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Abstract: Community detection refers to the problem of clustering the nodes of a

network (either graph or hypergrah) into groups. Various algorithms are available

for community detection and all these methods apply to uncensored networks.

In practice, a network may has censored (or missing) values and it is shown

that censored values have non-negligible effect on the structural properties of a

network. In this paper, we study community detection in censored m-uniform

hypergraph from information-theoretic point of view. We derive the information-

theoretic threshold for exact recovery of the community structure. Besides, we

propose a polynomial-time algorithm to exactly recover the community structure

up to the threshold. The proposed algorithm consists of a spectral algorithm

plus a refinement step. It is also interesting to study whether a single spectral

algorithm without refinement achieves the threshold. To this end, we also explore

the semi-definite relaxation algorithm and analyze its performance.

Key words and phrases: Community detection, Information-theoretic threshold,
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Censored hypergraph, Exact recovery.

1. Introduction

Many complex data sets can be modelled as a network of items (nodes).

One of the most popular topic in network data mining is to understand

which items are similar to each other. Community detection refers to the

problem of clustering the nodes of network into groups based on similar-

ity. Community detection is widely used in analysis of social networks

(Goldenberg et al. (15); Zhao et al. (41)), protein-to-protein interaction

networks ((8)), image segmentation ((36)) and so on. Existing literature in

community detection can be roughly classified into two categories: (1) de-

rive information-theoretic threshold for recovering the community structure

((2; 30; 31; 7; 9; 18; 39)); (2) devise efficient algorithms to recover the com-

munity structure ((11; 12; 28; 29; 22; 38; 4; 5; 17; 14; 37; 42; 25; 20)). See

(1; 6) for more references. All these methods apply to uncensored networks.

In practice, network data may have censored or missing values. For

example, in social network, non-response of actors can cause missingness of

ties ((21; 13)); in MRI network, missingness may be due to the high cost

involved with PET scanning ((27)). Missing values have non-negligible ef-

fects on the structural properties of a network ((21; 35)). Most existing
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algorithms for community detection apply to uncensored networks. A nat-

ural question is how to recover communities in a censored network. As far

as we know, (3) is the first to deal with community detection in censored

graph and obtains the information-theoretic threshold for exact recovery

of communities. Recently, (9) shows spectral algorithm without refinement

step can exactly recover the community structure in censored graph up to

the information-theoretic threshold.

Many complex networks in the real world can be formulated as hyper-

graphs, where hyperedge is used to model higher-order interaction among

individuals((10; 33; 34; 32; 16; 11)). For example, in folksonomy network,

an hyperedge may represent a triple (user, resource, annotation) struc-

ture ((16)); in coauthorship networks, the coauthors of a paper form a

hyperedge((10; 33; 34; 32)). Hypergraph learning with missing values has

recently attracted much attention in literature ((19; 26; 27)). In this paper,

we are interested in detecting communities in censored hypergraphs. It is

not immediately clear how the sharp threshold obtained by ((9)) changes

in the censored hypergraph case. This motivates us to study this problem.

Our contributions are summarized as follows. We derive the information-

theoretic threshold for exact recovery of community struture in censored

hypergraph. Interestingly, the threshold is generally larger than that in
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1.1 The censored hypergraph block model

the graph case. In this sense, community detection in censored hyper-

graph is harder than in censored graph. Besides, we propose a polynomial-

time algorithm that can exactly recover the community structure up to the

information-theoretic threshold. The proposed algorithm consists of a spec-

tral algorithm plus a refinement step. It is also interesting to study whether

a single spectral algorithm without refinement can achieve the threshold as

in the censored graph case (9). To this end, we study the semi-definite

relaxation algorithm and provide a sufficient condition for the algorithm to

achieve exact recovery.

1.1 The censored hypergraph block model

For a positive integer n, let V = {1, 2, . . . , n} denote a set of nodes and

E be a set of subsets of V . The pair Hm = (V , E) is called an undirected

m-uniform hypergraph if |e| = m for every e ∈ E . That is, each ele-

ment e ∈ E (called hyperedge) contains exactly m distinct nodes. The

hypergraph Hm can be represented as a m-dimensional symmetric array

A = (Ai1,...,im) ∈ {0, 1}⊗nm
, where Ai1i2...im = 1 if {i1, i2, . . . , im} is a

hyperedge and Ai1i2...im = 0 otherwise. Besides, Ai1i2...im = Aj1j2...jm if

{i1, i2, . . . , im} = {j1, j2, . . . , jm}. In this paper, self-loop is not allowed,

that is, Ai1i2...im = 0 if |{i1, i2, . . . , im}| < m. When m = 2, H2 is
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1.1 The censored hypergraph block model

just the usual graph that has been widely used in community detection

problems ((1)). A hypergraph is said to be random if elements of the

adjacency tensor are random. Throughout this paper, we focus on hy-

pergraph genereated from the Censored m-uniform Hypergraph Stochastic

Block Model (CHSBM) Hm(n, p, q, α) defined below.

Definition 1.1 (Censored m-uniform Hypergraph Stochastic Block Model

(CHSBM)). Each node i ∈ V is randomly and independently assigned a

label σi with

P(σi = +1) = P(σi = −1) =
1

2
.

Let σ = (σ1, . . . , σn)
T be a column vector of labels, I+(σ) = {i|σi = +1}

and I−(σ) = {i|σi = −1}. The nodes in I+(σ) and I−(σ) constitute two

communities. The distinct nodes i1, i2, . . . , im form a hyperedge with prob-

ability p if {i1, i2, . . . , im} is a subset of I+(σ) or I−(σ) and q otherwise. Each

hyperedge status is revealed independently with probability α. The hyper-

edge of the resulting hypergraph takes value in {1, 0, ∗}, where ∗ means

a hyperedge is censored or missing (the hyperedge status is not revealed).

This model is denoted as Hm(n, p, q, α).

Each hyperedge inHm(n, p, q, α) with α < 1 has three status: 1 (present),

0 (absent) or ∗ (censored or missing). When α = 1, the hypergraph is un-

censored and Hm(n, p, q, 1) is just the usual hypergraph stochastic block
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1.2 Summary of main result

model ((11; 12; 7; 24; 22; 39)). The Censored Stochastic Block Model

CSBM(p, q, α) studied in ((9)) corresponds to H2(n, p, q, α). Throughout

this paper, we assume p, q ∈ (0, 1) are fixed constants, p > q and α = t logn
nm−1

for some constant t > 0. The reason for considering the logn
nm−1 order of α

is: this is the smallest order that exact recovery is possible. Please see

Theorem 2.1 and Theorem 2.2.

