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Abstract: When studying the relationship between the order of a set of compo-

nents and a measured response in an order-of-addition experiment, the number

of components may exceed the number of available positions. In this case there

is an added layer of complexity in which the experimenter is tasked with locat-

ing both the best combination of components and its corresponding best order.

Akin to the standard order-of-addition setup, the number of possible sequences

grows quickly with the number of components, rendering a brute force approach

unfeasible. This necessitates the development of parsimonious designs for these

order-of-addition screening experiments. We present a framework for construct-

ing optimal and near-optimal screening designs under adapted versions of two

prominent order-of-addition models. We apply our order-of-addition screening

designs to job scheduling problems with job rejection penalties in the context of

both a single-shot experiment and an active learning framework for sequential

experimentation. The proposed designs not only offer precise effect estimation

and accurate predictions, but also facilitate quick convergence to the optimal

ordering in sequential experiments.

Key words and phrases: Active learning, experimental design, job scheduling,
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optimal design, orthogonal array, screening experiment.

1. Introduction

In many physical and computer experiments, the order in which compo-

nents are added to a mixture or steps are performed in a process can have

a strong relationship with the response. However, as the number of compo-

nents increases, the sample space suffers from a combinatorial explosion and

performing all permutations becomes impossible. Accordingly, our goal is

to design an order-of-addition experiment comprised of an informative and

economical subset of all permutations that provides for robust estimation

of model parameters.

Order-of-addition experiments have applications to many physical and

simulated processes in a variety of fields from medical and food science to

mechanics and engineering. Lin and Peng (2019) gives a review of these

application areas, and Stokes and Xu (2022) provides many references that

demonstrate the prevalence of order-of-addition effects in the context of

drug combination problems. Another area in which order-of-addition prob-

lems are common is in the field of job sequencing and operations research

through the flowshop permutation and traveling salesman problems (Xiao

and Xu, 2021). However, despite the prevalence of these problems in many
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areas of research and application, rigorous statistical methods for designing

such experiments are still in the early stages, especially for non-standard

situations. This paper seeks to fill some of these gaps.

The study of statistical modeling for order-of-addition experiments can

be broken into two primary groups. First is the class of relative-position

effects models. Models in this class make the assumption that for a set of

components it is the relative position of each component to the other com-

ponents in the ordered sequence that impacts the response. The pairwise

ordering (PWO) model is the primary model in this class (Van Nostrand,

1995). In this model, an indicator is generated for each pair of components

such that it is assigned the value 1 if the components are in increasing order

(i.e., component i appears before component j with i < j) and −1 other-

wise. This class of models has been expanded further and many optimal

and near-optimal designs have been constructed (Voelkel (2019), Peng et

al. (2019), Zhao et al. (2021a), Chen et al. (2020), Schoen and Mee (2021)).

Notably, Mee (2020) proposed a triplets ordering model which considers

the ordering of the pairs of pairs (with one component overlapping) within

each run.

The other class of order-of-addition models consists of models that make

an absolute-position effects assumption. This means that the position value
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of each component is considered directly and assumed to have some rela-

tionship with the response. This class was first studied by Yang et al. (2021)

under the component-position (CP) model in which an indicator variable is

created for each component-position pair. The authors also constructed a

class of optimal designs under this model, the component orthogonal array

(COA). Stokes and Xu (2022) created a class of absolute-position effects

models using orthogonal polynomials and proposed a COA-based construc-

tion for optimal and near-optimal designs under these models.

Despite the growing amount of literature on order-of-addition exper-

iments, there are cases in which a researcher may have a larger pool of

components than the number of available positions that the study can ac-

commodate. For example, when working with a large collection of anti-

tumor drugs, the practical administration of multiple drugs within a period

of time may limit the maximum number of positions available in the order.

In such a situation the experimenter needs to screen the drug combinations

to determine which subset produces the best result, while also understand-

ing the impact of the drug sequence on the response. The authors were

consulted by a research team to design and analyze such an experiment. In

this case a set of five anti-bacterial drugs are being tested for their ability to

reduce cell bacteria count. However, physical limitations require that only
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three, and exactly three, of the five drugs be administered in each run in

order to determine the optimal subset and corresponding ordering. Such a

limitation necessitates the development of special designs. As another ex-

ample, consider a traveling salesman problem in which the salesman must

maximize profit and minimize cost by visiting a subset of available sites

in a suitable order. This situation is encountered in single vehicle routing

problems wherein balancing travel times with potential profits result in an

optimal route that only visits a subset of sites (Bruni et al., 2019). To our

knowledge this general problem has not yet been studied in the context of

order-of-addition, yet the same combinatorial challenges that impede the

standard order-of-addition problem, in which each component is used ex-

actly once in every sequence, are present here. We aim to formalize this

setup and develop efficient and robust designs for conducting such experi-

ments.

The paper is outlined as follows. In Section 2, we make adjustments to

two prominent order-of-addition models to capture the effects of the compo-

nent subset and sequence on the measured response in the screening prob-

lem. Section 3 presents several design construction algorithms for choosing

D-optimal subsets of the full design for different choices of the model, size

of the component pool, and number of available positions by leveraging the
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properties of existing designs for the standard order-of-addition problem.

