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Abstract: We address the regression problem with a new form of data that arises from data

privacy applications. Instead of point values, the observed explanatory variables are sub-

sets containing each individual’s original value. The classical regression analyses such as

least squares are not applicable since the set-valued predictors only carry partial informa-

tion about the original values. We propose a computationally efficient subset least squares

method to perform regression for such data. We establish upper bounds of the prediction

loss and risk in terms of the subset structure, the model structure, and the data dimension.

The error rates are shown to be optimal under some common situations. Furthermore, we

develop a model selection method to identify the most appropriate model for prediction.

Experiment results on both simulated and real-world datasets demonstrate the promising

performance of the proposed method.
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1. Introduction

Data privacy has become an emerging societal concern (Enserink and Chin,

2015; Cohen and Nissim, 2020). For example, Rocher et al. (2019) showed that

even if the common identifiers of each individual are removed, 99.98% of Amer-

icans could be correctly re-identified with only 15 demographic attributes such as

family size and vehicle type. Therefore, privacy-preserving methods to protect

individual identification and sensitive data values are receiving increasing atten-

tion nowadays. In particular, a popular choice is that the data owner no longer

releases the exact valueX of each individual. Instead, a quantity Z relevant toX

will be used to enhance individual privacy. Along this direction, several privacy-

preserving methods have been proposed, including differential privacy (Dwork

et al., 2006) that uses the randomized response technique (Warner, 1965) or adds

noises to X , k-anonymity (Aggarwal, 2005) that groups X with similar values

to a representative value, and secure multi-party computing (Yao, 1982; Chaum

et al., 1988) that encrypts X by cryptography techniques.

In the development of data privacy techniques, a critical use scenario con-

cerns the data collection procedure. Recently, a new mechanism named subset

privacy (Wang and Ding, 2021) was proposed to address the challenge of private

data collection. Specifically, the data collector, such as a service provider, will

only collect a setA that contains the original valueX held by the subject, such as
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an individual user. For example, in a study of the income with respect to race in

the Adult Dataset (Dua and Graff, 2017), a data collector could perform a survey

that only collects a set of races instead of the exact race from each participant.

The generation of A can be easily realized through a survey-based system, such

as the independent design introduced in Subsection 2.2.

Subset privacy provides a privacy guarantee against de-identification. Nev-

ertheless, it is highly nontrivial to perform regression and prediction using the

new format of data. This paper considers the general regression problem in-

volving a real-valued response variable Y and set-valued predictor variables

A1, . . . , Ad. Specifically, we study the regression model Y = f(X1, . . . , Xd)+ε,

where ε is a random noise. The goal is to estimate the underlying function f from

n observations of (Y,A1, . . . , Ad). This is a nontrivial problem even when f is

linear, since the predictors are no longer point-valued data. For example, we

cannot apply the standard least squares method.

In this paper, we propose a computationally efficient subset least squares

method. The main idea is to minimize the empirical modified mean squared

error, given the set-valued data. We derive a closed-form solution for the op-

timization problem above. We establish an upper bound of the prediction risk

and show that it is rate-optimal in some circumstances of particular interest. Ex-

amples are additive models where the effect of each variable is independent of
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others and saturated models that all variables are interactive with one another.

We also discuss some practical strategies to improve the numerical stability and

leverage fast matrix operation. Furthermore, to select a model from different

combinations of variables or interaction orders, we propose a selection method

and prove its asymptotic efficiency under some conditions. Finally, experiments

based on simulated and real data are performed to verify the developed method.

2. Problem Formulation

2.1 Model

Notation. For a positive integer p, let [p] and 2[p] denote the set {1, 2, . . . , p}

and its power set, respectively. For a set A, let |A|, Ac denote its cardinality and

complement, respectively. Let 1 and Ip denote the indicator function and the

p× p identity matrix, respectively. The Kronecker product is denoted by⊗. The

trace of a matrix M is tr(M). The largest eigenvalue, smallest eigenvalue, and

the condition number of a positive definite matrix M are denoted as σmax(M),

σmin(M), κ(M) = σmax(M)σ−1min(M), respectively. We sometimes represent a

finite set A ⊆ [p] with a vector 1A ∈ {0, 1}p, whose jth coordinate is one if

j ∈ A and zero otherwise. Also, 1X is understood as 1{X} for a single element

X ∈ [p].

