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Abstract: Motivated by longitudinal imaging data possessing inherent spatial and temporal

correlation, we propose a novel procedure to estimate its mean function. Functional moving

average is applied to depict the dependence among temporally ordered images and flexible

bivariate splines over triangulations are utilized to handle the irregular domain of images

which is common in imaging studies. Both global and local asymptotic properties of the

bivariate spline estimator for mean function are established with simultaneous confidence

corridors (SCCs) as a theoretical byproduct. Under some mild conditions, the proposed

estimator and its accompanying SCCs are shown to be consistent and oracle efficient as if all

images were entirely observed without errors. The finite sample performance of the proposed

method through Monte Carlo simulation experiments strongly corroborates the asymptotic

theory. The proposed method is further illustrated by analyzing two sea water potential

temperature data sets.

Key words and phrases: Bivariate splines, Spatiotemporal, Imaging data, Oracle efficiency,
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Simultaneous confidence corridor

1. Introduction

Recent years have witnessed a surge in imaging data as digital technology advanced

considerably. Imaging data is generated by decomposing the image into many small

areas, called pixels, with a value to express its gray scale. Longitudinal imaging data,

which is collected through a series of repeated observations of the same subject over

some extended time frame, frequently appears in the fields of medicine, meteorology,

geography and environmental science, such as continuous observations of tomography

imaging or remote sensing images. The analysis of longitudinal imaging data provides

new opportunities to detect the dynamic change of one subject over time, but it is

always intricate due to the spatial correlation among pixels within a single image

and temporal correlation among sequentially ordered images.

Most commonly used method of analyzing longitudinal imaging data concen-

trates on linear regression models with correlated errors. George and Aban (2015)

proposed a linear model with a separable parametric spatiotemporal error structure.

Although they found information criteria was highly accurate at choosing spatial and

temporal parametric correlation functions, the risk of model misspecification and

poor performance in inference remained inevitable. George et al. (2016) described

how to use the above model in practice and applied it for longitudinal cardiac imag-
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ing study. They restricted that a handful successive images with a small number of

spatial locations were collected daily, monthly or even yearly in limited times, but

now longitudinal imaging data usually comes in the form of magnitude order greater

numbers of spatial (thousands of pixels) and temporal (multiple measures per day or

hour) observations. One interesting example is the continued recording of the surface

temperature of the Black sea. Hourly sea water potential temperature is recorded

on dense regular grids (see Figure 14(a)) every 1/12 degree both longitude and lat-

itude over 360 consecutive hours. This produces 360 sequentially ordered images,

each consisting of 6583 pixels, with 4 randomly selected images shown in Figure 15.

The ultrahigh dimension of the data poses great threat to unstructured correlation

matrices, making the traditional model lose its effect. Therefore, a practical, compu-

tationally efficient and theoretically reliable method is urgently called for to analyze

such large-scale longitudinal imaging data.

Functional data analysis provides a novel and powerful approach to dealing with

imaging data. Instead of imposing spatial structure directly, it views imaging data

as realizations of random fields, which naturally captures the spatial correlation

among pixels. French and Kokoszka (2020) developed a spatiotemporal sandwich

smoother based on radial basis functions and B-splines to fit large spatiotemporal

data sets. They involved time dimension in the smoother, which caused additional

computational complexity and failure in derivation of the global mean surface, and
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statistical inference could also not be conducted due to the lack of theory. Kokoszka

and Reimherr (2019) reviewed recent developments related to inference for functions

defined at spatial locations and considered time series of functions defined at irreg-

ularly distributed spatial points or on a grid, namely spatially indexed functional

time series. Different from their research object, what we focus on are temporally

indexed images, that is longitudinal imaging data with higher dimensions and more

complex structures.

From the perspective of functional data analysis, longitudinal imaging data con-

sists of a collection of n temporally ordered images {ηt(·)}nt=1 on a two-dimensional

bounded domain Ω, where Ω can be divided into several disjoint convex sets and the

t-th image ηt(·) is a continuous stochastic field equal in distribution to a standard

field η(·). However, the actual observed data is discrete values of a regular grid of

pixels from fields {ηt(·)}nt=1 plus random errors. Since most imaging data is recorded

by some automated instruments, we assume the pixel locations are dense regular

grids xij ∈ Ω, i = 1, . . . ,M , j = 1, . . . , Ni, which forms an M -row array with Ni

points in the i-th row, see Figure 14(a) and Figure 18(a). The similar data setting

was also considered in Yu et al. (2021). Let Yt,ij = Yt (xij) be the observation of the

t-th image at location xij, then the data set {(Yt,ij,xij)}, t = 1, . . . , n, i = 1, . . . ,M ,
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j = 1, . . . , Ni, can be modeled as

Yt,ij = ηt (xij) + σ (xij) εt,ij, (1.1)

in which εt,ij are iid random errors with mean 0 and variance 1 and σ2(·) is the

variance function of measurement errors.

In longitudinal imaging data analysis, a fundamental issue lies in the estimation

of mean function m (·), defined as m (·) = E{η(·)}. One challenge is that lots of

imaging data is collected over complicated domains even with gaps and holes (see

Figure 13), leading to the problem of “leakage”across complex boundary for some

traditional smoothing methods, such as tensor product smoothing, kernel smooth-

ing or wavelet smoothing. Bivariate splines on triangulations introduced in Lai and

Schumaker (2007) are effective tools to overcome the poor boundary estimation and

preserve important features (shape and smoothness) of imaging data. Any two-

dimensional geometric domain can be represented as a polygon which is decomposed

into triangles through triangulation. Bivariate splines are widely used due to com-

putational ease as well as convenient representation with flexible degrees and various

smoothness, see Lai and Wang (2013), Zhou and Pan (2014) and Ferraccioli et al.