1.2 Summary of main result

Given a hypergraph A generated from Hm(n, p, q, α), community detection

refers to the problem of recovering the unknown true label vector σ, or

equivalently, identifying the sets I+(σ) and I−(σ). We say an estimator σ̂ is

an exact recovery of σ or σ̂ exactly recovers σ or σ̂ achieves exact recovery

if

P(∃s ∈ {±1} : σ̂ = sσ) = 1− o(1).

That is, the estimator σ̂ is equal to σ or −σ with probability 1 − o(1). If

there exists an estimator σ̂ that exactly recovers σ, we say exact recovery

is possible. Otherwise, we say exact recovery is impossible.

For m = 2, (9) establishes the sharp information-theoretic threshold

for exact recovery. The authors show that spectral algorithm can exactly

recover the true label without refinement step. It is not immediately clear
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1.2 Summary of main result

how m ≥ 3 changes the threshold for exact recovery. More importantly, the

spectral method in ((9)) can not be straightforwardly extended to m ≥ 3,

since the spectral analysis of tensor is still not well developed.

In this paper, we focus on m ≥ 3 and derive the sharp information-

theoretic threshold for exact recovery. Define Im(p, q) as

Im(p, q) =
2m−1(m− 1)!

(
√
p−√

q)2 + (
√
1− p−

√
1− q)2

.

Theorem 2.1 shows that the maximum likelihood estimator (MLE) does not

coincide with the true label with probability 1− o(1) if t < Im(p, q). Theo-

rem 2.2 says that MLE succeeds with probability 1−o(1) if t > Im(p, q). For

efficient algorithms, we propose a spectral algorithm plus refinement step

that can achieve exact recovery up to the information-theoretic threshold,

see Theorem 2.3. Finally, we prove in Theorem 2.4 that the semidefinite

relaxation algorithm can exactly recover the true label under mild condi-

tions. The following Table 1 summarizes our main results. For m = 2, 3

and q = 0.2, Figure 1 displays the region in which exact recovery is im-

possible (red region) and the region where exact recovery is possible (green

region). Interestingly, with fixed q, the red region of m = 3 contains that

of m = 2 as a proper subset. In this sense, exact recovery gets harder as m

increases. For fixed q,m, Im(p, q) decreases as p goes to one, hence exact

recovery becomes easier.
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1.2 Summary of main result

Table 1: Regions for exact recovery.

Region Exact Recovery

(a) t < Im(p, q) Exact recovery is impossible

(b) t > Im(p, q) Exact recovery is possible
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1.2 Summary of main result
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Figure 1: Regions for exact recovery with m = 2, 3 and q = 0.2. Red: exact

recovery is impossible. Green: exact recovery is possible.

Throughout this paper, we adopt the Bachmann-Landau notation o(1), O(1).
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For two positive sequences an, bn, we write an ∼ bn if limn→∞
an
bn

= 1. De-

note an ≍ bn if 0 < c1 ≤ an
bn

≤ c2 < ∞ for constants c1, c2. Denote an ≫ bn

or bn ≪ an if limn→∞
an
bn

= ∞. For a square matrix M , ||M || denotes

the operator norm of M and M ⪰ 0 means M is symmetric and positive

semidefinite. Define ⟨M,N⟩ =
∑

i,j MijNij.

2. Main Results

In this section, we present information theoretic threshold for exact recovery

on the censored hypergraph stochastic block model. Firstly, we use the

maximum likelihood method to show that exact recovery is impossible if

t < Im(p, q). Then we prove that MLE can exactly recover the true label

if t > Im(p, q). Combining these two results yields the sharp information-

theoretic threshold for exact recovery. This threshold provides a benchmark

for developing practical recovery algorithms. Since the time complexity of

MLE is not polynomial in n, we propose a polynomial-time algorithm that

achieves exact recovery if t > Im(p, q).

2.1 Sharp threshold for exact recovery

In this subsection, we derive a sharp phase transition threshold for exact

recovery. The first result specifies a sufficient condition for impossibility of
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2.1 Sharp threshold for exact recovery

exact recovery.

Theorem 2.1. For each fixed integer m ≥ 2, if t < Im(p, q), then P(σ̂ =

σ) = o(1) for any estimator σ̂. Here Im(p, q) is defined as

Im(p, q) =
2m−1(m− 1)!

(
√
p−√

q)2 + (
√
1− p−

√
1− q)2

. (2.1)

Theorem 2.1 states that any estimator can not exactly recover the true

label if t < Im(p, q). For m = 2, I2(p, q) is just tc(p, q) in ((9)). Our result

can be considered as a nontrivial extension of Theorem 2.1 in ((9)). Inter-

estingly, with fixed p, q, the region t < I2(p, q) is smaller than t < Im(p, q)

for m ≥ 3. Similar phenomenon exists in exact recovery of community in

uncensored hypergraph stochastc block model ((24)). However, this phe-

nomenon significantly differs from that in hypothesis testing for communi-

ties. For example, (40) derived the sharp boundary for testing the presence

of a dense subhypergraph. When the number of nodes in the dense sub-

hypergraph is not too small, the region where any test is asymptotically

powerless for m = 2 is larger than m ≥ 3.

The next result shows that the threshold Im(p, q) is actually sharp for

exact recovery.

Theorem 2.2. For each fixed integer m ≥ 2, if t > Im(p, q) with Im(p, q)

defined in (2.1), then the maximum likelihood estimator exactly recovers
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2.2 Efficient algorithm for exact recovery

the true label with probability 1− o(1).

By Theorem 2.2, if t > Im(p, q), the true label can be exactly recovered

by the maximum likelihood estimator estimator. Combining Theorem 2.1

and Theorem 2.2, we get the sharp boundary t = Im(p, q) for exact recovery,

which is a surface in R3. For illustration, we visualize the regions t >

Im(p, q) and t < Im(p, q) with q = 0.2 and m = 2, 3 in Figure 1. The red

region represents t < Im(p, 0.2) where exact recovery is impossible. The

green region corresponds to t > Im(p, 0.2) where exact recovery is possible.