We consider the regression model Y = f(X) + ε, where Y ∈ R is the
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2.1 Model

response, X = (X1, . . . , Xd)
T with Xj ∈ [pj], j ∈ [d] is a d-dimensional cate-

gorical predictor, pj is a positive integer, and ε is a noise term independent ofX

with mean zero and variance σ2 > 0. We do not make other specific assumptions

on the distribution of ε. In this paper, we only consider categorical predictors.

In the presence of continuous-valued predictors (Ding and Ding, 2020, 2021),

one may discretize those predictors to use our approach. For example, age could

be divided into several groups. We parameterize f(X) with Γ(X)Tβ, where

Γ(X) ∈ Rq represents the postulated model structure, consisting of the dummy

encoding of original variables and interactions between two or more variables,

and β ∈ Rq is the corresponding unknown coefficients vector. We illustrate how

to encode the model structure through Γ(·) by three examples.

Example 1 (Additive model) In an additive model, also known as the main ef-

fect model, the regression function is decomposed as f(X) =
∑d

j=1 fj(Xj), and

fj(Xj) is called the main effect for variable Xj . To avoid collinearity, we repa-

rameterize the model by adding a grand mean effect β0 ∈ R and the constraints

that for any j,
∑

k∈[pj ] fj(k) = 0. In other words, f(X) = β0 +
∑d

j=1 fj(Xj),

and

β = (β0, f1(1), . . . , f1(p1 − 1), . . . , fd(1), . . . , fd(pd − 1))T,

q = 1 +
∑

1≤j≤d

(pj − 1), Γ(X) = (1,γ1(X1), . . . ,γd(Xd))
T,
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2.1 Model

where γj(Xj) = (1Xj=1 − 1Xj=pj , . . . ,1Xj=pj−1 − 1Xj=pj).

Example 2 (Quadratic model) Besides the main effects, a quadratic model

considers pairwise interaction effects. In other words, f(X) =
∑d

j=1 fj(Xj) +∑
1≤k<l≤d hk,l(Xk, Xl), and hk,l is the interaction effect between Xk and Xl. In

addition to the parameterization of the additive model above, we add constraints

that
∑

s∈[pl] hk,l(Xk, s) = 0 and
∑

s∈[pk] hk,l(s,Xl) = 0 for any Xk ∈ [pk],

Xl ∈ [pl], and k, l ∈ [d]. The corresponding model structure is

Γ(X) = (1,γ1(X1), . . . ,γd(Xd),γ1(X1)⊗ γ2(X2), . . . ,γd−1(Xd−1)⊗ γd(Xd))
T.

The number of free parameters q = 1 +
∑

1≤k<l≤d(pkpl − 1). The parameter

β consists of the grand mean β0, the main effects fj(1), . . . , fj(pj − 1) for each

variable Xj , and interaction effects hk,l(1, 1), . . . , hk,l(1, pl − 1), . . . , hk,l(pk −

1, 1), . . . , hk,l(pk − 1, pl − 1) for any two variables Xk and Xl.

Example 3 (Saturated model) In a saturated model, also known as the fully

interactive model, every level ofX corresponds to a free parameter. We have

β = (f(X1 = 1, . . . , Xd = 1), . . . , f(X1 = p1, . . . , Xd = pd))
T,

q =
∏

1≤j≤d

pj,Γ(X) =
⊗
1≤j≤d

1Xj
.
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2.2 Subset Generating Process

Let pw denote the population distribution of X with pr(X = x) = wx for

any outcome x of X , and w is the collection of wx, which is not required to

be known in practice. We assume that the original data {Xi, Yi, i = 1, . . . , n}

are independently and identically distributed. We only obtain set-valued data

{Ai, Yi, i = 1, . . . , n}. Here, each observation of A = (A1, . . . , Ad) ∈ A is a

subset associated with X , where A = {A : Aj ∈ 2[pj ], j ∈ [d]}. The transition

law ofX → Awill be elaborated next in Subsection 2.2. The goal is to estimate

the regression function f , or equivalently, the model parameters β.

