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Abstract: In this article, we propose the mutual influence regression model (MIR)

to establish the relationship between the mutual influence matrix of actors and

a set of similarity matrices induced by their associated attributes. This model

is able to explain the heterogeneous structure of the mutual influence matrix by

extending the commonly used spatial autoregressive model while allowing it to

change with time. To facilitate making inferences with MIR, we establish pa-

rameter estimation, weight matrices selection and model testing. Specifically, we

employ the quasi-maximum likelihood estimation method to estimate unknown

regression coefficients, and demonstrate that the resulting estimator is asymp-

totically normal without imposing the normality assumption and while allowing

the number of similarity matrices to diverge. In addition, an extended BIC-type

criterion is introduced for selecting relevant matrices from the divergent number
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of similarity matrices. To assess the adequacy of the proposed model, we further

propose an influence matrix test and develop a novel approach in order to obtain

the limiting distribution of the test. The simulation studies support our theoret-

ical findings, and a real example is presented to illustrate the usefulness of the

proposed MIR model.

Key words and phrases: Extended Bayesian Information Criterion, Mutual Influ-

ence Matrix, Similarity Matrices, Spatial Autoregressive Model

1. Introduction

Due to the possibility of relationships between subjects (such as network

connections or spatial interactions), the traditional data assumption of in-

dependent and identically distributed observations is no longer valid, and

there can be a complex structure of mutual influence between the sub-

jects. Accordingly, understanding mutual influence has become an impor-

tant topic across various fields and applications such as business, biology,

economics, medicine, sociology, political science, psychology, engineering,

and science. For example, the study of the mutual influence between actors

can help to identify influential users within a network (see Trusov, Boda-

pati and Bucklin (2010)). In addition, investigating the mutual influence

between geographic regions is essential for exploring spillover effects in spa-

tial data (see Golgher and Voss (2016); Zhang and Yu (2018)), and this type

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing) 



of analysis is important for understanding the spread of COVID-19 between

different countries and cities (see Han et al. (2021)). Moreover, quantifying

mutual influence in mobile social networks is helpful to provide important

insights into the design of social platforms and applications (see Peng et

al. (2017)). These examples motivate us to introduce the mutual influence

regression model so that we are able to effectively and systematically study

mutual influence.

Let Y1t, · · · , Ynt be the responses of n actors observed at time t for

t = 1, · · · , T . To characterize the mutual influence among the n actors, the

following regression model can be considered for each actor i = 1, · · · , n at

t = 1, · · · , T ,

Yit = bi1tY1t + · · ·+ bi(i−1)tY(i−1)t + bi(i+1)Y(i+1)t + · · ·+ bintYnt + εit, (1.1)

where bijt presents the influence effect of Yjt on Yit and εit is the random

noise. Define Yt = (Y1t, · · · , Ynt)> ∈ Rn, εt = (ε1t, · · · , εnt)> ∈ Rn and

Bt = (bijt) ∈ Rn×n with biit = 0. Then we have the matrix form of (1.1),

Yt = BtYt + εt, (1.2)

where Bt is called the mutual influence matrix and it characterizes the

degree of mutual influence among the n actors at time t.

Estimating model (1.2) is a challenging task since it involves a large
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number of parameters, specifically n(n − 1) for each t. The regulariza-

tion type methods studied by Manresa (2013), de Paula et al. (2019) and

Kwok (2020) are not applicable when n is large. To avoid the issue of high

dimensionality, one commonly used approach is to employ the spatial au-

toregressive (SAR) model, which parameterizes the mutual influence matrix

Bt by Bt = ρW (t), where W (t) is the adjacency matrix of a known network

or a spatial weight matrix whose elements are a function of geographic or

economic distances. In addition, ρ is the single influence parameter that

characterizes the influence power among the n actors; see, for example, Lee

(2004), Zou et al. (2017) and Huang et al. (2019) for detailed discussions

and the references therein. Accordingly, model (1.2) becomes estimable

since the number of parameters is greatly reduced from n(n− 1) to 1.

Because the SAR model only involves a single influence parameter ρ,

it may not fully capture the influential information of Bt. Hence, Lee and

Liu (2010), Elhorst, Lacombe and Piras (2012), Lee and Yu (2014), Kwok

(2019), and Lam and Souza (2020) considered a higher-order SAR model

that includes multiple weight matrices (i.e., W (t)s) along with their associ-

ated parameters. Gupta and Robinson (2015, 2018) further extended it by

allowing the number of weight matrices to diverge. In general, the elements

of weight matrix W (t) are functions of the geographic or economic distances
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among the n actors. For example, a typical choice of distance measure for

spatial data is geographic distance (Dou, Parrella and Yao (2016); Zhang

and Yu (2018); Gao et al. (2019)). In addition, one natural choice of dis-

tance measure for network data is whether there exists a link between the

actors through the adjacency matrix (Zhou et al. (2017); Zhu et al. (2017);

Huang et al. (2019)). However, the above weight settings cannot be directly

applied to the higher-order SAR model for non-geographic or non-network

data since these distance measure are not well defined for other types of

data. Accordingly, how to parameterize the mutual influence matrix for

non-geographic and non-network data is an unsolved problem that needs

further investigation. This motivates us to study the following two impor-

tant and challenging subjects: (i) How to define weight matrices for general

non-geographic and non-network data? (ii) How to assess the adequacy of

the selected weight matrices?

To resolve challenge (i), we propose using similarity matrices induced

from attributes (e.g., gender or income) to be our weight matrices to ac-

commodate non-geographic and non-network data. Specifically, let Z(t) =

(z
(t)
1 , · · · , z(t)

n )> ∈ Rn denote the vector of values obtained from the n actors

for a given attribute. Then, for any two actors j1 and j2, the squared dis-

tance between j1 and j2 can be defined as the distance between z
(t)
j1

and z
(t)
j2

,
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e.g., (z
(t)
j1
−z(t)

j2
)2. Following the suggestion of Jenish and Prucha (2012), we

consider the similarity matrix as a non-increasing function of the squared

distance between actors j1 and j2, i.e., A(t) = (a{−(z
(t)
j1
− z

(t)
j2

)2})n×n for

some bounded and non-decreasing function a(·). Furthermore, we can em-

ploy the same procedure to create a set of similarity matrices A(t)s deriving

from the actors’ attributes. In practice, those similarity matrices change

along with time t. To this end, we introduce the time heterogeneous ma-

trices, A(t)s, which naturally link to the mutual influence matrix Bt. To

overcome the aforementioned challenge (ii), we introduce an influence ma-

trix test to examine the adequacy of the selected similarity matrices (i.e.,

weight matrices) for the high dimensional and time varying mutual influence

matrix.