To demonstrate the value of these designs, Section 4 applies our order-of-

addition screening designs to job scheduling problems with job rejection

penalties in the context of both a single-shot experiment and an active

learning framework for sequential experimentation. We find that the pro-

posed designs offer precise effect estimation and accurate predictions when

treated as a single-shot experiment and fast convergence to the optimal

ordering in sequential experiments. Section 5 concludes the work and all

proofs are given in the Supplementary Materials.

2. Screening Models and Full Design Optimality

To align with the drug sequence application, we assume that the number of

available positions in the order is fixed throughout the experiment and is

represented by q with 1 < q < m, where m is the total number of available

components. In practice, q is determined by physical limitations of the

application and our experiment aims to incorporate these constraints. The

m components are denoted for convenience as 0, 1, . . . ,m − 1, arbitrarily.

Under this setup there are a total of
(
m
q

)
q! = m!

(m−q)! possible ways to assign

the m components to the q positions. Each order-of-addition design is given

in terms of a component matrix A in which each column aj represents
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position j and aij gives the component added in position j of run i. We

refer to the design which contains every possible subset/permutation pair as

the full screening design, denoted by Sm,q. For example, for m = 5, q = 3

the component matrix S5,3 has 60 runs or sequences. As the number of

components increases, the number of possible sequences grows beyond what

can be afforded by a single experiment. With no existing methodology to

cover this case, our aim is to construct efficient order-of-addition screening

designs that include only a small fraction of the total set of sequences.

To analyze data from screening experiments, we consider two existing

order-of-addition models and modify them to accommodate the screening

problem. First is the CP model from Yang et al. (2021). For the standard

order-of-addition problem the authors constructed an indicator z
(i)
kj for each

component-position pair (k, j) such that z
(i)
kj is 1 if aij = k and 0 otherwise.

Typically the constraint
∑m

k=1 z
(i)
kj = 1 for any i and j necessitates that

we remove the terms associated with one component and one position.

However, in our case each run is a permutation of at most m − 1 distinct

components instead of a full permutation of all m components. Thus, we do

not need to remove the terms associated with one of the positions to make

the model estimable. The component-position screening (CPS) model is
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then

y = γ0 +
m−1∑
k=1

q∑
j=1

zkjγkj + ε, (2.1)

where y is the response, γ0 is the intercept, zkj is an indicator for the

component-position pair (k, j), γkj is the parameter representing the effect

of component k being added at the jth position, and ε is a normal random

error with mean 0 and constant variance σ2. All errors are assumed to

be independent. Along with the standard CP model, Yang et al. (2021)

introduced a class of optimal designs, the Component Orthogonal Array

(COA). These designs are level balanced and have the property that every

pair of components shows up equally often in any two-column sub-array.

These designs will be one of the building blocks for our order-of-addition

screening designs.

We also consider the PWO model first introduced by Van Nostrand

(1995) and Voelkel (2019). In this model a set of pseudo-factors {Iij, 0 ≤

i < j ≤ m} is created such that each corresponds to the pairwise ordering

of the components. In the standard model, each factor Iij has two levels, 1

and −1, indicating whether or not component i is added before component

j. However, in the screening case not every component is present in the

sequence, so for each Iij in which component i or j is missing from the

sequence we assign a value of 0. With this change, the pairwise ordering
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screening (PWOS) model is given by

y = β0 +
∑
i<j

βijIij + ε, (2.2)

with random error ε ∼ N(0, σ2).

In addition to this version of the model, we will use the Order-of-

Addition Orthogonal Array (OofA-OA) class of designs that was proposed

by Voelkel and Gallagher (2019) and has since been expanded by Mee (2020)

and Schoen and Mee (2021). Each OofA-OA in m components with n runs

has the property that each pair of pseudo-factors (Iij, Ikl) meets the follow-

ing conditions:

1. If i 6= k, i 6= l, j 6= k, and j 6= l, the factors are orthogonal.

2. If i = k or j = l, the inner product of the factors is n/3.

3. If i = l or j = k, the inner product of the factors is −n/3.

The inner product of the factors is the sum of the product of Iij and Ikl

over all n runs. These designs will provide a basis for the construction of

order-of-addition screening designs under the PWOS model.

Note that while we have relabeled the CP and PWO models as CPS

and PWOS, respectively, this is done primarily to differentiate the study
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of this problem from that of the standard order-of-addition problem. The

fundamental structure of each model is largely unchanged up to the minor

alterations required to accommodate the data from component screening

experiments. It remains the subject of future research to consider other

modeling approaches (e.g., position-based models, Gaussian Process mod-

els, etc.), as well as the feasibility of a two-stage experiment in which we

first screen the m components and then use the remaining q components in

a standard order-of-addition experiment.