2.2 Subset Generating Process

We describe the transition law of X → A in this subsection and give some

examples. In the data privacy literature, a desirable property is that a privatized

observation A does not introduce selective bias regarding X . Namely, we hope

that the only information about X from A is that X ∈ A, also called the non-

informative property. More specifically, we assume that the transition of X →

A is specified by the following mechanisms (Wang and Ding, 2021). First, we

consider a one-dimensional variable X ∈ [p].

Definition 1 (Conditional mechanism) A conditional mechanism determines
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2.2 Subset Generating Process

the transition law of X → A by

pr(A = a | X = j) = µa1j∈a, a ⊆ [p], j ∈ [p],

where µa satisfies
∑

a:j∈a µa = 1, for all j ∈ [p].

Any particular choice {µa, a ∈ A} of the conditional mechanism is referred

to as a conditional design. We will use {µa, a ∈ A} to denote a conditional

design.

For the multi-dimensional case, we introduce the following mechanism.

Definition 2 (Product mechanism) A product mechanism determines the tran-

sition law ofX → A by

pr(A = (a1, . . . , ad) |X = (j1, . . . , jd)) =
d∏
l=1

pr(Al = al | Xl = jl)

=
d∏
l=1

µal1jl∈al , al ⊆ [pl], jl ∈ [pl], l ∈ [d],

where {µal , al ⊆ [pl]} is a conditional design for l ∈ [d].

Unless mentioned otherwise, we assume pl ≥ 4 to avoid sampling trivial

subsets that contain all categories. There are two techniques to address the case

of pl = 2 or 3. First, we may combine two or more predictors into a single

predictor so that all of them have enough categories. Second, we can generate
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2.2 Subset Generating Process

dummy categories. For example, when the alphabet of X is {1, 2}, we indepen-

dently generate some additional X ∈ {3, 4} from a pre-specified distribution.

Hence, the alphabet is enlarged to {1, 2, 3, 4}, and the aforementioned mecha-

nisms can be applied. We refer to Wang and Ding (2021) for the detailed de-

scription.

A particular case of product mechanism is that, for a given X , any subset A

that contains X , except for the trivial cases A = {X} and A = [p], has equal

probability to be observed. This corresponds to the following design.

Design 1 (Uniform independence design) A uniform independence design

{µa, a ∈ A} satisfies

µa =


0, if |a| = 0, 1, p− 1, p

1
2p−1−p−1 , otherwise.

Another particular case is that only the subsets that have cardinality k and

contain X will be chosen with equal probability.

Design 2 (Uniform k-card design) A uniform k-card design {µa, a ∈ A} sat-

isfies

µa =


1/
(
p−1
k−1

)
, if |a| = k

0, otherwise.
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3. Proposed Method

For technical convenience, the predictor variableX is represented by one-dimensional

X ∈ [p], where p =
∏d

j=1 pj , using the mapping X → X : (x1, . . . , xd) →

xd +
∑d−1

j=1{(xj − 1)
∏d

k=j+1 pk}, also known as the dictionary order ofX . For

a subset A, its corresponding mapping to 1A is 1A =
⊗d

j=1 1Aj
. We will use

one-dimensional X from now on, unless otherwise specified.

We will propose an estimator for the parameterβ in the model Y = Γ(X)Tβ+

ε. The population distributionw is assumed to be known, otherwise, we replace

it with a root-n consistent estimator ŵ as described at the end of this section. Let

P = (Γ(X = 1), . . . ,Γ(X = p))T ∈ Rp×q, W ∈ Rp×p be the diagonal matrix

expanded from w, qi = 1Ai
/1T

Ai
w, Q = (q1, . . . , qn)T, and y = (Y1, . . . , Yn)T.

We propose the following estimator.

β̂ = arg min
β∈Rq

∑
1≤i≤n

{Yi − E(Y | Ai)}2 = arg min
β∈Rq

‖y −QWPβ‖22. (3.1)

Here, the second equality follows from the non-informative property that

E(Y | Ai) =
∑
j∈[p]

pr(X = j | Ai)E(Y | X = j) =
∑
j∈[p]

1j∈Ai

wj
1T
Ai
w

Γ(j)β = qT

iWPβ.

The solution of Equation (3.1) exists and is unique when QWP ∈ Rn×q has
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full column rank; otherwise, we simply take β̂ as zeros. In practice, if QWP is

near-singular, we suggest adding a regularization term involving β to improve

numerical stability, which will be elaborated at the end of this section.