The main contribution of this paper is two-fold. The first is to propose

a mutual influence regression (MIR) model that establishes a relationship

between the mutual influence matrix and a set of similarity matrices in-

duced by associated attributes of the actors. The emerging model not only

broadens the usefulness of the traditional spatial autoregressive model, but

also captures the heterogeneous structure of the mutual influence matrix

by allowing it to change with time. Accordingly, we study the parameter

space of the model and then employ the quasi-maximum likelihood estima-
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tion method (see, e.g., Wooldridge (2002)) to estimate unknown regression

coefficients. By thoroughly studying the convergence of the Hessian ma-

trix in Frobenius norm, we are able to show that the resulting estimator

is asymptotically normal under some mild conditions without imposing the

normality assumption while allowing the number of similarity matrices to

diverge. Since the number of similarity matrices is diverging, an extended

BIC-type criterion motivated from Chen and Chen (2008) is introduced to

select relevant matrices. We show that this extended BIC-type criterion is

consistent based on a novel result of the exponential tail probability for the

general form of quadratic functions.

The second is to introduce an influence matrix test for assessing whether

the mutual influence matrix Bt satisfies a linear structure of the time-

varying weight matrices. Based on this setting, cov(Yt) is a nonlinear func-

tion of the time-varying weight matrices. Thus, our test is different from

the common hypothesis test for testing whether cov(Yt) is a linear structure

of the weight matrices (e.g., see Zheng et al. (2019)). Under a nonlinear

structure for the mutual influence matrix Bt, however, the quasi-maximum

likelihood estimators of regression coefficients can result in a larger variance

in the test statistic. As a result, obtaining the asymptotic distribution of

the test statistic becomes a challenging task, especially when the number of
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similarity matrices is diverging. To overcome such difficulties, we develop a

novel approach in order to show the asymptotic normality of a summation

of the product of quadratic forms with a diverging number of similarity

matrices.

The remainder of this article is organized as follows. Section 2 intro-

duces the mutual influence regression model, studies the parameter space,

and obtains quasi-maximum likelihood estimators of regression coefficients,

which are asymptotically normal. Section 3 presents the extended BIC-

type selection criterion as well as its consistency property. In addition, a

high dimensional covariance test is given to examine the model adequacy.

The theoretical property of this test is provided. Simulation studies and

an empirical example are presented in Sections 4 and 5, respectively, while

Section 6 concludes the article with a discussion. All theoretical proofs are

relegated to the supplementary material.

2. Mutual Influence Regression Model and Estimation

2.1 Model and Notation

We first construct similarity matrices before modeling the mutual influence

matrix Bt as a regression function of them. Let Z
(t)
k be the k-th n × 1

continuous attribute vector collected at the t-th time for k = 1, · · · , d.
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2.1 Model and Notation

Adapting Jenish and Prucha’s (2012) approach in order to incorporate the

time effect t, we then obtain heterogeneous similarity matrices: A
(t)
k =

A
(t)
k (Z

(t)
k ) = (a{−(Z

(t)
kj1
− Z(t)

kj2
)2})n×n for j1 = 1, · · · , n and j2 = 1, · · · , n,

where a(·) is a bounded and non-decreasing function and Z
(t)
kj1

and Z
(t)
kj2

are

the j1-th and j2-th elements of Z
(t)
k , respectively. For continuous attributes,

we consider a(·) equal to the exponential function with a{−(Z
(t)
kj1
−Z(t)

kj2
)2} =

exp{−(Z
(t)
kj1
−Z(t)

kj2
)2} when |Z(t)

kj1
−Z(t)

kj2
| < φ

(t)
k for some pre-specified positive

constant φ
(t)
k , and a{−(Z

(t)
kj1
− Z

(t)
kj2

)2} = 0 otherwise. That is, once the

distance between any two actors measured by their associated attributes in

Z
(t)
k exceeds a threshold, the two actors are not mutually influenced. For

discrete attributes Z
(t)
k , we define a(Z

(t)
kj1
, Z

(t)
kj2

) = 1 if Z
(t)
kj1

and Z
(t)
kj2

belong

to the same class, and a(Z
(t)
kj1
, Z

(t)
kj2

) = 0 otherwise. In this case, A
(t)
k can

be regarded as the adjacency matrix of the network induced by attributes

Z
(t)
k .

To establish the relationship between the mutual influence matrix and

a set of similarity matrices, motivated from Anderson (1973), Qu, Lindsay

and Li (2000) and Zheng et al. (2019), we parameterize the mutual influence

matrix Bt as a function of attributes Z
(t)
k s (k = 1, · · · , d) given below.

Bt(λ) , Bt(Z
(t)
1 , · · · , Z(t)

d , λ) = λ1W
(t)
1 + · · ·+ λdW

(t)
d , (2.1)

where w(Z
(t)
kj1
, Z

(t)
kj2

) = a(Z
(t)
kj1
, Z

(t)
kj2

)/
∑

j2
a(Z

(t)
kj1
, Z

(t)
kj2

) andW
(t)
k = (w(Z

(t)
kj1
, Z

(t)
kj2

))n×n
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2.1 Model and Notation

is the row-normalized version of A
(t)
k . We name W

(t)
k as the weight matrix

for k = 1, · · · , d, which is also called the similarity matrix in the rest of the

article. The reason for adopting the row-normalization method is primarily

its wide applicability (see, e.g., Lee (2004)). In practice, there are several

alternative normalization methods that can be considered, such as the col-

umn normalization and the normalization based on the maximum absolute

row (or column) sum norm; see Kelejian and Prucha (2010) for detailed

discussions.

