
Statistica Sinica Preprint No: SS- 2021-0147 

Title Robust Shape Matrix Estimation for High-Dimensional 

Compositional Data with Application to Microbial 

Inter-Taxa Analysis 

Manuscript ID SS-2021-0147 

URL http://www.stat.sinica.edu.tw/statistica/ 

DOI 10.5705/ss.202021.0147 

Complete List of Authors Danning Li,  

Arun Srinivasan,  

Lingzhou Xue and 

Xiang Zhan 

Corresponding Authors Lingzhou Xue 

Xiang Zhan 

E-mails lzxue@psu.edu 

zhanx@bjmu.edu.cn 

Notice: Accepted version subject to English editing. 

* Danning Li and Arun Srinivasan contributed equally to this work.
Lingzhou Xue and Xiang Zhan are co-corresponding authors.



Statistica Sinica

Robust Shape Matrix Estimation for High-Dimensional

Compositional Data with Application to Microbial Inter-Taxa Analysis

Danning Li1, Arun Srinivasan2, Lingzhou Xue2 and Xiang Zhan3

1KLAS and School of Mathematics & Statistics, Northeast Normal University

2Department of Statistics, Pennsylvania State University

3Department of Biostatistics, School of Public Health and BICMR, Peking University

Abstract:

Estimating dependence structure is a key task in compositional data analysis. Real-world

compositional datasets are often complex due to factors such as high-dimensionality, heavy

tails, and existence of possible outliers. We consider a general class of elliptical distribu-

tions to model the heavy-tailed distribution of latent log-basis variables, which is char-

acterized by the latent shape matrix. The latent shape matrix is a scalar multiple of the

latent covariance matrix when it exists, and it can preserve the directional properties of

the dependence in a distribution when the covariance matrix does not exist. We propose a

robust composition-adjusted thresholding procedure based on Tyler’s M-estimator (Tyler,

1987) for jointly estimating the latent shape matrices of high-dimensional compositional

data from different groups. We prove appealing theoretical properties under the high-

dimensional setting. Simulation studies and a real application to microbial inter-taxa anal-

ysis are used to demonstrate the numerical properties.
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1. Introduction

Compositional data naturally arise in a large number of research topics in biol-

ogy, ecology, finance, geology, and many others. For example, compositional

data are used to assess the relative proportions of chemicals within stones across

different geographical locations in geology (Thomas and Aitchison, 2005) or

analyze relative market share while dynamically accounting for the total mar-

ket size in economics (Arata and Onozaki, 2017). This paper is motivated by

the inter-taxa analysis of microbiome compositional data in the rapidly grow-

ing field of human microbiome research (Cho and Blaser, 2012). It is known

that the accurate estimation of the dependence structure between bacteria leads

to a better understanding of the underlying mechanisms of disease development

(Friedman and Alm, 2012; Goodrich et al., 2014). We focus on the estimation

of the dependence structure of high-dimensional compositional data, which is a

fundamental problem in microbial inter-taxa analysis.

Sparse estimation of large covariance or correlation matrices studies the de-

pendence structure under the assumption that only a small proportion of vari-

ables are correlated with one another. See Bickel and Levina (2008), Roth-
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man et al. (2009), Cai and Liu (2011), Bien and Tibshirani (2011), Cai et al.

(2012), Rothman (2012), Xue et al. (2012), Xue and Zou (2014a), Fan et al.

(2016), Bien (2019), among others, for related papers in this topic. However,

it is non-trivial to estimate the sparse covariance matrix of high-dimensional

compositional data, whose data matrix induces a sum-to-one constraint for each

row and is intrinsically not full rank. The compositional data analysis frame-

work proposed by Aitchison (1986) lays the bedrock for the study of the depen-

dency structure of compositional data. Under this latent framework, the Sparse

Correlations for Compositional Data (sparCC) method proposed by Friedman

and Alm (2012) employed an iterative algorithm to estimate the correlation

matrix. The sparCC method does not guarantee that the estimator is positive-

definite or that correlations are bounded between [−1, 1]. To solve these issues,

Fang et al. (2015) developed the Correlation Inference for Compositional Data

through Lasso (CCLasso) method which employs an `1-penalization to estimate

a sparse representation of the latent correlation matrix and ensure the positive-

definiteness. Recently, work by Cao et al. (2019) introduced the composition

adjusted thresholding (COAT) procedure to estimate the sparse covariance ma-

trix of compositional data under a latent data framework.