(2021) for their applications in various statistical areas. Wang et al. (2020) proposed

a consistent mean function estimator of imaging data based on bivariate splines over
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triangulations. One serious limitation is that they restricted images {ηt(·)}nt=1 to be

iid copy, apparently not the case of longitudinal imaging data. To model the timely

ordered and dependent images, we embed the de-meaned stochastic fields ξt(·), de-

fined as ξt(·) = ηt(·)−m(·), into the functional moving average infinity or FMA(∞)

series {ξt(·)}∞t=1 as in Li and Yang (2022+). Precisely, ξt(·) satisfies the following

equation:

ξt (·) =
∞∑
t′=0

At′ζt−t′ (·) , t = 0,±1,±2, . . . (1.2)

in which the At′ ’s are bounded linear operators L2 (Ω) → L2 (Ω), playing the role

of scalar coefficients in classic MA(∞) and {ζt(·)}∞t=−∞ are orthonormal zero mean

stochastic fields, called strong functional white noises in Bosq (2000). It should be

noted that the classic MA(∞) is a broad category, which includes the widely used

causal ARMA(p, q), thus including AR(p) and MA(q) as a special case. Actually,

lots of stationary functional time series can be approximated by m-dependent series

in L2 sense.

Under the above dependence structure, we propose a bivariate spline estimator

for the mean function m (·). It is established in Theorem 2 that the bivariate spline

estimator is asymptotically equivalent to the infeasible “oracle” estimator obtained as

if all images were totally observed without measurement errors. This oracle efficiency

allows for the construction for asymptotically correct SCC of the mean function m (·)
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under some mild conditions. SCC serves as a vital tool for evaluating the variability

and testing global behavior of functions, see Cao et al. (2016), Cao et al. (2012), Choi

and Reimherr (2017), Gu et al. (2014), Gu and Yang (2015), Ma et al. (2012), Wang

et al. (2020) and Yu et al. (2021) for related theory and applications. Simulation

studies suggest that the proposed SCC is computationally efficient with the correct

coverage frequency for finite samples.

The rest of the paper is organized as follows. Section 2 describes the functional

moving average model and bivariate spline estimator for the mean function. Section

3 states main theoretical results on SCC constructed from bivariate spline estimator.

Procedures to implement the proposed SCC are given in Section 4 with details.

Section 5 presents the findings of extensive simulation studies. In Section 6, we

apply the proposed method to two hourly sea water potential temperature data sets.

All figures and tables in simulation and real data application, as well as technical

proofs are included in the Supplementary Material.

2. Model and Estimation Method

2.1 Functional moving average model

Denote the covariance function of η(·) as G(x,x′) = Cov {η(x), η (x′)}, x,x′ ∈

Ω. The identically distributed random fields {ηt(·)}nt=1 are decomposed as ηt(·) =

m(·) + ξt(·), where each ξt(x) can be viewed as a small-scale variation of x on the
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2.1 Functional moving average model

t-th image, and is assumed to be a strictly stationary L2 process with Eξt(x) = 0

and covariance G(x,x′) = Cov {ξt(x), ξt (x′)}, x,x′ ∈ Ω. Mercer’s lemma entails

the decomposition of its covariance function G(x,x′) =
∑∞

k=1 λkψk(x)ψk(x
′), where

{λk}∞k=1 are a series of decreasing positive eigenvalues and {ψk(·)}∞k=1 are correspond-

ing eigenfunctions, forming an orthogonal basis of L2(Ω), such that
∑∞

k=1 λk < ∞

and
∫
G(x,x′)ψk(x

′)dx′ = λkψk(x).

Then for any t ∈ Z, the zero-mean field ξt(x),x ∈ Ω, allows general Karhunen-

Loève representation ξt(x) =
∑∞

k=1 ξtkφk(x), in which the rescaled eigenfunctions

{φk(·)}∞k=1, called functional principle components (FPC), satisfy that φk =
√
λkψk

and
∫
{η(x) − m(x)}φk(x)dx = λξk for k ≥ 1. The random coefficients ξtk are

uncorrelated over k, with mean 0 and variance 1, referred to as FPC scores. It

is worthy to note that though the sequences {λk}∞k=1 and {φk(·)}∞k=1 do exist in

mathematics, they are unknown and unobservable in practice, with the detailed

estimating procedure given in Section 4.

To make the FMA(∞) model better fit the data structure, operators At′ are

assumed to be of diagonal form

At′

{
∞∑
k=1

ckφk(·)

}
=
∞∑
k=1

at′kckφk(·), at′k ∈ R, k = 1, 2, . . . , t′ = 0, 1, . . .

with arithmetically decaying MA coefficients |at′k| < Cat
′ρa for constants Ca > 0
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2.1 Functional moving average model

and ρa ∈ (−∞,−1), which is a rather loose requirement. The strong functional

white noises {ζt(·)}∞t=−∞ allows for its own Karhunen-Loève representation ζt (·) =∑∞
k=1 ζt,kφk(·), in which {ζt,k}∞,∞t=−∞,k=1 are uncorrelated random variables with mean

0 and variance 1. Together with (1.2), one has

ξt (·) =
∞∑
t′=0

At′

{
∞∑
k=1

ζt−t′,kφk(·)

}
=
∞∑
t′=0

∞∑
k=1

at′,kζt−t′,kφk(·)

=
∞∑
k=1

(
∞∑
t′=0

at′,kζt−t′,k

)
φk(·). (2.3)

Note that ξt(·) =
∑∞

k=1 ξtkφk(·) absolutely almost surely by Karhunen-Loève expan-

sion, it follows that the FPC score ξtk =
∑∞

t′=0 at′kζt−t′,k almost surely. To ensure

that ξtk has variance 1, we assume
∑∞

t=0 a
2
tk ≡ 1, k = 1, 2, . . . , reasonably analogous

to what is assumed in numerical MA(∞).