Substituting (2.1) into (1.2), we introduce the following mutual influ-

ence regression (MIR) model,

Yt = Bt(Z
(t)
1 , · · · , Z(t)

d , λ)Yt + εt =
(
λ1W

(t)
1 + · · ·+ λdW

(t)
d

)
Yt + εt, (2.2)

where λ1, · · · , λd are unknown regression coefficients. This model is able to

explain the structure of the mutual influence matrix Bt at each time t via

a set of similarity matrices W
(t)
k , induced by the covariates Z

(t)
k and their

associated influence parameter λk. For the sake of simplicity, we refer to

the above model as MIR in the rest of the paper. To ease notation, we

use Bt rather than Bt(λ) in the rest of article. Define ∆t(λ) = In − Bt =

In −
(
λ1W

(t)
1 + · · ·+ λdW

(t)
d

)
, where In is the identity matrix of dimension

n. Then, model (2.2) leads to ∆t(λ)Yt = εt. To assure (2.2) identifiable, we

require that ∆t(λ) is invertible.
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2.1 Model and Notation

It is worth noting that, for d = 1 and W
(t)
1 = W constructed by net-

work or spatial data, MIR is the classical spatial autoregressive model of

LeSage and Pace (2009). Furthermore, by model (2.1), we have bj1j2t =

λ1w(Z
(t)
1j1
, Z

(t)
1j2

) + · · · + λdw(Z
(t)
dj1
, Z

(t)
dj2

). Accordingly, the influence effect of

node j2 on j1, bj1j2t, is the linear combination of similarity matrices at time

t. Specifically, for k = 1, · · · , d, the similarity matrix w(Z
(t)
kj1
, Z

(t)
kj2

) mea-

sures the distance between nodes j1 and j2, and its effect is determined by

the influence parameter λk. Suppose λk > 0. Based on the MIR model

(2.2), for any two actors j1 and j2, the smaller the distance between Z
(t)
kj1

and Z
(t)
kj2

, the larger the influence effect between Yj1t and Yj2t. Therefore,

the covariate Z
(t)
k yields a positive effect on the mutual influence between

responses of the n actors. In sum, models (2.1) and (2.2) link the mutual

influence matrix with a large number of exogenous attributes to responses,

which can lead to insightful findings and provide practical interpretations.

Remark 1: It is of interest to note that our concept is similar to the co-

variance tapering of Furrer et al. (2006). For any given t = 1, · · · , T , we

follow Furrer et al. (2006) in assuming that Yit, the response of node i, can

be affected by the responses of nearby nodes. However, our method differs

in the following two aspects. First, for the geographic data considered in

Furrer et al. (2006), the distance between nodes is well defined. However,
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2.2 Parameter Estimation

for general non-geographic and non-network data, the “distance” measure

has not been clearly defined. Motivated by the concept of the near-epoch

dependent (NED) process of Jenish and Prucha (2012), we define the sim-

ilarity matrices that are induced by the distances between the attributes

of different actors. Second, the goals of these two methods are different.

The goal of our paper is to establish the relationship between the mutual

influence matrix of actors and a set of similarity matrices induced by their

associated attributes, whereas Furrer et al. (2006) focused on the interpo-

lation of large spatial datasets.

2.2 Parameter Estimation

In this paper, we assume that εts are iid random variables with mean 0

and covariance matrix σ2In for t = 1, · · · , T , where σ2 is a scaled param-

eter. By (2.2), we have Yt = ∆−1
t (λ)εt. Then E(Yt) = 0 and Var(Yt) ,

Σt = σ2∆−1
t (λ){∆>t (λ)}−1, and we obtain the quasi-loglikelihood function

following Lee (2004),

`(θ) = −nT
2

log(2π)− nT

2
log(σ2) +

T∑
t=1

log |det(∆t(λ))| (2.3)

− 1

2σ2

T∑
t=1

Y >t ∆>t (λ)∆t(λ)Yt,

where θ = (λ>, σ2)>.
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2.2 Parameter Estimation

We next employ the concentrated quasi-likelihood approach to estimate

θ. Specifically, given λ, one can estimate σ2 by

σ̂2(λ) = (nT )−1
∑
t

Y >t ∆>t (λ)∆t(λ)Yt.

Plugging this into (2.3), the resulting quasi-concentrated log-likelihood func-

tion is

`c(λ) = −nT
2

log(2π)− nT

2
− nT

2
log
{
σ̂2(λ)

}
+

T∑
t=1

log |det(∆t(λ))|. (2.4)

Accordingly, we obtain the quasi-maximum likelihood estimator of λ, which

is λ̂ = argmaxλ∈Λ`c(λ) and Λ is the parameter space. To make λ̂ estimable,

it is necessary to specify the parameter space Λ. Based on model (2.2) and

the definition of ∆t(λ), one should naturally require that, for any λ ∈ Λ,

∆t(λ) is invertible. It is worth noting that a sufficient condition for the

invertibility of ∆t(λ) is ‖
∑d

k=1 λkW
(t)
k ‖ < 1, where ‖ · ‖ denotes the L2

(i.e., spectral) norm. Using the fact that W
(t)
k is row-normalized, we have

that ‖
∑d

k=1 λkW
(t)
k ‖ ≤ maxk ‖W (t)

k ‖
∑d

k=1 |λk| ≤
∑d

k=1 |λk|. Accordingly,

a sufficient condition for the invertibility of ∆t(λ) is
∑d

k=1 |λk| < 1. This

leads us to define the parameter space of λ as follows:

Λ =
{
λ :

d∑
k=1

|λk| < 1− ς
}
,

where ς is some sufficiently small positive number. The reason for intro-

ducing ς is to ensure that
∑d

k=1 |λk| is away from 1. In practice, we can set
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2.2 Parameter Estimation

ς to be a small positive number such as 0.01. This specification does not

affect parameter estimation as long as
∑d

k=1 |λk| is smaller than 1.

Using the assumption of σ2 > 0, the parameter space of θ is

Θ =
{
θ = (λ>, σ2)> : λ ∈ Λ and σ2 > 0

}
.

In addition, σ2 can be estimated by σ̂2 = σ̂2(λ̂), which leads to the quasi-

maximum likelihood estimator (QMLE), i.e., θ̂ = (λ̂>, σ̂2)>.

Denote by θ0 = (λ>0 , σ
2
0)> the unknown true parameter vector, where

λ0 = (λ01, · · · , λ0d)
> ∈ Λ and σ2

0 > 0. By Lemma 3 and Condition (C4)

in Section S1 of the supplementary material, the second order derivative

matrix of `(θ) is negative definite for sufficiently large nT in a small neigh-

borhood of θ0. Accordingly, the parameter estimator θ̂ exists and lies in

Θ. To avoid the problem of local optima in computing QMLE, we recom-

mend using a random initialization method (see, e.g., Wang et al. (2022)).

Specifically, we generate many randomized initial values and find the solu-

tion which yields the maximum value of the objective function. Our simu-

lation results in Section 5 indicate that this algorithm works satisfactorily

in various settings. The asymptotic property of θ̂ is given in the following

theorem.

Theorem 1. Under Conditions (C1)–(C5) in Section S1 of the supple-

mentary material, as nT → ∞, (nT/d)1/2DI(θ0)(θ̂ − θ0) is asymptoti-
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2.2 Parameter Estimation

cally normal with mean 0 and covariance matrix G(θ0), where D is an

arbitrary M × (d + 1) matrix with M < ∞ satisfying ‖D‖ < ∞ and

d−1DJ (θ0)D> → G(θ0), and I(θ0) and J (θ0) are defined in Condition

(C4).

