈ R(M−2)×M ,M ∈

R(M−2)×(M−2) are

A =



1
h0

−1
h0

− 1
h1

1
h1

. . . 0 0 0

0 1
h1

−1
h1

− 1
h2

. . . 0 0 0

...
...

...
. . .

...
...

...

0 0 0 . . . 1
hM−3

−1
hM−3

− 1
hM−2

1
hM−2


, (2.6)

M =



h0+h1

3
h1

6
0 . . . 0 0

h1

6
h1+h2

3
h2

6
. . . 0 0

...
...

...
. . .

...
...

0 0 0 . . . hM−3

6

hM−3+hM−2

3


, (2.7)

respectively, with hi = xi+1 − xi for i = 0, 1, . . . ,M − 2.

For the mathematical details on the derivation of (2.5) from (2.4), and

the derivation of first and second order derivatives, please refer to the sup-

plementary material.

The advantage of the cubic spline is that its computational complexity

is only a linear polynomial of the sample size MN .
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2.1 Functional Estimation Stage

Proposition 2.1. Given data D in (1.1), if we use the cubic spline in (2.4)

in the functional estimation stage, the computation complexity is of order

max{O(pmaxMN), O(K3)},

where pmax is the highest polynomial order in (1.3), M/N is the spa-

tial/temporal resolution and K is the number of covariates in (1.3).

The proof can be found in the online supplementary material.

As suggested by Proposition 2.1, when pmax, K ≪ M,N (which is often

the case in practice), it only requires O(MN) numerical operations in the

functional estimation stage. This is the lowest possible order of complexity

in this stage because MN is exactly the number of the sample size of D and

reading the data is a task of order O(MN). So it can be concluded that

it is very efficient to use cubic spline because its computational complexity

achieves the lowest possible order of complexity.

For comparisons, we discuss the computational complexity of the local

polynomial regression, which is widely used in the existing literature (Liang

and Wu, 2008; Bär et al., 1999; Schaeffer, 2017; Rudy et al., 2017; Parlitz

and Merkwirth, 2000). It turns out that its computational complexity is

max{O(M2N), O(MN2), O(pmaxMN), O(K3)}, which is much higher than

ours for a generalized polynomial order pmax. Specifically, if one restricts
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2.2 Model Identification Stage

the local polynomial regression method to the same order as that of the

cubic spline, its computational complexity is

max{O(M2N), O(MN2), O(K3)},

which is still higher than the cubic spline method in Proposition 2.1. The

related proposition and proof is available in the supplementary materials

S3 and S8.2. We also summarize the pros and cons of the cubic spline and

the local polynomial regression in Table 1.

Table 1: Pros and cons of the cubic spline and the local polynomial regres-
sion in the functional estimation stage ( assume that pmax, qmax, K ≪ M,N)

Method Cubic spline Local polynomial regression

Pros Computational complexity is O(MN) Derivatives up to any order

Cons If higher-than-2 order is required,

need extensions beyond cubic splines.

Computational complexity is

max{(M2N), O(MN2)}

2.2 Model Identification Stage

In this section, we discuss the model identification stage of our proposed

SAPDEMI method. In this stage, we will identify the PDE model in (1.3).

Note that the model in (1.3) can be regarded as a linear regression

model whose response variable is the first order derivative with respect to
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2.2 Model Identification Stage

the temporal variable t, i.e., ∂u(x,t)
∂t

, and the covariates are the derivative(s)

with respect to the spatial variable x, including ∂
∂x
u(xi, tn),

∂2

∂x2u(xi, tn), . . . ,(
∂2

∂x2u(xi, tn)
)pmax

. Because we have MN observations in the dataset D in

(1.1), the response vector is of length MN :

∇tu = ( ∂̂u(x0,t0)
∂t

, . . . ,
̂∂u(xM−1,t0)

∂t
, . . . ,

̂∂u(xM−1,tN−1)

∂t
)⊤ , (2.8)

and design matrix is of dimension MN ×K:

