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Abstract: Survival outcomes are common in comparative effectiveness studies and require

unique handling because they are usually incompletely observed due to right-censoring.

A “once for all” approach for causal inference with survival outcomes constructs pseudo-

observations and allows standard methods such as propensity score weighting to proceed

as if the outcomes are completely observed. For a general class of model-free causal esti-

mands with survival outcomes on user-specified target populations, we develop correspond-

ing propensity score weighting estimators based on the pseudo-observations and establish

their asymptotic properties. In particular, utilizing the functional delta-method and the

von Mises expansion, we derive a new closed-form variance of the weighting estimator that

takes into account the uncertainty due to both pseudo-observation calculation and propen-

sity score estimation. This allows valid and computationally efficient inference without

resampling. We also prove the optimal efficiency property of the overlap weights within

the class of balancing weights for survival outcomes. The proposed methods are applicable

to both binary and multiple treatments. Extensive simulations are conducted to explore the
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operating characteristics of the proposed method versus other commonly used alternatives.

We apply the proposed method to compare the causal effects of three popular treatment

approaches for prostate cancer patients. Key words and phrases: Balancing weights, causal

inference, multiple treatments, overlap weights, survival analysis.

1. Introduction

Survival or time-to-event outcomes are common in comparative effectiveness re-

search and require unique handling because they are usually incompletely observed

due to right-censoring. In observational studies, a popular approach to draw causal

inference with survival outcomes is to combine standard survival estimators with

propensity score methods (Rosenbaum and Rubin, 1983). For example, one can

construct the Kaplan-Meier estimator on an inverse probability weighted sample

to adjust for measured confounding (Robins and Finkelstein, 2000; Hubbard et al.,

2000). Another common approach combines the Cox model with inverse probabil-

ity weighting (IPW) to estimate the causal hazard ratio (Austin and Stuart, 2017)

or the counterfactual survival curves (Cole and Hernán, 2004). Coupling causal

inference with the Cox model introduces two limitations. First, the Cox model

assumes proportional hazards in the target population, violation to which leads to

biased causal estimates. Second, the target estimand is usually the causal hazard

ratio, whose interpretation can be opaque due to the built-in selection bias (Hernán,
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2010). In contrast, estimands based on survival probability or restricted mean sur-

vival time are free of model assumptions and have a natural causal interpretation

(Mao et al., 2018).

To analyze observational studies with survival outcomes, an attractive alter-

native approach is to combine causal inference methods with pseudo-observations

(Andersen et al., 2003). Each pseudo-observation is constructed based on a jack-

knife statistic and is interpreted as the individual contribution to the target estimate

from a complete sample without censoring. The pseudo-observations approach ad-

dresses censoring in a “once for all” manner and allows standard methods to proceed

as if the outcomes are completely observed (Andersen et al., 2004). To this end, one

can perform direct confounding adjustment using outcome regression with pseudo-

observations and derive casual estimators with the g-formula (Robins, 1986). An-

other approach is to combine propensity score weighting with pseudo-observations.

Andersen et al. (2017) considered an IPW estimator to estimate the causal risk dif-

ference and difference in restricted mean survival time. Their approach was further

extended to doubly robust estimation with survival and recurrent event outcomes

(Wang, 2018; Su et al., 2020).

Despite its simplicity and versatility, several open questions in propensity score

weighting with pseudo-observations remain to be addressed. First, pseudo-observations

require computing a jackknife statistic for each unit, which poses computational
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challenges to resampling-based variance estimation under propensity score weight-

ing (Andersen et al., 2017). On the other hand, failure to account for the uncer-

tainty in estimating the propensity scores and jackknifing can lead to inaccurate

and often conservative variance estimates. Second, the IPW estimator with pseudo-

observations corresponds to a target population that is represented by the study

sample, but the interpretation of such a population is often questionable in the

case of a convenience sample (Li et al., 2019). Moreover, the inverse probability

weights are prone to lack of covariate overlap and will engender causal estimates

with excessive variance, even when combined with outcome regression (Mao et al.,

2019). Li et al. (2018) proposed a general class of balancing weights (which includes

the IPW as a special case) to define target estimands on user-specified target pop-

ulations. In particular, the overlap weights emphasize a target population with the

most covariate overlap and best clinical equipoise, and were theoretically shown to

provide the most efficient causal contrasts. However, the theory of overlap weights

so far has focused on non-censored outcomes, and its optimal variance property is

unclear with survival outcomes. Third, many comparative effectiveness studies in-

volve multiple treatments, which can exacerbate the consequence of lack of overlap

when IPW is considered (Yang et al., 2016). While the overlap weights (Li and Li,

2019) offered a promising solution to improve the bias and efficiency over IPW with

non-censored outcomes, extensions to censored survival outcomes remain limited,
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with one exception of Cheng et al. (2022) for binary treatments.

In this paper, we address the above questions. We consider a general multiple

treatment setup and extend the balancing weights in Li et al. (2018) and Li and Li

(2019) to analyze survival outcomes in observational studies based on the pseudo-

observations. We develop new asymptotic variance expressions for causal effect

estimators that account for the variability due to both estimating propensity scores

and constructing pseudo-observations. Different from existing variance expressions

developed for propensity score weighting estimators (Lunceford and Davidian, 2004;

Mao et al., 2018), our new asymptotic variance expression is developed based on the

functional delta-method and the von Mises expansion (Graw et al., 2009; Jacobsen

and Martinussen, 2016; Overgaard et al., 2017), which are uniquely required in this

context as the pseudo-observations are themselves estimated via jackknifing. Such

asymptotic results also enable valid and computationally efficient inference without

re-sampling. Based on the new asymptotic variance expression, we further prove

that overlap weights lead to the most efficient survival causal estimators, expanding

the theoretical underpinnings of overlap weights to causal survival analysis. We

carry out simulations to evaluate and compare a range of commonly used weighting

estimators. Finally, we apply the proposed method to estimate the causal effects

of three treatments on mortality among patients with high-risk localized prostate

cancer from the National Cancer Database.
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2. Propensity score weighting with survival outcomes

2.1 Time-to-event outcomes, causal estimands and assumptions

We consider a sample of N units drawn from a population. Let Zi ∈ J =

{1, 2, · · · , J}, J ≥ 2 denote the assigned treatment. Each unit has a set of poten-

tial outcomes {Ti(j), j ∈ J }, measuring the counterfactual survival time mapped

to each treatment. We similarly define {Ci(j), j ∈ J } as a set of potential cen-

soring times. Under the Stable Unit Treatment Value Assumption (SUTVA),

Ti =
∑

j∈J 1{Zi = j}Ti(j) and Ci =
∑

j∈J 1{Zi = j}Ci(j). Due to right-

censoring, we might only observe the lower bound of the survival time for some

units. We write the observed failure time, T̃i = Ti ∧ Ci, the censoring indicator,

∆i = 1{Ti ≤ Ci}, and the p-dimensional time-invariant pre-treatment covariates,

Xi = (Xi1, . . . , Xip)
′ ∈ X . In summary, we observe the tuple Oi = (Zi,Xi, T̃i,∆i)

for each unit. We define the generalized propensity score, ej(Xi) = Pr(Zi = j|Xi),

as the probability of receiving treatment j given baseline covariates (Imbens, 2000).