Note that nT →∞ in the above theorem means that either n or T go

to infinity. To make this theorem practically useful, one needs to estimate

I(θ0) and J (θ0) consistently. For k = 1, · · · , d+ 1 and l = 1, · · · , d+ 1, de-

fine InT (θ0) = −(nT )−1E{∂
2`(θ0)
∂θ∂θ>

} , (InT,kl) ∈ R(d+1)×(d+1) and JnT (θ0) =

(nT )−1Var(∂`(θ0)
∂θ

) , (JnT,kl) ∈ R(d+1)×(d+1). By Condition (C4), it suffices

to show that the plug-in estimators InT (θ̂) and JnT (θ̂) are consistent of

I(θ0) and J (θ0), respectively.

After simple calculation, we have that, for any k = 1, · · · , d and l =

1, · · · , d,

InT,k(d+1) , −(nT )−1E
{ ∂2`(θ0)

∂λk∂σ2

}
=

1

nTσ2

T∑
t=1

tr(W
(t)
k ∆−1

t (λ0)) =
1

nTσ2
tr(Uk),

InT,kl , −(nT )−1E
{∂2`(θ0)

∂λk∂λl

}
= (nT )−1

T∑
t=1

tr{∆−1>
t (λ0)W

(t)>
k W

(t)
l ∆−1

t (λ0)}

+(nT )−1

T∑
t=1

tr{W (t)
k ∆−1

t (λ0)W
(t)
l ∆−1

t (λ0)} =
2

nT
tr(UkUl),

where Uk = diag
{
s(W

(1)
k ∆−1

t (λ0)), · · · , s(W (T )
k ∆−1

T (λ0))
}
∈ R(nT )×(nT ) and
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2.2 Parameter Estimation

s(A) = (A+ A>)/2 for any arbitrary matrix A. In addition,

InT,(d+1)(d+1) , −(nT )−1E
{∂2`(θ0)

∂2σ2

}
=

1

2σ4
0

.

Using the result θ̂ →p θ0 in Theorem 1, we have InT (θ̂) →p InT (θ0). This,

together with Condition (C4), implies InT (θ̂)→p I(θ0).

After algebraic calculation, we next obtain that, for any k = 1, · · · , d

and l = 1, · · · , d,

JnT,k(d+1) , (nT )−1cov
{∂`(θ0)

∂λk
,
∂`(θ0)

∂σ2

}
=

1

2nTσ2
0

{
(µ(4) − 1)tr(Uk)

}
and

JnT,kl , (nT )−1cov
{∂`(θ0)

∂λk
,
∂`(θ0)

∂λl

}
=

2

nT
tr(UkUl) +

µ(4) − 3

nT
tr(Uk ⊗ Ul),

where µ(4) = E(ε4it)/σ
4
0 can be estimated by µ̂(4) = (nT )−1

∑n
i=1

∑T
t=1 ε̂

4
it/σ̂

4

with ε̂t = ∆−1
t (λ̂)Yt and ε̂t = (ε̂1t, · · · , ε̂nt)>. Furthermore,

JnT,(d+1)(d+1) , (nT )−1Var
{∂`(θ0)

∂σ2

}
=

1

4σ4
0

{
2 + (µ(4) − 3)

}
.

As a result, J (θ0) can be consistently estimated by JnT (θ̂). In sum, one

can practically apply Theorem 1 by replacing I(θ0) and J (θ0) with their

corresponding estimators InT (θ̂) and JnT (θ̂), respectively.

According to Theorem 1, we are able to assess the significance of λ0k,

which allows us to determine the influential similarity matrices, W
(t)
k , in-

duced by their associated covariates Z
(t)
k for k = 1, · · · , d. In addition,

based on the estimated λ̂, the mutual influence matrix Bt can be estimated

by B̂t = λ̂1W
(t)
1 + · · ·+ λ̂dW

(t)
d , whose asymptotic property is given below.
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Theorem 2. Under Conditions (C1)–(C5) in Section S1 of the supplemen-

tary material, as nT →∞, supt≤T ‖B̂t −Bt‖ = Op{d(nT )−1/2}.

The above theorem indicates that the estimated mutual influence matrix B̂t

is consistent uniformly for any t under the L2 norm, as either n or T goes

to infinity and d = o{(nT )1/4} is from Condition (C5). Hence, B̂t can be

a consistent estimator of Bt even for finite T . After estimating the mutual

influence matrix, we next study the selection of similarity matrices and test

the fitness of Bt.

3. Similarity Matrix Selection and Influence Matrix Test

3.1 Selection Consistency

In MIR, the number of similarity matrices is diverging, which motivates

us to consider the similarity matrix selection. Note that assessing the sig-

nificance of λ0k separately for k = 1, · · · , d via Theorem 1 can result in

multiple testing problems (see, e.g., Storey et al. 2004 and Fan et al.

2012). In addition, the traditional Bayesian information criterion (BIC)

becomes overly liberal when d is diverging as demonstrated by Chen and

Chen (2008). Hence, we modify the extended Bayesian information crite-

rion (EBIC) to select similarity matrices. To this end, we define the true

model ST = {k : λ0k 6= 0}, which consists of all relevant W
(t)
k s. In addition,
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3.1 Selection Consistency

let SF = {1, · · · , d} denote the full model and S represent an arbitrary can-

didate model such that S ⊂ SF . Moreover, let θ̂S = (θ̂k,S : k ∈ S) be the

maximum likelihood estimator of θ0S = (θ0k : k ∈ S) ∈ R|S|. In practice,

the true model ST is unknown. Motivated from Chen and Chen (2008), we

propose the information criterion given below to select similarity matrices,

EBICγ(S) = −2`(θ̂S) + |S| log(nT ) + γ|S| log(d)

for some γ > 0. Based on this criterion, one can select the optimal model,

which is Ŝ = argminSEBICγ(S). It is worth noting that the third term in-

volved in EBICγ(S) (i.e., γ|S| log(d)) presents the effect of assigning differ-

ent prior probabilities to candidate models with different number of weight

matrices, and the tuning parameter γ characterizes this strength; we refer

to Chen and Chen (2008) for more detailed discussions.

Define as A0 = {S : ST ⊂ S, |S| ≤ q} and A1 = {S : ST 6⊂ S, |S| ≤ q}

the sets of the overfitted and underfitted models, respectively, where the size

of any candidate model is no larger than the positive constant q defined in

Condition (C7) in Section S1 of the supplementary material. Then, we

obtain the theoretical properties of EBICγ given below.