X = ( x̂0
0, x̂0

1, . . . , x̂0
M−1, x̂0

1, . . . , x̂N−1
M−1 )

⊤ ∈ RMN×K . (2.9)

For the above design matrix X, its (nN + i+1)st row is x̂n
i =

(
1, ̂u(xi, tn),

̂∂
∂x
u(xi, tn),

̂∂2

∂x2u(xi, tn),
(

̂u(xi, tn)
)2

, . . . ,

(
̂∂2

∂x2u(xi, tn)

)pmax
)⊤

. TheK com-

ponents of x̂n
i are candidate terms in the PDE model. And all the deriva-

tives listed in (2.8), (2.9) are estimated from the functional estimation stage

that is described in Section 2.1.

Next, we use the Lasso to identify the non-zero coefficients in (1.3):

β̂ = argmin
β

1

2MN
∥∇tu−Xβ∥22 ,+λ∥β∥1 (2.10)

where λ > 0 is a turning parameter that controls the trade off of the sparsity

of β and the goodness of fit. Given the ℓ1 penalty in (2.10), β̂ will be sparse,

i.e., only a few of its entries will likely be non-zero. Accordingly, we can

identify the underlying PDE model as

∂

∂t
u(x, t) = x⊤β̂. (2.11)
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where x =
(
1, u(x, t), ∂

∂x
u(x, t), ∂2

∂x2u(x, t), (u(x, t))
2 , . . . ,

(
∂2

∂x2u(x, t)
)pmax

)⊤
∈

RK . To solve equation (2.10), one can use the coordinate descent method

(Beck and Tetruashvili, 2013; Tseng, 2001) and we articulate its details in

the online supplementary material.

3. Theory on Statistical Properties

The theoretical evaluation is done from two aspects. (S1). First, we check if

our identified PDE model contains derivatives that are included in the ‘true’

underlying PDE model. This is called support set recovery property. Math-

ematically, it is to check if supp(β̂) ⊆ supp(β∗), where β̂ is the minimizer of

(2.10), β∗ is the ground truth, and supp(β) = {i : βi ̸= 0, ∀ i, 1 ≤ i ≤ K}

for a general vector β ∈ RK . However, the support recovery depends on the

choice of the penalty parameter λ: a large value of λ leads to supp(β̂) = ∅

(empty set); while a small value of λ results in a non-sparse β̂. A proper

selection of λ hopefully leads to correct recovery of the support set recov-

ery, i.e., we have supp(β̂) ⊆ supp(β∗). We will discuss the selection of λ to

achieve the above goal in Theorem 3.1. (S2). Second, we are interested

in an upper bound of the estimation error of our estimator. Specifically,

we consider
∥∥∥β̂S − β∗

S

∥∥∥
∞
, where S = supp(β∗), vector β̂S and β∗

S are sub-

vectors of β̂ and β∗ and only contain elements whose indices are in S. An
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3.1 Conditions in the Theorems

upper bound of the above estimation error is discussed in Theorem 3.2.

This section is organized as follows. In Section 3.1, we present condi-

tions for theorems. In Section 3.2, we state two theorems.

3.1 Conditions in the Theorems

In this section, we introduce conditions used in our paper. We begin with

three frequently used conditions in ℓ1-regularized regression models; these

conditions provide sufficient conditions for exact sparse recovery (see Hastie

et al., 2015, Chapter 11). Subsequently, we introduce three conditions that

are widely used in cubic splines-based functional estimation (see Silverman,

1984, (2.5)-(2.8)).

Condition 3.1 (Mutual Incoherence Condition). For some incoherence pa-

rameter µ ∈ (0, 1] and Pµ ∈ [0, 1], we have P
(∥∥X⊤

ScXS(X
⊤
SXS)

−1
∥∥
∞ ≤ 1− µ

)
≥

Pµ , where matrix XSc is the complement of XS .

