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Abstract:

In this paper, we investigate the varying coefficient models for spatial data distributed over

two-dimensional domains. First, the univariate components and the geographical compo-

nent in the model are approximated via univariate polynomial splines and bivariate penal-

ized splines over triangulation, respectively. The spline estimators of the univariate and

bivariate functions are consistent, and their convergence rates are also established. Sec-

ond, we propose the empirical likelihood based test procedures to conduct both pointwise

and simultaneous inferences for the varying coefficient functions. The asymptotic distribu-

tions of the test statistics are derived under the null and local alternative hypotheses. The

proposed methods also perform favorably in finite sample applications, as we demonstrate

them in simulations and an application to an adult obesity prevalence data in the United

States.

Key words and phrases: B-spline, Bivariate spline, Empirical likelihood, Geo data, Non-

parametric hypothesis testing
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1. Introduction

Varying coefficient models (VCMs) introduced by Hastie and Tibshirani (1993)

are commonly applied regression models to examine the interactive associations

between the response and predictors. The appeal of these models is that the re-

gression coefficients are allowed to vary as a smooth function of some variables

of interest to detect non-linear interactions. Because of the flexibility, VCMs

have been widely applied to many scientific areas during the past three decades.

See Fan and Zhang (2008) for a selective overview on the major methodological

and theoretical developments on VCMs. The focus of this work is on VCMs for

spatial data randomly distributed over an arbitrary geographical region.

Our work is motivated by inference problems of examining the effects of

county-level food retail environment on obesity rates in U.S. with the effect

varying over median household income. County food retail environments are

measured by availability and healthfulness of food retail stores. More detailed

information of this dataset is provided in Section 6. Based on this dataset, socioe-

conomists want to disentangle how county-level associations between food en-

vironment and obesity rates change with median household income levels. This

leads to model the effect of food retail environment as functions of household

income levels. However, considering the geographic dependence, the classical

VCM is not sufficient.
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In this work, we propose the varying coefficient geo model (VCGM) to solve

the above motivating application. To be more specific, assume Si = (Si1, Si2)
>

be location for i-th subject, i = 1, . . . , n. The location S ranges over a two-

dimensional bounded domain Ω ∈ R2 of any arbitrary shape. We observe data of

the form {Yi, Zi,Xi,Si}, where Yi is a response variable, Xi = (Xi1, . . . , Xip)
>

is a vector of scalar covariates, and Zi is a scalar predictor. {(Yi, Zi,Xi)}ni=1 are

observed at locationSi. Suppose that {(Yi, Zi,Xi,Si)}ni=1 satisfies the following

VCGM:

Yi = X>i β(Zi) + α(Si) + εi, Si ∈ Ω, i = 1, . . . , n, (1.1)

where β(Z) = (β1(Z), . . . , βp(Z))>, with each βk(·) as an unknown varying-

coefficient function, α(Si) is an unknown smoothing bivariate function rep-

resenting the spatial component and εi’s are independent and identically dis-

tributed random noises, with E(εi) = 0 and V ar(εi) = σ2 are independent of

(Zi,Xi,Si). Our primary interest is to estimate and make inference for β(·) and

α(·) based on the given observations {(Yi, Zi,Xi,Si)}ni=1.

In the proposed VCGM, when the spatial component α(·) is ignored, the

model becomes the traditional VCM. There have been a plenty number of pro-

posals for fitting the VCM, for example, the local linear method Fan and Zhang

(1999), the spline method Huang et al. (2002) and the two-stage methods Wang

and Yang (2007); Liu et al. (2013). There are also several methods for esti-
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mating bivariate functions defined over 2D domains. Within the nonparametric

framework, it includes bivariate P-splines (Marx and Eilers, 2005), thin plate

splines (Wood, 2003) and bivariate splines (Wang et al., 2020; Yu et al., 2020).

Here, we apply bivariate splines over triangulations (Lai and Schumaker, 2007)

because it can handle irregular 2D domains with complex boundaries and it is

computationally efficient.

The focus of this paper is on proposing pointwise (at a specific z) and simul-

taneous (for all z ∈ [a, b]) testing procedures for the following hypothesis under

model (1.1)

H0 : H{β0(z)} = 0 v.s. H1 : H{β0(z)} 6= 0 (1.2)

where H(b) is a q-dimensional function of b = (b1, . . . , bp) ∈ Rp such that

C(b) := ∂H(b)/∂b> is a q × p full rank matrix (q ≤ p) for all b. The above

hypothesis is very general due to the choice flexibility ofH(b). It includes many

interesting hypotheses as special cases, for instance, H0 : β0,k(z) = 0 for all k if

H(b) = b, a test for any arbitrary linear constraints on β0 if H(b) = Λb − c0

for a q × p known matrix Λ and a known vector c0, and even tests with non-

linear constraints. See Ashby (2011) for some explicit examples of non-linear

hypotheses.

In contrast with estimation, less work has been done for the inference of

varying coefficient functions, with a few exceptions. For example, Huang et al.
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(2002) proposed a goodness-of-fit test based on the comparison of the weighted

residual sum of squares. It is a specific incidence of generalized likelihood

ratio studied by Fan et al. (2001). More recently, Yu et al. (2020) proposed

spline backfitted local polynomial to estimate and make simultaneous inferences

of the univariate components in the geo-additive model. Although the above-

mentioned methods seems to be incredibly useful, they are not applicable to the

general hypothesis in (1.2). Furthermore, the testing procedure involves a plug-

in variance estimate, which leads to the unstable asymptotic distribution of the

test statistics.