Theorem 3. Under Conditions (C1)–(C7) in Section S1 of the supplemen-
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3.1 Selection Consistency

tary material, as nT →∞, we have

P
{

min
S∈A1

EBICγ(S) ≤ EBICγ(ST )
}
→ 0

for any γ > 0 and

P
{

min
S∈A0,S6=ST

EBICγ(S) ≤ EBICγ(ST )
}
→ 0

for γ > q2C2
w/τ2cmin,3σ

4
0 − 4, where Cw, cmin,3 and τ2 are finite positive

constants which are defined in Conditions (C3), (C7) and Lemma 3 (ii),

respectively, in Section S1 of the supplementary material.

The above theorem holds as long as either n or T go to infinity. Note that

the assumption mink∈ST |λ0k|{nT/ log(nT )}1/2 → ∞ given in Condition

(C6) is modified from Chen and Chen (2008). This assumption is essential

for showing the selection consistency of EBIC. Specifically, we demonstrate

that λ̂k for k /∈ ST converges to 0 of order (nT )−1/2. Under some mild

conditions, we can further show that maxk/∈ST |λ̂k| = Op(
√

log(d)/nT ) =

Op(
√

log(nT )/nT ). Thus, Condition (C6) indicates that mink∈ST |λ0k| is

larger than maxk/∈ST |λ̂k| asymptotically even with the diverging number of

similarity matrices. Our simulation results indicate that γ = 2 performs

satisfactorily under various settings. It is worth noting that we employ

the popularly used backward elimination method to implement EBIC (see,

e.g., Zhang and Wang (2011) and Schelldorfer et al. (2014)). This approach
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3.2 Influence Matrix Test

reduces the computational complexity from 2d to O(d2). Thus, EBIC is

computable when d is large.

3.2 Influence Matrix Test

To examine the adequacy of model (2.1) for modeling the mutual influence

matrix Bt as a linear combination of weight matrices W
(t)
k (k = 1, · · · , d),

we consider the following hypotheses,

H0 : Bt = λ01W
(t)
1 + · · ·+ λ0dW

(t)
d for all t = 1, · · · , T, vs

H1 : Bt 6= λ01W
(t)
1 + · · ·+ λ0dW

(t)
d for some t = 1, · · · , T. (3.1)

Note that, under H0, we have Σt = σ2
0(In − Bt)

−1(In − B>t )−1, which is a

nonlinear function of the weight matrices W
(t)
k s. This is different from the

covariance structure considered in Qu, Lindsay and Li (2000) and Zheng et

al. (2019) which assumes that Σt is a linear function of the weight matrices.

To test (3.1), it is natural to compare the estimates of Bt calculated

under the null and alternative hypotheses, respectively. Then reject the null

hypothesis of (3.1) if their difference is relatively large. However, the com-

putation of Bt under the alternative hypothesis is infeasible since it involves

n(n−1)T unknown parameters. Hence, we propose to test (3.1) by compar-

ing the covariance matrix of Yt under the null and alternative hypotheses,

respectively. Under H0, we have cov(Yt) = Σt = σ2
0(In−Bt)

−1(In−B>t )−1.
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3.2 Influence Matrix Test

Based on Theorem 2, Bt can be consistently estimated by B̂t = Bt(λ̂). Ac-

cordingly, one can approximate cov(Yt) by Σ̂t = σ̂2(In− B̂t)
−1(In− B̂>t )−1,

where σ̂2 = (nT )−1
∑

t Y
>
t ∆>t (λ̂)∆t(λ̂)Yt. On the other hand, cov(Yt) can

be approximated by its sample version under the alternative, and we ex-

pect that E(YtY
>
t ) ≈ Σ̂t under the null hypothesis, which motivates us to

employ the quadratic loss function tr(YtY
>
t Σ̂−1

t − In)2 to measure the dif-

ference between YtY
>
t and Σ̂t. It is expected that, under H0, the difference

should be small across t = 1, · · · , T . Hence, we propose the following test

statistic,

Tql = (nT )−1

T∑
t=1

tr(YtY
>
t Σ̂−1

t − In)2,

to assess the adequacy of (2.1).

To show the asymptotic distribution of Tql, let µql = n+ µ(4) − 2 and

σ2
ql = (4µ(4) − 4)n/T + 4n−2T−4σ4

0

∑
t1 6=t2 6=t3

∑
k1,l1

∑
k2,l2

[I−1
k1l1

(θ0)I−1
k2l2

(θ0)

×{tr(Ut1k1Ut1k2) + (µ(4) − 3)tr(Ut1k1⊗Ut1k2)}tr(Vt2l1)tr(Vt3l2)]

+(8µ(4) − 8)n−1T−3σ4
0

∑
t1 6=t2

∑
k,l

I−1
kl (θ0)tr(Ut1k)tr(Vt2l), (3.2)

where I−1
kl (θ0) is the kl-th element of I−1(θ0), Utk = s{W (t)

k ∆−1
t (λ0)}, Vtk =

{∆−1
t (λ0)}>Λ̃tk∆

−1
t (λ0) and Λ̃tk is the matrix form of ∂vec{Σ−1

t (θ0)}/∂θk

for t1, t2, t3, t = 1, · · · , T , k1, k2, k = 1, · · · , d, and l1, l2, l = 1, · · · , d. Then,

the next theorem presents the asymptotic property of Tql.
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3.2 Influence Matrix Test

Theorem 4. Under the null hypothesis of H0, Conditions (C1)–(C5) in

Section S1 of the supplementary material and assuming that n/T → c and

σ2
ql > cσ for some finite positive constants c and cσ, we have

(Tql − µql)/σql →d N(0, 1)

as nT →∞.