Clearly, the green region for m = 3 is smaller than m = 2. In this sense,

exact recovery gets harder as m increases.

2.2 Efficient algorithm for exact recovery

Since the time complexity of MLE is not polynomial in n, we propose an

efficient algorithm to reconstruct the two communities up to the information

theoretic threshold. The algorithm starts with a random splitting of the

hypergraph A into two parts. Then a spectral algorithm is applied to the

first part, followed by a refinement based on the second part. We describe

the algorithm in the following three steps.

In the first step, we randomly split the hypergraph A into two parts.

Denote Mm = {(i1, i2, . . . , im) | 1 ≤ i1 < · · · < im ≤ n}. Let S1 be a
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2.2 Efficient algorithm for exact recovery

random subset of Mm obtained by including each element of Mm in S1

with probability log logn
logn

. Let S2 be the compliment of S1 in Mm, that is,

S2 = Mm − S1. Define a hypergraph Ã as

Ãi1i2...im =


1[Ai1i2...im = 1], {i1, i2, . . . , im} ∈ S1,

0, otherwise.

Here 1[E] is the indicator function of event E. Define hypergraph Ā as

Āi1i2...im =


Ai1i2...im , {i1, i2, . . . , im} ∈ S2,

∗, otherwise.

Then hypergraph A is randomly divided into two independent hypergraphs

Ã and Ā.

In the second step, we apply the weak recovery algorithm HSC in ((4))

to Ã. The HSC algorithm proceeds by converting hypergraph Ã to a n× n

similarity matrix B by Bij =
∑

1≤i3<i4<···<im≤n Ãiji3i4...im and then applying

geometric 2-clustering to the top 2 eigenvectors of B to output the commu-

nities Ĩ+(σ) and Ĩ−(σ). The sampling probability log logn
logn

in the first step

makes sure the hyeredge probability of Ã has order log logn
logn

α = t log logn
nm−1 (Here

the log log n factor can be replaced by any an with an → ∞). According to

Theorem 1 of (4), n− o(n) of the nodes are correctly labelled by HSC with

probability 1− o(1).

The last step is to refine the communities Ĩ+(σ) and Ĩ−(σ) based on Ā.
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2.2 Efficient algorithm for exact recovery

For a set S ⊂ [n], define e(i, S) as

e(i, S) =
∑

i2,...,im∈S\{i}
i2<···<im

(
log

(
p

q

)
1[Āii2...im = 1] + log

(
1− p

1− q

)
1[Āi1i2...im = 0]

)
.

For each node i ∈ Ĩ+(σ), flip the label of i if

e(i, Ĩ+(σ)) < e(i, Ĩ−(σ)).

For each node j ∈ Ĩ−(σ), flip the label of j if

e(j, Ĩ−(σ)) < e(j, Ĩ−(σ)).

Let Î+(σ) and Î−(σ) be the resulting communities. If |Î+(σ)| ≠ |Ĩ+(σ)|,

output Ĩ+(σ) and Ĩ−(σ); otherwise output Î+(σ) and Î−(σ).

The above algorithm is summarized in Algorithm 1.

Theorem 2.3. For each fixed integer m ≥ 2, if t > Im(p, q) with Im(p, q)

defined in (2.1), then Algorithm 1 exactly recovers the true label with prob-

ability 1− o(1).

Note that the time complexity of Algorithm 1 is at most O(nm). Specif-

ically, the random splitting in Step 1 and refinement in Step 3 have time

complexity at most O(nm). In Step 2, the weak recovery algorithm HSC

in Ahn et all. (2018) has time complexity O(nm) (see comments below Re-

mark 1 of (4)). Hence, Theorem 2.3 states that the information theoretic

threshold can be attained by an algorithm with polynomial time complexity.
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2.2 Efficient algorithm for exact recovery

Algorithm 1: Spectral algorithm plus refinement for exact re-

covery

1: Input: A censored m-uniform hypergraph A generated from

Hm(n, p, q, α).

2: Step 1: random splitting.

Randomly select elements in

Mm = {(i1, i2, . . . , im) | 1 ≤ i1 < · · · < im ≤ n} with probability

log logn
logn

to form a subset S1 ⊂ Mm and let S2 = Mm − S1.

Construct hypergraph Ã as Ãi1i2...im = 1[Ai1i2...im = 1], if

i1, i2, . . . , im ∈ S1 and Ãi1i2...im = 0 otherwise. Construct

hypergraph Ā as Āi1i2...im = Ai1i2...im if i1, i2, . . . , im ∈ S2 and

Āi1i2...im = ∗ otherwise.

3: Step 2: spectral algorithm.

Apply the weak recovery algorithm HSC in (4) to Ã and denote

the community output as Ĩ+(σ), Ĩ−(σ).

4: Step 3: refinement.

Flip the label of i ∈ Ĩ+(σ) if e(i, Ĩ+(σ)) < e(i, Ĩ−(σ)).

Flip the label of j ∈ Ĩ−(σ) if e(j, Ĩ−(σ)) < e(j, Ĩ−(σ)).

Let Î+(σ) and Î−(σ) be the resulting communities.

5: Output: If |Î+(σ)| ≠ |Ĩ+(σ)|, output Ĩ+(σ) and Ĩ−(σ);

otherwise output Î+(σ) and Î−(σ).
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2.3 Semidefinite relaxation algorithm

2.3 Semidefinite relaxation algorithm

In subsection 2.2, we show that spectral algorithm with refinement step

can achieve exact recovery. It is also interesting to study whether a single

spectral algorithm without refinement achieves the threshold. In graph

case (m = 2), the answer is confirmative and the semidefinite relaxation

algorithm and spectral algorithm are shown to succeed without refinement

step ((17; 9)). In hyergraph case (m ≥ 3), either censored or uncensored,

it is still an open problem. In this subsection, we study the semidefinite

relaxation algorithm and analyze its performance. To this end, we define

a new hypergraph based on the given hypergraph A and transform it to

a weighted graph. Then we show the semidefinite relaxation algorithm

applied to the weighted graph can achieve exact recovery.