In summary, for 1 ≤ t ≤ n, 1 ≤ i ≤ M, 1 ≤ j ≤ Ni, raw data {(Yt,ij,xij)}of

FMA(∞) can be written as

Yt,ij =m (xij) + ξt (xij) + σ (xij) εt,ij

=m (xij) +
∞∑
k=1

ξtkφk (xij) + σ (xij) εt,ij, (2.4)

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing) 



2.2 Bivariate spline estimator

where for 1 ≤ t ≤ n, k = 1, 2, . . .

ξt (·) =
∞∑
k=1

ξtkφk (·) , ξtk =
∞∑
t′=0

at′kζt−t′,k a.s. (2.5)

2.2 Bivariate spline estimator

Had the n images {ηt(·)}nt=1 been entirely observed over Ω, an intuitive estimator for

the mean function m (·) in (2.4) is the sample mean

m (x) = n−1

n∑
t=1

ηt(x), x ∈ Ω, (2.6)

which is infeasible due to the finite pixel grids and measurement errors. However,

it does suggest us to replace the unobservable ηt (·) with some suitable estimator

η̂t (·) and get the plug-in estimator m̂(·) = n−1
∑n

t=1 η̂t (·). Bivariate splines that

are piecewise polynomial functions over a 2D triangulated domain are employed to

approximate each image ηt (·). In the following, we briefly introduce some elementary

knowledge about triangulation techniques and bivariate splines.

Triangulation is a powerful weapon for processing data distributed over difficult

domains with complex boundaries and/or interior holes. Denote by T a triangle

which is a convex hull of three points not located in one line. A triangulation of Ω

is a collection of H triangles 4 = {T1, . . . , TH} with Ω =
⋃H
h=1 Th provided that any
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2.2 Bivariate spline estimator

nonempty intersection between a pair of triangles in 4 is either a shared vertex or

a shared edge. Given a triangle T ∈ 4, let |T | be its longest edge length, and ρT be

the radius of the largest disk inscribed in T . The shape parameter of T is defined as

the ratio πT = |T |/ρT . When πT is small, the triangles are relatively uniform in the

sense that all angles of triangles in 4 are relatively the same. Denote the size of 4

by |4| = max{|T |, T ∈ 4}, namely the length of the longest edge of all triangles in

4.

For any triangle T ∈ 4 and any fixed point x ∈ Ω, let b1, b2 and b3 be the

barycentric coordinates of x relative to T . The Bernstein basis polynomials of degree

d relative to triangle T are defined as BT,d
ijk (x) = (i!j!k!)−1d!bi1b

j
2b
k
3, i + j + k = d

and used to represent the bivariate splines. For an integer r ≥ 0, let Cr(Ω) be

the collection of all r-th continuously differentiable functions over Ω. Given 4, let

Srd (4) = {s ∈ Cr(Ω), s|T ∈ Pd(T ), T ∈ 4} be a spline space of degree d and

smoothness r over 4, where s|T is the polynomial piece of spline s restricted on

triangle T , and Pd is the space of all polynomials of degree less than or equal to

d. Bivariate splines on the triangulation T are piecewise polynomials defined on T

satisfying additional smoothness conditions that the derivatives up to certain degree

are continuous.

Let {B`}p`=1 be the set of degree-d bivariate Bernstein basis polynomials for Srd(4)

and the vector B (xij) = {B1 (xij) , . . . , Bp (xij)}>. Denote by X the evaluation
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2.2 Bivariate spline estimator

matrix of the Bernstein polynomial basis, then X can be written as

X = {B (x11) , . . . ,B (x1N1) , . . . ,B (xMNM
)}> =

[
{B(xij)}M,Ni

i=1,j=1

]>
(2.7)

The t-th unknown random field ηt (x) can be estimated via bivariate splines by

ηt (x) = B> (x)γt, where γ>t = (γt1, . . . , γtp) is the spline coefficient vector. It is

shown that the smoothness constraint in the derivative can be expressed by a linear

equation system on the coefficient vector γt: Hγt = 0, where H is a (p − p0) × p

matrix determined by the smoothness constraints, p0 is the dimension of Pd(T ) and

p is the dimension of Srd(4). For a more detailed description of H, please refer

to Section B.2 of the Supplementary Material of Yu et al. (2020). Thus ηt (x) is

obtained by the solving the following least square problem

η̂t(x) = arg min
g(·)∈Sr

d(4)

M∑
i=1

Ni∑
j=1

{Yt,ij − g (xij)}2 , (2.8)

subject to Hγt = 0.

To remove the constraint, we consider the QR decomposition of H>: H> =

QR = (Q1Q2)
(
R1

R2

)
, where Q is orthogonal and R is upper triangular, the submatrix

Q1 is the first m columns of Q, where m is the rank of H, and R2 is a matrix of

zeros. The constraint Hγt = 0 can be ensured by reparametrizing γt = Q2βt for

some βt, then the minimization problem is converted to a conventional unrestricted
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problem:
M∑
i=1

Ni∑
j=1

{Yt,ij −B (xij) Q2βt}2 . (2.9)

Denote B̃(x) = Q>2 B(x), X̃ = XQ2 and Yt =
(
{Yt,ij}M,Ni

i=1,j=1

)>
. Applying

elementary algebra, the solution is given by β̂t =
(
X̃>X̃

)−1

X̃>Yt, γ̂t = Q2β̂t.

Thus, the estimator of ηt(·) is η̂t(x) = B̃(x)>
(
X̃>X̃

)−1

X̃>Yt and one can estimate

the unknown mean function m (·) as

m̂(·) = n−1

n∑
t=1

η̂t (·) . (2.10)

3. Main results

3.1 Technical assumptions

Suppose that Ω is a bounded domain in R2, for any function g over Ω, denote by

‖g‖∞,Ω = supx∈Ω |g(x)|. For d ≥ 0, the associated Sobolev space is defined by

functions with

W d,∞ (Ω) = {g : |g|k,∞,Ω <∞, 0 ≤ k ≤ d} ,

where |g|k,∞,Ω = maxν+µ=k ‖Dν
xD

µ
y g‖∞,Ω and Dν

xg represents the ν-th partial deriva-

tive of g with respect to variable x. Also denote a class of Lipschitz continuous

functions by Lip (Ω, L) = {g(x) : |g(x)− g(x′)| ≤ L |x− x′| ,∀x,x′ ∈ Ω, L > 0}.
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3.1 Technical assumptions

To study the asymptotic properties of the bivariate spline estimator m̂ (·), we

need some technical assumptions.