Our results are presented for general, finite J ≥ 2.

The causal estimands of interest are based on two typical transformations of

the potential survival times: (i) the at-risk function, ν1(Ti(j); t) = 1{Ti(j) ≥ t},

and (ii) the truncation function, ν2(Ti(j); t) = Ti(j) ∧ t, where t is a given time

point of interest. The identity function is implied by ν2(Ti(j);∞) = Ti(j). To

simplify the discussion, hereafter we use k ∈ {1, 2} to index the choice of the
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2.1 Time-to-event outcomes, causal estimands and assumptions

transformation function v. We further define mk
j (X; t) = E{νk(Ti(j); t)|X} as the

conditional expectation of the transformed potential survival outcome, and the

pairwise conditional causal effect at time t as τ kj,j′(X; t) = mk
j (X; t) − mk

j′(X; t)

for j 6= j′ ∈ J . We are interested in the conditional causal effect averaged over

a target population. We assume the study sample is drawn from the population

with covariate density f(X) (with respect to a measure µ(·)), and represent the

target population by density g(X). The function h(X) ∝ g(X)/f(X) is a tilting

function, which re-weights the observed sample to represent the target population.

The pairwise average causal effect at time t on the target population is defined as

τ k,hj,j′ (t) =

∫
X τ

k
j,j′(X; t)f(X)h(X)µ(dX)∫
X f(X)h(X)µ(dX)

, ∀ j 6= j′ ∈ J . (2.1)

The class of estimands (2.1) is transitive in the sense that τ k,hj,j′ (t) = τ k,hj,j′′(t) +

τ k,hj′′,j′(t). Different choices of function νk lead to estimands on different scales. When

k = 1, we refer to estimand (2.1) as the survival probability causal effect (SPCE).

This estimand represents the causal risk difference and contrasts the potential sur-

vival probabilities at time t among the target population. When k = 2, esti-

mand (2.1) is referred to as the restricted average causal effect (RACE), which

compares the mean potential survival times restricted by t. When t = ∞, this

estimand becomes the average survival causal effect (ASCE) comparing the unre-

stricted mean potential survival times. However, because the observed data do not

contain information beyond the maximum follow-up time tmax, one can at most
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2.1 Time-to-event outcomes, causal estimands and assumptions

identify τ k=2,h
j,j′ (tmax). With sufficiently long follow-up time as in our data example,

a practical solution is to estimate τ k=2,h
j,j′ (tmax) (RACE at time tmax) as an approx-

imation to ASCE. In this sense, the following inferential details for RACE still

applies to ASCE. We will also examine the accuracy of this strategy to estimate

ASCE in our simulations. Finally, when J = 2, estimands (2.1) reduce to those in

Mao et al. (2018) for binary treatments.

To identify estimands (2.1), we maintain the following assumptions. For each

j ∈ J , we assume (A1) weak unconfoundedness: Ti(j) ⊥⊥ 1{Zi = j}|Xi; (A2)

overlap: 0 < ej(X) < 1 for any X ∈ X ; and (A3) completely independent censoring:

{Ti(j), Zi,Xi} ⊥⊥ Ci(j). Assumption (A1) and (A2) are the usual no unmeasured

confounding and positivity conditions typically invoked for multiple treatments

(Imbens, 2000; Yang et al., 2016), and allow us to identify τ k,hj (t) in the absence of

censoring. Assumption (A3) assumes that censoring is independent of all remaining

variables, and is introduced for now as a convenient technical device to establish our

main results. (A3) often holds, for example, when the failure times are only subject

to administrative right censoring. We will relax this assumption in Section 3 and

4 to enable identification under a weaker condition, which assumes (A4) covariate

dependent censoring: Ti(j) ⊥⊥ Ci(j)|Xi, Zi = j.
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2.2 Balancing weights with pseudo-observations

2.2 Balancing weights with pseudo-observations

We now introduce balancing weights to estimate the causal estimands (2.1). Write

fj(X) = f(X|Z = j) as the conditional density of covariates among treatment

group j over X . It is immediate that fj(X) ∝ f(X)ej(X). For any pre-specified

tilting function h(X), we weight the group-specific density to the target population

density using the following balancing weights, up to a proportionality constant:

whj (X) ∝ g(X)

fj(X)
∝ f(X)h(X)

f(X)ej(X)
=
h(X)

ej(X)
, ∀ j ∈ J . (2.2)

The set of weights {whj (X) : j ∈ J } balance the weighted distributions of pre-

treatment covariates towards the corresponding target population distribution, i.e.,

fj(X)whj (X) ∝ g(X), for all j ∈ J .

To apply the balancing weights to survival outcomes subject to right-censoring,

we first construct the pseudo-observations (Andersen et al., 2003). For a given

time t, we generically define θk(t) = E{νk(Ti; t)} as a population parameter. The

pseudo-observation for each unit is written as θ̂ki (t) = Nθ̂k(t) − (N − 1)θ̂k−i(t),

where θ̂k(t) is the consistent estimator of θk(t), and θ̂k−i(t) is the corresponding

estimator with unit i left out. For transformation νk (k = 1, 2), we consider the

Kaplan–Meier estimator to construct θk(t), given by Ŝ(t) =
∏

T̃i≤t

{
1− dN(T̃i)

Y (T̃i)

}
,

where N(t) =
∑N

i=1 1{T̃i ≤ t,∆i = 1} is the counting process for the event

of interest, and Y (t) =
∑N

i=1 1{T̃i ≥ t} is the at-risk process. When the in-

terest lies in the survival functions (k = 1), the ith pseudo-observation is es-
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2.2 Balancing weights with pseudo-observations

timated by θ̂1i (t) = NŜ(t) − (N − 1)Ŝ−i(t). When the interest lies in the re-

stricted mean survival times (k = 2), the ith pseudo-observation is estimated by

θ̂2i (t) = N
∫ t
0
Ŝ(u)du − (N − 1)