Define hypergraph Ã based on A as

Ãi1i2...im = 1[Ai1i2...im = 1],

and Ãi1i2...im = 0 if |{i1, i2, . . . , im}| ≤ m−1. Each hyperedge Ãi1i2...im takes

value in {1, 0}. The hypergraph Ã shares the same community structure as

A, since

E(Ãi1i2...im) =


pα, {i1, i2, . . . , im} ⊂ I+(σ) or I−(σ);

qα, otherwise.

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing) 



2.3 Semidefinite relaxation algorithm

Next, we construct a weighted graph G = [Gij] based on Ã by

Gij =
∑

1≤i3<···<im≤n

Ãiji3...im .

Define the semidefinite program problem (SDP) as

max
Y

⟨G, Y ⟩

s.t. Y ⪰ 0

⟨Y, J⟩ = 0

Yii = 1, i ∈ [n],

(2.2)

where J is n × n all-one matrix. Suppose σ is the true label and denote

Y = σσT . Let Ŷ be the solution to semidefinite program problem (2.2).

The following result provides a sufficient condition under which Ŷ is an

exact recovery of Y .

Theorem 2.4. For each fixed integer m ≥ 2, let

Jm(p, q) =
2m+2(m− 2)![mp− (m− 2m)q]

(p− q)2
.

If t > Jm(p, q), then P(Ŷ = Y ) = 1− o(1), where Y = σσT with true label

σ.

Note that Jm(p, q) > Im(p, q) for each m ≥ 2. When m = 2 and

the graph is uncensored, Ŷ can exactly recover the true label up to the

information theoretic threshold ((17)). However, for m ≥ 3, it is unclear
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whether Ŷ succeeds or not in the range Im(p, q) < t < Jm(p, q). Similar

gap exists in uncencored hypergraph case ((24)). The proof of Theorem 2.4

is in the Appendix.

3. Proof of Theorem 2.1

In this section, we provide proof of Theorem 2.1.

Proof of Theorem 2.1 : Let l(σ) be the log-likelihood function of a

label σ. Note that by Definition 1.1, the true label vector σ is uniformly

and independently selected from S = {±1}n. By Proposition 4.1 in (9), if

there are labels ηt (1 ≤ t ≤ kn) with kn → ∞ such that l(η1) = l(η2) =

· · · = l(ηkn) = l(σ), then the maximum likelihood estimator (MLE) fails to

exactly recover the true label with probability 1−o(1). Our proof proceeds

by constructing labels ηt (1 ≤ t ≤ kn) with kn → ∞ under the condition

t < Im(p, q).

Firstly, we write down the explicit expression of the likelihood function.

Note that for distinct nodes i1, i2, . . . , im, we have

Ai1i2...im =


1 ,

0 ,

∗ .
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For convenience, let 1[E] be the indicator function of event E and

1i1i2...im(σ) = 1[σi1 = σi2 = · · · = σim ].

Then the likelihood function for σ given an observation of hypergraph A

from Hm(n, p, q, α) is

L =
∏

1≤i1<···<im≤n

(pα)1[Ai1i2...im
=1]1i1i2...im

(σ)[α(1− p)]1[Ai1i2...im
=0]1i1i2...im

(σ)

×(qα)1[Ai1i2...im
=1](1−1i1i2...im

(σ))[α(1− q)]1[Ai1i2...im
=0](1−1i1i2...im

(σ))(1− α)1[Ai1i2...im
=∗]

=
∏

1≤i1<···<im≤n

(1− α)1[Ai1i2...im
=∗](qα)1[Ai1i2...im

=1]

(
p

q

)
1[Ai1i2...im

=1]1i1i2...im
(σ)

×[α(1− q)]1[Ai1i2...im
=0]

(
1− p

1− q

)
1[Ai1i2...im

=0]1i1i2...im
(σ)

=
∏

1≤i1<···<im≤n

(1− α)1[Ai1i2...im
=∗](qα)1[Ai1i2...im

=1][α(1− q)]1[Ai1i2...im
=0]

×
∏

1≤i1<···<im≤n

(
p

q

)
1[Ai1i2...im

=1]1i1i2...im
(σ)(

1− p

1− q

)
1[Ai1i2...im

=0]1i1i2...im
(σ)

.

The maximum likelihood estimator(MLE) is obtained by maximizing L with

respect to σ. The first product factor of L does not involve σ. Hence we

only need to maximize the second product factor of L to get MLE. Denote

l(σ) =
∑

1≤i1<···<im≤n

[
log

(
p

q

)
1[Ai1i2...im = 1]1i1i2...im(σ) + log

(
1− p

1− q

)
1[Ai1i2...im = 0]1i1i2...im(σ)

]
.

The log-likelihood function is equal to

logL = Rn + l(σ), (3.3)
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where Rn is independent of σ.

Below we construct labels ηt (1 ≤ t ≤ kn) with kn → ∞ under the

condition t < Im(p, q). Since Rn is independent of σ. We only need to

focus on l(σ).

Note that

l(σ) =

[
log

(
p

q

)
1[Ai1...im = 1] + log

(
1− p

1− q

)
1[Ai1...im = 0]

]
1[σi1 = · · · = σim = +1]

+

[
log

(
p

q

)
1[Ai1...im = 1] + log

(
1− p

1− q

)
1[Ai1...im = 0]

]
1[σi1 = · · · = σim = −1].

Suppose i0 ∈ I+(σ) has exactly m1 present hyperedges and m2 absent

hyperedges in I+(σ) and has exactly m1 present hyperedges and m2 absent

hyperedges in I−(σ). Suppose j0 ∈ I−(σ) has exactlym1 present hyperedges

and m2 absent hyperedges in I+(σ) and has exactly m1 present hyperedges

and m2 absent hyperedges in I−(σ). Then l(σ) remains the same if we

flip the label of i0 and j0. Let σ̃ be labels obtained from σ by flipping

the labels of i0, j0. We shall verify that l(σ) = l(σ̃). To prove this, let

T1 = log
(

p
q

)
, T2 = log

(
1−p
1−q

)
, then

l(σ) =

(
T1

∑
i1i2...im

1[Ai1i2...im = 1] + T2

∑
i1i2...im

1[Ai1i2...im = 0]

)
1[σi1 = · · · = σim = +1]

+

(
T1

∑
i1i2...im

1[Ai1i2...im = 1] + T2

∑
i1i2...im

1[Ai1i2...im = 0]