(A1) The mean function m(·) ∈ Wd+1,∞ (Ω) for some integer d ≥ 1.

(A2) The standard deviation function of the measurement errors σ(·) ∈ Lip (Ω, L)

for some L > 0, and there exist some positive constants Mσ, cG, CG, such that

supx∈Ω |σ(x)| ≤Mσ, cG ≤ G(x,x) ≤ CG,x ∈ Ω.

(A3) There exists a constant θ > 0, such that as N → ∞, n = n (N) → ∞,

n = O
(
N θ
)
.

(A4) For k ≥ 1, φk(·) ∈ Wd+1,∞ (Ω) with
∑∞

k=1 |φk|d+1,Ω,∞ < +∞ and for some inte-

ger d ≥ 1; for increasing positive integers {kn}∞n=1, as n→∞,
∑∞

kn+1 ‖φk‖∞,Ω =

O(n−1/2),
∑kn

k=1 |φk|d+1,Ω,∞ |4|
d+1 = O(1) and kn = O (nα) for some α > 0.

(A5) There are constants C0, C1, C2 ∈ (0,+∞), γ1, γ2 ∈ (1,+∞), β1 ∈ (0, 1/2), β2 ∈

(0, ω), In � nι with max{(−α− 3)/(2ρa + 1),−(2r1 − 2β1r1 + 4 + α)/r1ρa} <

ι < 1, where an � bn means an and bn are asymptotically equivalent, and iid

N (0, 1) variables {Ztk,ζ}n,knt=−In+1,k=1, {Zt,ij,ε}n,M,Ni

t=1,i=1,j=1 such that

P
{

max
1≤k≤kn

max
−In+1≤τ≤n

∣∣∑τ
t=−In+1 ζtk −

∑τ
t=−In+1 Ztk,ζ

∣∣ > C0n
β1

}
< C1n

−γ1 ,

P
{

max
1≤t≤n

max
1≤τ≤N

∣∣∑τ
k=1 εt,f1(k)f2(k) −

∑τ
k=1 Zt,f1(k)f2(k),ε

∣∣ > Nβ2

}
< C2N

−γ2 ,

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing) 



3.1 Technical assumptions

where f1, f2 are functions Z+ → Z+ with the following property

∥∥xf1(x)f2(x) − xf1(y)f2(y)

∥∥
2

= O(N−1/2) (∗)

where x, y ∈ {1, . . . , N}, |x − y| ≤ 1, f1(1) = 1, f1(N) = M, f2(1) = 1 or N1

and f2(N) = 1 or NM .

(A5’) The iid variables {εt,ij}n,M,Ni

t=1,i=1,j=1 are independent of {ζtk}n,∞t=1,k=1. The number

of distinct distributions for FPC score white noises {ζtk}n,∞t=1,k=1 is finite. There

exist constants r1 > 4 + 2α, r2 > (2 + θ)/ω such that for 1 ≤ t ≤ n, 1 ≤ i ≤

M, 1 ≤ j ≤ Ni, 1 ≤ k ≤ ∞, Eξr1tk + Eεr2t,ij <∞.

(A6) The triangulations are π-quasi-uniform, that is, there exists a positive constant

π such that (minT∈4 ρT )−1 |4| ≤ π. The smoothness parameter r satisfies

d ≥ 3r + 2 for d in Assumption (A1). The size of triangulations |4| satisfies

|4|−1 = NγdN for some γ > 0, with dN + d−1
N = O

(
logϑN

)
for some ϑ > 0

as N → ∞, and for d in Assumption (A1), θ in Assumption (A3), β2 in

Assumption (A5) and r1 in Assumption (A5’)

θ

d+ 1

(
2

r1

+
1

2

)
< γ < 1/2− θ/2− β2.

A few comments on the regularity conditions are in order. Assumption (A1)
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3.1 Technical assumptions

is typical for the bivariate spline smoother in nonparametric estimation literature,

which controls the size of the bias of the estimator for m(·) and can be relaxed

by only requiring m(·) ∈ C0(Ω) if the imaging data has sharp edges, see Wang

et al. (2020). Assumption (A2) ensures the variance function should be uniformly

bounded. Assumption (A3) requires that sample size n grows not faster than power

θ of the number N of pixels per image. The collective bounded smoothness of the

principal components is provided in Assumption (A4). Assumption (A5) presents a

strong approximation of estimation errors and the strong white noise {ζt(·)}∞t=−∞,

which can be guaranteed by a more elementary Assumption (A5’). Assumption

(A6) suggests using more uniform triangulations with smaller shape parameters and

specifies the size of triangulations.

Remark 1. The assumptions above are quite mild and can be easily satisfied in

many practical situations. One simple and reasonable setup for above parameters d,

θ, ω, γ and dN is as follows: d = 5, θ = 1/4, ω = 1/6, γ = 3/16 and dN = log logN .

These constants are used as defaults in implementation, see Section 4.