∫ t
0
Ŝ−i(u)du =

∫ t
0
θ̂1i (u)du. The pseudo-observation

is a leave-one-out jackknife approach to address right-censoring and provides a

straightforward unbiased estimator of the functional of uncensored data under the

independent censoring assumption (A3). From Graw et al. (2009) and Andersen

et al. (2017) and under the unconfoundedness assumption (A1), one can show that

E{θ̂ki (t)|Xi, Zi = j} ≈ E{νk(Ti; t)|Xi, Zi = j} = E{νk(Ti(j); t)|Xi}, based on which

the g-formula can be used to estimate the pairwise average causal effect on the

overall population (h(X) = 1). For the class of estimands (2.1), we further propose

the following nonparametric Hájek-type estimator:

τ̂ k,hj,j′ (t) =

∑N
i=1 1{Zi = j}θ̂ki (t)whj (Xi)∑N

i=1 1{Zi = j}whj (Xi)
−
∑N

i=1 1{Zi = j′}θ̂ki (t)whj′(Xi)∑N
i=1 1{Zi = j′}whj′(Xi)

(2.3)

Estimator (2.3) compares the weighted average pseudo-observations in each

treatment group. First, without censoring, the ith pseudo-observation is simply

the transformation of the observed outcome νk(Ti; t), and (2.3) is identical to the

estimator in Li and Li (2019) for complete outcomes. Second, a number of weighting

schemes proposed for non-censored outcomes are applicable to (2.3). For example,

the IPW estimator considers h(X) = 1 and whj (X) = 1/ej(X), corresponding to

a target population of the combination of all treatment groups represented by the

study sample. In this case, when only J = 2 treatments are present, estimator (2.3)
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2.2 Balancing weights with pseudo-observations

reduces to the IPW estimator in Andersen et al. (2017). When the target population

is the group receiving treatment l (similar to the average treatment effects for

the treated estimand in binary treatments), the corresponding h(X) = el(X) and

the balancing weight is whj (X) = el(X)/ej(X). The overlap weights (OW) specify

h(X) =
{∑

l∈J e
−1
l (X)

}−1
and whj (X) = e−1j (X)

{∑
l∈J e

−1
l (X)

}−1
, and correspond

to the target population as an intersection of all treatment groups with optimal

covariate overlap (Li and Li, 2019). This overlap population mimics that enrolled

in a randomized trial and emphasizes units whose treatment decisions are most

ambiguous. When different groups have good covariate overlap, OW and IPW

correspond to almost identical target population and estimands. The difference in

target population and estimands between OW and IPW emerges with increasing

regions of poor overlap. Specifically, as ej(X) approaches zero, whj (X) under IPW

increases to infinity, whereas whj (X) under OW approaches to zero. Due to such

intrinsic differences in construction of the weights, OW is expected to improve

efficiency over IPW and should be less susceptibility to bias caused by extreme

propensity scores. In the case of a complete outcome, OW has been proved to give

the smallest total variance for pairwise comparisons among all balancing weights.

The theory and optimality of OW, however, has not been explored with survival

outcomes, and will be investigated below.
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3. Theoretical properties

We present two main results on the theoretical properties of the proposed weighting

estimator (2.3). The first result develops a new asymptotic variance expression for

the weighted pairwise comparisons of the pseudo-observations, and the second result

establishes the efficiency optimality of OW within the family of balancing weights

based on the pseudo-observations.

Below we first outline the main steps of deriving the asymptotic variance. Let

(Ω,F ,P) be a probability space and (D, ‖ • ‖) be a Banach space for distribution

functions. Specifically, we choose the Banach space to the space of fucnctions of

bounded p-variation and the corresponding norm ‖ • ‖ is the p-variation norm. We

refer the reader to example 3.2 in Overgaard et al. (2017) for regularity details.

We assume each tuple Oi = (Zi,Xi, T̃i,∆i) is an i.i.d draw from the sample space

S in the probability space (Ω,F ,P). Define the Dirac measure δ(•) : S → D, we

write the empirical distribution function as Fn = N−1
∑N

i=1 δOi
and its limit as F .

Following Overgaard et al. (2017), we use functionals to represent different esti-

mators for the transformed survival outcomes with pseudo-observations. Suppose

φk(•; t) : D → R is the functional mapping a distribution to a real value, such

as the Kaplan-Meier estimator, φ1(FN ; t) = Ŝ(t), then each pseudo-observation is

represented as θ̂ki (t) = Nφk(FN ; t)− (N − 1)φk(F
−i
N ; t), where F−iN is the empirical

distribution omitting Oi.
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To derive the asymptotic variance of estimator (2.3), we need to accommodate

two sources of uncertainty. The first source stems from the calculation of the

pseudo-observations. We consider the functional derivative of φk(•; t) at f ∈ D

along direction s ∈ D as φ′k,f (s), which is a linear and continuous functional,

{φk(f + s; t)− φk(f ; t)− φ′k,f (s; t)}2 = o(||s||D). Assuming φk(•; t) is differentiable

at the true distribution function F , we express the first-order influence function

of Oi for the pseudo-observation estimator θ̂k(t) as the first-order derivative along

the direction δOi
− F , denoted by φ′k,i(t) , φ′k,F (δOi

− F ; t). Similarly, the second-

order derivative for the functional φk(•; t) at f along direction (s, w) can be defined

as φ′′k,F (s, w; t), and the second-order influence function for (Oi,Oj) is given as

φ′′k,(l,i)(t) , φ′′k,F (δOl
−F, δOi

−F ; t). To characterize the variability associated with

jackknifing, we follow Graw et al. (2009) and Jacobsen and Martinussen (2016) to

write the second-order von Mises expansion of the pseudo-observations:

θ̂ki (t) = θk(t) + φ′k,i(t) +
1

N − 1

∑
l 6=i

φ′′k,(l,i)(t) +Rk
N,i, (3.4)

where the first three terms dominate the asymptotic behaviour of θ̂ki (t) and the

remainder Rk
N,i vanishes asymptotically because limN→0

√
Nmaxi|Rk

N,i| = 0 for any

k. The second source of uncertainty in estimator (2.3) comes from estimating the

unknown propensity scores and hence the weights; such uncertainty is well studied

in the causal inference literature and is usually quantified using M-estimation (see,

for example, Lunceford and Davidian (2004)). Typically, the unknown propensity
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score model is parameterized as ej(Xi;γ), where the parameter γ is estimated by

maximizing the multinomial likelihood.