Under the CPS and PWOS models, the designs we construct can be

evaluated using the popularD-optimality criterion. For an n-run design ξ =

{x1, . . . ,xn}, let X = (f(x1),f(x2), . . . ,f(xn))T be the model matrix of

the chosen linear model f , andM(ξ) = XTX/n be the per-run information

matrix. A D-optimal design maximizes |M (ξ)|. The D-optimality criterion

seeks to minimize the volume of the confidence ellipsoid for the parameter

estimates. This optimality can be verified using the general equivalence

theorem (Silvey, 1980) for approximate designs where we determine the

proportion of the observations at each design point instead of the number

of replicates. With this in mind, the first step in finding smaller designs

for order-of-addition screening experiments is to show that the full design

is optimal for the two models discussed above, so that we may use it as
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m(q) 4(3) 5(3) 5(4) 6(3) 6(4) 6(5) 7(3) 7(4) 7(5) 7(6)
CPS 10 13 17 16 21 26 19 25 31 37

PWOS 7 11 11 16 16 16 22 22 22 22

Table 1: Number of parameters (p) in the CPS and PWOS models for
different values of m and q.

a reference design for future designs. To this end we have the following

results:

Theorem 1. The full design Sm,q is D-optimal for the CPS model (2.1)

with m ≥ 3 and 1 < q < m.

Theorem 2. The full design Sm,q is D-optimal for the PWOS model (2.2)

with m ≥ 3 and 1 < q < m.

While this design is not practically useful, and these results are not

surprising, the validation of the full design’s D-optimality allows us to

benchmark the quality of any proposed design against this optimal one.

For convenience, we define the D-efficiency of a design ξ under the chosen

model relative to Sm,q as D(ξ) = {|M (ξ)|/|M(Sm,q)|}1/p, where p is the

number of columns of the model matrix X. Generally, we would prefer a

design with a run size close to that of the number of columns in the model

matrix. This value for different choices of m, q and model are given in

Table 1. With these preliminary steps complete, we are ready to construct

smaller, optimal and near-optimal order-of-addition screening designs.
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3. Component Screening Design Constructions

Considering the two models described in the previous section, we offer two

primary design constructions and a third construction for a special case

not covered by the other two. The two primary constructions are built

upon existing order-of-addition designs. To motivate the construction of

order-of-addition screening designs for the CPS model, Algorithm 1 utilizes

the flexible construction of COA-based designs proposed in Stokes and Xu

(2022). For the PWOS model, Algorithm 2 considers the special case of

q = 3 with even m while Alogrithm 3 takes advantage of the properties of

the OofA-OAs constructed in Schoen and Mee (2021) to cover the remaining

cases. Each of these constructions produces fractional designs for various

m and q that are D-optimal under one or both models. For each method,

we establish settings of m, q and n under which the resulting design is D-

optimal. To understand the robustness properties of our designs to model

misspecification, we explore the efficiency of the designs produced for one

model under the other.

3.1 Optimal Design Construction for the CPS Model

Stokes and Xu (2022) showed that their designs for the standard order-

of-addition problem, denoted by Fn,m for n runs in m components, can
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achieve high efficiency on the standard CP and PWO models with minor

tuning. We base our construction of efficient designs for the CPS model

on these designs. To understand what is to follow, it may be helpful to

review the construction method in Stokes and Xu (2022), which has been

reproduced in the Supplementary Materials. Using the Fn,m designs, we

propose the following algorithm for constructing order-of-addition screening

designs with a pool of m components, n runs and q positions. Let dxe be

the smallest integer that is equal to or larger than x.

Algorithm 1.

Step 1. Generate the n ×m matrix Fn,m using the first five steps of the

algorithm from Stokes and Xu (2022).

Step 2. Construct an n×q matrix Scp
n,m,q by taking the first q odd-numbered

columns of Fn,m if q ≤ m/2. Otherwise take the dm/2e odd-numbered

columns followed by the first q − dm/2e even-numbered columns.

Step 3. Permute the columns of Scp
n,m,q to improve its performance under

a chosen criterion.

In the development of Algorithm 1 we have found that the choice of

which columns of the design to take in Step 2 does not affect the endpoint
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efficiency of the design under the CPS model. However, taking the odd-

numbered columns of Fn,m first followed by the even-numbered columns

produces pairwise pseudo-factors in the PWOS model with better balance

properties, and in turn yields much higher D-efficiency, than taking the

first or last q columns or taking a random subset of columns. For small m

and q, a complete search over all
(
m
q

)
sub-designs to maximize the chosen

criterion could be beneficial.

To illustrate the construction we consider the case m = 5, q = 3 for

which the full design S5,3 has 60 runs. Instead of using this full design,

we construct a design in 20 runs by first generating the design F20,5 (Table

2a), then taking the three odd-numbered columns, and finally permuting

the columns to maximize the efficiency under the PWOS model (Table 2b).

This design is D-optimal under the CPS model and has high efficiency

relative to S5,3 under the PWOS model (approximately 0.91).

Figure 1 shows the performance of our algorithm for the PWOS and

CPS models under three settings ofm and q: (m = 5, q = 3), (m = 7, q = 3),

and (m = 7, q = 4). It is important to note that the order-of-addition design

Fn,m can only be constructed when m is prime or a prime power. This is

a limitation that could be addressed by using the recursive construction of

COA designs with a non-prime number of components presented in Huang
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Table 2: (a) 20-run optimal order-of-addition design with m = 5, F20,5. (b)
20-run D-optimal screening design under the CPS model with m = 5, q = 3,
Scp
20,5,3, generated from Algorithm 1.