In this paper, we propose both pointwise and simultaneous tests for the hy-

pothesis (1.2) based on empirical likelihood (EL). EL is a non-parametric likeli-

hood which was introduced by Owen (1988, 1990). In spite of its nonparamet-

ric construction based on observed data points, the EL shares some convenient

merits of parametric likelihood and has many desirable advantages in deriving

confidence sets for unknown parameters. Owen (2001); Chen and Van Keile-

gom (2009) gave an overview of EL method. Among those previous works, the

EL method has been extended to VCMs for various data types; see, for exam-

ple Xue and Zhu (2007); Xue and Wang (2012); Yang et al. (2014); Liu and

Zhao (2020). Recently, Wang et al. (2018) considered test procedures based on

the EL to conduct inferences for a class of functional concurrent linear mod-
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els. However, when they applied the method for the Google flu trend data, the

spatial information contained in the dataset has been ignored. Bandyopadhyay

et al. (2015); Van Hala et al. (2015) considered EL method for inference over a

broad class of spatial data exhibiting stochastic spatial patterns. But they neither

considered the flexible VCGM, nor the spatial information.

Different from existing VCMs, our proposed VCGM properly accounts for

all covariates and spatial information, which improves the model flexibility. The

proposed EL based inference has many advantages over normal approximation-

based methods. First, it does not involve a plug-in estimate for the limiting

variance. While due to the necessity of estimating the standard errors, which is

a typical challenging in nonparametric models, the Wald-type simultaneous in-

ference are not stable in Liu and Zhao (2020). Second, as DiCiccio et al. (1991)

proved, the EL is Bartlett correctable and, thus, it has an advantage over the

bootstrap method. To the best of our knowledge, this is the first work of propos-

ing VCGMs and conducting EL ratio test for spatial data, which is a nontrivial

extension.

The rest of the paper is organized as follows. We propose the spline esti-

mators for both univariate and bivariate functions and develop their asymptotic

consistency in Section 2. The pointwise and simultaneous EL tests are studied in

Section 3, where we investigate the asymptotic distributions of the test statistics
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under both the null hypothesis and local alternatives. In Section 4, we address

implementation issues such as triangulation, number of univariate spline knots

and kernel bandwidth selection. Simulation studies are presented in Section 5,

followed by analysis of the real data example in Section 6. We summarize the

proposed methodology and discuss the future work in Section 7. Major technical

details are included in the supplementary material.

2. Univariate and bivariate splines estimations

In the estimation stage, we approximate each varying coefficient by univariate

polynomial splines. The geographical function α(·) is approximated via bivari-

ate penalized splines over triangulation. Below we first introduce some notations

for univariate spline and bivariate spline.

2.1 Setup

Suppose that the covariate Z is distributed on a compact interval [a, b]. Due to

the simplicity in the computation, we approximate the univariate components

βk(z) in (1.1) by polynomial splines. Define a partition of [a, b] with Jn inte-

rior knots as v = {a = v0 ≤ v1 ≤ . . . ≤ vJn+1 = b}. For some % ≥ 1,

the polynomial splines of order % + 1 are polynomial functions with %-degree

on intervals [vj, vj+1), j = 0, . . . Jn − 1, and [vJn , vJn+1 ], and have % − 1 con-
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2.1 Setup

tinuous derivatives globally and let U = U([a, b]) be the space of such poly-

nomial splines. Let Uj(z), j = 1, . . . , Jn + % + 1, be the original B-spline

basis functions for the coefficient functions. Suppose for z ∈ [a, b], βk(z) ≈∑Jn+%+1
j=1 ηkjUj(z) = U(z)>ηk, where U(z) = (U1(z), . . . , UJn+%+1(z))> and

ηk = (η1k, . . . , ηJn+%+1,k)
>.

It has been proved bivariate penalized splines method is efficient to deal with

data distributed on irregular domains with complicated boundaries (Yu et al.,

2020; Wang et al., 2020). In the following, we briefly introduce the techniques

of triangulations and describe the bivariate penalized spline smoothing method

for VCGM. We refer to Lai and Schumaker (2007); Wang et al. (2020) for a

detailed introduction of the triangulation technique and how to construct the

bivariate spline basis functions over triangulation.

According to Lai and Schumaker (2007), let τ = 〈s1, s2, s3〉 be a nonempty-

area triangle with three vertices, s1, s2, and s3. There is a unique representation

in the form for any point s ∈ R2, s = b1s1 + b2s2 + b3s3 with b1 + b2 + b3 = 1,

while b1, b2, and b3 are the barycentric coordinates of the point s relative to the

triangle τ . We define the Bernstein polynomials of degree d relative to trian-

gle τ as Bτ,d
ijk(s) = d

i!j!k!
bi1b

j
2b
k
3. The spatial domain Ω is a polygon of arbitrary

shape, which can be partitioned into finitely many triangles. Let a collection

4 = {τ1, . . . , τN} of N triangles be a triangulation of Ω = ∪Ni=1τi provided that
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2.2 Penalized least-squares estimators

any nonempty intersection between a pair of triangles in 4 is either a shared

vertex or a shared edge. For any triangle τ ∈ 4, denote Tτ as the radius of

the largest disk contained in τ . Let |τ | be the length of the longest edge. De-

note the size of 4 as |4| = max{|τ | : τ ∈ 4}. For any integer d ≥ 1

and triangle τ , let Pd(τ) be the space of all polynomials of degree less than or