Next, we provide an upper bound for the estimation riskE{f(X)− f̂(X)}2,

where f̂(X) is the estimated value of f(X), and the expectation is taken over

the training data {Yi, Ai, i = 1, . . . , n} and a new predictor X . We make the

following technical assumption.

Assumption 1 (Boundedness) There exist positive values K, L, C and δ such

that

max
1≤X≤p

|f(X)| ≤ K, max
a:µa>0

|a| ≤ L,
max1≤j≤pwj
min1≤j≤pwj

≤ C, and min
a:µa>0

1T

aw ≥ δ.

The requirements of Assumption 1 are reasonable. Firstly, we assume that f(X)

is bounded, so that the variance of the response given a set-valued observation

is not too large. Secondly, the maximum cardinality of set-valued observation

is upper bounded. If the cardinality of a subset is too large, there will be little

information regarding the original value it contains. Thirdly, we assume that X

has a balanced distribution so that there is no dominating or dominated category.

Finally, the condition mina:µa>0 1
T
aw ≥ δ means that the subset design guar-

antees the privacy level is at least δ, which is a reasonable setting for privacy
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purposes (Wang and Ding, 2021).

Let Q̃ =
∑

a∈A µa1a1
T
a be a matrix that only depends on the subset design,

and κ = κ(P TP ) be the condition number of P TP . The (i, j)th element of Q̃

is the probability that the subset A contains j when X = i. Intuitively, Q̃ is a

measurement of the ambiguity of the subset design. A design with less ambi-

guity will have Q̃ closer to an identity matrix. We first introduce the following

Theorem 1 that boundsE[{f(X)− f̂(X)}2 | A1, . . . , An], which is the expected

loss conditional on the observed set values. Here, X is a new predictor variable

independent of the observations. This quantity is different from conventional

loss or risk, since it averages both the noise terms {ε1, . . . , εn} in training data

and predictor variables {X1, . . . , Xn}, given the sets {A1, . . . , An}.

Theorem 1 Under Assumption 1, for any τ ∈ (0, 1/2], with probability at least

1− exp[−2n{(LC)−1σmin(Q̃)τδ}2], we have

E[{f(X)− f̂(X)}2 | A1, . . . , An] ≤ n−1qκLC2(σ2 +K2)σ−1min(Q̃)(1 + 2τ),

for any conditional design {µa, a ∈ A}.

Theorem 2 Under Assumption 1, the prediction risk satisfies

E[{f(X)− f̂(X)}2] ≤ 3n−1qκLC2(σ2 +K2)σ−1min(Q̃)
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for all sufficiently large n, for any conditional design {µa, a ∈ A}.

Corollary 1 Under Assumption 1, if κ is upper bounded by a constant and

σmin(Q̃) is lower bounded away from zero, we have

E[{f(X)− f̂(X)}2] = O

(
q

n

)
.

The proofs of Theorems 1 and 2 are in the supplementary document. Theo-

rem 2 directly implies Corollary 1, which is at the optimal rate of the prediction

risk using the original data Xi, Yi, i = 1, . . . , n. Recall that σmin(Q̃) is only

associated with the subset design, and the condition number κ represents the in-

herent property of the model structure Γ(·). We will show that the conditions

of Corollary 1 hold in many common situations with a proper subset design and

model structure. We first give the following result.

Proposition 1 For the uniform independence design (Design 1) and uniform k-

card design (Design 2), we have

σ−1min(Q̃) =
∏

1≤j≤d

aj
aj − 1

,

where aj = 2 for the uniform independence design, and aj = (pj − 1)/(k − 1)

for the uniform k-card design.
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Proposition 1 implies that σ−1min(Q̃) is at most 2d, and almost a constant for

the uniform 2-card design. For example, if we use the uniform 2-card design to

privatize a ten-digit phone number, then σ−1min(Q̃) = (9/8)10 < 4. The proof of

Proposition 1 is in the supplementary document. Next, we show that Corollary 1

holds for two widely used model structures.

Example 1 (Additive model, continued). It can be shown that for the additive

model parameterized as in Example 1, the condition number of matrix P TP sat-

isfies κ = max1≤j≤d pj . So, when the maximum value of pj is bounded by a

constant, the risk bound is rate optimal. The proof is included in the supplemen-

tary document.