Existing covariance or correlation estimation procedures for compositional

data, including the aforementioned sparCC, CCLasso, and COAT, are essen-
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tially built on the regularized sample covariance matrix. They all assume the

sub-Gaussian tails or even normal distributions for the latent log-basis variables

(Cao et al., 2019). However, it is known that the sample covariance matrix be-

haves poorly when the data significantly deviates from normality (Tyler, 1987;

Nordhausen and Tyler, 2015). Due to machine error, natural variation, or exper-

imental procedure, real-world compositional datasets are riddled with outliers

and heavy tails.

Another key rationale for developing our method is to create a method which

naturally fits into a practical data analysis pipeline. While classic estimation of

a single dependency structure is common, researchers often wish to compare

across multiple cohorts simultaneously (Morgan et al., 2015). This motivates

a joint analysis viewpoint, as the estimation of multiple dependence structures

provides additional insights when we study the compositions across multiple

groups. For example, one may be interested in learning how the dependence of

the microbiome changes under the presence or absence of antibiotics regimes,

or between disease cohorts. However, across cohorts, there may be key depen-

dencies that remain the same regardless of clinical covariate. Therefore, joint

estimation is useful as it shares information across groups in order to improve

accuracy.

Our primary contribution is the development of the HeavyCOAT procedure,
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which provides an accurate joint estimation of the orientation and spread of

the underlying elliptical contours even when the covariance matrix may not ex-

ist. We focus on estimating the dependence structure from the shape matrix in

wide class of elliptical distributions. We propose a robust composition-adjusted

thresholding procedure, called HeavyCOAT, to estimate the sparse latent shape

matrix of high-dimensional compositional data under the general elliptical distri-

bution framework. The HeavyCOAT procedure first estimates the shape matrix

of the transformed data Xc across each cohort of interest and then uses the esti-

mated shape matrices to construct a sparse estimation of the latent shape matri-

ces of each row of Y for each cohort by solving a positive-definite thresholding

problem. By using either a fused or group penalty (Tibshirani et al., 2005; Fried-

man et al., 2010; Danaher et al., 2014) in the positive-definite thresholding step,

the HeavyCOAT method can be used to jointly estimate multiple sparse latent

shape matrices when the observed compositions come from different groups and

their shape matrices share certain similarity.

Theoretically, we study the asymptotic behaviours of the proposed method.

Primarily, we show that the HeavyCOAT procedure is a robust estimator that ef-

fectively recovers the sparsity pattern of the dependence structure and achieves

the sign consistency with high probability under the broad class of elliptical dis-

tributions. Also, we derive the convergence rate under the spectral norm for the
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estimation of sparse latent shape sub-matrix as well as the explicit expected risk

bound under the squared spectral norm. The derived convergence rate and risk

bound are comparable to those optimal results under Gaussian or sub-Gaussian

tail conditions. The finite-sample properties of the HeavyCOAT procedure and

a real application to microbial inter-taxa analysis are also demonstrated.

The rest of this paper is organized as follows. After introducing a general

class of elliptical distributions and notation in Section 2, we present the Heavy-

COAT procedure in Section 3. Section 4 presents the asymptotic properties in-

cluding the selection consistency, sign consistency, convergence rate, and risk

bound. We evaluate the finite-sample properties through simulation studies in

Section 5 and a real application to microbial inter-taxa analysis in Section 6.

We give the concluding remarks in Section 7. Technical proofs and additional

simulations are presented in a supplemental note.

2. Preliminaries

2.1 Problem Setting

The challenges of compositional data analysis arise from the transformation of

the unconstrained features to the compositional space (Aitchison, 1986). We will

first introduce the notation under the single group setting and the latent view of

compositional data analysis popularized by Cao et al. (2019). Let W0 ∈ Rp0
+
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2.1 Problem Setting

be the vector of basis variables and Y0 = log(W0) be the vector of latent

log-basis variables. The corresponding compositional random vector X0,i =

(X0,i,1, · · · , X0,i,p0)
′ is generated by normalizing X0,i = W0,i/

∑p0
i=1W0,i. Of-

ten, we only observe the compositional data matrix X0 = (X0,1, . . . ,X0,n)′ in

practice, instead of the basis matrix W0 = (W0,1, . . . ,W0,n)′, where n denotes

the number of observations. For example, in microbiome research, raw DNA

totals vary greatly between samples and thus the relative proportions X0 are re-

ported (Li, 2015). To account for the compositional structure of X0, the centered

log-ratio (clr) transformation is used as the pre-processing step on X0. Specif-

ically, we have Xc = clr(X0) = (log(X0,i,j/g(X0,i))) for i = 1, ..., n and j =

1, ..., p0, where g(X0,i) is the geometric mean of X0,i = (X0,i,1, · · · , X0,i,p0)
′.