equal to d on τ . Then, any polynomial ζ ∈ Pd(τ) can be uniquely written as

ζ|τ =
∑

i+j+k=d γ
τ
ijkB

τ,d
ijk, where the coefficients γτ = {γτijk, i + j + k = d}

are called B-coefficients of ζ . For any integer r ≥ 0, let Cr(Ω) be the col-

lection of all r-th continuously differentiable functions over Ω. Given a trian-

gulation 4, define the spline space of degree d and smoothness r over 4 as

Srd(4) = {ζ ∈ Cr(Ω) : ζ|τ ∈ Pd(τ), τ ∈ 4}. Let {Bm}m∈M be the set of bi-

variate Bernstein basis polynomials for Srd(4), whereM is an index set with car-

dinality |M| = N(d+1)(d+2)/2. Then we rewrite any function ζ ∈ Srd(4) us-

ing the following basis expansion ζ(s) =
∑

m∈MBm(s)γm = B(s)>γ, where

s ∈ Ω, and γ = (γm,m ∈M)> is the bivariate spline coefficient vector.

2.2 Penalized least-squares estimators

Generally there are three approaches to conduct spline estimation: smoothing

splines, regression splines, and penalized splines. Smoothing splines request as

many parameters as the number of observations. Regression splines only need a
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2.2 Penalized least-squares estimators

small number of knots placed judiciously, but appropriate algorithms are needed

for knots selection. Penalized splines combine the features of smoothing splines

and regression splines. A roughness penalty is incorporated with a relative large

number of knots. In terms of bivariate spline smoothing, Wang et al. (2020); Yu

et al. (2020) have discussed the advantages and necessity of penalized bivariate

spline smoothing. Note that given some suitable smoothness conditions, βk(·)

and α(·) can be well represented by the univariate spline basis expansion and the

Bernstein basis polynomials introduced in Section 2.1. It is well-known that in-

creasing the number of triangles may overfit the data and increase the variance,

whilst decreasing the number of triangles may result in a rigid and restrictive

function that has more bias. Consequently, to improve the data fitting efficiency,

reduce the computation complexity and avoid over fitting, we consider the fol-

lowing penalized least-squares problem:

n∑
i=1

{
Yi −

p∑
k=1

Jn+%+1∑
j=1

ηjkUj(Zi)Xik −
∑
m∈M

Bm(s)γm

}2

+
λn
2
E(α) (2.3)

where

E(α) =
∑
τ∈4

∫
τ

∑
i+j=2

(
2

i

)
(∇i

s1
∇j
s2
α)2ds1ds2

is the roughness penalty for α(·), and λn is the roughness penalty parameter and

∇v
sq is the v-th order derivative in the direction sq at the point s, q = 1, 2.

For smooth join between two polynomials on adjoining triangles, we impose

some linear constraints on the spline coefficients γ : Ψγ = 0, where Ψ is the

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



2.2 Penalized least-squares estimators

matrix that collects the smoothness conditions across all the shared edges of

triangles. An example of Ψ can be found in Yu et al. (2020). Thus, the penalized

least-squares problem (2.3) becomes

n∑
i=1

{
Yi −

p∑
k=1

Jn+%+1∑
j=1

ηj,kUj(Zi)Xik −
∑
m∈M

Bm(s)γm

}2

+
1

2
λnγ

>Pγ (2.4)

subject to Ψγ = 0, where P is the block diagonal penalty matrix satisfying that

γ>Pγ = E(Bγ). In the following, let Y = (Y1, . . . , Yn)> be the collections of

Yi’s. Denote

W =


U(Z1)

>(X11) . . . U(Z1)
>(X1p)

. . . . . . . . .

U(Zn)>(Xn1) . . . U(Zn)>(Xnp)


a n×p(Jn+%+1) matrix. To solve the constrained minimization problem (2.4),

we first remove the constraint via QR decomposition of the transpose of the

constraint matrix Ψ. Specifically, we have Ψ> = QR =

(
Q1 Q2

)R1

0

,

where Q is an orthogonal matrix and R is an upper triangle matrix, the submatrix

Q1 is the first r columns of Q, where r is the rank of matrix Ψ, and 0 is a

matrix of zeros. According to Lemma 1 in Wang et al. (2020), the problem

(2.4), is now converted to a conventional penalized regression problem without

any constraints:

min
η,θ

{
‖Y −Wη −BQ2θ‖2 + λn(Q2θ)>P(Q2θ)

}
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2.2 Penalized least-squares estimators

where η =
(
η11, . . . , ηp(Jn+%+1)

)
and Q2θ = γ. For a fixed penalty parameter

λn, we haveη̂
θ̂

 =


 W>W W>BQ2

Q>2 B>W Q>2 B>BQ2

+

0

λnQ
>
2 PQ2



−1 W>Y

Q>2 B>Y

 .

Define

V =

V11 V12

V21 V22

 =

 W>W W>BQ2

Q>2 B>W Q>2 (B>B + λnP)Q2

 .

It follows from well-known block matrix forms of matrix inverse that

V−1 := A =

A11 A12

A21 A22

 =

 A11 −A11V12V
−1
22

−A−122 V21V
−1
11 A22

 ,

where

A−111 = V11 −V12V
−1
22 V21 = W>[I−BQ2{Q>2 (B>B + λnP)Q2}−1Q>2 B>]W

A−122 = V22 −V21V
−1
11 V12 = Q>2 [B>{I−W(W>W)−1W>}B + λnP]Q2.