Example 3 (Saturated model, continued). For the saturated model, P is an

identity matrix, so κ = 1 and the risk bound is rate optimal.

Regularized subset least squares estimator. In practice, the matrix QWP

is not necessary a full column rank matrix. To promote estimation stability, we

suggest use the penalized estimator

β̂ = arg min
β∈Rq

‖y −QWPβ‖22 + λJ(β),

where λ is a tuning parameter and J(·) is a regularization function such as

J(β) = ‖β‖22 (ridge-type regression) and J(β) = ‖β‖1 (lasso-type regression).
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Estimation of population distribution. If the population distribution w

is unknown, we can estimate it by the method of moments with the following

equation.

E(1A) =
∑
a∈A

pr(A = a)1a =
∑
a∈A

1aµa1
T

aw = Q̃w.

In other words, given set observations {A1, . . . , An}, the estimator ŵ is solved

from

Q̃ŵ = n−1
n∑
i=1

1Ai
.

It can be shown that this moment-based estimator is consistent and root-n asymp-

totically normal under some regularity conditions (Wang and Ding, 2021).

Maximum likelihood method. The proposed subset least squares estima-

tor does not require the distribution of the noise ε to be known. If we as-

sume the noise distribution is parameterized, an alternative way is to calculate

the maximum likelihood estimator. The pioneering work of Dempster et al.

(1977) studied a general class of incomplete data and proposed the Expectation-

Maximization algorithm to find the maximum likelihood estimator. We extend

the concept of incomplete data to our problem, regarding {Y,A} as the incom-

plete data and {Y,X,A} as the complete data. Nevertheless, we do not recom-

mend this method for our problem because of its computational cost and em-
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pirical performance, even if the noise distribution assumption is justifiable. The

total computational cost of the earlier proposed estimator is O(nq2). In contrast,

the cost of the Expectation-Maximization algorithm is at leastO(knq2) per itera-

tion, where k is the average cardinality of the observed sets. We implemented the

Expectation-Maximization algorithm with Gaussian noise and found its empiri-

cal performance was undesirable compared with the subset least squares method.

Details about the algorithm derivation and time complexity are in the supplemen-

tary document.

4. Model selection

In practice, it is rare that we know the structure Γ(·) of the underlying model

f(X) = Γ(X)Tβ. This section focuses on the selection of an appropriate model,

such as the additive or quadratic model, or the selection of variables in the mod-

els. Suppose that we have a set of candidate modelsMn = {α : Γα(·)} indexed

by α. Let X 7→ f̂α(X) denote the estimated model α by subset least squares

method. Since the observed data are set-valued, we consider the following mod-

ified squared error loss

Ln(α) = n−1
∑

1≤i≤n

{f(Xi)− f̂α(Ai)}2, (4.2)
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where f̂α(Ai) is the estimated mean of Y conditional on Ai. The model with the

smallest loss is

α∗n = arg min
α∈Mn

Ln(α).

Since Ln(α) is not available as it involves the unknown f , we propose the fol-

lowing way to select the model.

α̂n = arg min
α∈Mn

Sn(α), where Sn(α) = n−1
∑

1≤i≤n

{yi− f̂α(Ai)}2+2n−1σ̂2pn(α),

pn(α) is the number of free parameters of model α, and σ̂ is an estimator of the

noise level σ. The above selection method is named the modified Mallows’s Cp

criterion (Mallows, 2000), denoted by mCp.

Theorem 3 Assume that E[{E(Y | X) − E(Y | A)}2] is bounded away from

zero, |Mn|/n → 0 and p/n → 0 as n → ∞, and σ̂ is a consistent estimator of

σ. The model selected by the mCp is asymptotically loss efficient, meaning that

Ln(α∗n)/Ln(α̂n)→ 1 in probability as n→∞.

When p is fixed, the condition of Theorem 3 is automatically satisfied, and

thus mCp is asymptotically loss efficient. A consistent estimator σ̂ can be ob-

tained by solving an equation based on the law of total variance of var(Y ). More

details are included in the supplementary document.
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5. Experiments

5.1 Simulated Data Experiments

We first verify the developed method in four simulated data experiments by

showing the estimation error under different model structures and subset designs.