(a) (b)
Run a1 a2 a3 a4 a5

1 0 1 2 3 4
2 1 2 3 4 0
3 2 3 4 0 1
4 3 4 0 1 2
5 4 0 1 2 3
6 0 2 4 1 3
7 1 3 0 2 4
8 2 4 1 3 0
9 3 0 2 4 1
10 4 1 3 0 2
11 0 3 1 4 2
12 1 4 2 0 3
13 2 0 3 1 4
14 3 1 4 2 0
15 4 2 0 3 1
16 0 4 3 2 1
17 1 0 4 3 2
18 2 1 0 4 3
19 3 2 1 0 4
20 4 3 2 1 0

Run a1 a2 a3
1 2 0 4
2 3 1 0
3 4 2 1
4 0 3 2
5 1 4 3
6 4 0 3
7 0 1 4
8 1 2 0
9 2 3 1
10 3 4 2
11 1 0 2
12 2 1 3
13 3 2 4
14 4 3 0
15 0 4 1
16 3 0 1
17 4 1 2
18 0 2 3
19 1 3 4
20 2 4 0

(2021) in Step 1 of Algorithm 1.

We observe from Figure 1 that the construction yields designs with

high D-efficiency relative to the full screening design Sm,q for both models.

Under the PWOS model our designs perform well, achieving efficiency over

0.90 in most cases where the run size is suitable for estimating the model.

However, our algorithm was unable to find the optimal design under the
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Figure 1: D-efficiency of designs Scp
n,m,q relative to the full design Sm,q gen-

erated for various run sizes with (left) m = 5, q = 3, (middle) m = 7, q = 3,
and (right) m = 7, q = 4.

PWOS model for any case. This is not surprising as the Fn,m designs used to

generate these designs are similarly only near-optimal under the standard

PWO model. On the other hand, the generated designs under the CPS

model are either optimal or highly efficient. More specifically, we have the

following general result about designs generated from Algorithm 1 for the

CPS model.

Theorem 3. For n ≤ m! and 1 < q < m with n divisible by m(m− 1) and

m a prime or prime power, Scp
n,m,q is D-optimal under the CPS model.

These results indicate that for all possible values of q, our construction

algorithm can generate optimal designs under the CPS model with afford-

able run sizes. We also observe from Figure 1 that our designs are fairly

robust to violations of the assumption of whether absolute or relative po-

sition effects are more suitable for capturing the true relationship between
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the order and the response.

3.2 Optimal Design Constructions for the PWOS Model

While the construction presented in Algorithm 1 produces near-optimal de-

signs under the PWOS model, none of the resulting designs are D-optimal.

To fill this gap we propose two separate constructions that can produce

fractional, D-optimal designs under this model. For q ≥ 4 our designs

are constructed from OofA-OAs, such as those from Voelkel and Gallagher

(2019) and Schoen and Mee (2021). However, for q < 4 a separate construc-

tion is required. The following result establishes the basis of our method

for constructing D-optimal designs under the PWOS model with q = 3.

Theorem 4. For m > 2, the run size n of any design with D-efficiency

of 1 relative to the full design under the PWOS model has the following

constraints:

(i) If q = 2, the minimum run size of a design with D-efficiency 1 is

n = 2
(
m
2

)
.

(ii) If q = 3 and m is odd, the minimum run size of a design with

D-efficiency 1 is n = 6
(
m
3

)
.

(iii) If q = 3 and m is even, the only run size for which a design with

D-efficiency 1 exists with n < 6
(
m
3

)
is n = 3

(
m
3

)
.
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The implication of the above result is that there is no fractional design

with D-efficiency 1 when q = 2, or when q = 3 and m is odd. For q < 4 this

leaves only the case that q = 3 with even m. In this case only a half-fraction

optimal design exists. For any even m, the following algorithm generates

this design along with an efficient design for any n < 3
(
m
3

)
.

Algorithm 2.

Step 1. Generate the set of
(
m
3

)
3-component combinations (i, j, k) with

0 ≤ i < j < k ≤ m− 1.

Step 2. For every 3-component combination such that i + j + k is even,

construct the 3× 3 matrix Dijk given by

Dijk =

 i k j
j i k
k j i

 .

Step 3. For every 3-component combination such that i + j + k is odd,

construct the 3× 3 matrix Dijk given by

Dijk =

 i j k
j k i
k i j

 .

Step 4. Construct Spwo
n,m,3 by first row-wise concatenating the Dijk for all

0 ≤ i < j < k ≤ m− 1 such that i+ j+ k is even, then concatenating
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Table 3: 12-run, half-fraction D-optimal screening design for the PWOS
model with m = 4, q = 3, Spwo

12,4,3, produced by Algorithm 2.