Remark 2. It is worth noticing that the pixel locations {xij}M,Ni

i=1,j=1 can be relaxed to

vary over subjects (namely time) as {xt,ij}n,Mt,Nti

t=1,i=1,j=1, as long as the dense condition

(∗) in Assumption (A4) is replaced by min1≤t≤n
∥∥xt,ft,1(x)ft,2(x) − xt,ft,1(y)ft,2(y)

∥∥
2

=

O(N−1/2), with corresponding functions ft,1, ft,2, t = 1, . . . , n. In this scenario, the

main theoretical results, including Theorem 1 and Theorem 2, still hold since the or-
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3.1 Technical assumptions

der of smoothing bias does not change. But in implementation, the evaluation matrix

X would vary over subjects, making it hard to compute the spectral decomposition

of Gϕ(x,x′) defined in 3.11 since Gϕ(x,x′) can not be simplified as (4.16). Moreover,

the triangulation selection should be conducted over each image under the setting

of varying pixel locations, causing additional heavy computation burden. Therefore,

we assume the longitudinal imaging data to be collected at the same locations over

time without loss of generality.

Remark 3. From Assumptions (A3) and (A6), it is straightforward that the upper

bound of θ is θ < (d+ 2)/(3 + d) < 1, which implies the number of pixels N in each

image should not be much smaller than the sample size n. This is quite different

from the sparse setting considered in Zheng et al. (2014), whose convergence rate

is (nh)−1/2 with the bandwidth h → 0, slower than n−1/2. Under our dense setting

where N tends to infinity, we first smooth over each image and then take the aver-

age to estimate the mean function. To control the error brought by smoothing and

maintain the convergence rate n−1/2, we impose additional requirements on other pa-

rameters, which guarantees that smoothing over each image has a negligible impact.

However, under the sparse functional data setting where the number of observations

in each trajectory has finite expectation, one needs to pool all observations together

to estimate its mean function, leading to totally different asymptotic results.
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3.2 Asymptotic properties of m̃(x) and m̂(x)

3.2 Asymptotic properties of m̃(x) and m̂(x)

Denote

ϕ (x) =

∑∞
k=1

∑∞
t=1 atkφk (x)Uk

Var1/2 {
∑∞

k=1

∑∞
t=1 atkφk (x)Uk}

, x ∈ Ω,

where {Uk}∞k=1 are iid N(0, 1) random variables. Then ϕ (x) is a Gaussian process

with Eϕ (x) ≡ 0, Eϕ2 (x) ≡ 1, x ∈ Ω and covariance function

Eϕ (x)ϕ (x′) = Gϕ (x,x′) {Gϕ (x,x)Gϕ (x′,x′)}−1/2
, x,x′ ∈ Ω,

where

Gϕ (x,x′) =
∞∑
k=1

φk(x)φk(x
′)

{
1 + 2

∞∑
t=0

∞∑
t′=t+1

atkat′k

}
, x,x′ ∈ Ω. (3.11)

For any α ∈ (0, 1), define z1−α/2 as the 100 (1− α/2)-th percentile of the standard

normal distribution. Denote by Q1−α the 100 (1− α)-th percentile of the absolute

maxima distribution of ϕ (x) over Ω, i.e.,

P

[
sup
x∈Ω
|ϕ (x)| ≤ Q1−α

]
= 1− α. (3.12)

The following theorem presents the local and global asymptotic properties of the

infeasible estimator m(·) in (2.6).
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3.2 Asymptotic properties of m̃(x) and m̂(x)

Theorem 1. Under Assumptions (A1), (A3)-(A5), for α ∈ (0, 1), as n → ∞, the

infeasible estimator m(·) converges at the
√
n rate to m(·) with asymptotic covariance

function Gϕ (x,x′), and thus

P
{

sup
x∈Ω

n1/2 |m(x)−m(x)|Gϕ (x,x)−1/2 ≤ Q1−α

}
→ 1− α,

P
{
n1/2 |m(x)−m(x)|Gϕ (x,x)−1/2 ≤ z1−α/2

}
→ 1− α, x ∈ Ω.

Remark 4. It is worth noting that the convergence rate n−1/2 in Theorem 1 is

optimal. Cai and Yuan (2011) considered the smoothing spline estimator of the p-

times differentiable mean function when ηt(x) is an univariate process, and showed

that its minmax optimal rate is of the order N−p + n−1/2 in L2-norm. Bosq (2000)

derived that the convergence rate of Central Limit Theorem in functional time series

is n−1/2. Under our setting of high sampling frequency, the sample size n is controlled

by the number of pixels N due to Assumptions (A3) and (A6), namely n� N , thus

the optimal rate remains n−1/2 and does not depend on N . That is also the reason

why the uniform converge rate is the same as point-wise convergence rate.

The following theorem shows that the difference between the bivariate-spline

estimator m̂ (·) in (2.10) and the infeasible estimator m (·) is uniformly bounded at

the Op
(
n−1/2

)
rate, which enables one to construct SCC based on m̂ (·).

Theorem 2. Under Assumptions (A1)–(A6), the bivariate spline estimator m̂ (·) is
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3.3 Extension to nonlinear process

oracally efficient, i.e., it is asymptotically equivalent to m (·) up to order Op
(
n−1/2

)

sup
x∈Ω

n1/2 |m(x)− m̂(x)| = Op (1) .

Applying the above two theorems, we obtain both pointwise confidence interval

and simultaneous confidence corridor for m (·).

Corollary 1. Under Assumptions (A1)-(A6), for any α ∈ (0, 1), as n → ∞, an

asymptotic 100 (1− α) % correct confidence corridor for m(·) is

m̂(x)±Gϕ (x,x)1/2Q1−αn
−1/2, x ∈ Ω, (3.13)

and an asymptotic 100 (1− α) % pointwise confidence interval for m(x) is

m̂(x)±Gϕ (x,x)1/2 z1−α/2n
−1/2, x ∈ Ω.

3.3 Extension to nonlinear process

Noting that the classic MA(∞) is a rather broad category, the FMA(∞) in (2.5) can

approximate a large class of stationary processes, but restricted to linear process.

As one referee pointed out, it is worth extending FMA(∞) to nonlinear functional

processes. In what follows we derive the theoretical extension, but in the rest of our
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3.3 Extension to nonlinear process

paper, we still focus on FMA(∞) for its simple representation and straightforward

theoretical properties.