Theorem 1. Under suitable regularity conditions specified in Web Appendix A in

the supplementary materials, for k = 1, 2, j, j′ ∈ J and all continuously differ-

entiable tilting function h(X), (a) τ̂ k,hj,j′ (t) is a consistent estimator for τ k,hj,j′ (t); (b)

√
N
{
τ̂ k,hj,j′ (t)− τ

k,h
j,j′ (t)

}
converges in distribution to a mean-zero normal random

variate with variance E{Ψj(Oi; t)−Ψj′(Oi; t)}2/{E(h(Xi))}2, where

Ψj(Oi; t) =1{Zi = j}whj (Xi)
{(
θk(t) + φ′k,i(t)−m

k,h
j (t)

)
+Qi

}
+ E

{
1{Zi = j}

(
θk(t) + φ′k,i(t)−m

k,h
j (t)

) ∂

∂γT
whj (Xi)

}
I−1γγSγ ,i,

(3.5)

Qi = (N−1)−1
∑

l 6=i φ
′′
k,(l,i)(t)1{Zl = j}whj (Xl), Sγ ,i and Iγγ are the score function

and information matrix of γ, respectively.

Theorem 1 establishes consistency and asymptotic normality of the proposed

weighting estimator (2.3). In particular, the influence function Ψj(Oi; t) delin-

eates two aforementioned sources of variability, with the first and second term

characterizing the uncertainty due to estimating the pseudo-observations and the

propensity scores, respectively. The jackknife pseudo-observation estimator for

θ̂ki (t) includes information from the rest N − 1 observations and thus is no longer

independent across units. Therefore, derivation of (3.5) requires invoking the cen-

tral limit theorem for U-statistics (cf. Chapter 12 in Van der Vaart, 1998), and
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leads to a second-order term, Qi, that properly accommodates the correlation be-

tween the estimated pseudo-observations of different units. Theorem 1 immedi-

ately suggests the following consistent variance estimator for pairwise comparisons,

V̂{τ̂ k,hj,j′ (t)} =
∑N

i=1{Ψ̂j(Oi; t)− Ψ̂j′(Oi; t)}/
∑N

i=1 ĥ(Xi)
2, where Ψ̂j(Oi; t) is defined

explicitly in Web Appendix A. In Web Appendix A, we also give explicit derivations

of the functional derivatives for each transformation νk when the Kaplan-Meier es-

timator is used to construct the pseudo-observations as in Section 2.2. This new

closed-form estimator enables fast computation of the variance of the weighting

estimator (2.3) without resampling, a crucial advantage when the sample size is

large.

Several important remarks regarding Theorem 1 are in order.

Remark 1. Without censoring, each pseudo-observation degenerates to the ob-

served outcome, which implies θ̂ki (t) = θk(t) + φ′k,i(t) = νk(Ti; t) and therefore

Qi = 0. In this case, formula (3.5) coincides with the influence function derived in

Li and Li (2019) for complete outcomes.

Remark 2. In the presence of censoring, we show in Web Appendix A that ignor-

ing the uncertainty due to estimating pseudo-observations will, somewhat counter-

intuitively, overestimate the variance of τ̂ k,hj,j′ (t). This insight for weighting estimator

is in parallel to Jacobsen and Martinussen (2016), who suggested ignoring the un-

certainty due to estimating the pseudo-observations leads to conservative inference
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for outcome regression coefficients.

Remark 3. For h(X) = 1 (and equivalently the IPW scheme), we show in Web Ap-

pendix A that treating the inverse probability weights as known will, also counter-

intuitively, overestimate the variance for pairwise comparisons; this extends the

classic results of Hirano et al. (2003) to multiple treatments. The implications of

ignoring the uncertainty in estimating the propensity scores, however, are gener-

ally uncertain for other choice of h(X), which can lead to either conservative or

anti-conservative inference, as also mentioned in Haneuse and Rotnitzky (2013).

An exception is the randomized controlled trial (RCT), where the propensity score

to any treatment group is a constant and thus any tilting function based on the

propensity scores reduces to a constant, i.e. h(X) = h̃(e1(X), . . . , ej(X)) ∝ 1. In

this case, one can still estimate a “working” propensity score model and use the

subsequent weighting estimator (2.3) to adjust for chance imbalance in covariates.

Equation (3.5) shows that such a covariate adjustment approach in RCT leads to

variance reduction for pairwise comparisons, extending the results developed in

Zeng et al. (2020) to multiple treatments and censored survival outcomes.

Remark 4. Estimator (2.3) and Theorem 1 can be extended to accommodate co-

variate dependent censoring: Ti(j) ⊥⊥ Ci(j)|Xi, Zi. In this case, one can consider

inverse probability of censoring weighted pseudo-observation (Robins and Finkel-
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stein, 2000; Binder et al., 2014):

θ̂ki (t) =
νk(T̃i; t)1{Ci ≥ T̃i ∧ t}

Ĝ(T̃i ∧ t|Xi, Zi)
, (3.6)

where Ĝ(u|Xi, Zi) is a consistent estimator of the censoring survival functionG(u|Xi, Zi) =

Pr(Ci ≥ u|Xi, Zi), for example, given by the Cox proportional hazards regression.

There are other possible types of pseudo-observations adjusting for the dependent

censoring (Binder et al., 2014). We select (3.6) for to simplify the computation, es-

pecially when deriving the consistent variance estimator. To show the consistency

and asymptotic normality of the modified weighting estimator, we can similarly

view (3.6) as a functional mapping from the empirical distribution of data to a real

value (Overgaard et al., 2019) and find the corresponding functional derivatives for

asymptotic expansion (see Web Appendix A).

The following Theorem 2 shows that the overlap weights, similar to the case of

non-censored outcomes, lead to the smallest total asymptotic variance for all pair-

wise comparisons based on the pseudo-observations among the family of balancing

weights.

Theorem 2. Under regularity conditions in Web Appendix A and assuming gen-

eralized homoscedasticity such that limN→∞V{θ̂ki (t)|Zi,Xi} = V{φ′k,i(t)|Zi,Xi} is

a constant across different levels of (Zi,Xi), the harmonic mean function h(X) ={∑
l∈J e

−1
l (X)

}−1
leads to the smallest total asymptotic variance for pairwise com-

parisons among all tilting functions.
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Theorem 2 generalizes the findings of Crump et al. (2006), Li et al. (2018) and

Li and Li (2019) to provide new theoretical justification for the efficiency optimality

of the overlap weights, whj (X) = ej(X)
{∑

l∈J e
−1
l (X)

}−1
, when applied to censored

survival outcomes. Technically this result relies on a generalized homoscedasticity

assumption that requires the limiting variance of the estimated pseudo-observations

to be constant within the strata defined by (Zi,Xi). This condition includes the

usual homoscedasticity for conditional outcome variance as a special case in the

absence of censoring. Of note, the homoscedasticity condition may not hold in

practice, but has been empirically shown to be not crucial for the efficiency prop-

erty of OW, as exemplified in the simulations by Li et al. (2018) and numerous ap-

plications. Furthermore, in Section 4, we carry out extensive simulations to verify

that OW leads to improved efficiency over IPW when generalized homoscedasticity

is violated.