Run a1 a2 a3
1 0 3 1
2 D013 1 0 3
3 3 1 0
4 1 3 2
5 D123 2 1 3
6 3 2 1
7 0 1 2
8 D012 1 2 0
9 2 0 1
10 0 2 3
11 D023 2 3 0
12 3 0 2

the remaining Dijk and taking the first n rows.

Table 3 demonstrates this construction method for the case of m = 4

and q = 3. For this scenario there are four 3-component combinations, with

(0, 1, 3) and (1, 2, 3) summing to an even number, and (0, 1, 2) and (0, 2, 3)

summing to an odd number. Concatenating the respective Dijk for each

of these combinations produces Spwo
12,4,3, a 12-run D-optimal design for the

PWOS model, a half-fraction of the 24-run full design.

Algorithm 2 covers the special case of generating half-fraction screening

designs with q = 3. We note that the construction as presented can be used

to generate designs for oddm, but the result will only achieve high efficiency,

not optimality, as this case is not covered in the following theorem.
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Figure 2: D-efficiency of designs Spwo
n,m,3 relative to the full design Sm,3 gen-

erated for a range of run sizes with (left) m = 6, (middle) m = 8, and
(right) m = 10.

Theorem 5. For n = 3
(
m
3

)
and m even, Spwo

n,m,3 is D-optimal under the

CPS and PWOS models.

To visualize the performance of these designs we consider the cases

(m = 6, q = 3), (m = 8, q = 3), and (m = 10, q = 3) in Figure 2. We

observe from this figure that the designs generated by Algorithm 2 achieve

high D-efficiency across both models for all run sizes considered, with the

half fraction design having n = 3
(
m
3

)
runs being D-optimal as determined

in Theorem 5. In addition to providing efficient designs for even m with

q = 3 under the PWOS model, this construction provides optimal designs

under the CPS model for several non-prime or non-prime power values of

m, filling another gap of Algorithm 1.

For q ≥ 4 we instead use OofA-OAs in q components as the building

blocks of D-optimal designs, leveraging the special properties of these de-
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signs detailed in Section 2. From Voelkel and Gallagher (2019) we know that

optimal OofA-OAs must have a run size that is divisible by 12. Thus, for

a given q, the smallest optimal order-of-addition design has N = 12d(
(
q
2

)
+

1)/12e runs. With these properties in mind, Algorithm 3 generates optimal

or near optimal designs for any n ≤ N
(
m
q

)
with m > 4 and 3 < q < m.

Algorithm 3.

Step 1. Construct OAN,q, the smallest optimal OofA-OA in q components

{0, 1, . . . , q − 1}, with N = 12d(
(
q
2

)
+ 1)/12e runs.

Step 2. Generate the set of
(
m
q

)
q-component combinations (i1, i2, . . . , iq)

with 0 ≤ i1 < i2 < . . . < iq ≤ m− 1.

Step 3. For every q-component combination create theN×q matrixOAN,q,i1i2...iq

by substituting the levels of OAN,q according to the permutation

(
0 1 . . . q − 1
i1 i2 . . . iq

)
.

Step 4. Construct Spwo
m,q by row-wise concatenating the OAN,q,i1i2...iq for all

0 ≤ i1 < i2 < . . . < iq ≤ m− 1.

Step 5. Generate Spwo
n,m,q by selecting the rows of Spwo

m,q sequentially. Specif-

ically, we select the first run from the first OA, the second run from
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the second OA, and so on. Run
(
m
q

)
+1 is taken to be the second

run of the first OA and run
(
m
q

)
+2 is taken to be the third run of

the second OA, etc. This process continues until n runs are selected

for Spwo
n,m,q.

With this construction we can generate optimal designs for any com-

bination of m and q. Specifically, Table 6 in the Supplementary Mate-

rials demonstrates the process of creating a 72-run design for the case

m = 6, q = 5. We start with the 12-run order-of-addition design in 5 com-

ponents given in Schoen and Mee (2021). This is represented as OA12,5,01234

in the left panel of Table 6. Next, we consider the five other 5-component

combinations and substitute the levels according to the permutation given

in Step 3 to create each OA12,5,i1i2...i5 . After concatenating these six arrays

we rearrange the rows as described in Step 5 to ensure a sufficient amount

of information is present in the first n rows if n is less than the size of the

complete design. We do this by selecting the first run from OA12,5,01234, fol-

lowed by the second run from OA12,5,01235, and so on, cycling through runs

1 through 12 and each OA12,5,j for j = 1, . . . , 6 until all runs are accounted

for. The result is a 72-run D-optimal design that is the one-fifth fraction

of the full design with 360 runs given in Table 6 of the Supplementary

Materials. We then have the following result.
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Theorem 6. For n = 12d(
(
q
2

)
+ 1)/12e

(
m
q

)
, Spwo

n,m,q is D-optimal under the

PWOS model.