)
1[σi1 = · · · = σim = −1].
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Further, l(σ) can be written as

l(σ) = T1

∑
i1i2...im∈I+(σ)
i1i2...im ̸=i0

1[Ai1i2...im = 1] + T1

∑
i2...im∈I+(σ)
i2...im ̸=i0

1[Ai0i2...im = 1]

+ T2

∑
i1i2...im∈I+(σ)
i1i2...im ̸=i0

1[Ai1i2...im = 0] + T2

∑
i2...im∈I+(σ)
i2...im ̸=i0

1[Ai0i2...im = 0]

+ T1

∑
i1i2...im∈I−(σ)
i1i2...im ̸=j0

1[Ai1i2...im = 1] + T1

∑
i2...im∈I−(σ)
i2...im ̸=j0

1[Aj0i2...im = 1]

+ T2

∑
i1i2...im∈I−(σ)
i1i2...im ̸=j0

1[Ai1i2...im = 0] + T2

∑
i2...im∈I−(σ)
i2...im ̸=j0

1[Aj0i2...im = 0],

and

l(σ̃) = T1

∑
i1i2...im∈I+(σ)
i1i2...im ̸=j0

1[Ai1i2...im = 1] + T1

∑
i2...im∈I+(σ)
i2...im ̸=j0

1[Aj0i2...im = 1]

+ T2

∑
i1i2...im∈I+(σ)
i1i2...im ̸=j0

1[Ai1i2...im = 0] + T2

∑
i2...im∈I+(σ)
i2...im ̸=j0

1[Aj0i2...im = 0]

+ T1

∑
i1i2...im∈I−(σ)
i1i2...im ̸=i0

1[Ai1i2...im = 1] + T1

∑
i2...im∈I−(σ)
i2...im ̸=i0

1[Ai0i2...im = 1]

+ T2

∑
i1i2...im∈I−(σ)
i1i2...im ̸=i0

1[Ai1i2...im = 0] + T2

∑
i2...im∈I−(σ)
i2...im ̸=i0

1[Ai0i2...im = 0]

Then l(σ) = l(σ̃) by the assumption of i0 and j0.

Next we will show there are kn (kn → ∞) such pairs. More specifically,

we will show that there exists i1, i2, . . . , ik ∈ I+(σ) and j1, j2, . . . , jk ∈ I−(σ)

with k ≫ 1 such that the likelihood function remains unchanged if we flip

the label of a pair (it, jt) t = 1, 2, . . . , k. Let ηt be the label obtained by

flipping the label of it, jt in σ. Then l(ηt) = l(σ) for 1 ≤ t ≤ k → ∞.
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Let n1 = |I+(σ)| and n2 = |I−(σ)|. Then n1, n2 =
n
2
(1 + O(n− 1

3 )) with

probability 1−o(1). Hence we can take n1 = n2 =
n
2
below. Let S+ ⊂ I+(σ)

be a random subset with |S+| = n
log2 n

and S− ⊂ I−(σ) be a random subset

with |S−| = n
log2 n

. Denote S = S+ ∪ S−. Define

S0 =
{
i ∈ S|any i2, . . . , it ∈ S, it+1, . . . , im ∈ Sc, s.t. Aii2...itit+1...im = ∗, t ≥ 2

}
.

For each node i ∈ S0, hyperedge Aii2...im is possibly revealed if and only if

{i2, . . . , im} ⊂ I+(σ)− S or {i2, . . . , im} ⊂ I−(σ)− S.

We will show |S0| = 2n(1+o(1))

log2 n
with probability 1− o(1). Let

T =
m∑
t=2

∑
i1,...,it∈S

it+1,...,im∈Sc

1[Ai1i2...itit+1...im ̸= ∗].

The expectation of T is

ET =
m∑
t=2

( 2n
log2 n

t

)(
n− 2n

log2 n

m− t

)
α

=
m∑
t=2

( 2n
log2 n

t

)(
n− 2n

log2 n

m− t

)
t log n

nm−1

=
c · nm

log4 n

t log n

nm−1

≍ n

log3 n
.

Hence, by Markov inequality we have

P
(
T ≥ n

log2 n
√
log n

)
≤ 1

n
log2 n

√
logn

c · n
log3 n

=

√
log n

log n
= o(1).
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Then T < n
log2 n

√
logn

with probablity 1− o(1). Hence |S0| = 2n
log2 n

(1 + o(1))

with probability 1− o(1).

Let m1 =
√
pqt logn

2m−1(m−1)!
, m2 =

√
(1−p)(1−q)t logn

2m−1(m−1)!
. For some k ≫ 1, we will

show that there exists it ∈ S0∩S+, (1 ≤ t ≤ k) such that it has m1 present

hyperedges and m2 absent hyperedges in I+(σ) and I−(σ) respectively. De-

note

ñ1 =
(n1− 2n

log2 n

m−1

)
∼ nm−1

2m−1(m−1)!
.

Let i0 ∈ S0 ∩ S+, the probability that i0 has m1 present hyperedges, m2
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absent hyperedges in I+(σ) and I−(σ) respectively is,

p0 =
ñ1!

m1!m2!(ñ1 −m1 −m2)!
· (αp)m1 [α(1− p)]m2(1− α)(ñ1−m1−m2)

× ñ1!

m1!m2!(ñ1 −m1 −m2)!
· (αq)m1 [α(1− q)]m2(1− α)(ñ1−m1−m2)

∼ 1

m1!2m2!2

[
ñ
ñ1+

1
2

1 e−ñ1

(ñ1 −m1 −m2)
ñ1−m1−m2+

1
2 e−ñ1+m1+m2

]2
(α2pq)m1

× [α2(1− p)(1− q)]m2(1− α)2(ñ1−m1−m2)

=
1

m1!2m2!2

[
(ñ1 −m1 −m2)

m1+m2

em1+m2(1− m1+m2

ñ1
)ñ1+

1
2

]2
(α2pq)m1 [α2(1− p)(1− q)]m2(1− α)2(ñ1−m1−m2)

=
1

m1!2m2!2

[
ñm1+m2
1

em1+m2e−(m1+m2)

]2
(α2pq)m1

[
α2(1− p)(1− q)

]m2 e
− t logn

2m−2(m−1)!