We can further augment estimator (2.3) by an outcome regression model of the

pseudo-observations. Specifically, for any time t, we can posit treatment-specific

outcome models mk
j (Xi;αj) = E{θ̂ki (t)|Xi, Zi = j}, and define an augmented
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weighting estimator

τ̂ k,hj,j′,AUG(t) =

∑N
i=1 ĥ(Xi){mj(Xi, α̂j)−mj′(Xi, α̂j′)}∑N

i=1 ĥ(Xi)
+∑N

i=1 1{Zi = j}{θ̂ki (t)−mj(Xi, α̂j)}whj (Xi)∑N
i=1 1{Zi = j}whj (Xi)

−∑N
i=1 1{Zi = j′}{θ̂ki (t)−mj′(Xi, α̂j′)}whj′(Xi)∑N

i=1 1{Zi = j′}whj′(Xi)
, (3.7)

where α̂j denotes the estimated regression parameters in the jth outcome model.

Such an augmented estimator generalizes those developed in Mao et al. (2019)

to multiple treatments and survival outcomes. When h(X) = 1, i.e. with the

IPW scheme, the augmented estimator becomes the doubly-robust estimator for

pairwise comparisons. When only J = 2 treatments are compared, (3.7) reduces to

the estimator of Wang (2018), and provides an alternative to other doubly-robust

estimators studied in, for example, Zhang and Schaubel (2012). For other choices

of h(X), the augmented estimator is not necessarily doubly robust, but may be

more efficient than weighting alone when the outcome model is correctly specified

(Mao et al., 2019). For specifying an outcome regression model, Andersen and

Pohar Perme (2010) reviewed a set of generalized linear models appropriate for

the pseudo-observations, and discussed residual-based diagnostic tools for checking

model adequacy. One can follow their strategies and assume the outcome model as

mj(Xi;αj) = g−1(XT
i αj), where g is a link function. Estimation of αj can proceed

with standard algorithms for fitting generalized linear models. For our estimands of
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interest, we can choose the identity or log link for estimating the ASCE and RACE

and the complementary log-log link (resembling a proportional hazards model) for

the SPCE (Andersen et al., 2004). Compared to Theorem 1 for the weighting

estimator (2.3), derivation of the asymptotic variance of (3.7) requires considering

a third source of uncertainty due to estimating αj in the outcome model. We sketch

the key derivation steps in Web Appendix A.

4. Simulation studies

Simulation design. We conduct simulation studies to evaluate the finite-sample

performance of the weighting estimator (2.3), and to illustrate the efficiency prop-

erty of the OW estimator. We generate four pre-treatment covariates: Xi =

(X1i, X2i, X3i, X4i)
T , where (X1i, X2i)

T are drawn from a mean-zero bivariate nor-

mal distribution with equal variance 2 and correlation 0.25, X3i ∼ Bern(0.5), and

X4i ∼ Bern(0.4 + 0.2X3i). We consider J = 3 treatments, with the true propensity

score model given by log{ej(Xi)/e1(Xi)} = X̃T
i βj, j = 1, 2, 3, where X̃i = (1,XT

i )T .

We set β1 = (0, 0, 0, 0, 0)T , β2 = 0.2β3; two sets of values for β3 are considered:

(i) β3 = (−0.4, 0.85, 0.9, 0.45,−0.25)T and (ii) β3 = (1.2, 1.5, 1,−1.5,−1)T , which

represent good and poor covariate overlap across groups, respectively. Distribution

of the true generalized propensity scores under each specification is presented in

Web Figure 1.
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Two outcome models are used to generate potential survival times. Model A

is a Weibull proportional hazards model with hazard rate for Ti(j) as λj(t|Xi) =

ηνtν−1 exp{Li(j)}, and Li(j) = 1{Zi = 2}γ2 + 1{Zi = 3}γ3 + XT
i α. We specify

η = 0.0001, ν = 3, α = (0, 2, 1.5,−1, 1)T , and γ2 = γ3 = 1, implying worse

survival experience due to treatments j = 2 and j = 3. The potential survival

time is drawn using Ti(j) =
{
− log(Ui)
η exp(Li(j))

}1/ν

, where Ui ∼ Unif(0, 1). Model B is an

accelerated failure time model that violates the proportional hazards assumption.

Specifically, Ti(j) is drawn from a log-normal distribution log{Ti(j)} ∼ N (µ, σ2 =

0.64), with µ = 3.5−γ21{Zi = 2}−γ31{Zi = 3}−XT
i α. For simplicity, we assume

treatment has no causal effect on censoring time such that Ci(j) = Ci for all j ∈

J . Under completely independent censoring, Ci ∼ Unif(0, 115). Under covariate-

dependent censoring, Ci is generated from a Weibull survival model with hazard rate

λc(t|Xi) = ηcνct
νc−1 exp(XT

i αc), where αc = (1, 0.5,−0.5, 0.5)T , ηc = 0.0001, νc =

2.7. These parameters are specified so that the marginal censoring rate is roughly

50%. Neither data generating process assumes generalized homoscedasticity in

Theorem 2, and thus provides an objective evaluation of the efficiency property of

OW.

Under each data generating process, we consider the OW and IPW estimators

based on (2.3), and focus our comparison here with two standard estimators: the

g-formula estimator based on the confounder-adjusted Cox model, and the IPW-
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Cox model (Austin and Stuart, 2017). Details of these two and other alternative

estimators are included in Web Appendix B of the supplementary materials. While

the IPW estimator (2.3) and the Cox model based estimators focus on the combined

population with h(X) = 1, the OW estimator focuses on the overlap population

with the optimal tilting function suggested in Theorem 2. When comparing treat-

ments j = 2 (or j = 3) with j = 1, the true values of target estimands can be differ-

ent between OW and the other estimators (albeit very similar under good overlap),

and are computed via Monte Carlo integration. Nonetheless, when we compare

treatments j = 2 and j = 3, the true conditional average effect τ k2,3(X; t) = 0

for all k, and thus the true estimand τ k,h2,3 (t) has the same value (zero) regardless

of h(X). This represents a natural scenario to compare the bias and efficiency

between estimators without differences in true values of estimands. We vary the

study sample size N ∈ {150, 300, 450, 600, 750}, and fix the evaluation point t = 60

for estimating SPCE (k = 1) and RACE (k = 2). We consider 1000 simulations

and calculate the absolute bias, root mean squared error (RMSE) and empirical

coverage corresponding to each estimator. To obtain the empirical coverage for

OW and IPW, we construct 95% confidence intervals (CIs) based on the consis-

tent variance estimators suggested by Theorem 1. Bootstrap CIs are used for Cox

g-formula and IPW-Cox estimators. Additional simulations comparing OW with

alternative regression estimators and the augmented weighting estimators (3.7) can
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be found in Web Appendix C in the supplementary materials.