Rewrite (2.5) as

ξt (·) =
∞∑
k=1

ξtkφk (·) , ξtk = Fk(ζt,k, ζt−1,k, . . . ) a.s. (3.14)

where Fk, k ∈ N are measurable function from RZ to R. It is easy to see that ξt (·)

in (3.14) is a nonlinear process with flexible structures. Following Wu (2005), the

physical dependence measure is defined as

∆t,k,r =
∥∥ξtk − ξtk,{0}∥∥r ,

where ξtk,{0} is identical to ξtk except replacing ζ0,k by its i.i.d. copy in (3.14). The

next theorem states the asymptotic properties under nonlinear process setting.

Theorem 3. Under Assumptions (A1)-(A6) and (A5’), if α in Assumption (A4)

satisfies α < 1/4 and supk∈N ∆t,k,r1 = ρta, then the statements of Theorem 1 and 2

still hold under the nonlinear functional process setting as (3.14), with corresponding

limiting covariance function

G∗ϕ(x,x′) =
∞∑
k=1

λ∗kφk(x)φk(x
′),
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where λ∗k = limn→∞ var (
∑n

t=1 ξtk) /n, k ∈ N is the long run variance of ξtk.

4. Implementation

4.1 Triangulation selection

Triangulation is crucial since bivariate spline fitting can be sensitive to the triangula-

tion selection. Several approaches, such as maxmin-angle triangulations or Delaunay

triangulations, are recommend for selecting the triangulation in Lai and Schumaker

(2007), but there is no optimal method of triangulation in the literature. As Yu et

al. (2020) pointed out, enough triangles are necessary to present domain features,

but after reaching the required minimum number of triangles, further increase of the

number of triangles usually makes little difference on the fitting process, even leading

to the existence of empty triangles which do not contain any pixel. Thus we tend to

choose a moderate number and use the R package Triangulation mentioned in Wang

et al. (2020) to build the triangulated meshes.

Assumption (A6) in Section 3 states that the size of triangulations |4| needs to

satisfy that |4|−1 = NγdN for some γ > 0, with dN + d−1
N = O

(
logϑN

)
for some

ϑ > 0. Most widely used triangulation methods can guarantee this condition. We

recommend that |4|−1 = cN3/16 log logN , where c is a tuning constant. The integer

parameter K in the R package Triangulation controls the fineness of the triangulation

and subsequent triangulation. The parameter K can also be used to measure the size
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4.2 Covariance estimation

of triangulations since there exists that K �
[
|4|−1], where [a] denotes the integer

part of a, with |4| =
√

2/K under the unit square domain as a special case. As

K increases, the triangulation fineness increases. We suggest selecting K from the

integers in
[
0.1N3/16 log logN,N3/16 log logN

]
. Among the triangulations indexed

by K, we choose the one with the minimal MISE of the estimator m̂(·) in (2.10),

which is defined as

MISE(K) =

∫
Ω

E {m(x)− m̂(x)}2 dx

Since the explicit form of MISE(K) is tedious (see Ma (2014)), we propose to compute

it conveniently through discretization and summation, that is

MISE(K) =
1

NL

M∑
i=1

Ni∑
j=1

L∑
l=1

{m(xij)− m̂l(xij)}2 ,

where L is the number of pre-simulations with default value 20. Figure 1 to 3 show

triangulations on three different domains (square, regular 12 polygon and regular 12

polygon with a square hole) with K = 3, 4, 5.

4.2 Covariance estimation

Denote ξ̂t (x) = η̂t (x) − m̂ (x), t = 1, . . . , n, x ∈ Ω. To estimate the covariance

function Gϕ (x,x′), one divides
{
ξ̂t (·)

}n
t=1

into l groups in order and each group has
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4.2 Covariance estimation

B = [nm] samples for some constants m > 0 with l = [n/B]. Noting that Ĝϕ (·, ·) is

the limit of the covariance function of the process
√
n {m(·)− m̂(·)}, we use m̂ (x) to

mimic m (x) and
√
B δ̂j (x) to mimic the points from the process

√
n {m(·)− m̂(·)},

where

δ̂j (x) = B−1

Bj∑
k=B(j−1)+1

ξ̂k (x) , j = 1, . . . , l, x ∈ Ω.

The estimator Ĝϕ (x,x′) of Gϕ (x,x′) is defined as

Ĝϕ (x,x′) =
B

l

l∑
j=1

{
δ̂j (x) δ̂j (x′)− δ̂ (x) δ̂ (x′)

}
, x,x′ ∈ Ω, (4.15)

where δ̂ (x) = l−1
∑l

j=1 δ̂j (x) ,x ∈ Ω. The next theorem characterizes the uniform

weak convergence of Ĝϕ (x,x′).

Theorem 4. Under Assumptions (A1)- (A6), for constant m that satisfies −(1 +

2/r1)/(ρa+1/2) < m < min{(d+1)r1/θ−4/r1, (1/2−β2−γ)/θ−2/r2}, the estimator

Ĝϕ (x,x′) of Gϕ (x,x′) is uniformly consistent in probability, i.e.

sup
x,x′∈Ω

∣∣∣Ĝϕ (x,x′)−Gϕ (x,x′)
∣∣∣ = Op (1) .