There are six methods in comparison, including the least squares (‘LS-Full’)

that uses the complete dataX, Y for estimation, grand mean (‘Mean’) that only

uses Y , subset least squares (‘SLS’), ridge-type subset least squares (‘SLS-R’),

lasso-type subset least squares (‘SLS-L’), and maximum likelihood estimator

based on the Expectation-Maximization algorithm (‘MLE’). The lasso-type and

ridge-type subset least squares estimators are tuned by five-fold cross-validation

with the parameter λ ∈ {0, 0.1, 1, 10}.

Saturated model. First, we consider a saturated model (Example 3) with

dimension d = 3, pj = 5, j = 1, 2, 3, Gaussian noise with standard deviation

σ = 1, and the maximum of |f(X)| being smaller than K = 3. The popula-

tion distribution w and parameters β are element-wisely drawn from a uniform

distribution on [0, 1]. The w is re-scaled to sum to one, and β is re-scaled to

satisfy |f(X)| ≤ K. We generate n = 5000 observations of X,A, Y using

the product uniform 2-card design (Design 2). For each method, we evalu-

ate the estimation loss E[{f(X) − f̂(X)}2 | Ai, Yi, i = 1, . . . , n]. The pro-
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5.1 Simulated Data Experiments
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Figure 1: Box-plot showing the esti-
mation loss of five methods defined
in Subsection 5.1, from 100 repli-
cations under the saturated model.
The left and right columns of each
method correspond to known and
unknown population distributions,
respectively.
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Figure 2: Loss efficiency usingmCp
under different sample sizes, for the
model selection experiment in Sub-
section 5.1.

cedure is replicated k = 100 times given w unknown or known. Since the

QWP matrix is highly ill-conditioned, ‘SLS’ is not included in this experiment.

The box-plot of the loss is reported in Figure 1. We find that ‘MLE’ is worse

than the proposed subset least squares estimators. The estimation loss using the

set-valued data (‘SLS-L’, ‘SLS-R’, or ‘MLE’) is larger than the loss using the

original data (‘LS-Full’), but smaller than the case that all predictor informa-

tion is lacking (‘Mean’), as is expected. Moreover, the prediction performance

for subset least squares estimators is better when the population distribution is

known.

Additive model. A suitable model can greatly reduce the number of param-

eters, hence improving the prediction accuracy. With the same setting as above,
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5.1 Simulated Data Experiments

Table 1: Mean estimation loss of six methods under the additive model in Sub-
section 5.1. Standard errors are all within 0.01 from 100 replications.

w LS-Full SLS SLS-L SLS-R MLE Mean

Unknown 0.01 0.11 0.12 0.11 0.55 2.00
Known 0.01 0.07 0.08 0.07 0.57 2.00

Table 2: Mean estimation loss under the additive model in Subsection 5.1, for
different average subset cardinalities k. Standard errors are all within 0.03 from
100 replications.

k SLS SLS-L SLS-R MLE

2 0.07 0.07 0.06 0.57
3 0.21 0.25 0.21 1.12
4 0.74 0.71 0.69 1.73

we study the performance of subset least squares estimators when the underly-

ing model is additive and sample size n = 1000. The results are summarized in

Table 1. Even though the sample size is significantly fewer than the saturated

model, we find that the estimation loss of the subset least squares estimators is

greatly reduced, which is comparable to the loss using the complete data. How-

ever, ‘MLE’ has a relatively large loss.

Influence of the subset design. We compare the mean estimation loss of

100 replications on the previous additive model for subset lease square estima-

tors and the maximum likelihood estimator, using uniform k-card design with

k = 2, 3, 4, respectively. It can be seen from Table 2 that the average cardinal-

ity of the subset A influences the estimation accuracy. The results align with

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing) 



5.2 Student Performance dataset

the intuition that the higher the mean cardinality is, the less information we can

learn from each subset observation, hence the worse the estimation is. It also

matches the error bound given by Theorem 2, which is proportional to σ−1min(Q̃),

and Proposition 1 tells us σ−1min(Q̃) is increasing with k under uniform k-card

design.