=
ñ
2(m1+m2)
1

m1!2m2!2
e
− t logn

2m−2(m−1)! (α2pq)m1 [α2(1− p)(1− q)]m2

=
n
− t

2m−2(m−1)!

m1!2m2!2
(α2ñ2

1pq)
m1 [α2ñ2

1(1− p)(1− q)]m2

= n
− t

2m−2(m−1)!
e2(m1+m2)

4π2m1m2

(
α2ñ2

1pq

m2
1

)m1(
α2ñ2

1(1− p)(1− q)

m2
2

)m2

=
1

4π2m1m2

n
− t

2m−2(m−1)! e

√
pq+

√
(1−p)(1−q)

2m−2(m−1)!
t logn

=
1

4π2m1m2

n
− t

2m−2(m−1)!
[1−√

pq−
√

(1−p)(1−q)]

=
1

4π2m1m2

n
−t· (

√
p−√

q)2+(
√
1−p−

√
1−q)2

2m−1(m−1)! .

If t < 2m−1(m−1)!

(
√
p−√

q)2+(
√
1−p−

√
1−q)2

, then p0 ≫ n1−ϵ

n
for some ϵ ∈ (0, 1). Similarly,

the probability that j0 ∈ S0∩S− has m1 present hyperedges and m2 absent

hyperedges in I+(σ) and I−(σ) is equal to p0.

For i ∈ S0, let 1i denote the event that i has m1 present hyperedges and
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m2 absent hyperedges in I+(σ) and I−(σ) respectively. Define two random

variables

X =
∑

i∈S0∩S+

1i, Y =
∑

i∈S0∩S−

1i.

If 1i = 1j = 1 for i ∈ S0 ∩ S+ and j ∈ S0 ∩ S−, then the likelihood

function remains unchanged if we flip the labels of i and j. By Chebyshev’s

inequality, given |S0 ∩ S+|, we have

P
(
X ≤ (1− ϵ)

2n

log2 n
p0

)
= P

(
X ≤ (1− ϵ)

2n

log2 n
p0

∣∣∣∣|S0 ∩ S+| ≥
2n

log2 n
(1− o(1))

)
· P
(
|S0 ∩ S+| ≥

2n

log2 n
(1− o(1))

)
+ P

(
X ≤ (1− ϵ)

2n

log2 n
p0

∣∣∣∣|S0 ∩ S+| <
2n

log2 n
(1− o(1))

)
P
(
|S0 ∩ S+| <

2n

log2 n

)
≤ P

(
X ≤ (1− ϵ)|S0 ∩ S+|p0

∣∣∣∣|S0 ∩ S+| ≥
2n

log2 n
(1− o(1))

)
+ o(1)

≤ 1

ϵ2|S0 ∩ S+|p0
+ o(1).

Since p0 ≫ n1−ϵ

n
for some ϵ > 0 and |S0 ∩ S+| ≥ 2n

log2 n
(1 − o(1)). Then

X ≥ |S0 ∩ S+|p0 → +∞ with probability 1 − o(1). Similarly Y ≥ |S0 ∩

S+|p0 → +∞ with probability 1 − o(1). As a result, we have pairs (it, jt)

(1 ≤ t ≤ k → ∞). For each t, the likelihood is constant by flipping the

labels of it and jt. The proof is complete by Proposition 4.1 in (9).
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4. Proof of Theorem 2.2

Proof of Theorem 2.2 : Let σ be the maximum likelihood estimator(MLE).

Recall the log-likelihood function in (3.3). The MLE fails to exactly recover

the true label if there exists a label η such that l(η) ≥ l(σ) with probabil-

ity δ for some constant δ > 0. Our proof proceeds by showing that the

probability MLE fails is o(1).

The maximum likelihood estimator(MLE) is obtained by maximizing

logL in (3.3) with respect to σ. The first term of logL does not involve σ.

Hence we only need to maximize the second term of logL to get MLE. Let

σ be the MLE. Recall that the MLE fails if there exists a label η such that

l(η) ≥ l(σ) with probability δ for some constant δ > 0. Below, we show the

probability MLE fails is o(1).

Let k be an even number and 1 ≤ k ≤ n
2
. Define the Hamming distance

between two labels σ, η as

d(σ, η) = min

{
n∑

i=1

1[σi ̸= ηi],
n∑

i=1

1[σi ̸= −ηi]

}
.

Let η be a label such that d(σ, η) = k, and denote

Ci1i2...im(A) = log
(

p
q

)
1[Ai1i2...im = 1] + log

(
1−p
1−q

)
1[Ai1i2...im = 0].
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Then log-likelihood difference at η and σ is

l(η)− l(σ) =
∑

1≤i1<···<im≤n

Ci1i2...im(A)(1i1...im(η)− 1i1...im(σ)).

We will show

P(∃k and d(σ, η) = k , s.t. l(η)− l(σ) ≥ 0) = o(1).

Recall I+(σ) and I−(σ). Denote 1i1...im(η) = I[ηi1 = ηi2 = · · · = ηim ]. Note

that

1i1...im(η)−1i1...im(σ) =


1, i1 . . . im ⊂ I+(η) or I−(η), i1 . . . im ̸⊂ I+(σ) , I−(σ);

−1, i1 . . . im ⊂ I+(σ) or I−(σ), i1 . . . im ̸⊂ I+(η), I−(η);

0, otherwise.

Hence, l(η)− l(σ) is written as

l(η)− l(σ) =
∑

i1...im
i1...im⊂I+(η) or I−(η)
i1...im ̸⊂I+(σ),I−(σ)

Ci1...im(A)−
∑

i1...im
i1...im⊂I+(σ) or I−(σ)
i1...im ̸⊂I+(η),I−(η)

Ci1...im(A).

It is easy to verify that there are nk = 2
[( n

2
m

)
−
( k

2
m

)
−
(n−k

2
m

)]
hyperedges

{i1, . . . , im} such that {i1 . . . im} ⊂ 1+(η) or 1−(η), {i1 . . . im} ̸⊂ 1+(σ),1−(σ).

For convenience, define random variables X, Y as

P(X = 1) = αp, P(X = 0) = α(1− p), P(X = −1) = 1− α.

P(Y = 1) = αq, P(Y = 0) = α(1− q), P(Y = −1) = 1− α.