Simulation results. Under good overlap, Web Figure 2 presents the absolute

bias, RMSE and coverage for OW, IPW estimators based on (2.3), Cox g-formula

as well as IPW-Cox estimators, when survival outcomes are generated from model

A and censoring is completely independent. Here we focus on comparing treat-

ment j = 2 versus j = 3, and thus the true average causal effect among any

target population is null. Across all three estimands (SPCE, RACE and ASCE),

OW consistently outperforms IPW with a smaller absolute bias and RMSE, and

closer to nominal coverage across all levels of N . Due to correctly specified out-

come model, the Cox g-formula estimator is, as expected, more efficient than the

weighting estimators. However, its empirical coverage is not always close to nomi-

nal, especially for estimating ASCE. The IPW-Cox estimator has the largest bias,

because the proportional hazards assumption does not hold among any of the tar-

get population. Figure 1 represents the counterpart of Web Figure 2 but under

poor overlap. The IPW estimator based on (2.3) is susceptible to lack of over-

lap due to extreme inverse probability weights, resulting in extremely large bias,

variance and low coverage. The bias and under-coverage remain for IPW even af-

ter trimming units with extreme propensities, i.e. with maxj{ej(Xi)} > 0.97 and

minj{ej(Xi)} < 0.03. (Web Figure 3). Under poor overlap, OW is more efficient

than IPW regardless of trimming, and is almost as efficient as the Cox g-formula

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



● ● ● ● ●

200 400 600

0.
00

0.
06

0.
12

SPCE

Sample size

B
IA

S

●

●
●

●

●

● ● ● ● ●

200 400 600

0
1

2
3

4
5

6

RACE

Sample size

B
IA

S

●

●

●

●

●

● ● ● ● ●

200 400 600

0
2

4
6

8
10

ASCE

Sample size

B
IA

S

●

●

●
●

●

●

●

●

● ●

200 400 600

0.
05

0.
15

SPCE

Sample size

R
M

S
E

●

●

● ● ● ●

●

●

●
●

200 400 600

2
3

4
5

6
7

RACE

Sample size

R
M

S
E

●

●

● ● ●

●

●

●
● ●

200 400 600

2
4

6
8

12

ASCE

Sample size

R
M

S
E

●
●

●
●

●

200 400 600

0.
6

0.
8

1.
0

SPCE

Sample size

C
O

V
E

R

●

● ●

●

●

● ● ●

●

●

200 400 600

0.
7

0.
8

0.
9

1.
0

RACE

Sample size

C
O

V
E

R

●

●
●

●
●

● ●
● ●

●

200 400 600

0.
6

0.
7

0.
8

0.
9

1.
0

ASCE

Sample size

C
O

V
E

R

●

●
● ●

●

● ●OW IPW Cox IPW−Cox

Figure 1: Absolute bias, root mean squared error (RMSE) and coverage for comparing treatment

j = 2 versus j = 3 under poor overlap, when survival outcomes are generated from model A and

censoring is completely independent.

estimator for estimating RACE and ASCE. Furthermore, the proposed OW inter-

val estimator carries close to nominal coverage for all estimands. The patterns for

comparing treatments j = 2 and j = 1 with non-null true average causal effect are

similar and presented in Web Figure 7.
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Table 1 summarizes the performance metrics for different estimators when the

proportional hazards assumption is violated and/or censoring depends on covari-

ates. Similar to Figure 1, we focus on comparing treatment j = 2 versus j = 3

such that the true average causal effect is null among any target population. When

survival outcomes are generated from model B with non-proportional hazards, both

the Cox g-formula and IPW-Cox estimators have the largest bias, especially under

poor overlap. In those scenarios, OW maintains the largest efficiency, and consis-

tently outperforms IPW in terms of bias and variance. While the coverage of IPW

estimator deteriorates under poor overlap, the coverage of OW estimator is robust

to lack of overlap. When censoring further depends on covariates, we modify the

OW and IPW estimators using (3.6) where the censoring survival functions are

estimated by a Cox model. With the addition of inverse probability of censor-

ing weights, only OW maintains the smallest bias, largest efficiency and closest to

nominal coverage under poor overlap across all estimands. Results for comparing

treatments j = 2 and j = 1 are similar and included in Web Table 1.

We have additionally compared OW with alternative outcome regression es-

timators similar to Mao et al. (2018), and the g-formula estimator based on the

pseudo-observations. These estimators were originally developed with binary treat-

ments, and we adapt them in Web Appendix C to multiple treatments. Compared

to the proposed OW estimator (2.3), these regression estimators are frequently less
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Table 1: Absolute bias, root mean squared error (RMSE) and coverage for comparing treatment

j = 2 versus j = 3 under different degrees of overlap. In the “proportional hazards” scenario,

the survival outcomes are generated from a Cox model (model A), and in the “non-proportional

hazards” scenario, the survival outcomes are generated from an accelerated failure time model

(model B). The sample size is fixed at N = 300.

Degree of Absolute bias RMSE 95% Coverage

overlap OW IPW Cox IPW-Cox OW IPW Cox IPW-Cox OW IPW Cox IPW-Cox

Model A, completely random censoring

SPCE Good 0.003 0.006 0.001 0.023 0.062 0.098 0.018 0.091 0.924 0.901 0.949 0.795

Poor 0.003 0.007 0.005 0.049 0.074 0.102 0.046 0.117 0.917 0.879 0.922 0.647

RACE Good 0.096 0.304 0.086 1.449 2.243 3.379 1.094 4.453 0.937 0.919 0.961 0.797

Poor 0.109 0.391 0.252 3.151 2.998 3.496 2.709 6.093 0.930 0.901 0.967 0.644

ASCE Good 0.181 0.354 0.153 2.336 2.916 4.974 1.911 8.959 0.941 0.903 0.849 0.790

Poor 0.181 0.443 0.490 4.930 3.666 6.373 4.750 11.625 0.934 0.899 0.755 0.656

Model B, completely random censoring

SPCE Good 0.003 0.005 0.005 0.024 0.087 0.112 0.074 0.176 0.958 0.923 0.749 0.779

Poor 0.005 0.008 0.016 0.081 0.097 0.118 0.150 0.222 0.941 0.921 0.770 0.712

RACE Good 0.102 0.112 0.239 1.530 2.761 4.304 4.219 8.758 0.960 0.937 0.745 0.787

Poor 0.105 0.299 0.947 4.646 3.627 4.669 8.653 11.275 0.936 0.929 0.742 0.709

ASCE Good 0.129 0.443 0.468 2.382 4.238 7.174 7.354 16.583 0.958 0.959 0.846 0.777