Hence, η̂ = A11W
> {I−BQ2{Q>2 (B>B + λnP)Q2}−1Q>2 B>

}
Y, and θ̂ =

A22Q
>
2 B>{I −W(W>W)−1W>}Y. Thus, the estimators of βk(·) and α(·)

are

β̂k(z) = U(z)>η̂k and α̂(s) = B(s)>γ̂, where γ̂ = Q2θ̂. (2.5)

We now investigate the asymptotic properties of the spline estimates β̂k(z)

and α̂(s). To avoid the confusion, let β0,k(·) and α0(·) be the true functions of
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2.2 Penalized least-squares estimators

βk(·) and α(·) in model (2.5). For any Lebesgue measurable function φ(s) on a

domain D where D = [a, b] or Ω ⊆ R2, let ‖φ‖2L2
=
∫
D φ

2(s)ds.

Theorem 1 (Rate of Convergence). Suppose that Assumptions (A1)–(A6) in the

supplementary material hold, the spline estimators β̂k and α̂ satisfy that

‖α̂− α0‖L2

= Op

{
J−%−1n |4|+ n−1/2|4|−1 +

λn
n|4|3

+

(
1 +

λn
n|4|5

)
|4|d+1

}
,

p∑
k=1

‖β̂k − β0,k‖L2 = Op

(
n−1/2J1/2

n + n−1|4|−1 + J−%−1n

)
.

Remark 1. This consistency result echoes similar phenomena discovered by

other nonparametric regression literature. In fact, when only spatial information

is available and no other scale covariates are included, the model (1.1) is reduced

to the same model in Lai and Wang (2013). When the varying coefficients reduce

to linear coefficients, the model (1.1) is reduced to the same model in Wang et al.

(2020). In these two reduced models, the convergence rate of α̂ developed above

is the same as the ones given in Lai and Wang (2013) and Wang et al. (2020),

i.e., Op

{
n−1/2|4|−1 + λn

n|4|3 +
(

1 + λn
n|4|5

)
|4|d+1

}
. When the geo function

α(·) is excluded from the model (1.1), the convergence rate of β̂k is reduced to

Op(n
−1/2J

1/2
n + J−%−1n ). If β0,k have bounded second order derivatives (% = 1)

and Jn � n1/5, we have ‖β̂k − β0,k‖L2 = Op(n
−2/5) achieving the optimal

nonparametric rate Stone (1982).
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Given these consistency results of the proposed univariate and bivariate

spline estimators, we can build hypothesis testing statistics based on these es-

timators in the next section.

3. Empirical likelihood ratio tests for varying coefficients

There are extraordinarily challenges to derive the asymptotic distribution and the

measure of variability for the spline estimators introduced in Section 2. Similar

findings have been discussed in Liu et al. (2013); Yu et al. (2020). To investi-

gate the uncertainty in the estimation of the varying effect of the covariates, we

propose the inference for the hypothesis (1.2) via the EL method with bivariate

penalized spline estimators plugged in for the geo function.

To test (1.2) and construct an EL ratio function for β(z), we first introduce

an auxiliary random vector

gi{β(z), α0} =
(
Yi − β(z)>Xi − α0(Si)

)
XiKh(Zi − z),

where K(·) stands for a continuous kernel function and h is a bandwidth, and

Kh(·) = K(·/h)/h is a rescaling of K. Note that Egi{β(z), α0} is close to

zero if β(z) = β0(z). Hence, the problem of testing whether β(z) is the true

function β0(z) is equivalent to testing whether Egi{β(z), α0} is close to zero,

for i = 1, 2, . . . , n. According to Owen (2001), this can be done by using the
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EL, that is, we can define the profile EL ratio function

R{β(z), α0} = max
pi:1≤i≤n

{
n∏
i=1

npi : 0 ≤ pi ≤ 1,
n∑
i=1

pi = 1,
n∑
i=1

pigi{β(z), α0} = 0

}
.

The rich EL literature has shown that−2 logR{β0(z), α0} is asymptotically

chi-squared with p degrees freedom. However, R{β(z), α0} cannot be directly

used to make statistical inference on β(z) because R{β(z), α0} contains the

unknown function α0(·). A natural way is to replace α0(·) by the estimator

α̂(Si) given in (2.5), i.e.,

gi{β(z)} := gi{β(z), α̂} =
(
Yi − β>(z)Xi − α̂(Si)

)
XiKh(Zi − z).

Note that the solution to
∑n

i=1 gi{β(z)} = 0 corresponds to the local constant

estimator

β̌(z) =

{
n∑
i=1

XiX
>
i Kh(Zi − z)

}−1{ n∑
i=1

(Yi − α̂(Si))XiKh(Zi − z)

}
.

(3.6)

After replacing the true function α0(·), we show the discrepancy between gi{β0(z)}

and gi{β0(z), α0} is asymptotically negligible in the following proposition. Let

µjj′ =
∫
uj

′
Kj(u)du and Ω(z) = E(X1X

>
1 |Z = z).

Proposition 1. Under Assumptions (A1)-(A5), (A6’), (A7) and (A8) in the sup-

plementary material, we have

E[gi{β0(z)}] = O(h2)
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and

V ar[gi{β0(z)}] = σ2Ω(z)f(z)µ20h
−1 {1 + o(1)} ,

where f(z) is the probability density function of Z.