The goal of this paper is to use observations X0,i where i = 1, . . . , n to make

inference on the dependence structure of Y0 = (Y0,1, . . . ,Y0,n)′ where i =

1, . . . , n which is the true dependence relationship we wish to capture.

To allow for heavy-tails or possible outliers, we assume that each Y0,i ∈

Rp0 follows the elliptical distribution such that Y0,i ∼ Ep0(µ,Σ0, φ), where

Ep0(µ,Σ0, φ) is a p0-dimensional elliptical distribution with the location param-

eter µ ∈ Rp0 , positive-definite shape matrix Σ0, and density generator φ (Cam-

banis et al., 1981; Tyler, 1987; Fang et al., 1990). By Cambanis et al. (1981),

Y0,i is equivalently represented as
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2.1 Problem Setting

Y0,i = µ+ ui(Σ0)1/2ξi,

where ξi is drawn uniformly from Sp0−1, and ui is an arbitrary random vari-

able or deterministic nonzero scalar, independent of ξi. Note, Ep0(µ,Σ0, φ)

consists of a large class of distributions with elliptically shaped contours, in-

cluding the Gaussian distribution and also the heavy-tailed distributions such as

the Laplace and Cauchy distributions, which are often used to efficiently gen-

erate data from the elliptical distribution (Andrews and Mallows, 1974; Goes

et al., 2020; Müller and Richter, 2019). Let ui be a scalar random variable,

and ξi ∼ N (0, Ip0×p0). The Gaussian scale mixture random variable Y0,i =

µ + ui(Σ0)1/2ξi is a useful elliptical distribution (Goes et al., 2020). For ease

of representation, we refer to these distributions according the form of ui, for

instance, Y0,i follows a Laplace scale mixture distribution when ui is generated

from a Laplace distribution. The underlying dependence structure is charac-

terized by the shape matrix. If the covariance matrix exists, the shape matrix

is proportional to the covariance matrix. When the covariance matrix does not

exist (e.g. Cauchy distribution), the shape matrix is still a reliable measure of

directional dependence (Tyler, 1987; Nordhausen and Tyler, 2015).
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2.2 Real Data Motivation

2.2 Real Data Motivation

As a practical illustration of this problem setting, we use the mucosal membrane

dataset collected by Morgan et al. (2015) to illustrate the non-normality and

heavy-tails in the microbiome compositional data.We conduct several normality

tests (e.g., the Cramer-von Mises test (Cramér, 1928), Lilliefors test (Conover,

1998), and Shapiro-Francia test (Shapiro and Francia, 1972)) to check if each

column of Y0 is normally distributed with an α-level threshold 0.05 or the

Bonferroni-adjusted α-level threshold. The results of these tests is summarized

in Table 1. Across all normality tests, a vast majority of the taxa fail to satisfy the

assumed normal distribution, suggesting the presence of non-normal behavior.

Table 1: Number of rejections of three different tests of normality among the
200 most abundant taxa. Each test is evaluated at a threshold of 0.05 and the
Bonferroni-adjusted threshold.

Test of normality for each taxa
Method Threshold Number of Rejections

Cramer-von Mises .05 200
.05/200 197

Lilliefors .05 199
.05/200 198

Shaprio-Francia .05 199
.05/200 198
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2.3 The Shape Matrix

2.3 The Shape Matrix

To study the dependence structure of compositional data, we consider a gen-

eral class of elliptical distributions characterized by the shape matrix (Cambanis

et al., 1981; Fang et al., 1990). It is known that the shape matrix is a scalar mul-

tiple of the covariance matrix when it exists, and it can preserve the directional

properties of the dependence in a distribution without requiring the existence of

moments (Tyler, 1987; Nordhausen and Tyler, 2015; Wiesel and Zhang, 2015).

This is particularly useful in microbiome analysis as the shape matrix allows

us to recover the linear relationship between microbial taxa, even in extremely

noisy practical data settings. In these practical settings, the error within the data

may not fit the classical Gaussian assumption. For example, if the (i, j) element

of the shape matrix is positive, this indicates that taxa i is positively, linearly,

associated with taxa j. Therefore, as the abundance of taxa i increases, the

abundance of taxa j increases. If the (i, j) element of the shape matrix is 0, then

there is no association between the abundances of taxa i and taxa j.