Unlike Theorems 1–3, the above result requires that both n and T tend to

infinity with n/T → c for some finite positive constant c. This condition is

reasonable since we need the replications of similarity matrices to test the

adequacy of MIR. Note that this condition is commonly used for testing

high dimensional covariance structures (see, e.g., Ledoit and Wolf (2002)

and Zheng et al. (2019)). The above theorem indicates that the asymptotic

variance of Tql is σ2
ql, which is given in (3.2) and it includes three compo-

nents. The first component (4µ(4) − 4)c is the leading term of variance of

(nT )−1
∑T

t=1 tr(YtY
>
t Σ−1

t − In)2 obtained by assuming that λ0 is known,

while the last two components are of orders O(d2) and O(d), respectively,

and cannot be ignored. These two non-negligible components are mainly

induced by the estimator λ̂, which makes the proof of Theorem 4 more com-

plicated. Thus, we develop Lemma 4 in Section S1 of the supplementary

material to resolve this challenging task.
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To make the above theorem practically useful, one needs to estimate

the two unknown terms µql and σql. Note that µ(4) in µql can be consis-

tently estimated by µ̂(4), which is defined in the explanation of Theorem

1. As a result, µ̂ql = n + µ̂(4) − 2 is a consistent estimator of µql. It is

also worth noting that Utk, Vtk and I−1
kl (θ0) can be consistently estimated

by Ûtk = s(W
(t)
k ∆−1

t (λ̂)), V̂tk = {∆−1
t (λ̂)}>Λ̂tk∆

−1
t (λ̂) and I−1

kl (θ̂), respec-

tively, for t = 1, · · · , T and k, l = 1, · · · , d, where Λ̂tk is the matrix form

of ∂vec{Σ−1
t (θ̂)}/∂θk and s(A) = (A + A>)/2 for any arbitrary matrix A

defined in Section 2.2. Accordingly, σ̂ql, obtained by replacing unknown

parameters with their corresponding estimators, is a consistent estimator

of σql. Consequently, for a given significance level α, we are able to reject

the null hypothesis of H0 if |Tql − µ̂ql| > σ̂qlz1−α/2, where zα stands for the

α-th quantile of the standard normal distribution.

4. Simulation Studies

To demonstrate the finite sample performance of our proposed MIR model,

we conduct the following simulation studies. The similarity matrices A
(t)
k =

(a(Z
(t)
kj1
, Z

(t)
kj2

)) ∈ Rn×n with zero diagonal elements and a(Z
(t)
kj1
, Z

(t)
kj2

) =

exp{−(Z
(t)
kj1
− Z

(t)
kj2

)2} if |Z(t)
kj1
− Z

(t)
kj2
| < φ

(t)
k , a(Z

(t)
kj1
, Z

(t)
kj2

) = 0 otherwise,

where j1 and j2 range from 1 to n and Z
(t)
k = (Z

(t)
k1 , · · · , Z

(t)
kn)> are iid ac-
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cording to a multivariate normal distribution with mean 0 and covariance

matrix In for k = 1, · · · , d and t = 1, · · · , T , and φ
(t)
k is selected to control

the density of A
(t)
k (i.e., the proportion of nonzero elements) defined as 10/n

for any k and t (see, e.g., Zou et al. (2017)). Accordingly, we obtain W
(t)
k =

(w(Z
(t)
kj1
, Z

(t)
kj2

))n×n with w(Z
(t)
kj1
, Z

(t)
kj2

) = a(Z
(t)
kj1
, Z

(t)
kj2

)/
∑

j2
a(Z

(t)
kj1
, Z

(t)
kj2

). The

random errors εit are iid and simulated from three distributions: (i) the

standard normal distribution N(0, 1); (ii) the standardized exponential dis-

tribution; (iii) the mixture distribution 0.9N(0, 5/9) + 0.1N(0, 5). The last

two distributions allow us to examine the robustness of parameter esti-

mates to other distributions. Finally, the response vectors Yt are generated

by Yt = (In − λ1W
(t)
1 − · · · − λdW

(t)
d )−1εt for t = 1, · · · , T . Note that the

random error εt is independent of Z
(t)
k for any k = 1, · · · , d and t = 1, · · · , T .

For each of the random error distributions, we consider three different

numbers of observations T = 25, 50 and 100, three different numbers of

actors n = 25, 50 and 100, and all of the results are generated with 500 re-

alizations. Since the results for all three error distributions are qualitatively

similar, we only present the results for the standard normal distribution,

and the results for the mixture normal and the standardized exponential

distributions are relegated to the supplementary material.

To assess the performance of parameter estimators, we consider three
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different numbers of covariates d = 2, 6 and 12, where d = 2 is borrowed

from Zou et al. (2017)), d = 6 is used in our real data analysis, and d = 12

is an exploration of larger similarity matrices. Since the simulation re-

sults for d = 12 are qualitatively similar to those for d = 2 and 6, we

report them in the supplementary material. The regression coefficients are

λk = 0.1 for k = 1, · · · , d. In addition, let λ̂(m) = (λ̂
(m)
1 , · · · , λ̂(m)

d )> ∈ Rd

be the parameter estimate in the m-th realization obtained via the pro-

posed QMLE. For each k = 1, · · · , d, we evaluate the average bias of

λ̂
(m)
k by BIAS=500−1

∑
m(λ̂

(m)
k − λk). Using the results of Theorem 1, we

compute the standard error of λ̂
(m)
k via its asymptotic distribution, and

denote it SE(m). Then, the average of the estimated standard errors is

SE=500−1
∑

m SE(m). To assess the validity of the estimated standard er-

rors, we also calculate the true standard error via the 500 realizations and

denote it SE∗ = 500−1
∑

m(λ̂
(m)
k − λ̄k)2, where λ̄k = 500−1

∑
m λ̂

(m)
k .

Table 1 presents the results of BIAS, SE and SE∗ over 500 realizations

for k = 1, · · · , d and d = 2 and 6. It indicates that the biases of the param-

eter estimates are close to 0 for any n and T , and they become smaller as

either n or T gets larger. In addition, the variation of the parameter esti-

mate, SD, shows similar findings to those of BIAS. Moreover, the difference

between SD and SD∗ is quite small when either n or T is large. In sum,
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Table 1 demonstrates that the asymptotic results obtained in Theorem 1

are reliable and satisfactory.

We next assess the performance of the proposed EBIC criterion by

considering three sizes of the full model, d = 6, 8, and 12, while the size of

the true model is |ST | = 3. We set λk = 0.2 for any k ∈ ST and λk = 0

otherwise. To implement the EBIC criterion, we set γ = 2 in this simulation

study. Four performance measures are used: (i) the average size (AS) of

the selected model |Ŝ|; (ii) the average percentage of the correct fit (CT),

I(Ŝ = ST ); (iii) the average true positive rate (TPR), |Ŝ ∩ ST |/|ST |; and

(iv) the average false positive rate (FPR), |Ŝ ∩ ScT |/|ScT |. Since the results

for all three values of d exhibit a quantitatively similar pattern, we only

present the results for d = 8.