Remark 2. To investigate the EL tests for the geo spatial model, the key point

is to check the asymptotic property of gi{β0(z)}. More specifically, if the

first and second moments of gi{β0(z)} have the same orders as the ones of

gi{β0(z), α0}, the asymptotic distribution of −2 logR{β(z)} would be simi-

lar as the common VCM situations. According to Theorem 1, we established the

orders of the first two moments for gi{β0(z)} as in Proposition 1 by bounding

E
{
XiX

>
i (β0(Zi)− β0(z))Kh(Zi − z)

}
andE {XiKh(Zi − z)(α0(Si)− α̂(Si))}

with careful choice of the lower bound of Jn and upper bound of |4|. The details

can be found in the proof of Proposition 1 in the supplementary material.

With slight abuse of notation, we define the EL function

L{β(z)} = max
pi:1≤i≤n

{
n∏
i=1

pi : 0 ≤ pi ≤ 1,
n∑
i=1

pi = 1,
n∑
i=1

pigi {β(z)} = 0

}
.

(3.7)

The maximization of (3.7) can be solved by Lagrange multiplier technique,

which leads to the following log-EL:

logL{β(z)} = −
n∑
i=1

log
{

1 + δ>(z)gi{β(z)}
}
− n log n,
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where δ(z) is determined by the equation:
∑n

i=1 gi{β(z)}[1+δ>(z)gi{β(z)}]−1

= 0. Therefore, the negative log-EL ratio statistic for testing H0 : H{β0(z)} =

0 is

`(z) := min
H{β(z)}=0

n∑
i=1

log
{

1 + δ>(z)gi{β(z)}
}
. (3.8)

To investigate the power of the tests, we consider the local alternatives H1 :

H{β0(z)} = bnd(z), where bn is a sequence of numbers converging to 0 and

d(z) 6= 0 is a q-dimensional function. For any fixed non-zero function d(z),

bn depicts the order of signals that a test can detect. The smallest order of bn

has been discovered in Chen and Zhong (2010), which has shown that the EL

method can detect alternatives of order (nh)−1/2 for pointwise tests and order

n−1/2h−1/4 for simultaneous tests. Both orders are larger than the parametric

rate n−1/2.

The following theorem summarizes the asymptotic distribution of 2`(z) un-

der both the local alternative and the null hypothesis H0 for each fixed z.

Theorem 2. Under Assumptions (A1)-(A5), (A6’), (A7) and (A8) in the supple-

mentary material, and for each z ∈ [a, b] under the null hypothesis: H{β0(z)} =

0 we have 2`(z)
d−→ χ2

q . For each z ∈ [a, b] and any fixed real vector of func-

tion d(z), under the alternative hypothesis H1 : H{β0(z)} = (nh)−1/2d(z), we

have

2`(z)
d→ χ2

q

(
d>(z)R(z)d(z)

)
,
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where R(z) = σ2µ20f(z)
{
C(z)Ω(z)C>(z)

}−1, and C(z) = C (β(z)) =

∂H (β(z))/∂β(z)>.

According to the Theorem 2, we can construct a pointwise confidence in-

terval for each βj(z). The construction of the confidence interval is based on an

asymptotic α-level test when H{β(z)} = βj(z). We reject H0 at a fixed point

z if 2`(z) > χ2
1,α, where χ2

1,α is the upper α-quantile of χ2
1, and a 100(1 − α)%

confidence interval for βj(z) is given by {βj(z) : 2`(z) ≤ χ2
1,α} .

For simultaneous test on H0 in (1.2) for all z ∈ [a, b], we consider the

Cramér-von Mises type test statistic. Since 2`(z) can be viewed as the distance

between H{β(z)} and 0, we propose the following test statistic for H0

Dn =

∫ b

a

2`(z)w(z)dz (3.9)

where w(z) is some probability weight function.

Theorem 3. Under Assumptions (A1)-(A5), (A6’), (A7) and (A8) in the supple-

mentary material, with the null hypothesis H0 : H{β0(·)} = 0, as n → ∞, we

have

h−1/2{Dn − q}
d−→ N

(
0, qσ2

0

)
,

where σ2
0 = 2µ−220

∫ b
a
w2(t)dt

∫ 2

−2{K
(2)(u)}2du. When the alternative hypothesis

H1 : H{β0(z)} = n−1/2h−1/4d(z) holds, we have

h−1/2{Dn − q}
d−→ N

(
µ0, qσ

2
0

)
,
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where µ0 =
∫ b
a

d>(z)R(z)d(z)w(z)dz.

Although the above theorem guarantees the asymptotic normality of Dn,

the convergence rate is h−1/2. According to the Assumption (A6’), the rate is

o(n1/10) which is much slower than the classical nonparametric rate n2/5. To

obtain accurate type I and type II errors probability in practice, we suggest a

bootstrap procedure to generate the empirical quantile and perform the simulta-

neous testing. The distribution consistency of this method has been discussed in

Wang et al. (2018). The proposed bootstrap procedure consists of the following

steps.

Step 1. For each subject, calculate residual ẽi = Yi − β̌(Zi)
>Xi − α̂i(Si), with

local constant estimator β̌(z) in (3.6). Compute the sample variance of ẽi

and denote it as σ̃2;

Step 2. For the b-th bootstraping, b = 1, . . . , B, construct observation Y
(b)
i =

β̌(Zi)
>Xi + α̂i(Si) + ε

(b)
i , where ε(b)i ’s are independently generated from

Normal distribution satisfying E
(
ε
(b)
i

)
= 0 and V ar

(
ε
(b)
i

)
= σ̃2. Apply{

Y
(b)
i

}n
i=1

as new observations and compute bootstrapped version of Dn,

denoted by D(b)
n ;

Step 3. Calculate the 100(1 − α)% quantile of the bootstrap samples
{
D

(b)
n

}B
b=1

and denote it as d̂α. Reject the null hypothesis if Dn > d̂α.
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Remark 3. In the step 1, β̌(z) is the solution to n−1
∑n

i=1 gi (β(z), α̂) = 0.