In view of these appealing properties, the shape matrix can be viewed as a

promising alternative to the covariance matrix for heavy-tailed distributions. The

shape matrix can be accurately estimated even when the second moment is not

bounded (Tyler, 1987). We use a simulation study to explore the interpretation

of the shape matrix and also the impact of heavy-tails. We generated n = 500 in-
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2.3 The Shape Matrix

dependent bivariate realizations from a Gaussian scale mixture distribution. We

provide more insight into scale mixture distributions in Section 2. For this toy

example, we considered three different choices of ui corresponding to: the mul-

tivariate normal distribution with {ui}ni=1 = 1, the Laplace scale mixture with

ui ∼ Laplace(0, 1) and the Cauchy scale mixture with ui ∼ Cauchy(0, 1/100).

The diagonal elements of the shape matrix were fixed as 1 and we varied the

off-diagonal dependence strength C ∈ {−.5, 0, .5}. In the first two settings, the

covariance matrix existed and C coincided with the correlation.

We compared four different measures of bivariate dependence in this simu-

lation study: Pearson correlation coefficient (denoted by P ), Kendall correlation

coefficient (denoted byK), Spearman correlation coefficient (denoted by S), and

the normalized Tyler’s M-estimator (Tyler, 1987) of the shape matrix (denoted

by T ). As shown in Table 2, all four measures perform well in the Gaussian

setting. Tyler’s M-estimation and rank correlations can capture the underlying

dependence under all three settings, while the Pearson correlation coefficient

performs poorly in both Laplace and Cauchy settings due to heavy-tails. Overall,

Tyler’s M-estimation provides a more accurate estimation than both rank corre-

lations and the Pearson correlation estimates, which motivates us to propose new

methods for robust estimation of the shape matrix Σ0 of latent variables Y0.
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Table 2: Illustration of the shape matrix measuring dependence. The estimated
correlation is listed for a given true correlation C under each scale mixture.

Method Gaussian Laplace Cauchy
C -0.5 0 0.5 -0.5 0 0.5 -0.5 0 0.5
T -0.48 0.04 0.42 -0.44 -0.01 0.51 -0.50 0.08 0.48
K -0.34 0.02 0.30 -0.30 0.00 0.37 -0.37 0.03 0.33
S -0.49 0.04 0.44 -0.39 0.00 0.50 -0.48 0.02 0.42
P -0.50 0.03 0.45 -0.38 0.03 0.35 -0.89 -0.95 0.93

3. Methodology

This section proposes a robust positive-definite estimation of sparse shape matri-

ces for compositional data. The observed compositions may come from different

cohorts, and their shape matrices may share the similarity. Suppose that there are

K independent compositional datasets X0,k = (X0,k,1, . . . ,X0,k,nk)
′ ∈ Rnk×p0

for k = 1, 2, ..., K, and Y0,k = (Y0,k,1, · · · ,Y0,k,nk)
′ ∈ Rnk×p0 are the cor-

responding latent log-basis variables. For any p < p0, the proposed method

estimates the p × p sub-matrix of the true shape matrix of Y0,k. The estimation

of a sub-matrix is not overly restrictive as it is typical to screen out taxa with low

counts or low accuracy prior to running an analysis in practice. Further, when

p = p0−1, this is analogous to dropping the reference component whose depen-

dency structure is not of interest to a researcher. We employ this in practice in the

microbial inter-taxa analysis of Section 6, we drop the column of the OTU matrix

referring to the counts of unclassified microbes. As this OTU encompasses all

taxa that were not matched to known taxa of interest, the dependency captured
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by this OTU is likely uninformative in understanding the underlying biological

mechanism and we still recover the vast majority of dependencies between taxa.

Let Xk,c = (Xk,c,1, . . . ,Xk,c,nk)
′ ∈ Rnk×p be the sub-matrix of transformed

data clr(X0,k), and the columns of clr(X0,k) associated with this sub-matrix be

enumerated in the index set C ⊂ {1, ..., p0}. Without loss of generality, we

assume that C = {1, ..., p} (i.e. we drop the pth0 component). Let A0 = Ip0×p0 −

(1/p0)1p01
T
p0

and A = (Ip×p,0p×(p0−p)) − (1/p0)1p1
T
p0
. Lemma 1 is the key

bedrock of our analysis showing how elliptical distributions are retained through

transformation.

Lemma 1. Suppose each Y0,k,i ∈ Rp0 in Y0,k follows the elliptical distribution

Ep0(µk,Σ0,k, φk), where rank(Σ0,k) = p0. Then, each clr(X0,k,i) in clr(X0,k)

follows the elliptical distribution Ep0−1(A0µk, A0Σ0,kA
T
0 , φk), and each Xk,c,i

in Xk,c follows the elliptical distribution Ep(Aµk, AΣ0,kA
T , φk). Moreover, we

have rank(A0Σ0,kA
T
0 ) = p0 − 1.