Throughout this section, we choose B =
[
n1/5 log log n

]
.
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4.3 Estimating the percentile

4.3 Estimating the percentile

Recalling that the solution of (2.9) is η̂t(x) = B̃(x)>β̂t, let β̂ = n−1
∑n

t=1 β̂t, then the

bivariate spline estimator m̂(x) = B̃(x)>β̂. Denote β̂δj = B−1
∑Bj

k=B(j−1)+1

(
β̂k − β̂

)
and the matrix ĝϕ = l−1

∑l
j=1

(
β̂δj β̂

T
δj

)
−
(
l−1
∑l

j=1 β̂δj

)(
l−1
∑l

j=1 β̂δj

)T
. The co-

variance function estimator Ĝϕ(x,x′) allows the bivariate spline expansion as

Ĝϕ(x,x′) = B̃(x)>ĝϕB̃(x′) (4.16)

For k ≥ 1, we consider the following bivariate spline approximation for the eigen-

function ψ̂k,ϕ(x) of Ĝϕ(x,x′): ψ̂k,ϕ(x) = B̃(x)>γ̂k, where γ̂k are coefficients satisfy-

ing that N−1γ̂>k X̃>X̃γ̂k = 1. The estimates of eigenvalues λk,ϕ and corresponding

eigenfunctions ψk,ϕ can be obtained by solving the following eigenequation,

∫
Ω

Ĝϕ(x,x′)ψ̂k,ϕ(x′)dx′ = λ̂k,ϕψ̂k,ϕ(x). (4.17)

The next corollary can be derived from Theorem 4 directly.

Corollary 2. Under the conditions in Theorem 4, the corresponding eigen-pairs{
λ̂k,ϕ, ψ̂k,ϕ(x)

}
, k ∈ N, in (4.17) have uniform consistency in probability, i.e. for
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4.3 Estimating the percentile

k ∈ N,

∣∣∣λ̂k,ϕ − λk,ϕ∣∣∣+ sup
x∈Ω

∣∣∣ψ̂k,ϕ(x)− ψk,ϕ(x)
∣∣∣ = Op (1) .

Note that the integration in eigenequation (4.17) can be approximated by discrete

summation, and plugging the covariance function estimator (4.16) leads to

N−1ĝϕX̃
>X̃γ̂k = λ̂k,ϕγ̂k. (4.18)

To solve the above equation subject to N−1γ̂>k X̃>X̃γ̂k = 1, we utilize the Cholesky

decomposition: N−1X̃>X̃ = LX̃L
>
X̃

. Therefore solving (4.18) is equivalent to solve

L>
X̃
ĝϕLX̃L

>
X̃
γ̂k = λ̂k,ϕL

>
X̃
γ̂k, that is λ̂k,ϕ and L>

X̃
γ̂k are the eigenvalues and unit

eigenvectors of L>
X̃
ĝϕLX̃. Thus γ̂k can be obtained by multiplying

(
L>
X̃

)−1

immedi-

ately after the unit eigenvectors of L>
X̃
ĝϕLX̃. After that, ψ̂k,ϕ(x) are obtained and

φ̂k,ϕ(x) = λ̂
1/2
k,ϕψ̂k,ϕ(x). Next the truncated number κ of eigenfunctions is chosen by

the following efficient criteria, i.e. κ = arg min
1≤v≤T

{
v∑
k=1

λ̂k,ϕ /
T∑
k=1

λ̂k,ϕ > 0.95

}
, where{

λ̂k,ϕ

}T
k=1

are the first T estimated positive eigenvalues.

One then simulates ζ̂b(x) = Ĝϕ(x,x′)−
1
2

∑κ
k=1 Zk,bφ̂k(x), where {Zk,b}κ,bMk=1,b=1 are

iid standard normal variables, and bM is a preset large integer with default 1000.

One takes the maximal absolute value for each copy of ζ̂b(x) and uses the empirical
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quantile Q̂1−α of these maximum values as an estimate of Q1−α.

Finally, the SCC for the mean function is computed as

m̂(x)± n−1/2Ĝϕ (x,x)1/2 Q̂1−α, x ∈ Ω. (4.19)

5. Simulation Studies

In this section, we carry out various simulations to illustrate the finite sample per-

formance of the proposed method. The data is generated from the following model:

Yt,ij = m (xij) +
7∑

k=1

ξtkφk (xij) + σ (xij) εt,ij, t = 1, . . . , n, (5.20)

where xij = (sij, tij) ∈ Ω ⊂ [0, 1]2, i = 1, . . . ,M , j = 1, . . . , Ni and
∑M

i=1Ni = N .

We consider three different shapes of the domain Ω: square, regular 12 polygon,

which can be viewed as an approximation of a circle, and regular 12 polygon with a

square hole. The mean function m(·) and eigenfunctions φk(·) are set as follows:

m(s, t) = 6 sin (s+ t) e−2(s+t) + 3s sin t,

ϕ1 (s, t) = sin (πt/2) sin (3πs/2) ,

ϕ2 (s, t) = sin (3πt/2) sin (πs/2) ,

ϕ3 (s, t) = sin (3πt/2) sin (3πs/2) ,
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ϕ4 (s, t) = sin (5πt/2) sin (3πs/2) ,

ϕ5 (s, t) = sin (3πt/2) sin (5πs/2) ,

ϕ6 (s, t) = sin (5πt/2) sin (5πs/2) ,

ϕ7 (s, t) = sin (5πt/2) sin (7πs/2) ,

ϕk (s, t) = 0, k ≥ 8.

To guarantee the orthogonality of eigenfunctions, one can use Schmidt orthogonal-

ization and get ϕ∗k (s, t), k = 1, 2, . . . It is obvious that ϕ∗k (s, t) = ϕk (s, t) in the

square domain case, while ϕ∗k(s, t) is a linear combination of {ϕk (s, t)}∞k=1 in other

situations. Then let φk(s, t) =
√
λkϕ

∗
k(s, t) with λk = 2−(k−1)/2 and FPC scores

{ξtk}n,7t=1,k=1 are generated from (2.5), where {ζtk}n,7t=−5,k=1 are iid N(0, 1) variables

and a0k = 0.8, a1k = a2k = 0.4, a3k = a4k = a5k = a6k = −0.1, atk = 0 for t ≥ 2,

k = 1, . . . , 7.