Table 2 shows that the average percentage of correct fit, CT, increases

toward to 100% when either n or T gets large. It is worth noting that the

CTs are larger than 70% even when both n and T are small, i.e., n = 25

and T = 25. Furthermore, the average true positive rate, TPR, is 100%,

which indicates that EBIC is unlikely to select an underfitted model even

when both n and T are small. In contrast, the average false positive rate,

FPR, decreases toward 0 when either n or T becomes large. Moreover, the

average size (AS) of the selected model, |Ŝ|, approaches the true model
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Table 1: The bias and standard error of the parameter estimates when

the true parameters are λk = 0.1 for k = 1, · · · , d, and the random errors

follow a normal distribution. BIAS: the average bias; SE: the average of

the estimated standard errors via Theorem 1; SE∗: the standard error of

parameter estimates calculated from 500 realizations.

d = 2 d = 6

n T λ1 λ2 λ1 λ2 λ3 λ4 λ5 λ6

25 25 BIAS -0.009 0.006 -0.001 -0.004 0.001 0.000 -0.002 -0.006

SE 0.054 0.054 0.055 0.055 0.055 0.055 0.055 0.055

SE∗ 0.058 0.055 0.056 0.055 0.054 0.056 0.052 0.052

25 50 BIAS -0.002 -0.004 0.001 -0.006 0.001 -0.002 0.001 -0.001

SE 0.038 0.038 0.039 0.039 0.039 0.039 0.039 0.039

SE∗ 0.039 0.041 0.039 0.042 0.042 0.039 0.038 0.039

25 100 BIAS -0.001 -0.002 0.002 -0.002 -0.000 -0.002 -0.000 0.001

SE 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027

SE∗ 0.027 0.029 0.028 0.027 0.024 0.026 0.027 0.027

50 25 BIAS -0.002 -0.003 -0.003 -0.003 -0.001 -0.000 0.001 -0.000

SE 0.038 0.038 0.037 0.037 0.037 0.037 0.037 0.037

SE∗ 0.038 0.037 0.035 0.034 0.038 0.037 0.033 0.036

50 50 BIAS -0.001 0.000 0.000 -0.000 -0.001 0.001 0.001 -0.005

SE 0.027 0.027 0.026 0.026 0.026 0.026 0.026 0.026

SE∗ 0.025 0.028 0.026 0.028 0.028 0.027 0.027 0.028

50 100 BIAS -0.001 -0.002 -0.001 -0.001 -0.000 -0.000 0.001 0.001

SE 0.019 0.019 0.018 0.018 0.018 0.018 0.018 0.018

SE∗ 0.019 0.019 0.018 0.020 0.019 0.018 0.017 0.019

100 25 BIAS 0.000 -0.001 -0.001 -0.000 -0.003 0.000 0.001 -0.002

SE 0.026 0.027 0.026 0.026 0.026 0.026 0.026 0.026

SE∗ 0.026 0.028 0.026 0.026 0.028 0.026 0.028 0.026

100 50 BIAS -0.001 0.001 0.000 -0.001 0.000 0.001 0.001 0.000

SE 0.019 0.019 0.018 0.018 0.018 0.018 0.018 0.018

SE∗ 0.019 0.018 0.017 0.016 0.018 0.019 0.016 0.018

100 100 BIAS -0.001 -0.001 -0.000 -0.001 0.001 0.002 -0.000 0.001

SE 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013

SE∗ 0.013 0.013 0.012 0.013 0.014 0.012 0.013 0.013
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Table 2: Model selection via EBIC when d = 8 and the random errors are

normally distributed. AS: the average size of the selected model; CT: the

average percentage of the correct fit; TPR: the average true positive rate;

FPR: the average false positive rate.

n T AS CT TPR FPR

25 25 3.3 72.6 91.8 9.8

50 3.2 77.1 95.7 8.5

100 3.1 81.2 100.0 5.9

50 25 3.2 78.2 94.0 7.9

50 3.1 80.8 97.2 5.8

100 3.1 84.7 100.0 5.1

100 25 3.1 82.3 100.0 6.7

50 3.1 83.8 100.0 5.1

100 3.0 87.7 100.0 4.2
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size. The above results indicate that EBIC performs satisfactorily in finite

samples.

Lastly, we examine the performance of the proposed goodness of fit test.

We consider a generative model Bt = λ1W
(t)
1 + · · ·+λdW

(t)
d +κEE>, where

E ∈ Rn is a random normal vector of dimension n with each elements that

are iid simulated from a standard normal distribution. The parameter κ

is a measure of departure from the null model of H0. Specifically, κ = 0

corresponds to the null model, while κ > 0 represents alternative models.

Accordingly, the results for κ = 0 represent empirical sizes, while the results

for κ > 0 denote empirical powers.

Table 3 indicates that the empirical sizes are slightly conservative when

both n and T are small. However, they approach the significance level of

5% when either n or T becomes large. Furthermore, the empirical powers

increase as either n or T gets larger. Moreover, they become stronger when

κ increases; in particular the empirical power approaches 1 when either n

or T equals 100 and κ = 0.2. The above findings are robust to non-normal

error distributions; see Tables S.4 and S.7 in the supplementary material.

Consequently, our proposed goodness of fit test not only controls the size

well, but is also consistent. It is worth noting that the above estimation,

selection and test findings are also robust to non-normal error distributions;
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see Tables S.2 to S.7 in the supplementary material.

Table 3: The empirical sizes and powers of the goodness of fit test. The

κ = 0 corresponds to the null model and κ > 0 represents alternative

models. The random errors are normally distributed, and the full model

sizes are d = 2 and 6.

d=2 d=6

n T κ=0 κ=0.1 κ=0.2 κ=0 κ=0.1 κ=0.2

25 25 0.030 0.296 0.664 0.024 0.242 0.584

50 0.034 0.528 0.838 0.030 0.424 0.748

100 0.042 0.660 0.910 0.042 0.560 0.822

50 25 0.028 0.434 0.772 0.022 0.342 0.654

50 0.037 0.582 0.878 0.036 0.476 0.786

100 0.044 0.706 0.974 0.048 0.654 0.954

100 25 0.034 0.510 0.976 0.030 0.452 0.964

50 0.040 0.738 1.000 0.034 0.588 0.996

100 0.048 0.910 1.000 0.046 0.830 1.000
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5. Real Data Analysis

5.1 Background and Data

To demonstrate the practical usage of our proposed MIR model, we present

an empirical example for exploring the mechanism of spillover effects in

Chinese mutual funds. It is known that the income and profit of a mutual

fund is largely compensated from the management fees, which are charged

as a fixed proportion of the total net assets under management. As a result,

the variation in cash flow across time is one of the most influential indices

closely monitored by fund managers. Thus, exploring the mechanism of cash

flow is extremely essential (see e.g., Spitz (1970); Nanda, Wang and Zheng

(2004); Brown and Wu (2016)). However, past literatures mainly focus on

addressing the characteristics of the mutual funds that affect their cash

flow from a cross-sectional prospective (see, e.g., Brown and Wu (2016)).