Following the results of Theorems 5 and 6, we achieve significant savings

in terms of the number of runs compared to the full design Sm,q by using the

screening designs produced by Algorithms 2 and 3. To further demonstrate

the efficiency of these designs, Figure 6 in the Supplementary Materials

shows the D-efficiency of the designs Spwo
n,m,q under the PWO model for

several values of m and q. In general, we find that once the run size is

sufficiently large enough to estimate the PWOS model, the design after row

rearrangement is quite efficient, with D-efficiency greater than 0.80. From

these results we conclude that between the three construction methods, we

can generate designs that are efficient, parsimonious, and in some cases

optimal for estimating one or both of the screening models. Our goal is

now to see how researchers can use these designs in practice through some

simulated order-of-addition screening experiments.

4. Order-of-Addition Screening Experiments in Practice

In order to demonstrate the value of our proposed designs in practice, we

consider a collection of job scheduling problems of varying complexity. Job

scheduling problems are a class of well known NP-hard problems that have
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been critically studied in operations research (Garey et al., 1976). Specif-

ically, we borrow the setup from Zhao et al. (2021a) and consider a single

machine which is tasked with sequentially processing jobs, each of which

takes some fixed time to complete and requires some fixed costs to perform.

However, our goal is to choose only q of the m available jobs to complete in

a specific order such that a given response function is minimized, indicating

that the sequence is in some sense the most efficient. This problem is com-

mon in high-volume manufacturing settings where processing all jobs is not

possible due to inventory or time constraints (Shabtay et al., 2013, 2012;

Zhong et al., 2014). Instead, a rejection penalty is added for each of the

m−q jobs that are not completed. For an ordered set x = {x1, . . . , xq} of q

jobs, the response we choose is the sum of a quadratic function (Townsend,

1978) and job rejection penalties given by

y(x) =

q∑
i=1

cxi
(

i∑
j=1

txj
)2 +

∑
k/∈x

pk,

where txj
and cxi

are the processing time of job xj and the cost of job xi,

respectively, and pk is the penalty for not completing job k. The penalty

should be in the same unit (such as dollar amount) as the cost.
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Table 4: Job scheduling matrices for m = 4 and m = 6.
Job 0 1 2 3
Time t 3 5 6 4
Cost c 7 3 2 6
Penalty p 90 85 100 80

Job 0 1 2 3 4 5
Time t 8 16 10 9 12 14
Cost c 16 5 12 13 9 7
Penalty p 107 98 110 89 96 101

Due to this ability to reject jobs, an assumed value of q may not produce

the true optimal sequence. For these examples, we assume that external fac-

tors fix the number of jobs required in each sequence to be q. Alternatives

to this include composite designs with sequences of varying length, a topic

discussed further in Section 5. Considering this task, we demonstrate the

value that our proposed order-of-addition screening designs provide in cap-

turing the relationship between the job sequence and the endpoint penalty

as well as in cheaply and efficiently uncovering the optimal job sequence.

4.1 Screening Experiments for Job Scheduling Problems

To evaluate how the proposed designs can be used to model the relationship

between the component selection and sequence, we consider two situations

(m = 4, q = 3 and m = 6, q = 4) similar to the problems considered in

Zhao et al. (2021a). The scheduling matrices for these problems are given

in Table 4.

For the four-job problem, we consider two designs which we have found

are D-optimal for the respective models. For each design, the vector of
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Figure 3: Component-position effects plots for the true data (left) and
CPS predictions based on a 12-run D-optimal design (right) for the job
scheduling problem with m = 4, q = 3.

responses is calculated for each job sequence outlined by the runs of the

design. We use the 12-run design from Algorithm 1 for training the CPS

model and the 12-run design from Algorithm 2 for training the PWOS

model. The CPS model achieves marginally better performance than the

PWOS model in terms of fit (R2 = 0.99 versus R2 = 0.98, AIC = 131.95

versus AIC = 147.78), but includes more parameters (df = 2 versus df

= 5). To test the predictive performance of each model we predict the

response for each of the 24 sequences and measure the correlation of these

predictions against the 24 true responses. The CPS model outperforms the

PWOS model with a correlation of 0.99 compared to 0.97 for the PWOS

model.

We can also visually interpret these models and draw some preliminary

conclusions from the component-position effects plots in Figure 3. In each
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of these plots, the horizontal axis denotes the position in which the job is

performed, and the vertical axis denotes the mean response, in this case the

total expense of the job sequence including time, cost and rejection penalty.

Each point denotes the mean response of all runs in which the labeled job is

performed in the fixed position. For each job, the q dots corresponding to q

different positions are connected to visualize the trend as that job is shifted

to a later position in the sequence. The points at position 0 represent the

mean response when the labeled component is omitted from the sequence.

The number of observations used to compute each average is given along

the x-axis. The solid horizontal line, used as a reference, represents the

average response of all observations.

Figure 3 shows the component-position effects plots for the true data

and for the CPS model predictions. Each plot is constructed from 24 ob-

servations. The left plot is built from the 24 true values and acts as a

benchmark while the right plot is built from the 24 predictions of the fitted

CPS model. We omit the plot of the PWOS model predictions to conserve

space; however, we note that the overall interpretations are similar. Inter-

preting these plots we observe that the CPS model is adept at picking up

the trends of the true data. If our aim is to minimize the total expense,

then we should process job 0 first and job 2 third. The CPS model then
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indicates that we should process either job 1 or 3 second and not process

the other. These interpretations align with the plot of the true data and

the two sequences that obtain the smallest responses, (0, 1, 2) and (0, 3, 2).