As shown in Lemma 1, the distributions of both X0,k,i and clr(X0,k,i) fall

in the class of elliptical distributions. Further, rank(A0Σ0,kA
T
0 ) = p0 − 1 and

rank(AΣ0,kA
T ) = p. While the shape matrix of clr(X0,k), i.e., A0Σ0,kA

T
0 ∈

Rp0×p0 , is degenerate, after removing columns relating to unimportant taxa, the

shape sub-matrix of Xk,c,i, i.e., AΣ0,kA
T ∈ Rp×p, is non-degenerate. For ease

of terminology, we will refer to AΣ0,kA
T as a ”shape sub-matrix”, which is a
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sub-matrix of the true shape matrix Σ0,k. By Proposition 1 of Cao et al. (2019),

the shape sub-matrix is asymptotically indistinguishable from Σ0,k when Σ0,k

belongs to the class of sparse shape matrices explored in Section 4. Under this

condition, the sparsity AΣ0,kA
T is asymptotically equivalent to the sparsity pat-

tern of Σ0,k, thus allowing the shape sub-matrix to function as a proxy for latent

log-basis Σ0,k. Thus, this asymptotic indistinguishability forms the bedrock to

the support recovery and convergence properties explored in Section 4.

Recall that the shape matrix characterizes the linear relationships between

variables under the elliptical distribution framework in Section 2. Let Σ0,k be

the sparse shape sub-matrix for those latent log-basis variables Y0,k in the k-th

group. Let Γk be the corresponding shape sub-matrix for transformed variables

in Xk,c. While Σ0,k and Γk appear to be different estimation targets, as show

by Proposition 1 of Cao et al. (2019), the shape sub-matrix is asymptotically

indistinguishable from the true log-basis shape sub-matrix under a weak set of

conditions. This relationship is a key fact that motivates the theoretical recovery

properties we explore in Section 4. Under the elliptical distribution framework,

we propose the HeavyCOAT procedure to first compute a robust estimation of

the shape sub-matrix Γk of transformed variables in Xk,c (see Subsection 3.1)

and then obtain the sparse estimation of the latent shape sub-matrix of log-basis

variables in Y0,k (see Subsection 3.2).
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3.1 Estimation Step

The HeavyCOAT procedure first uses the Tyler’s M-estimation method (Tyler,

1987) to construct a robust shape sub-matrix estimator Γ̂k based on the trans-

formed data matrix Xk,c and then obtains the final positive-definite and sparse

shape sub-matrix estimator Σ̂k through a subsequent joint thresholding step.

Since the shape matrix is scale invariant, we may assume that tr(Γk) = p with-

out loss of generality (Tyler, 1987; Goes et al., 2020). We should point out that,

under the K = 1 setting we drop the k-subscript and the sparse estimator Σ̂,

constructed using Xc as a proxy of the latent Y0, enjoys desirable theoretical

properties including the selection consistency and sign consistency, which will

be presented in Section 4.

3.1 Estimation Step

For the k-th group, to construct the robust shape sub-matrix estimator Γ̂k of

the observed data matrix Xk,c, we follow Tyler (1987) to solve the constrained

optimization problem over the space of all positive-definite matrices satisfying

tr(Γk) = p, that is,

min
Γk: tr(Γk)=p

p

nk

nk∑
i=1

log((Xk,c,i)
TΓ−1

k Xk,c,i) + log(det(Γk)). (3.1)

Optimization problem (3.1) does not require the existence of the covariance ma-

trix and it is also agnostic to the exact functional form of elliptical distributions
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3.1 Estimation Step

rather than a specific member of the class (Tyler, 1987). Hence, it can be applied

to estimate the shape sub-matrix in the wide class of elliptical distributions. Al-

though (3.1) is not a convex problem, the objective function enjoys geodesic

convexity (Duembgen and Tyler, 2016).

Sun et al. (2015) and Goes et al. (2020) introduced an iterative algorithm to

solve the high-dimensional Tyler’s M-estimation problem. Specifically, starting

from Γ̃
(1)
k = αk/(1 + αk) · Ip×p with αk > max(0, p/nk − 1), for t = 1, 2, · · · ,

we solve

Γ̃
(t+1)
k =

1

1 + αk

p

nk

nk∑
i=1

Xk,c,i(Xk,c,i)
T

(Xk,c,i)T (Γ̃
(t)
k )−1Xk,c,i

+
αk

1 + αk
Ip×p. (3.2)