We use β̌(z) instead of spline estimator β̂(z) to generate residuals, as β̌(z) is

maximum empirical likelihood estimator involved in the construction of `(z) and

Dn.

The following proposition provides the justification of the bootstrap proce-

dure. The proof is similar to Theorem 4 in Wang et al. (2018). Thus it is omitted.

Proposition 2. Let Xn = {(Yi, Zi,Xi,Si)}ni=1 be the original data and L(Dn)

be the asymptotic distribution of Dn under the null hypothesis. Under Assump-

tions (A1)-(A6), (A6’), (A7) and (A8), the conditional distribution of D(b)
n given

Xn, L
(
D

(b)
n |Xn

)
, converges to L (Dn) almost surely.

4. Implementation

In our extensive numerical studies, we find that the selections of knots for uni-

variate spline, triangulation and the choice of bandwidth is crucial, especially

for simultaneous tests. In the following, we discuss the selection procedures one

by one.
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4.1 Tuning parameters selection in univariate and bivariate splines smoothing

4.1 Tuning parameters selection in univariate and bivariate splines smooth-

ing

In this work, we do not need the spline estimator β̂(z) for the inference of β(z)

directly. However, α̂(s) is essential for constructing EL ratio tests (3.8) and its

estimating procedure involves β̂(z). Hence, we need to make sure that β(z)

is estimated efficiently. For univariate spline smoothing, we suggest applying

knots on a grid of equally spaced sample quantiles. Assumption (A6’) in the

supplementary material suggests that the number of knots Jn needs to satisfy:

|4|1/(%+1) n2/(5%+5) � Jn � |4|2n log−1(n). Given the widely used cubic

splines, in practice we suggest taking the following rule-of-thumb number of

interior knots: Jn = max
{
bc1n2/(5%+5)c+ 1, 3

}
, where the tuning parameter

c1 ∈ [1, 3]. Similar technique has been considered in Yu et al. (2020). We

have also compared the proposed knots selecting method with other data driven

methods, i.e., AIC and BIC. The well selected parameters via AIC and BIC

are similar to our proposed rule-of-thumb choices. Therefore, for the purpose of

efficient computation, we recommend the rule-of-thumb choices for the practical

applications.

When selecting the number of triangles, we need to balance the computa-

tional burden and the approximation accuracy. According to Yu et al. (2020)

and Assumption (A6’), in practice, when the boundary of the spatial domain
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4.1 Tuning parameters selection in univariate and bivariate splines smoothing

is not extremely complicated, we suggest taking the number of triangles as the

following: N = min
{
bc2n4/(5d+5)c, n/4

}
+ 1, for some tuning parameter c2.

Typically, c2 ∈ [1, 5] and is chosen by cross-validation. When the boundary of

the spatial domain looks complicated, we suggest N to be much larger than n

and the triangulation can approximate the complicated domain precisely. Once

N is chosen, a typical triangulation method, Delaunay triangulation can be used

to build the triangulated meshes. According to our numerical experience, when

given the smoothness r = 1, comparing with the setting d = 2 or 3, using d = 5

requires too much unnecessary computational time as its improvement on accu-

racy is negligible. We suggest using r = 1 and d = 2 or 3 in practice, since they

can provide enough accuracy for smooth functions and reduce computational

cost simultaneously. Similar settings are also found in Lai and Wang (2013); Yu

et al. (2020); Kim et al. (2021).

Generalized cross-validation (GCV) criterion is one of the efficient methods

to select smoothing parameters λn, which also has good theoretical properties

(Wahba, 1990). The fitted values at the n data points are Ŷ = Wη̂ + BQ2θ̂,

and the smoothing matrix is

S(λn) = WA11W
> {I−BQ2{Q>2 (B>B + λnP)Q2}−1Q>2 B>

}
+BQ2A22Q

>
2 B>

{
I−W(W>W)−1W>} .
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4.2 Bandwidth selection

We choose the smoothing parameter λn by minimizing

GCV (λn) = n‖Y − Ŷ‖2/ [n− tr {S(λn)}]2

over a grid of values of λn. We use the 10-point grid where the values of

log10(λn) are equally spaced between −6 and 1 in our numerical studies. All

the above mentioned bivariate spline smoothing method is implemented with R

package “BPST” developed by the authors in Wang et al. (2020).