Condition 3.2 (Minimal Eigenvalue Condition). There exists some con-

stant Cmin > 0 such that Λmin

(
1

NM
X⊤

SXS
)
≥ Cmin, almost surely. Here

Λmin(A) denotes the minimal eigenvalue of a square matrix A ∈ Rn×n.

This condition can be considered as a strengthened version of invertibility

condition (see Hastie et al., 2015, Chapter 11).
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3.1 Conditions in the Theorems

Condition 3.3 (Knots c.d.f. Convergence Condition). Suppose for the

sequence of the empirical distribution function over the design points a =

x0 < . . . < xM−1 = b with different sample size M is denoted as FM(x), i.e.,

we have FM(x) = 1
M

∑M−1
i=0 1{xi ≤ x}, there exists an absolutely continuous

distribution function F on [a, b] such that FM → F uniformly as M → +∞.

Here 1{A} is the indicator of event A. A similar condition holds for the

temporal variable: suppose the sequence of empirical distribution function

over the design points ā = t0 < . . . < tN−1 = b̄ with different sample size

N is denoted as GN(x), there exists an absolutely continuous distribution

function G on [ā, b̄] such that GN → G uniformly as N → +∞.

Condition 3.4 (Knots p.d.f. Convergence Condition). Suppose the first

derivative of the function F,G (defined in Condition 3.3) is denoted as f, g,

respectively, then we have

0 < inf
[x0,xM−1]

f ≤ sup
[x0,xM−1]

f < +∞ and 0 < inf
[t0,tN−1]

g ≤ sup
[t0,tN−1]

g < +∞,

and f, g also have bounded first derivatives on [x0, xM−1], [t0, tN−1].

Condition 3.5 (Gentle Decrease of Smoothing Parameter Condition). Sup-

pose that ζ(M) = sup[x0,xM−1]
|FM−F |, The smoothing parameter α in (2.4)

depends on M in such a way that α → 0 and α−1/4ζ(M) → 0 as M → +∞.

A similar condition also hold for the temporal variable.
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3.2 Main Theory

3.2 Main Theory

In the first theorem, we develop the lower bound of λ to realize the correct

recovery of the support set, i.e., S(β̂) ⊆ S(β∗).

Theorem 3.1. Provided with the data in (1.1) and suppose the conditions

in Lemma S6.1 and Corollary S6.1 (see details in the online supplementary

material) hold and Condition 3.1 - 3.5 also hold, if we take M = O(N),

then there exists a constant C(σ,∥u∥L∞(Ω)) > 0, which is independent of

spatial resolution M and temporal resolution N , such that if we set the

cubic spline smoothing parameter with the spatial variable x in (2.4) as

α = O
((

1 +M−4/7
)−1

)
, set the cubic spline smoothing parameter with

temporal variable t as ᾱ = O
((

1 +N−4/7
)−1

)
, and set turning parameter

λ ≥ C (σ, ∥u∥L∞(Ω))

√
K log(N)

µN3/7−r
, (3.12)

to identify the PDE model in (2.10) for some r ∈
(
0, 3

7

)
with sufficient

large N , then with probability greater than Pµ − O
(
Ne−Nr)︸ ︷︷ ︸
P ′

, we can have

S(β̂) ⊆ S(β∗). Here K is the number of columns of the design matrix X in

(2.10), and µ, Pµ are defined in Condition 3.1.

The proof of the above theorem can be found in the online supplemen-

tary material. For the interest of page limitation, we put some lemmas in

supplementary material, whose conditions is standardized in cubic splines.
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3.2 Main Theory

The above theorem provides the lower bound of λ to realize the correct

recovery of the support set. As indicted by (3.12), the lower bound is af-

fected by several factors. First, it is affected by the temporal resolution N :

as N increases, there is more flexibility in tuning this penalty parameter λ.

Second, the lower bound in (3.12) is affected by the incoherence parameter

µ: if µ is small, then the lower bound increases. This is because small

µ means that the group of feature variable candidates are similar to each

other. This phenomenon is called multicollinearity. If that happens, we

will have very limited choice to select λ. However, we can not enlarge the

value of µ, since it is decided by the dataset D itself (see Condition 3.1).