Let Xi, Yi be i.i.d copies of X, Y respectively and
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Wi = log
(

p
q

)
1[Xi = 1] + log

(
1−p
1−q

)
1[Xi = 0]

Vi = log
(

p
q

)
1[Yi = 1] + log

(
1−p
1−q

)
1[Yi = 0].

For any r > 0, by Markov inequality we have

P(l(η)− l(σ) ≥ 0) = P

(
nk∑
i=1

(Vi −Wi) ≥ 0

)

= P

(
nk∑
i=1

(Wi − Vi) ≤ 0

)

= P

(
e

nk∑
i=1

(−r)(Wi−Vi)
≥ 1

)
≤

[
E
(
e−rW1

)
E
(
erV1

)]nk .

Next, we find the explicit expression of expectations E
(
e−rW1

)
and E

(
erV1

)
.

E[e−rW1 ] = Ee−r(log( p
q )1[Xi=1]+log( 1−p

1−q )1[Xi=0])

= e−r log( p
q
)αp+ e−r log( 1−p

1−q
)α(1− p) + (1− α)

=

(
q

p

)r

αp+

(
1− q

1− p

)r

α(1− p) + (1− α)

E[erV1 ] = Eer(log(
p
q
)1[Yi=1]+log( 1−p

1−q
)1[Yi=0])

= er log(
p
q
)αq + er log(

1−p
1−q

)α(1− q) + (1− α)

=

(
p

q

)r

αq +

(
1− p

1− q

)r

α(1− q) + (1− α)
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Taking r = 1
2
yields

E[e−rW1 ] = α
√
pq + α

√
(1− p)(1− q) + (1− α)

= 1 + α[
√
pq +

√
(1− p)(1− q)− 1],

E[erV1 ] = α
√
pq + α

√
(1− p)(1− q) + (1− α)

= 1 + α[
√
pq +

√
(1− p)(1− q)− 1].

Hence,

logP (l(η)− l(σ) ≥ 0) ≤ nk logE[e−rW1 ] + nk logE[erV1 ]

≤ nk[2α(
√
pq +

√
(1− p)(1− q)− 1)]

= nkα
[
(−1)

{
(
√
p−√

q)2 + (
√

1− p−
√

1− q)2
}]

= −nkα
[
(
√
p−√

q)2 + (
√
1− p−

√
1− q)2

]
. (4.4)

For k ≥ n
log logn

, it is easy to check nk ≥ 1
2m−1

n
log logn

(
n−1
m−1

)
. Hence by (4.4),

we get

P (l(η)− l(σ) ≥ 0) ≤ e−[(
√
p−√

q)2+(
√
1−p−

√
1−q)2] t logn

nm−1
1

2m−1
n

log logn
nm−1

(m−1)!

= e
−[(

√
p−√

q)2+(
√
1−p−

√
1−q)2] t

2m−1(m−1)!

n logn
log logn

= e−c n logn
log logn ,

for some positive constant c. Clearly, there are
(n

2
k
2

)2
many choices for η

with d(σ, η) = k. Note that
(n

2
k
2

)2
≤ 2n. Then the probability that there
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exists η with d(σ, η) = k for k ≥ n
log logn

is upper bounded by

n

2
· 2n · e−c n logn

log logn = en log 2+log n
2
−cn logn

log logn = o(1).

For k < n
log logn

, we have nk =
k

2m−1

(
n−1
m−1

)
. Then

P (l(η)− l(σ) ≥ 0) ≤ e−[(
√
p−√

q)2+(
√
1−p−

√
1−q)2] t logn

nm−1
k

2m−1
nm−1

(m−1)!

= e
− (

√
p−√

q)2+(
√
1−p−

√
1−q)2

2m−1(m−1)!
tk logn

= n
− [

√
p−√

q]2+[
√
1−p−

√
1−q]2

2m−1(m−1)!
tk
.

There are
(n

2
k
2

)2
≤ nk many choices for η with d(σ, η) = k. Then the proba-

bility that there exists η with d(σ, η) = k for k < n
log logn

is upper bounded

by

k ·
(n

2
k
2

)2

P (l(η)− l(σ) ≥ 0) ≤ knk · n− [
√
p−√

q]2+[
√
1−p−

√
1−q]2

2m−1(m−1)!
tk

≤ knkn−(1+ϵ)k

=
k

nϵk
= o(1),

where ϵ is a constant such that
[
√
p−√

q]2+[
√
1−p−

√
1−q]2

2m−1(m−1)!
t = 1 + ϵ. This is

possible by the condition t > 2m−1(m−1)!

(
√
p−√

q)2+(
√
1−p−

√
1−q)2

. Then the proof is

complete.
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5. Proof of Theorem 2.3

The proof proceeds by showing the probability that there exists a misla-

belled node goes to zero. By the definition of hypergraph Ã, we have

P(Ãi1i2...im = 1) =


log logn
logn

· αp, {i1, i2, . . . , im} ⊂ I+(σ) or I−(σ),

log logn
logn

· αq, otherwise.

=


tp log logn

nm−1 , {i1, i2, . . . , im} ⊂ I+(σ) or I−(σ),

tq log logn
nm−1 , otherwise.

Then Ã has the same community structure as the original hypergraph A

and in Ã, the order of hyperedge probability is log logn
nm−1 . With probability

1− o(1), the weak recovery algorithm in (4) will recover the true labels of

(1−δ)n nodes of Ã with δ = o(1). Denote the communities as Ĩ+(σ), Ĩ−(σ).

Hence, with probability 1 − o(1), there are δ
2
n nodes in Ĩ+(σ) and Ĩ−(σ)

that are mislabelled. By the refinement step, a node i among the correctly

labelled 1−δ
2
n nodes in Ĩ+(σ) is mislabelled if

e(i, Ĩ+(σ)) < e(i, Ĩ−(σ)).

A node among the mislabelled δ
2
n nodes in Ĩ+(σ) remains mislabelled if

e(i, Ĩ+(σ)) ≥ e(i, Ĩ−(σ)).
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Similar result holds for nodes in Ĩ−(σ). Let Xi, Yi,Wi, Vi be defined as in

the proof of Theorem 2.2 and W ′
i , V

′
i be i.i.d. copies of Wi, Vi. Then a node

i is mislabelled is equivalent to

(
δ
2n

m−1)∑
i=1

Wi +

(
n
2

m−1)−(
δ
2n

m−1)∑
i=1

Vi ≥
((1−δ)n2

m−1 )∑
i=1

W ′
i +

(
n
2

m−1)−(
(1−δ)n2
m−1 )∑

i=1

V ′
i .