In this study, we employ our proposed MIR model to identify the mutual

fund characteristics that can yield mutual influence on fund cash flows (i.e.,

a spillover effect) from a network perspective.

To proceed with our study, we collect quarterly data from 2010-2017

on actively managed open ended mutual funds through the WIND financial

database, which is one of the most authoritative databases regarding the
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5.1 Background and Data

Chinese financial market. After removing funds with missing observations

or existing for less than one year, there are n = 90 mutual funds in this

empirical study with T = 32. The response variable, the cash flow rate

of fund i at time t, can be calculated as follows (Nanda, Wang and Zheng

(2004)):

Cit =
TAit − TAi,t−1(1 + rit)

TAit
,

where TAit and rit are the total net assets and the return of fund i at time

t, respectively.

We next generate the similarity matrices to explore the mechanism of

spillover effects among mutual funds. To this end, we consider the following

five covariates in the spirit of the pioneering work of Spitz (1970). (i). Size:

the logarithm of the total net asset of fund i at time t − 1; (ii) Age: the

logarithm of the age of fund i at time t− 1; (iii) Return; the return of fund

i at time t− 1; (iv) Alpha: the risk-adjusted return of fund i at time t− 1

measured by the intercept of Carhart (1997) four factor model; (v) Volatil-

ity: the standard deviation of the weekly return of fund i and time t−1. We

next generate the similarity matrices. For the Size covariate, we standard-

ize the data to have zero mean and unit variance, and denote it SIZEit for

i = 1, · · · , n and t = 1, · · · , T . Then, the similarity matrix induced by Size

is A
(t)
1 = (a(Z

(t)
1j1
, Z

(t)
1j2

)) with zero diagonal elements and a(Z
(t)
1j1
, Z

(t)
1j2

) =
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exp{−(Z
(t)
1j1
− Z

(t)
1j2

)2} when |Z(t)
1j1
− Z

(t)
1j2
| < φ

(t)
1 for a pre-specified finite

positive constant φ
(t)
1 , and a(Z

(t)
1j1
, Z

(t)
1j2

) = 0 otherwise. As given in simu-

lation studies, φ
(t)
1 is selected so that the proportion of nonzero elements

of A
(t)
1 is 10/n. Subsequently, we obtain W

(t)
1 = (w(Z

(t)
1j1
, Z

(t)
1j2

))n×n and

w(Z
(t)
1j1
, Z

(t)
1j2

) = a(Z
(t)
1j1
, Z

(t)
1j2

)/
∑

j2
a(Z

(t)
1j1
, Z

(t)
1j2

), which is the row-normalized

version of A
(t)
1 . Analogously, we can construct the similarity matrices

W
(t)
2 , · · · ,W (t)

5 associated with the remaining four covariates, respectively.

5.2 Empirical Results

We first employ the adequacy test to assess whether the five covariates are

sufficient to explain the mutual influence matrix. The resulting p-value for

testing the null hypothesis of H0 in (3.1) is 0.660, which is not significant

under the significance level of 5%. This indicates that one or more of the

five covariates in the MIR model provide a good fit to the data.

We next employ the proposed QMLE method to estimate the model.

Table 5 presents the parameter estimates, standard errors, and their asso-

ciated p-values. It indicates that the covariates Return, Age and Volatility

are significant and positive. It is worth noting that these three covariates

are all related to the funds’ performance and operating capacity. Hence,

we conclude that the funds’ cash flows are influenced by other funds with
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5.2 Empirical Results

similar performance and operating capacity. Furthermore, the estimate of

Size is positive and significant, which implies that the funds’ cash flows are

influenced by other funds of similar size. In other words, investors tend to

invest in larger mutual funds. Moreover, the estimate of Alpha is positive

but not significant. Hence, investors pay more attention to raw returns

than risk-adjusted returns in judging a fund’s performance. This can be

due to the fact that raw returns are easier to observe.

Table 4: The QMLE parameter estimates and associated standard errors

and p-values for the five covariates.

Estimate Standard-Error p-Value

Alpha 0.005 0.027 0.853

Return 0.569 0.019 0.000

Size 0.330 0.014 0.000

Age 0.036 0.018 0.046

Volatility 0.209 0.020 0.000

Subsequently, we employ EBIC to determine the most relevant covari-

ates that are related to the cash flow with γ = 2 as in the simulation

studies. The resulting model consists of the covariates Return and Size.

This implies that fund managers tend to learn relevant information from

other funds with a large size and good performance. This finding is con-
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sistent with existing studies (see, e.g., Brown, Harlow and Starks (1996)).

To check the robustness of our results against the selection of φ
(t)
k , we also

consider φ
(t)
k so that the proportion of nonzero elements of the weight ma-

trices are 5/n and 20/n. The results yield similar findings to that of 10/n.

Moreover, we consider the two alternative non-decreasing functions of a(·),

i.e., a(x) = 1/(1 + x2) and a(x) = 1/(1 + x2)2. The estimation results (not

reported here) are almost identical to those in Table 4. Hence, our results

are not affected by these two alternatives. In sum, the MIR model can pro-

vide valuable insight for understanding the mechanism of mutual influence

among mutual funds.

6. Conclusion

In this article, we propose the mutual influence regression (MIR) model to

explore the mechanism of mutual influence by establishing a relationship

between the mutual influence matrix and a set of similarity matrices induced

by their associated attributes among the actors. In addition, we allow the

number of similarity matrices to diverge. The theoretical properties of

the MIR model’s estimations, selections, and assessments are established.

The Monte Carlo studies support the theoretical findings, and an empirical

example illustrates the practical application.
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To broaden the usefulness of MIR, we identify six possible avenues for

future research. The first avenue is to allow the regression coefficients to

change with t that increases model flexibility. The second avenue is to gen-

eralize the model by accommodating discrete responses. The third avenue

is to extend the linear regression structure of MIR to the nonparametric or

semiparametric setting by changing λkW
(t)
k to g(λk,W

(t)
k ) for some unknown

smooth function g(·). The forth avenue is to develop a fast algorithm with

theoretical justification that can implement MIR when n or d is large, such

as the one-step estimate proposed by Gupta (2021). The fifth avenue is to

develop a criterion to obtain the optimal γ for EBIC. The last avenue is

to introduce a method for choosing the thresholds or cut-off points of the

weight matrices. We believe that these efforts would further increase the

application of the MIR model.

Supplementary Material

The Supplementary Material contains the conditions and proofs of the the-

orems and additional simulation settings and results.
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