Model selection. While other settings remain unchanged, now we have a

collection of models M, instead of a given true model. Suppose M includes

the grand mean model Y ∼ 1, main effect models for each variable Y ∼ Xj ,

j = 1, 2, 3, quadratic models for any two variables Y ∼ Xk × Xl, 1 ≤ k <

l ≤ 3, and the saturated model. Let the true model be Y ∼ X1 × X2. We

use the proposed mCp to perform model selection. The uniform 2-card design

is applied for subset generation. The average loss efficiency Ln(α∗n)/Ln(α̂n) of

100 replications against sample size is presented in Figure 2. Here, the loss is

the modified squared error loss defined in Equation (4.2). The loss efficiency is

close to one.

5.2 Student Performance dataset

This dataset contains 649 students in secondary education (Cortez and Silva,

2008). We use the students’ first-period grades (‘G1’) in the Portuguese lan-

guage as the response variable. The dataset includes demographic, social, and
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5.2 Student Performance dataset

school-related attributes, among which we choose ‘School’ and ‘Failure’ as the

variables of interest. Both variables have four levels. Here, the ‘School’ repre-

sents the place of a student, while the ‘Failure’ is the number of failed courses

in the past. An interesting problem is whether the Portuguese language grade

is associated with the past study performance and potential differences among

schools. The original dataset collected the exact value of ‘School’ and ‘Failure’.

However, the historical record of student grades is highly sensitive information,

and the school information may be used to identify a particular student. To pro-

mote individual privacy, we can instead use the subset privacy mechanism to

collect them and apply the proposed subset least squares method for regression.

In this illustrative experiment, we adopt the uniform independence design (De-

sign 1) to generate subsets and show that the prediction error using the set-valued

observations is comparable with the regression using the original data.

First, we illustrate the proposed mCp method for selecting a regression

model from the model class {‘G1∼1’, ‘G1∼School’, ‘G1∼Failure’, ‘G1∼School

×Failure’,‘G1∼School+Failure’}with a ridge-type subset least squares estima-

tor. Table 3 summarizes mCp values of different models. The additive model

‘G1∼School+Failure’ has the smallest value, and is thus selected. The mCp

values also suggest that both predictors are associated with the response.

Under the selected additive model, we compare the performance of all six
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5.2 Student Performance dataset

Table 3: The mCp values Sn(α) of five models on the student performance
dataset.

‘G1∼1’ ‘G1∼School’ ‘G1∼Failure’ ‘G1∼School×Failure’ ‘G1∼School+Failure’

7.55 6.62 7.19 6.59 6.44

Table 4: Mean test error on the Student Performance dataset. Permutation stan-
dard errors are all within 0.06 from 100 replications.

Method LS-Full SLS SLS-L SLS-R MLE Mean

Loss 5.85 6.21 6.10 5.99 6.01 7.54

methods. We split the whole dataset into training and test datasets with a ratio of

two to one. The uniform independence design (Design 1) is chosen to generate

subsets on the training dataset. The evaluation criterion is the mean squared

error of the response on the test dataset. The average test errors are summarized

in Table 4 with k = 100 replications. It can be seen that all methods actively

using the complete or incomplete data have significantly smaller test errors than

the grand mean method. Also, we observe that the subset-valued data using the

proposed method has a similar test error compared with using the complete data.

This is because the test error involves noise in the response. Such noise can be

large compared with the estimation error brought by using incomplete data. The

result indicates that we may not need to collect the exact sensitive individual

information such as the history of failed classes to study statistical relationships.
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6. Concluding remarks

Motivated by the set-valued predictors obtained from privacy-oriented data col-

lection mechanisms, we propose the subset least squares method for regression.

We derive an upper bound of the prediction risk for the proposed estimator

and show that it is rate-optimal under mild conditions. Additionally, we de-

velop an asymptotically loss efficient method mCp for model selection. The

subset least squares method has shown promising performances compared with

the maximum likelihood estimator in our numerical studies. The numerical re-

sults indicate that when the regression model is complex relative to the sam-

ple size, the subset least square estimator may perform poorly due to the ill-

conditioned design matrix. In contrast, the regularized subset least squares can

stabilize the estimation and hence have a much smaller prediction risk. More-

over, the set-valued data using the proposed method tend to have similar estima-

tion risks as if we observed the original data, which justifies the use of subset

privacy.

There are some interesting problems left for future work. First, the asymp-

totic distributions for the regularized subset least squares estimators remain un-

clear. Second, one may explore the inference on the parameters β, which seems

highly non-trivial.
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