We are going to bound the probability that node i is mislabelled and

then apply the union bound. Let r = 1

δ
√

log( 1
δ
)
. Then we have

pi = P(node i is mislabelled)

= P

(
δ
2n

m−1)∑
i=1

Wi +

(
n
2

m−1)−(
δ
2n

m−1)∑
i=1

Vi ≥
((1−δ)n2

m−1 )∑
i=1

W ′
i +

(
n
2

m−1)−(
(1−δ)n2
m−1 )∑

i=1

V ′
i


= P

(
n
2

m−1)−(
δ
2n

m−1)∑
i=1

(Vi −W ′
i ) +

(
δ
2n

m−1)∑
i=1

Wi ≥
(

n
2

m−1)−(
(1−δ)n2
m−1 )∑

i=1

V ′
i −

(
n
2

m−1)−(
δn
2

m−1)−(
(1−δ)n2
m−1 )∑

i=1

W ′
i


≤ P

(
n
2

m−1)−(
δ
2n

m−1)∑
i=1

(Vi −W ′
i ) ≥ −rδ log n

+

P

(
δ
2n

m−1)∑
i=1

Wi +

(
n
2

m−1)−(
δn
2

m−1)−(
(1−δ)n2
m−1 )∑

i=1

W ′
i −

(
n
2

m−1)−(
(1−δ)n2
m−1 )∑

i=1

V ′
i ≥ rδ log n


= (I) + (II).

Next we show (II) = O (n−2) and (I) = O
(
n− t

Im(p,q)

)
. It is easy to verify
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that

(II) ≤ P

(
δ
2n

m−1)∑
i=1

Wi ≥
rδ

3
log n

+ P

(
n
2

m−1)−(
δn
2

m−1)−(
(1−δ)n2
m−1 )∑

i=1

W ′
i ≥

rδ

3
log n


+ P

(
n
2

m−1)−(
(1−δ)n2
m−1 )∑

i=1

−V ′
i ≥ rδ

3
log n

 .

Since p > q > 0, it follows that 1− q > 1− p and then

Wi = log

(
p

q

)
1[Xi = 1] + log

(
1− p

1− q

)
1[Xi = 0]

≤ log

(
p

q

)
1[Xi = 1].

Then by the multiplicative Chernoff bound, one has

P

(
δ
2n

m−1)∑
i=1

Wi ≥
rδ

3
log n

 ≤ P

(
δ
2n

m−1)∑
i=1

1[Xi = 1] ≥ rδ log n

3 log(p
q
)


≤

(
r

δm−22
m−1(m− 1)!

e · 3pt log(p
q
)

)− rδ logn

3 log(
p
q )

= e
− logn

3 log(
p
q )
√

log( 1
δ
)
[log( 1

δ
)+(m−2) log( 1

δ
)(1+o(1))]

= e
−

(m−1)
√

log( 1
δ
)

3 log(
p
q )

logn (1+o(1))

= O
(
n−2
)
.

Similarly, we get

P

(
n
2

m−1)−(
δn
2

m−1)−(
(1−δ)n2
m−1 )∑

i=1

W ′
i ≥

rδ

3
log n

 = O
(
n−2
)
.
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Note that

−V ′
i = log

(
1− p

1− q

)
1[Ai = 0]− log

(
p

q

)
1[Ai = 1]

≤ log

(
1− p

1− q

)
1[Ai = 0].

Hence, by the multiplicative Chernoff bound, it follows that

P

(
n
2

m−1)−(
(1−δ)n2
m−1 )∑

i=1

(−V ′
i ) ≥

rδ

3
log n

 ≤ P

(
n
2

m−1)−(
(1−δ)n2
m−1 )∑

i=1

1[Ai = 0] ≥ rδ log n

3 log( 1−q
1−p

)


≤

(
r

δm−22
m−1(m− 1)!

e · 3(1− p)t log( 1−q
1−p

)

)− rδ logn

3 log(
1−q
1−p )

= e
− 1−δ logn

3 log(
1−q
1−p )

[(m−1) log( 1
δ
)(1+o(1))]

= e
−

(m−1)
√

log( 1
δ
) logn

3 log(
1−q
1−p )

(1+o(1))

= O
(
n−2
)
.

Then we conclude that (II) = O (n−2).

Next we bound (I). Note that
( n

2
m−1

)
−
( δ

2
n

m−1

)
= nm−1

2m−1(m−1)!
(1 + o(1)).

By Markov’s inequality, one has

(I) = P

e 1
2

(
n
2

m−1)−(
δ
2n

m−1)∑
i=1

(Vi−W ′
i ) ≥ e−

rδ logn
2


≤ erδ

logn
2 (E[e

1
2
V1e−

1
2
W ′

1 ])
nm−1

2m−1(m−1)!

= erδ
logn
2 [e−

1
2
log( p

q
)αp+ e−

1
2
log( 1−p

1−q
)α(1− p) + (1− α)]

nm−1

2m−1(m−1)!

×[e
1
2
log( p

q
)αq + e

1
2
log( 1−p

1−q
)α(1− q) + (1− α)]

nm−1

2m−1(m−1)! .
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Taking logrithm on both side yields

log(I) ≤ 1

2
rδ log n+

nm−1α

2m−1(m− 1)!
[2
√
pq + 2

√
(1− p)(1− q)− 2]

=
1

2

log n√
log(1

δ
)
− t log n

2m−1(m− 1)!
[(
√
p−√

q)2 + (
√
1− p−

√
1− q)2].

Hence,

(I) ≤ n
−t

(
√
p−√

q)2+(
√
1−p−

√
1−q)2

2m−1(m−1)!
(1+o(1))

= n− t
Im(p,q)

(1+o(1)).

Since t > Im(p, q) by assumption, we get (I) ≤ n−(1+ϵ) for some small

constant ϵ > 0 and hence

pi ≤ (I) + (II) ≤ n−(1+ϵ).

By union bound, the probability that there exists a mislabelled node is

bounded by n−ϵ = o(1). Then the proof is complete.
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