This visual analysis of course is only a first attempt at how researchers

may use the proposed designs in concert with the screening models to draw

substantive conclusions. Further study may be required to uncover and

interpret any potential interactions between the components.

For the six-job problem we repeat this procedure using the 30-run D-

optimal design from Algorithm 3 for the PWOS model and a design from

Algorithm 1 that leverages the six-component COA from Huang (2021)

for the CPS model. Training the models on their respective designs, we

find that the CPS model demonstrates marginally greater performance,

having df=9, R2 = 0.98, AIC = 494.86, and correlation of 0.98 between

predicted and true responses while the PWOS model uses fewer parameters

with df=14, R2 = 0.98, AIC = 542.54, and correlation of 0.94 between

predicted and true responses. Both models are able to effectively capture

the relationship between the sequence and the response even as the number

of components increases. The full results of this study are given in the

Supplementary Materials.
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4.2 Sequential Screening Experiments for Job Scheduling

While we have seen that the proposed designs lead to stable, interpretable

models, we have so far focused on single-shot designs where the entire bud-

get of the experiment is used at once. However, in some cases it may be

of interest to run a sequential experiment in which the goal is to find the

best sequence as quickly as possible by first obtaining the responses from an

initial design and then adding points to the design one at a time. We now

aim to demonstrate the benefit of the proposed designs for this problem.

For this procedure, we only consider the CPS model due to its advantage in

prediction accuracy and use designs generated from Algorithm 1. We have

also found that the choice of penalty has little impact on the CPS model

whereas the performance of the PWOS model may deteriorate when the

penalty varies substantially, so we simplify the approach by assuming that

all jobs incur the same penalty if not included in the sequence. Specifically,

we set job rejection penalty to 0.

We can now simulate the full job sequencing dataset for a fixed q and

determine the sequence that produces the global minimum. Within this

setup, we measure the benefit of choosing the designs we have constructed

as the initial design over a random design as follows. To keep the number

of runs in the experiment low while ensuring sufficient degrees of freedom
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for estimation, we set the number of initial runs to n = q(m− 1) + 5.

1. First collect the response from the design Scp
n,m,q obtained from Algo-

rithm 1 with n = q(m− 1) + 5 and record the minimum response.

2. Next fit the CPS model to the data and calculate the expected im-

provement (EI) for all remaining sequences in the pool (Jones et al.,

1998). The EI for a given sequence x is calculated as

EI(x) = (y∗ − ŷ(x))Φ
(y∗ − ŷ(x)

σ̂

)
+ σ̂φ

(y∗ − ŷ(x)

σ̂

)
,

where y∗ is the minimum value observed so far, ŷ(x) is the predicted

response for input x, φ and Φ are the probability density function and

the cumulative density function of the standard normal distribution,

respectively, and σ̂ is the estimate of the standard error of the predic-

tion. The EI value captures the model’s uncertainty in the value of

y(x) by considering it as a realization of a normal distribution with

mean ŷ(x) and standard deviation σ̂.

3. Add the design point with the largest EI value to the design and

calculate its response.

4. Fit the CPS model again with the updated design and record the
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Table 5: Job scheduling matrices for active learning sequential experiments
with m = 7 (left) and m = 11 (right).

Job 0 1 2 3 4 5 6
Time t 6 1 11 1 2 21 2
Cost c 7 19 3 4 10 20 18

Job 0 1 2 3 4 5 6 7 8 9 10
Time t 6 27 13 11 20 20 5 10 20 21 17
Cost c 17 18 19 29 28 4 24 30 10 8 1

minimum response found so far.

5. Repeat 2-4 until the maximum number of iterations is reached.

To compare this approach to a random initial design, we repeat the

process above with 100 random designs and average the resulting curves

from tracking the minimum value in each iteration. We consider several job

scheduling problems with m = 7 and m = 11, and q varying between 3 and

6. Table 5 gives the values of t and c for each job for the two problems.

These values were uniformly sampled for each problem from {0, 1, . . . , 3m}.

Each combination of m and q presents a different job scheduling problem

in which our goal is to find the optimal sequence of length q with as few

runs as possible.

We first consider the problem with m = 7 jobs. We generate the designs

Scp
n,7,q, where q takes the values 3, . . . , 6 and n = q(m − 1) + 5. Applying

each design in the sequential experimentation framework outlined above,

the results for each value of q are presented in Figure 4. In these plots the

dashed gray line represents the true global minimum. Each point on the
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q = 3 q = 4

q = 5 q = 6

Figure 4: Convergence of the sequential job scheduling experiments to the
true minimum response with m = 7 and q = 3–6 for different initial designs.
The y-axis gives the minimum response observed up to the current iteration.

red curve represents the average minimum value obtained at the specified

iteration across 100 random initial designs. Initializing the experiment with

the design Scp
n,7,q leads to convergence that is at least as fast as when starting

from a typical random design. In fact, for most cases convergence is much

faster under the proposed design. Specifically in the cases of q = 3 and

q = 6, convergence to the global minimum occurs with less than half the

number of iterations required for a typical random design. After accounting

for the size of the initial designs this translates to roughly a 40% and 30%
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reduction in the total budget required for the experiments, respectively.

q = 3 q = 4

q = 5 q = 6

Figure 5: Convergence of the sequential job scheduling experiments to the
true minimum response with m = 11 and q = 3–6 for different initial
designs. The y-axis gives the minimum response observed up to the current
iteration.