Third, this lower bound in (3.12) is affected by the number of columns of

the matrix X. If its number of columns is very large, then it requires larger

λ to identify significant feature variables among potential feature variables.

We also want to point out that, the probability Pµ − P ′ converges to

Pµ as N → +∞. This limiting probability Pµ is determined by the data D

(see Condition (3.1)). So when N is very large, our proposed SAPDEMI

method can realize S(β̂) ⊆ S(β∗) with probability close to Pµ.

In the second theorem, we develop upper bound of estimating error.

Theorem 3.2. Suppose the conditions in Theorem 3.1 hold, then with

probability greater than 1−O(Ne−Nr
) → 1, there exist a Ṅ > 0, such that
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3.2 Main Theory

when N > Ṅ , we have∥∥∥β̂S − β∗
S

∥∥∥
∞

≤
√
KCmin

(√
KC(σ,∥u∥L∞(Ω))

log(N)

N3/7−r
+ λ

)
,

where K is the number of columns of the matrix X, S := {i : β∗
i ̸= 0, ∀i =

1, . . . , K} and vectors β̂S and β∗
S are the subvectors of β̂ and β∗ that only

contain elements whose indices are in S. Viewing from this theorem, we

can see that when N → +∞, the error bound will convergence to 0.

The proof can be found in the online supplementary material. From the

above theorem, we can see that, the estimation error bound for the ℓ∞-norm

of the coefficient error in (3.13) consists of two components. The first com-

ponent is affected by the temporal resolution N , and the number of feature

variable candidates K. As N → +∞, this first component convergence to 0

without explicit dependence on the choice of feature variable selected from

(2.10). The second component is
√
KCminλ. When N increases to +∞,

this second component will also converge to 0. This is because, as stated in

Theorem 3.1, we find that when N → +∞, the lower bound of λ — which

realizes correct support recovery — converges to 0. So the accuracy of the

coefficient estimation will improve if we increase N .

By combining Theorems 3.1 and 3.2, we find that when the minimum

absolute value of the nonzero entries of β∗ is large enough, with the ade-

quate choice of λ, the exact recovery can be guaranteed. Mathematically
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speaking, when mini∈S |(β∗
S)i| >

√
KCmin

(√
KC(σ,∥u∥L∞(Ω))

log(N)

N3/7−r + λ
)
, –

where (β∗
S)i refers to the ith element in vector β∗

S – we will have a correct

signed-support of β̂. This helps for the selection of the penalty parame-

ters λ. Besides, the solution paths plot also helps with the selection of the

penalty parameters λ, and we will discuss it in Section 4 with examples.

4. Numerical Examples

We conduct numerical experiments to verify the computational efficiency

and the statistical accuracy of our proposed SAPDEMI method.

Our examples are based on (1) the transport equation, (2) the invis-

cid Burgers’ equation, and (3) the viscous Burgers’ equation. We select

these three PDE models as representatives because all these PDE models

play fundamental roles in modeling physical phenomenon and demonstrate

characteristic behaviors shared by a more complex system, such as dissipa-

tion and shock-formation (Haberman, 1983). In addition to wide applica-

tions, they also cover a wide range of categories, including first-order PDE,

second-order PDE, linear PDE, and non-linear PDE. And these wide range

of categories cover most of the PDEs frequently seen in practice. Further-

more, the difficultly to identify the above PDE models increases from the

first example—the transport equation—to the last example—the viscous
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4.1 Example 1: Transport Equation

Burgers’ equation. We set pmax = 2, qmax = 2 in (1.3) for all the three

numerical examples (see the full formula of the full model in the supple-

mentary material), i.e., we identify the PDE model from the full model

For the computational efficiency, the results of these three examples

are the same, so we only present the result for the first example. We also

verify Condition 3.1 - 3.5 of the above three examples. The details of the

verification can be found in the online supplementary material.