At each iteration, the diagonal element of the current estimate is increased by αk

to ensure the positive definiteness, where the accuracy of the estimator is robust

to the choice of αk. It is known that the iterative algorithm attains a unique

solution when αk > max(0, p/nk−1) (Pascal et al., 2013; Goes et al., 2020) and

αk primarily controls the speed at which the algorithm converges. Thus, we can

define the iterated solution for the k-th group as Γ̃k and also its normalization,

Γ̂k, according to the trace constraint as

Γ̂k =
p(Γ̃k − αk

1+αk
Ip×p)

tr(Γ̃k − αk
1+αk

Ip×p)
(3.3)

Proposition 18 of Sun et al. (2014) shows that the trace normalized solution

converges to the desired global minimum.
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3.2 Thresholding Step

3.2 Thresholding Step

After obtaining the robust estimator Γ̂k for each class of interest, we use a

positive-definite thresholding step (Rothman, 2012; Xue et al., 2012; Bien, 2019)

to derive the sparse shape sub-matrix estimator Σ̂k of the latent log-basis variable

Y0,k for each class by solving the following objective,

Σ̂k = argmin
each Σk�εIp×p

1

2

K∑
k=1

||Σk − Γ̂k||2F + P ({Σk}), (3.4)

where ‖ · ‖F denotes the Forbenius norm, {Σk} is the set of estimated shape

matrices for each group k = 1, 2, ..., K, and P (·) denotes a convex and non-

smooth penalty function of interest. Here, ε > 0 ensures the positive-definite

constraint and in practice can be taken to be a sufficiently small number and its

choice does not affect the accuracy. The constrained optimization problem (3.4)

is convex and can be efficiently solved by an alternating direction method of

multipliers (ADMM) that is presented in Section A1 of the Supplement.

When K = 1 and there is no cohort information to be shared and we may

use the `1-penalty to penalize the off-diagonal elements of Σ̂ to yield a sparse

estimate. For ease of notation, we drop the subscript k in this special case when

estimating Σ̂ and Γ̂. Specifically, we use P (Σ̂) = λ‖Σ̂‖1,off, where λ > 0 is a

tuning parameter and || · ||1,off denotes the entry-wise `1 norm of the off-diagonal

elements of Σ̂. We present theoretical results including the selection consistency,
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3.2 Thresholding Step

sign consistency, convergence rate and risk bound for this setting in Section 4.

When K > 1, we may use the specific choice of P (·) to borrow strength

across different groups and encourage similarity across their estimates. Two

commonly-used penalty functions are the fused lasso (Tibshirani et al., 2005)

and the group lasso (Yuan and Lin, 2006; Friedman et al., 2010). They are

useful when we are interested in learning the differential dependence structures

across different groups. The fused penalty

P ({Σk}) = λ1

K∑
k=1

∑
i6=j

|σk,ij|+ λ2

∑
k<l

∑
i6=j

|σk,ij − σl,ij|

encourages sparsity of the resulting covariance estimates Σ̂k and sparsity of their

differences, where λ1 > 0 and λ2 > 0 are both tuning parameters and σk,ij

denotes the (i, j)-element of Σk. The fused penalty encourages shared entry-

wise values across different covariance estimates. On the other hand, the group

penalty

P ({Σk}) = λ1

K∑
k=1

∑
i6=j

|σk,ij|+ λ2

∑
i6=j

√√√√ K∑
k=1

σ2
k,ij

uses the similarity between groups and encourages sparsity on both individual

and grouped levels, where λ1 > 0 and λ2 > 0 are both tuning parameters. While

the sparsity pattern of each Σ̂k are likely to be similar to one another, the group

penalty may be desirable when there is a shared sparsity pattern across different

covariance estimates. We will explore the effectiveness of these penalty func-
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tions through simulation studies in Section 5 and a real application in Section 6.

We summarize the Heavy COAT procedure as Algorithm 1. We refer to Section

A1 of the Supplement for details on the algorithm and implementation of the

thresholding step.

Algorithm 1 The Proposed HeavyCOAT Procedure.
Step 1. For k = 1, ...,K, obtain clr(X0,k) through the centered log-ratio transformation.

Step 2. For k = 1, ..,K, construct sub-matrix Xk,c by selecting the columns of clr(X0,k)

enumerated in C

Step 3. Estimation step. For k = 1, ...,K, solve (3.1) via (3.2) iteratively to obtain

Γ̂k =
p(Γ̃k− α

1+α
Ip×p)

tr(Γ̃k− α
1+α

Ip×p)
.

Step 4. Thresholding step. Obtain the sparse estimator Σ̂k for k = 1, ...,K by solving

(3.4) with the `1 penalty, fused penalty or group penalty via the ADMM that is presented

in Section A1 of the Supplement.