We generate the homoscedastic measurement errors σ(x) = 0.1 and heteroscedas-

tic measurement errors σ(x) = 0.1 (5− exp(−(s+ t))) / (5 + exp (− (s+ t))). The

errors {εt,ij}n,M,Ni

t=1,i=1,j=1 are iid with three different distributions: normal, uniform and

Laplace distribution. The number of pixels N is 10000 and 20000 respectively, while

the number of images n is taken to be
[
N1/4 logN(log logN)2

]
.

Throughout this section, the mean function is estimated by bivariate splines in

space Srd (4) with d = 5 and r = 1, which can approach the full approximation
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power asymptotically, see Lai and Schumaker (2007). Tables 1 and 2 display the

empirical coverage rate, namely the percentage out of the 500 replications of the

true mean function m (·) being covered by the bivariate spline SCCs (4.19) at the N

points {xij}M,Ni

i=1,j=1. It is shown that in both scenarios, the coverage rate of the SCC

becomes closer to the nominal confidence level as the sample size increases, which

reveals a positive confirmation of the asymptotic theory.

To visualize the SCCs for the mean function, Figure 4 to 12 show the estimated

mean functions and their 95% SCCs for the true mean function m(·) with σ (x) = 0.1,

εt,ij ∼ N(0, 1) and N = 10000, 20000, 40000 respectively on three different domains.

As expected, when N increases, the SCC becomes narrower and the bivariate spline

estimators are closer to the true mean function. In all panels, the true mean function

is entirely covered by upper and lower corridors.

6. Real Data Analysis

In this section, we apply the proposed SCCs to two sea water potential temperature

data sets oberseved on typically complicate domain. Sea water potential temperature

serves as one of the most important factors in marine hydrological conditions, which

is often used as a principal indicator for studying the properties and the movement

of water masses. Investigating the temporal and spatial distribution and changing

laws of sea temperature is of great significance for marine fishing, aquaculture, and
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6.1 Black Sea

marine operations.

The data sets used in our analysis are from the CMEMS global analysis and fore-

cast product, which is available at https://resources.marine.copernicus.eu. CMEMS

collects the rough data, such as 3D potential temperature, salinity and currents,

bottom potential temperature, or mixed layer thickness, and then transform it by

some professional algorithm. All data is recorded globally on a standard grid at 1/12

degree (approximately 8km) and 50 standard levels.

6.1 Black Sea

The Black Sea is a marginal sea of the Atlantic Ocean lying between Europe and Asia,

covering an area from 26.8◦E to 42.2◦E and 40.5◦N to 47.6◦N, see its equirectangular

projection map in Figure 13. Hourly sea surface (at depth 0.494m) water potential

temperature is recorded on standard grids every 1/12 degree both longitude and

latitude from 00:30 on December 9, 2020, to 00:30 on December 24, 2020. The

black dots in Figure 14(a) show the observed data locations. Each hourly observed

temperature data of the Black Sea can be naturally regraded as a image. This results

in longitudinal imaging data with n = 360 temporally ordered images and N = 6583

pixels in each image.

The mean function reflects the overall trend of sea water potential temperature

data, and also serves as a preliminary step for further data analysis. We use bivariate
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6.2 Madagascar surrounding sea

splines with smooth parameter r = 1 and d = 5 for the estimation of mean function.

Figure 14(b) presents the triangulation of the Black Sea domain, which contains

39 triangles with 35 vertices. The estimated mean function and its corresponding

95% SCC computed by (4.19) are displayed in Figure 16 and 17 respectively. It is

shown in Figure 16 that the average sea surface water temperature decreases from

low latitude to high latitude, which corroborates the classic oceanographic theory.

6.2 Madagascar surrounding sea

Madagascar is an island country in the Indian Ocean and off the coast of East Africa.

We investigate the potential temperature of the sea around Madagascar, ranging from

41.0◦E to 55.0◦E and 11.0◦S to 30.0◦S. Similar to the previous case, hourly potential

temperature is measured on the standard grids every 1/12 degree, see Figure 18(a)

for pixel locations. It is clear the domain of Madagascar surrounding sea is more

complicated due to the existence of a hole (Madagascar island). We focus on the

data from 00:30 on December 9, 2020, to 00:30 on January 24, 2021. Hence, there

are n = 840 timely ordered images with N = 26151 pixels per image.

We also utilize bivariate splines with smooth parameter r = 1 and d = 5 to

approximate its mean function. Triangulation on the Madagascar surrounding sea

domain is shown in Figure 18(b), with 33 triangles and 32 vertices. Figure 19 and 20

present the estimated mean function and its corresponding 95% SCC computed by
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(4.19). We can see from Figure 19 that there is always higher sea surface temperature

near land. This strongly demonstrates that our method is widely applicable and

capable of handling the complex image domain even with a hole.

7. Concluding Remarks

Our paper investigates longitudinal imaging data over complicated domains, referring

to ordered images with numerous pixels collected at a high frequency over a time

span. We propose an asymptotically correct and computationally efficient bivariate

spline estimator for its mean function. Both global and local asymptotic properties

of the bivariate estimator are investigated, with SCCs to make inference on the true

mean function. To our best knowledge, this is the first piece of work in large-scale

longitudinal imaging data, which yields attractive inference results, and at meanwhile

is free from ultra high dimension and model misspecification. There is no doubt

that our method enjoys a wide range of application to imaging data in geography,

oceanography and biomedical studies.

Some issues still warrant further investigation. The data in Section 6 is con-

sidered to come from a horizontal plane, which ignores the curvature of the earth’s

surface. It may be more accurate to assume the data collected on a sphere. Spher-

ical splines introduced in Lai and Schumaker (2007) could be suitable to better

approximate the aforementioned 3D imaging data. However, it is not an easy task
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because of the elusive theory and heavy computing burden of high-resolution 3D

images compared to the 2D ones. In addition, it makes sense to extend the proposed

methodology to functional regression models, which has been a cutting-edge research

area in recent years. How to construct SCCs of the functional coefficients in such

models is also challenging due to the deeper asymptotic theory.
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