4.1 Example 1: Transport Equation

The PDE problem to be studied in this section is the transport equation. It

is a linear, first-order PDE model. Given its simplicity and straight physical

meaning, it has been widely used to model the concentration of a substance

flowing in a fluid at a constant rate, For example, it can be used to model

a pollutant, in a uniform fluid flow that is moving with velocity a (Olver,

2014, Section 2.2):
∂
∂t
u(x, t) = a ∂

∂x
u(x, t), ∀ 0 ≤ x ≤ Xmax, 0 ≤ t ≤ Tmax;

u(x, 0) = f(x).

(4.13)

Here a ∈ R is a fixed, non-zero constant, known as the wave speed. In this

section, we set a = −2, f(x) = 2 sin(4x), Xmax = 1, Tmax = 0.1. Given this

settings, there is a closed-form solution, which is u(x, t) = 2 sin(4x− 8t).
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4.1 Example 1: Transport Equation

The dynamic pattern of the above transport equation is visualized in

Fig. 1, where subfigures (a), (b), and (c) are the ground truth, and noisy

observations under σ = 0.05 and σ = 0.1, respectively. From this figure, we

can see that the larger the noise, the more un-smoothed the shape of the

transport equation would be, which potentially leads to more difficulties in

the PDE model identification.

(a) truth (b) σ = 0.05 (c) σ = 0.1

Figure 1: Noisy/True curves from (4.13) (M = N = 100)

First of all, let us take a look at the computational complexity of the

functional estimation stage. We select the local polynomial regression as a

benchmark and visualize the number of numerical operations of the above

two methods in Fig. 2, where the x-axis is log(M) or log(N), and the

y-axis is the logarithm of the number of numerical operations. In Fig.

2, two scenarios are discussed: (1) M is fixed as 20 and N varies from

200 to 2000; (2) N is fixed as 20 and M varies from 200 to 2000. As we

can see from Fig. 2 that, as M or N increases, the number of numerical

operations in the functional estimation stage becomes larger. We find that
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4.1 Example 1: Transport Equation

the cubic splines method needs fewer numerical operations, compared with

the local polynomial regression. Furthermore, if we conduct a simple linear

regression of the four lines in Fig. 2, we find that in (a), the slope of the

cubic spline is 0.9998, and as N goes to infinity, the slope will get closer to

1. This validates that the computational complexity of the cubic splines-

based method is of order O(N) when M is fixed. A similar story happens to

(b), so we numerically verify the computational complexity of cubic spline

is of order O(MN). Similarly, for local polynomial, we can also numerically

validate its computational complexity, which is max{O(M2N), O(MN2)}.

(a) fixed M = 20 (b) fixed N = 20

Figure 2: Computational complexity of cubic spline & local polynomial

We now numerically verify that with high probability, our SAPDEMI

can correctly identify the underlying PDE models. From the formula of

the transport equation in equation (4.13), we know that the correct fea-

ture variable is only ∂
∂x
u(x, t). While other feature variables should not be

identified. We discuss the identification accuracy under different sample

sizes and magnitudes of noises. We find that the accuracy stays at 100%.
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4.2 Example 2: Inviscid Burgers’ Equation

To explain the high accuracy, we plot the solution paths in Fig. 3 under

different σ, i.e., σ = 0.01, 0.1, 1. From Fig. 3, we find one can increase λ to

overcome this difficulty, and thus achieve correct PDE identification.

(a) σ = 0.01 (b) σ = 0.1 (c) σ = 1

Figure 3: Solution paths in the transport equation under different σ and

M = N = 100. Notation ux is the simplification of ∂
∂x
u(x, t).