4. Theoretical Properties

This section studies the theoretical properties of the HeavyCOAT procedure

when K = 1. As we focus on K = 1, we drop the k subscript for ease of nota-

tion. Assume each latent log-basis random vector Y0,i ∈ Rp0 in Y0 follows an

elliptical distribution Ep0(µ,Σ0, φ). We consider the following parameter space
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for the sparse latent shape matrix Σ0:

U(q,M, s0) = {Σ0 : Σ0 � 0, ||Σ0||2 ≤M, max
i

p0∑
j=1

|σij|q ≤ s0}

where M > 0, q ∈ [0, 1), and s0 > 0. Given the above definition of U(q,M, s0),

we assume

(A1): Σ0 ∈ U(q,M, s0) with p0/n→ r ∈ (0,+∞) and s0/p0 → 0 as n→∞.

Recall that Γ̂ is the robust estimator for the shape sub-matrix Γ of the center

log-transformed sub-matrix Xc and Σ̂ = (σ̂ij)p×p is the robust estimator for the

sparse latent shape sub-matrix Σ of the reduced set of latent log-basis variables

in Y. In what follows, we first study the support recovery and sign consistency

in Theorems 1–2 and then explore the convergence rate under the spectral norm

and risk bound under the squared spectral norm in Theorems 3–4.

Theorems 1–2 show that the underlying shape matrix of Y such as the spar-

sity and sign of Σ = (σij)p×p can be accurately estimated by Σ̂ based on Xc

even when the covariance matrix of Y may not exist. Thus, even in the extreme

settings, the HeavyCOAT procedure is still able to recover the directionality of

the effect.

Theorem 1. Under assumption (A1), if α > max{0, r − 1 +M(1 +
√
r)2} and

λ = C1

√
log(p)
n

+ C2
s0
p

, the sparse shape sub-matrix estimator Σ̂ satisfies that

P (σ̂i,j = 0 for all (i, j) with σij = 0)→ 1, as n→∞. (4.5)
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Theorem 2. Under assumption (A1), if α > max{0, r − 1 + M(1 +
√
r)2},

λ = C1

√
log(p)
n

+ C2
s0
p

and λ ≤ 2
3

min
(i,j):σij 6=0

|σij|, the sparse shape sub-matrix

estimator Σ̂ satisfies that

P (sgn(σ̂i,j) = sgn(σij) for all (i,j) with σij 6= 0)→ 1, as n→∞. (4.6)

Theorem 3 gives the convergence rate for estimating the sparse latent shape

sub-matrix Σ under the spectral norm.

Theorem 3. Under assumption (A1), if α > max{0, r − 1 + M(1 +
√
r)2}

and λ = C1

√
log(p)
n

+ C2
s0
p

, the sparse shape sub-matrix estimator Σ̂ from (3.4)

satisfies that

||Σ̂− Σ||2 = Op

(
s0(

√
log(p)

n
+
s0

p
)1−q

)
(4.7)

The convergence rate in (4.7) is comparable to that of the COAT method

(Cao et al., 2019). We consider the robust estimation under a larger class of el-

liptical distributions, while COAT imposes the sub-Gaussian tail condition. Sim-

ilar to COAT, (4.7) can be decomposed into the estimation error (
√

log(p)/n) of

Σ and the approximation error (s0/p) from using the transformed data Xc as

a proxy for the latent log-basis variables in Y. Thus, our method also shows

the appealing ”blessing of dimensionality” as the estimation error dominates the

approximation error as p increases.
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Given the convergence rate derived in Theorem 3, we further derive the risk

bound of HeavyCOAT under the squared spectral norm in Theorem 4.

Theorem 4. Under the assumption (A1), if α > max{0, r − 1 + M(1 +
√
r)2}

and λ = C1

√
log(p)
n

+ C2
s0
p

, the sparse shape sub-matrix estimator Σ̂ from (3.4)

satisfies that

sup
Σ∈U(q,s0,M)

E||Σ̂− Σ||22 ≤ C3s
2
0

(
C1

√
log(p)

n
+ C2

s0

p

)2−2q

. (4.8)

Theorem 4 is a new theoretical result for high-dimensional compositional

data analysis. Although Σ̂ is a robust estimator under the class of elliptical dis-

tributions, the obtained risk bound matches the risk bound derived under the

polynomial tails in Lemma 4 of Cai and Liu (2011).