Considering the more difficult problem with m = 11 jobs, we again

start from the Scp
n,11,q designs for q = 3, . . . , 6. The results of running the

sequential experiment for each of these initial designs and 100 random de-

signs are given in Figure 5. The true global minimum is again given as

a dashed gray line in each figure. As with the simpler 7 job problem, for

all situations the convergence of the algorithm when starting from the pro-
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posed design is at least as fast as when starting from a random design. In

fact, in the four cases we have considered, the convergence is actually faster

under our design, and in one case, q = 6, about 50% of the random designs

are unable to converge with 100 additional runs. For the other three cases,

this faster convergence leads to a substantial reduction in the total budget

of the experiment, between roughly 9% and 27%.

We can gather from these two examples that starting from a design

generated by Algorithm 1 often leads to much faster convergence than a

random design, even as the total number of components or the value of q

increases. In some cases the total budget required for the experiment when

starting from this design is only a fraction of that under a randomly gen-

erated design of the same size. These examples demonstrate the potential

value of our proposed designs. We could repeat this procedure with the

optimal designs generated for the PWOS model by Algorithms 2 and 3, but

as we have seen in the Section 4.1, both models do a good job of capturing

the trends in the job sequencing simulated data, but the CPS model has

better prediction accuracy.

In all of the problems considered here we also notice that the minimum

achieved by Scp
n,m,q before any additional points are added (iteration 0) tends

to be much smaller than that of a typical random design. This is likely due
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to improved space-filling properties of the design Scp
n,m,q, an observation that

requires further investigation in future research.

5. Conclusion

We have studied the problem of designing order-of-addition experiments

in cases where the number of components of interest m outnumbers the

number of available positions in each sequence q. Like the standard order-

of-addition problem in which each run is a permutation of allm components,

the full design that includes all possible sequences grows too quickly to be

appropriate in most cases, necessitating smarter, simpler designs. However,

this problem differs from the standard one in that our goal is not only

to understand the relationship between the component sequence and the

response, but also to screen the components to find the q components that

have the largest effect. While only small modifications of the standard

order-of-addition models are necessary to accommodate this new component

screening problem, new designs are required to keep costs low.

We have proposed three constructions for order-of-addition screening

designs and have shown that each guarantees D-optimality for certain run

sizes. For the CPS model, Algorithm 1 generates D-optimal designs by

leveraging the balance properties of the Fn,m designs generated in Stokes
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and Xu (2022) for the standard order-of-addition problem. On the other

hand, Algorithms 2 and 3 generate D-optimal designs for different choices

of m and q under the PWOS model. Algorithm 2 considers the case that

m is even and q = 3. For this case the algorithm generates highly efficient

designs including a D-optimal half-fraction design for both models. Algo-

rithm 3 covers the remaining cases where m > 4 and 3 < q < m. Using

the OofA-OA designs developed for the standard order-of-addition problem

under the PWO model, this construction generates D-optimal designs with

only a small fraction of the number of runs in the full design, with the sav-

ings growing larger as m increases. Collectively these three constructions

fill an important gap in the order-of-addition literature. In cases where the

assumption of a single, fixed q is not met, composite designs can be gener-

ated by concatenating the designs from the appropriate construction(s). We

see this in the more general version of the job scheduling problem, wherein

the sequence that achieves the true minimum across all q values may have a

different number of components per sequence than what is assumed in our

experiments. A composite design could be beneficial for finding the optimal

sequence.

To demonstrate the value of our methods, we have studied several job

scheduling problems with job rejection penalties for various values of m
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and q. We have found that for simpler problems, training each model on

the fractional optimal design from our constructions results in a suitable fit

with accurate estimates and strong predictive performance. Furthermore,

to showcase the cost-saving potential of our designs, we have considered

experiments for job scheduling problems in an active learning framework.

The results of this study indicate that the proposed designs tend to result

in much faster convergence of the algorithm to the true optimal sequence

when compared to a randomly generated initial design, even as m increases.

By providing efficient designs for the study of order-of-addition screening

experiments, we hope that researchers may soon find many other applica-

tions of these results and continue to explore new approaches for modeling

this problem. In particular, a two-stage strategy that first screens the com-

ponents and then studies the ordering effect may be beneficial. For this

approach, PWO models that include indicators for whether each compo-

nent is included in the sequence have shown the potential for capturing the

relationship in order-of-addition screening experiments.

Supplementary Materials

The online Supplementary Materials include proofs of the theorems, the

algorithm from Stokes and Xu (2022), detailed performance of Algorithm 3,
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and additional results from the job scheduling problem.
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