4.2 Example 2: Inviscid Burgers’ Equation

In this section, we investigate the inviscid Burgers’ equation (see Olver,

2014, Section 8.4). It is a representative of first-order nonlinear PDE and

has been frequently used in applied mathematics, such as fluid mechanics,

nonlinear acoustics, gas dynamics, and traffic flow. This PDE model was

first introduced by Harry Bateman in 1915 and later studied by Johannes

Martinus Burgers in 1948 (Whitham, 2011). The formula of the inviscid
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4.2 Example 2: Inviscid Burgers’ Equation

Burger’s equation is listed below.
∂
∂t
u(x, t) = −1

2
u(x, t) ∂

∂x
u(x, t)

u(x, 0) = f(x) 0 ≤ x ≤ Xmax

u(0, t) = u(1, t) = 0 0 ≤ t ≤ Tmax

, (4.14)

where we set f(x) = sin(2πx), Xmax = 1, Tmax = 0.1. Fig. 4(a), (b), and (c)

show the ground truth, noisy observations under σ = 0.05, 0.1, respectively.

Compared with our first example (transport equation in (4.13)), the inviscid

(a) truth (b) σ = 0.05 (c) σ = 0.1

Figure 4: Noisy/True curves from (4.14) (M = 50, N = 50)

Burgers’ equation can be regarded as its extension from linear transport

equation to nonlinear transport equation. Specifically, if we set a in (4.13)

as a = −1
2
u(x, t), then (4.13) is equivalent to (4.14). In the literature, this

PDE model is considerably more challenging than the linear transport PDE

in (4.13): the wave speed in (4.13) only depends on the spatial variable x,

while the wave speed in (4.14) depends both on the spatial variable x, but

also on the size of the disturbance u(x, t). Given the complicated wave speed

in (4.14), it can model more complicated dynamic patterns. For example,
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4.3 Example 3: Viscous Burgers’ Equation

larger waves move faster, and overtake smaller, slow-moving waves.

In this example, SAPDEMI can correctly identify, with accuracy above

99% (see Fig. 8(a)). The effect of σ also reflects in Fig. 5, where the length

of λ-interval for correct identification decreases as σ increases.

(a) σ = 0.01 (b) σ = 0.5 (c) σ = 1

Figure 5: Solution paths in inviscid Burger’s equation under different σ’s

and M = N = 100. u and ux are simplifications of u(x, t) and ∂
∂x
u(x, t).

4.3 Example 3: Viscous Burgers’ Equation

In this section, we investigate more challenging viscous Burgers’ equation

(see Olver, 2014, Section 8.4), which is a fundamental second-order semilin-

ear PDE. It is frequently employed to model physical phenomena in fluid

dynamics (Bonkile et al., 2018) and nonlinear acoustic in dissipative media

(Rudenko and Soluian, 1975). For example, in the fluid and gas dynamics,

one can interprets the term ν ∂2

∂x2u(x, t) as modeling the effect of viscosity

(Olver, 2014, Section 8.4). Thus, the viscous Burgers’ equation represents

a version of the equations of viscous fluid flows, including the celebrated
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4.3 Example 3: Viscous Burgers’ Equation

and widely applied Navier-Stokes equations (Whitham, 2011).

∂u(x,t)
∂t

= −1
2
u(x, t) ∂

∂x
u(x, t) + ν ∂2

∂x2u(x, t)

u(x, 0) = f(x) 0 ≤ x ≤ Xmax

u(0, t) = u(1, t) = 0 0 ≤ t ≤ Tmax

, (4.15)

where we set f(x) = sin2(4πx) + sin3(2πx), Xmax = 1, Tmax = 0.1, ν = 0.1.

Fig. 6 shows the corresponding curves, where (a), (b), and (c) are the

ground truth, noisy observations under σ = 0.05 and σ = 0.1, respectively.

(a) true (b) σ = 0.05 (c) σ = 1

Figure 6: Noisy/True curves from (4.15) (M = 50, N = 50) .

Compare with the previous two PDE models (transport equation in

(4.13) and inviscid Burgers’ equation in (4.14)), the above PDE is more

complicated and challenging. This is because the viscous Burgers’ equa-

tion involves not only the first order derivative, but also the second order

derivatives. And it is a sufficiently complicate example in our simulations.