Poor 0.223 0.638 1.661 7.562 4.840 7.189 15.027 20.920 0.961 0.934 0.743 0.705

Model A, covariate dependent censoring

SPCE Good 0.002 0.005 0.003 0.038 0.052 0.082 0.047 0.121 0.917 0.889 0.921 0.741

Poor 0.005 0.007 0.009 0.089 0.060 0.084 0.056 0.149 0.908 0.882 0.881 0.642

RACE Good 0.048 0.154 0.117 2.201 2.773 3.838 2.801 5.382 0.938 0.926 0.908 0.763

Poor 0.168 0.223 0.532 4.603 3.534 4.207 3.334 7.159 0.935 0.926 0.900 0.634

ASCE Good 0.055 0.425 0.183 1.161 5.562 8.722 6.005 36.021 0.940 0.909 0.885 0.804

Poor 0.067 0.568 1.032 11.657 9.557 9.735 7.157 43.651 0.928 0.892 0.752 0.772

Model B, covariate dependent censoring

SPCE Good 0.001 0.001 0.009 0.005 0.050 0.053 0.087 0.075 0.954 0.930 0.699 0.900

Poor 0.002 0.005 0.012 0.025 0.052 0.082 0.164 0.082 0.925 0.925 0.723 0.896

RACE Good 0.072 0.081 0.498 0.139 4.733 5.879 4.684 6.327 0.954 0.946 0.711 0.850

Poor 0.109 0.146 0.712 1.594 6.250 7.115 9.092 7.515 0.956 0.955 0.705 0.839

ASCE Good 0.072 0.258 0.794 0.340 4.436 5.738 7.337 7.756 0.954 0.946 0.835 0.847

Poor 0.138 0.350 1.339 1.973 5.026 6.503 13.039 8.835 0.955 0.955 0.757 0.847
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efficient and have less than nominal coverage under poor overlap. An exception

is the OW regression estimator that generalizes the work of Mao et al. (2018),

which has similar performance to the OW estimator based on (2.3) when outcome

is generated from model A. When outcome is generated from model B, the OW

estimator in Mao et al. (2018) is subject to larger bias and RMSE due to incorrect

proportional hazards assumption. We have also carried out additional simulations

in Web Appendix C to examine the performance of the augmented OW and IPW

estimators (3.7) relative to the OW and IPW estimators (2.3). While including

an outcome regression component can notably improve the efficiency of IPW, the

efficiency gain for OW estimator due to an additional outcome model is negligible.

This speaks to the appeal of the OW estimator because outcome models are almost

always misspecified in practice. Additionally, we replicate our simulations under a

three-arm RCT similar to Zeng et al. (2020) (see Remark 3 and Web Appendix C).

We confirmed that both OW and IPW estimators are valid for covariate adjust-

ment in RCTs and lead to substantially improved efficiency over the unadjusted

comparisons of pseudo-observations in the presence of chance imbalance. Finally,

under covariate-dependent censoring, we further compared OW and IPW under a

misspecified censoring model and found that OW outperforms IPW across all sce-

narios. With a misspecified censoring model, OW also maintains nominal coverage

except when the failure times are generated from model B and the target estimand
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is SPCE and ASCE. The details are presented in Web Appendix D.

5. Application to National Cancer Database

We illustrate the proposed weighting estimators by comparing three treatment op-

tions for prostate cancer in an observational dataset with 44,551 high-risk, localized

prostate cancer patients drawn from the National Cancer Database (NCDB). These

patients were diagnosed between 2004 and 2013, and either underwent a surgical

procedure – radical prostatectomy (RP), or were treated by one of two therapeu-

tic procedures – external beam radiotherapy combined with androgen deprivation

(EBRT+AD) or external beam radiotherapy plus brachytherapy with or without

androgen deprivation (EBRT+brachy±AD). We focus on time to death since treat-

ment initiation as the primary outcome, and pre-treatment covariates include age,

clinical T stage, Charlson-Deyo score, biopsy Gleason score, prostate-specific anti-

gen (PSA), year of diagnosis, insurance status, median income level, education,

race, and ethnicity. A total of 2,434 patients died during the study period with

their survival outcome observed, while other patients have right-censored outcomes.

The median and maximum follow-up time is 21 and 115 months, respectively.

We used a multinomial logistic model to estimate the generalized propensity

scores, and visualized the distribution of estimated scores in Web Figure 9. The

eleven pre-treatment covariates introduced earlier were considered as confounders
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that affect both treatment assignment and mortality, and included in the propensity

score model. We model age and PSA by natural splines following Ennis et al.

(2018), and keep linear terms for all other covariates. We found good overlap across

groups regarding the propensity of receiving EBRT+brachy±AD, but a slight lack

of overlap regarding the propensity of receiving RP and EBRT+AD. To assess

the adequacy of the propensity score model specification, we checked the weighted

covariate balance under IPW and OW based on the maximum pairwise absolute

standardized difference (MPASD) criteria, and present the balance statistics in

Web Table 4. The MPASD for the pth covariate is defined as maxj<j′{|X̄p,j −

X̄p,j′|/Sp}, where X̄p,j =
∑N

i=1 1{Zi = j}Xi,pw
h
j (Xi)/

∑N
i=1 1{Zi = j}whj (Xi) is

the weighted covariate mean in group j, and S2
p = J−1

∑J
j=1 S

2
p,j is the unweighted

sample variance averaged across all groups. Both IPW and OW improved covariate

balance compared to no weighting. Of note, while OW with logistic propensity

scores leads to exact covariate balance for J = 2 groups (Li et al., 2018), OW with

multinomial logistic propensity scores do not guarantee exact covariate balance

among J ≥ 3 groups (Li and Li, 2019). Nonetheless, Web Table 4 shows that OW

still leads to consistently smaller MPASD compared to IPW, with values below the

usual 0.1 threshold across all covariates.

Web Figure 10 presents the estimated causal survival curves for each treat-

ment, E{h(X)1{Ti(j) ≥ t}}/E(h(X)), along with the 95% confidence bands in the
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combined population (corresponding to IPW) and the overlap population (corre-

sponding to OW). We chose 220 grid points equally spaced by half a month for

this evaluation. The estimated causal survival curves among the two target popu-

lations are generally similar, which is expected given there is only a slight lack of

overlap. The surgical treatment, RP, shows the largest survival benefit, followed

by the radiotherapeutic treatment, EBRT+brachy±AD, while EBRT+AD results

in the worst survival outcomes during the first 80 months or so. Importantly, the

estimated causal survival curves for the RP and EBRT+brachy±AD crossed after

month 80, suggesting potential violations to the proportional hazards assumption

commonly assumed in survival analysis. Figure 2a and 2b further characterized the

the SPCE and RACE as a function of time t with the associated 95% confidence

bands. Evidently, the SPCE results confirmed the largest causal survival benefit

due to RP, followed by EBRT+brachy±AD. The associated confidence band of

SPCE from OW is narrower than that from IPW and frequently excludes zero.