4.2 Bandwidth selection

The performance of the EL pointwise and simultaneous tests depend on the

choice of the bandwidth h. We apply the 5-fold cross-validation criterion and

choose the bandwidth h by minimizing

CV (h) = 5−1
5∑

k=1

|Fk|−1
∑
i∈Fk

{
Yi − β̌(−k)(Zi)

>Xi − α̂(−k)(Si)
}2
,

where Fk denotes the subject index set for kth folder and |Fk| denotes the car-

dinality of Fk, over a grid of values of h. In our numerical studies, we select

the bandwidth h = bc3n1/5c + 0.02 for pointwise tests and h = bc3n1/5c for

simultaneous tests where c3 ∈ {0.1, 0.2, . . . , 0.9, 1}.
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5. Simulation

In this section, we conduct simulation studies to evaluate the finite sample per-

formance of the proposed methodology. We generate the data from the following

VCGM:

Yi = Xi1β1(Zi) +Xi2β2(Zi) + α(Si) + εi, i = 1, · · · , n (5.10)

where Xij’s and εi’s are independently generated from N(0, 1), and Zi’s fol-

lows Unif [0, 1] independently. In addition, we choose the Epanechnikov kernel

K(x) = 3/4 (1− x2)+ for local linear estimation, where (a)+ = max(a, 0). The

sample sizes are chosen to be n = 500, 1000, 2000. We consider two different

spatial domains for bivariate function α(·) : 1) a rectangular domain [0, 1]2; 2)

a modified horseshoe domain used by Sangalli et al. (2013); Wang et al. (2020).

For each Monte Carlo replication, we randomly sample n locations uniformly

from the grid points inside the two spatial domains, respectively. Under all

scenarios, 1, 000 Monte Carlo replicates are conducted. For all the univariate

splines, we use cubic B-splines with % = 3. For the bivariate spline smoothing,

we consider d = 3 and r = 1.

To check the accuracy of the proposed spline estimators, we compute the

mean squared error (MSE) for α, β1 and β2. Figure 1 shows the surface and

the contour map of the true bivariate function α(·) and the estimated one when
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Figure 1: Contour maps of the true function α0(·) (first column) and the estima-

tors (second colmun) over square region (first row) and horseshoe region (second

row).
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sample size n = 2, 000. The proposed estimates look visually close to the true

functions. Figure 2 shows the boxplot of the MSEs of spline estimators for

both regions. One can easily find that the MSEs and the corresponding standard

deviations are decreasing with the increasing of sample sizes.

We first conduct pointwise hypothesis testings. Let H
{

(β1, β2)
>
}

= β1 −

β2 to test H0 : β1(z) = β2(z) versus H1 : β1(z) 6= β2(z), where we set

β1(z) = (2 + a) sin(2πz) and β2(z) = 2 sin(2πz) for some nonnegative a in

model (5.10) to evaluate the empirical size (when a = 0) and powers (when

a > 0) at 5% nominal level. Figure 3 shows these empirical sizes and powers

with two different domains of α(s) and different z ∈ {0.3, 0.4, 0.6, 0.7}. Given

each z, empirical size is reasonably controlled around nominal level 5% for all

different sample sizes, and powers increase with a until reaching 1. As expected,

larger sample size leads to the larger power.

Next, we set β1(z) = 1/2 sin(z), β2(z) = 2 sin(z + 1/2) in model (5.10)

and apply the procedure in Section 3 to construct pointwise confidence inter-

vals for β1(z) at 95% nominal level. Table 1 summarizes the empirical coverage

probability as percentages and the average length of the confidence intervals (in

parentheses) for β1(z) at z = 0.3, 0.4, 0.6, 0.7. From the table, we see that for

different z, the coverage rates are increasing with sample size, and are around

95% when n = 2, 000. It can also been seen that the length of confidence inter-
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Figure 2: Mean squared error of spline estimators. First column: square region;

Second column: horseshoe region.
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Figure 3: Empirical size and power for the pointwise test H0 : β1(z) = β2(z)

at 5% nominal level. : n = 500; : n = 1, 000; : n = 2, 000. First

column: square region; Second column: horseshoe region.
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vals is decreasing as the sample size is increasing.

Finally, we consider simultaneous inference. We test H0 : β1(z) = β2(z)

for all z ∈ [0, 1] versus H1 : β1(z) 6= β2(z) for some z, where we set β1(z) =

(2 + a) sin(2πz) and β2(z) = 2 sin(2πz) for a ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6}

in model (5.10). We evaluate the empirical size (when a = 0) and powers (when

a > 0) and the results are presented in Table 2. All tests are under two different

scenarios of bivariate function regions. In the construction of the test statistics

Dn, we choose the weight function w(z) = 1 for z ∈ (0, 1) and w(z) = 0

otherwise. The critical value of the test was estimated by 500 bootstrap samples

in each simulation run. From Table 2, we find that the empirical size for each n

is around nominal level 5%, and the trend of powers are reasonably controlled.

6. Real Data Analysis

The unequal food retail environment (FRE) has been recognized as a critical

contextual factor contributing to geographic disparities in the obesity. However,

there is no clear conclusion on the relationship between FRE and obesity due

to diverse measures of FRE and socioeconomic disparities. In order to resolve

this challenge, this study included multiple types of food stores, restaurants,

and Supplemental Nutrition Assistance Program stores to assess FRE from two

important perspectives of FRE, X1, availability and X2, healthfulness. In partic-
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Table 1: Coverage rate and average length (in parentheses) of confidence inter-

vals.

n z = 0.3 z = 0.4 z = 0.6 z = 0.7

500 0.920 (0.265) 0.935 (0.260) 0.934 (0.308) 0.934 (0.262)

Square 1000 0.931 (0.234) 0.947 (0.233) 0.959 (0.225) 0.947 (0.224)

2000 0.949 (0.135) 0.944 (0.134) 0.950 (0.165) 0.959 (0.163)

500 0.938 (0.278) 0.942 (0.272) 0.948 (0.263) 0.945 (0.263)

Horseshoe 1000 0.940 (0.207) 0.951 (0.208) 0.948 (0.206) 0.949 (0.199)