Based on Fig. 8(b), we conclude that with high probability, our pro-

posed SAPDEMI can correctly identify the underlying viscous Burgers’

equation, with the reasons as follows. When M = N = 200 or 150, the ac-

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing) 



4.3 Example 3: Viscous Burgers’ Equation

curacy stays above 90% for all levels of σ ∈ [0.01, 1]. When M = N = 100,

the accuracy are above 70% when σ ∈ [0.01, 0.5], and reduces to 50% when

σ = 1, which makes sense because as reselected by Fig. 7, when σ increase

from 0.01 to 1, the length of λ-interval for correct identification decreases,

which make it difficult to realize correct identification. So if we encounter

a heavily noised dataset D, a larger sample size is preferred.

(a) σ = 0.01 (b) σ = 0.5 (c) σ = 1

Figure 7: Solution paths in the viscous Burger’s equation under different σ

and M = N = 100. uxx, uux stand for u(x, t) ∂
∂x
u(x, t), ∂2

∂x2u(x, t).

(a) example 2 (b) example 3

Figure 8: Curves of successful identification probability

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing) 



5. Case Study

In this section, we apply SAPDEMI to a real-world dataset, which is a

subset of the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Obser-

vations (CALIPSO) dataset downloaded from the NASA. The CALIPSO

reports the monthly mean of temperature in 2017 at 34◦N and 110.9418 me-

ters above earth surface over a uniform spatial grid from 180◦W to 180◦E

with equally spaced 5◦ interval. The missing data is handled either by di-

rect imputation or the instrument methods Chen et al. (2018, 2021); Chen

and Fang (2019); Chen et al. (2018).

(a) observed temperature (b) solution path

Figure 9: Visualization and identification of the CALIPSO data

The identified PDE model (N = 12,M = 72), reasonably speaking, is

∂

∂t
u(x, t) = a

∂

∂x
u(x, t) + b

(
∂2

∂x2
u(x, t)

)2

, (5.16)

where the values of a, b can be estimated by a simple linear regression only

on the selected derivatives, i.e., ∂
∂x
u(x, t) and

(
∂2

∂x2u(x, t)
)2

. The linear

regression suggests reasonable values of a = −0.2505, b = 1.7648. It should
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be noticed that our paper mainly focuses on the identification, i.e., identify

∂
∂x
u(x, t) and

(
∂2

∂x2u(x, t)
)2

from many derivatives candidates, instead of

coefficients estimation, so we use a = −0.2505 and b = 1.7648 as reference.

Because the CALIPSP is a real-world dataset, we do not know the

ground truth of the underlying PDE model. But here we provide some jus-

tifications. First, from the solution path in Fig. 9(b), we found the coeffi-

cients of ∂
∂x
u(x, t) and

(
∂2

∂x2u(x, t)
)2

remain non-zeros under λ = 0.05, while

other coefficients are all zero. Second, the identified PDE model in (5.16)

fits well to the training data (see Fig. 10 (a.1)-(a.3)). Third, the identified

PDE model in (5.16) predicts well in the testing data (see Fig 10 (b.1)-

(b.3)). Considering the above reasons, we think our proposed SAPDEMI

method performs well in the CALIPSO dataset since it adequately predicts

the feature values in 2018.

6. Conclusion

In this paper, we propose the SAPDEMI method to identify underlying

PDE models from noisy data. The proposed method is computationally

efficient, and we can derive a statistical guarantee on its performance. We

realize there are lots of promising future research directions, including but

not limited to multivariate spatial variable (x ∈ Rd with d ≥ 2) (Haber-
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(a.1) observed 2017 temp (a.2) fitted 2017 temp (a.3) 2017 residual

(b.1) observed 2018 temp (b.2) predicted 2018 temp (b.3) 2018 residual

Figure 10: 3D surface plots of the temperatures in 2017/2018.

mann and Kindermann, 2007), interactions between spatial and temporal

variables. In our paper, we aim at showing the methodology to solve the

PDE identification, so we skip discuss the above future research and our

paper should provide a good starting point for these further research.
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