While the analysis of the pairwise RACE yielded similar findings, the efficiency of

OW over IPW became more relevant when comparing RP and EBRT+brachy±AD.

Specifically, the confidence band of RACE from OW excludes zero until month 80,

while the confidence band of RACE from IPW straddles zero across the entire

follow-up period. This analysis shed new light on the significant causal survival

benefit of RP over EBRT+brachy±AD at the 0.05 level in terms of the restricted
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mean survival time, which was not identified in previous analysis.

In Web Table 4, we also reported the SPCE and RACE using the IPW and OW

estimators, as well as the Cox g-formula and IPW-Cox estimators at t = 60 months,

i.e. the 80th quantile of the follow-up time. All methods conclude that RP leads to

significantly lower mortality rate at 60 months than EBRT+AD. Compared to IPW,

OW provides similar point estimates and no larger variance estimates. Consistently

with Figure 2b, the smaller variance estimate due to OW (compared to IPW) leads

to a change in conclusion when comparing EBRT+brachy±AD versus RP in terms

of RACE at the 0.05 level and confirms the significant treatment benefit of RP. The

Cox g-formula and IPW-Cox estimators sometimes provide considerably different

results than weighting estimators based on (2.3), as they assumed proportional

hazards which may not hold (the estimated causal survival curves crossed in Web

Figure 10). Overall, we found that, compared to RP, the two radiotherapeutic

treatments led to a shorter restricted mean survival time (1.2 months shorter with

EBRT+AD and 0.5 month shorter with EBRT+brachy±AD) up to five years after

treatment. The 5-year survival probability is also 6.7% lower under EBRT+AD

and 3.1% lower under EBRT+brachy±AD compared to RP.
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(a) Estimated SPCE as a function of time t across three treatment groups.
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(b) Estimated RACE as a function of time t across three treatment groups.

Figure 2: Point estimates and 95% confidence bands of SPCE and RACE as a function of time

from the pseudo-observations-based IPW and OW estimator in the prostate cancer application in

Section 5.

6. Discussion

We proposed a class of propensity score weighting estimators for survival outcomes

based on the pseudo-observations. These estimators are applicable to several dif-

ferent target populations, survival causal estimands, as well as binary and multiple
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treatments. We also extended our estimators to accommodate covariate depen-

dent censoring and augmentation with outcome models. Previous studies rely on

bootstrap for variance estimation of similar weighting estimators, which is com-

putationally intensive when combined with the jackknife pseudo-observations. We

establish the asymptotic properties of our estimators to motivate a new closed-form

variance estimator that takes into account of the uncertainty due to both pseudo-

observations calculation and propensity score estimation; this allows valid and fast

inference in large observational data. Within the family of balancing weights, we

further established the optimal efficiency property of the overlap weights, expanding

the theory of overlap weights to survival outcomes.

An important step in propensity score analysis is to specify the propensity score

model. Because the goal of weighting is to balance confounders and removes bias,

the weighted covariate balance is routinely used to check whether a propensity score

model is adequately specified, and an iterative checking-fitting procedure has been

conventionally used to improve model specification. Of note, with J = 2 treat-

ments, the overlap weights obtained from logistic propensity score model reduce

the absolute standardized difference for each covariate to zero, which represents a

challenge in operationalizing the iterative checking-fitting procedure (Mao et al.,

2019). As a potential remedy, one may consider alternative balance metrics such as

the weighted differences in empirical distribution function, as in McCaffrey et al.
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(2013). With J ≥ 3 treatments, the overlap weights generally do not reduce the

MPASD balance metric to zero, which suggests that the iterative checking-fitting

procedure based on weighted mean balance remains feasible to improve the gener-

alized propensity score model fit. However, because overlap weights often result in

relative satisfactorily balance among treatment groups compared to IPW for almost

any specification of the generalized propensity score model, a tailored rule of thumb

for adequate weighted balance would be of interest and remains an important topic

for future research.

The proposed weighting estimators can be extended in several directions. First,

while we have focused on estimands on the difference scale, it is straightforward

to adapt our weighting estimators to accommodate ratio estimands, which are also

of interest in practice. For example, we can write mk,h
j (t) =

∫
X mk

j (X;t)f(X)h(X)µ(dX)∫
X f(X)h(X)µ(dX)

,

and define the pairwise ratio estimands as δk,hj,j′(t) = mk,h
j (t)/mk,h

j′ (t), ∀ j 6= j′. Point

identification of δk,hj,j′(t) therefore boils down to estimating the average potential out-

comes mk,h
j (t) for each j using pseudo-observations, and variance calculation can

proceed by applying Delta method to Theorem 1. In addition, one may further ex-

ploit the relationship between survival function and hazard function to define causal

hazard difference by−dτ k=1,h
j,j′ (t)/dt. Inference with this type of estimands, however,

requires additional research because our estimator for τ k=1,h
j,j′ (t) is non-smooth in t.

Second, under the covariate dependent censoring, our proposed estimator requires
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computing pseudo-observations under inverse probability of censoring weighting

(IPCW) as in Remark 4, which may be inefficient just as using IPW for balancing

weights. When the inverse probability of censoring weights are estimated by the Cox

model, improvement is possible, for example, by smoothing the baseline hazard es-

timator to provide potentially more efficient estimation of Ĝ(T̃i∧t|Xi, Zi) and hence

the weights (Anderson and Senthilselvan, 1980). Alternatively, it may be interesting

to develop an augmented-IPCW (hence doubly-robust) pseudo-observation estima-

tor along the lines of doubly-robust censoring unbiased transformation (Rubin and

van der Laan, 2007), which tends to be more efficient than IPCW alone. Adapting

these techniques for constructing pseudo-observations is beyond the scope of this

work and requires additional research. Finally, Wallace and Moodie (2015) studied

OW in constructing the optimal dynamic treatment regimen (DTR) under an ad-

ditive structural mean model, and demonstrated the efficiency gain over IPW via

simulations. Their approach has recently been extended to an additive structural

survival model (Simoneau et al., 2020). We conjecture that the pseudo-observation

approach combined with OW can be a useful alternative to Simoneau et al. (2020)

in identifying survival DTR under the dynamic weighted ordinary least squares

framework.
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Supplementary Materials

The online supplementary materials include the Web Appendix A-F with technical

details and additional simulations, as well as Web Tables and Figures referenced

in Section 4 and 5. We provide reproducible R code at https://github.com/

zengshx777/OW_Survival_CodeBase.
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