2000 0.944 (0.156) 0.949 (0.154) 0.951(0.154) 0.949 (0.154)

Table 2: Empirical size and power for the simultaneous test H0 : β1(·) = β2(·).

n a = 0 a = 0.1 a = 0.2 a = 0.3 a = 0.4 a = 0.5 a = 0.6

500 0.045 0.091 0.274 0.604 0.868 0.984 1

Square 1000 0.045 0.136 0.572 0.927 0.997 1 1

2000 0.050 0.262 0.868 1 1 1 1

500 0.046 0.078 0.280 0.597 0.879 0.975 1

Horseshoe 1000 0.049 0.140 0.561 0.937 0.999 1 1

2000 0.052 0.256 0.889 0.999 1 1 1
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ular, X1 is a composite index of densities of food stores, restaurants, and Sup-

plemental Nutrition Assistance Program (SNAP) stores and X2 is a composite

index of ratios of healthy to unhealthy food stores, full service restaurants to fast

food restaurants, and healthy to unhealthy SNAP stores. Data are collected from

3, 091 counties in the United States in 2018. For each county, Si = (Si1, Si2)
> is

taken by their geographical location, and Zi is taken by their median household

income. We model the county level obesity rate (Y ) as the following VCGM:

Yi = β0(Zi) +Xi1β1(Zi) +Xi2β2(Zi) + α(Si) + εi, i = 1, · · · , 3, 091, (6.11)

To check if two covariates X1 and X2 are significant in model (6.11), we

first conduct two simultaneous tests H01 : β1(z) = 0 and H02 : β2(z) = 0

for all z. For simultaneous test H01, the test statistic is Dn = 28.888 and 95%

quantile of the bootstrap samples is d̂0.05 = 11.666; for simultaneous test H02,

the test statistic is Dn = 85.060, and the 95% quantile of the bootstrap sam-

ples is d̂0.05 = 11.696. Hence, both null hypotheses are rejected, indicating that

at least for some point z, β1(z) 6= 0 and β2(z) 6= 0. Next, we further inves-

tigate the pointwise properties for these varying coefficient functions. Figure

4 shows 95% pointwise confidence bands and empirical maximum likelihood

estimators for β0(·), β1(·), β2(·) and penalized bivariate spline estimator α̂(·).

From the pointwise confidence bands, we can conclude that food availability

(X1) and healthfulness (X2) have strong nonlinear effects on reducing county
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obesity rates given the higher household income level, especially when income

value is larger than $100, 000. Interestingly, the pointwise confidence bands and

zero lines together indicate that for those counties with the median household

income less than about $75, 000, food availability (X1) has no significant impact

on the obesity rate. At the mean while, the composite index of healthfulness

(X2) has significant negative impact on the obesity rate of counties with median

household income less than about $100, 000. This finding suggests that increas-

ing the value of healthfulness can help reducing adult obesity rates in the county

whose median household income is less than about $100, 000. As there are few

numbers of counties having household income greater than $100, 000, the con-

fidence bands are much wider in that region. Given the relative large variation,

food availability has negative effect and index of healthfulness has no significant

impact on the obesity rate, respectively. As expected, Figure 4 also indicates

that the traditional deep-south states have large positive value of geo value α(·),

suggesting that these states have higher obesity rates than other places with sim-

ilar FRE values. This reflects that besides food retail environment, local food

preference, culture and other factors have also influenced county obesity rates.

As the social scientists doubt the association of FRE and obesity may dif-

fer with the county median household income z0 = 56, 516. We perform the

pointwise hypothesis testing H0P : β1(z0) = β2(z0) vs. H1P : β1(z0) 6= β2(z0)
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to test if availability and healthfulness have the same contribution to the obesity

rates at z0. We use cubic B-splines for three univariate splines, and we consider

d = 2 and r = 1 for the bivariate spline smoothing. The corresponding point-

wise test statistics based on data is 0.137, which accepts H0P . Thus we conclude

that availability and healthfulness does not have significantly different contribu-

tion to obesity rate at the median household income point. For availability and

healthfulness, we derive the pointwise confidence interval separately, which are

[−0.552, 0.099] and [−0.356,−0.235]. This indicates that at 95% significance

level, we believe at z0 = 56, 516, availability has no contribution to obesity

rates; nevertheless, healthfulness has negative contribution to obesity rates. The

results reflect that, compared to the availability, healthfulness is a more influen-

tial factor for shaping the spatial pattern of obesity rates across counties. The

associations between obesity rates and both these FRE indicators vary greatly

with the change of county median household income and across the space.

7. Summary

In this work, we propose both of pointwise and simultaneous tests for a gen-

eral hypothesis in a spatial VCM. Compared with classical VCMs, the proposed

VCGM is able to handle spatial information in any regular or irregular 2D do-

mains. Meanwhile, regression coefficients are allowed to vary systematically

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



β0(income) β1(income)

β2(income)

Figure 4: 95% pointwise confidence bands for β0 (top left), β1 (top right) and β1

(bottom left) ( : maximum empirical likelihood estimator β̌; : zero line)

and penalized bivariate spline estimator α̂ (bottom right).
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and smoothly in some variables. Due to advantages over normal approximation-

based methods, the EL method is proposed for conducting the inference. We

argue that the proposed hypothesis testing method for the VCGM has attractive

and fascinating properties that have not been investigated.

Supplementary Material

Technical assumptions, proofs of Proposition 1, Theorems 1, 2 and 3 are pro-

vided in the supplementary material.
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