5. Numerical Properties

In this section, we study the numerical effectiveness of our proposed Heavy-

COAT procedure under a variety of settings. We analyze the K = 2 setting

to demonstrate the effectiveness of joint estimation. Analysis of the K = 1

setting can be found in the Supplement. We compare HeavyCOAT to three con-

temporary methods. As an alternative method to Tyler’s M-Estimator, we con-

sider a rank-based covariance estimator based on Spearman’s ρ and Kendall’s τ
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5.1 Performance Analysis

(Xue and Zou, 2012, 2014b,a; Avella-Medina et al., 2018). Thus, by substituting

Tyler’s M-Estimator from Section 3.1 with an associated rank-based estimator,

we denote the methods as kCOAT for a Kendall’s τ -based estimator and sCOAT

for the Spearman’s ρ-based estimator. Finally, we compare HeavyCOAT to the

sample covariance-based COAT procedure (Cao et al., 2019). In all cases, we

employ the universal thresholding procedure employed in Section 3.2 to ensure

a positive-definite final estimate. If the group penalty is used, we append a -G

suffix, and if the fused penalty is used, we append an -F suffix.

5.1 Performance Analysis

We study each method across a variety of scale mixture settings as outlined in

Section 2. Namely we study the Gaussian setting where ui = 1 for all i, the

Laplace setting where ui ∼ Laplace(0, 1), the T5 setting where ui ∼ t5, and

the extreme Cauchy setting where ui ∼ Cauchy(0, 1). For brevity, we present

results for the heavy-tailed Laplace and the T5 setting and the Gaussian and

Cauchy results can be found in the supplement.

We study the following two covariance models. Let the operation bdiag(A,B)

denote creating a block-diagonal matrix with diagonal blocks A and B.

1. (Sparse Covariance) Σ0,1 = bdiag(B1, 4Ip2×p2) is a block diagonal matrix

with B1 = B + εIp1 and ε = max(−λmin(B), 0) + .01 for p1 =
⌊
2
√
p0

⌋
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5.1 Performance Analysis

and p2 = p0 − p1. The sub-matrix B is constructed to be a random sym-

metric matrix whose lower triangular elements are drawn uniformly from

U(−2,−4) ∪ U(2, 4) with probability 0.15 and 0 otherwise. Given Σ0,1,

we generate by Σ0,2 by replacing each non-zero, non-diagonal element of

Σ0,2 with 0 with probability 0.7.

2. (Block Covariance) Let Ar for r = 1, ..., 10 be p0
10
× p0

10
matrices where

Ar,i,j = 4(.7|i−j|), and B = 3I p0
10
× p0

10
. Construct Σ0,1 = bdiag(A1, ..., A10)

and Σ0,2 = bdiag(A1, ..., A7, B,B,B) as two block diagonal matrices.

The Sparse Covariance structure is similar to the sparse setting studied by

Cai et al. (2007). The Block Covariance structure consists of 10 blocks follow-

ing an AR model similar to one studied in Bickel and Levina (2008). In this

case, while each block matrix may not be sparse, the magnitudes of each Ar

block decay rapidly. In both cases, we construct Σ0,2 by removing non-zero el-

ements of Σ0,1. Thus, for the non-removed elements, Σ0,2 shares structural and

magnitude information with Σ0,1. To match the trace constraint that is assumed

for the shape matrix, we normalize Σ0,1 and Σ0,2 such that tr(Σ0,1) = p and

tr(Σ0,2) = p as in (3.3).

We analyze the setting where n = 100 and p0 ∈ {150, 200, 250}. Given this,

our target for estimation is the p × p sub-matrix where p = p0 − 1 of Σ0,1 and

Σ0,2 denoted as Σ1 and Σ2 formed by dropping the pth
0 column of Xc. We repeat
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5.1 Performance Analysis

the estimation process over s = 100 replications and assess the performance

of our method by comparing the average Forbenius norm 1
2

∑2
k=1 ||Σk − Σ̂k||F ,

average spectral norm 1
2

∑2
k=1 ||Σk − Σ̂k||2, average true positive rate (TPR)

1
2

∑2
k=1 TPRk, and average false positive rate (FPR) 1

2

∑2
k=1 FPRk where,

TPRk =
#{(i, j) : σ̂k,i,j 6= 0 and σk,i,j 6= 0}

#{(i, j) : σk,i,j 6= 0}

FPRk =
#{(i, j) : σ̂ki,j 6= 0 and σk,i,j = 0}

#{(i, j) : σ̂k,i,j 6= 0}

Note FPRk is defined to be 0 if #{(i, j) : σ̂k,i,j 6= 0} = 0. We select

λ1 and λ2 via the cross-validation procedure outlined in Danaher et al. (2014).

Following Xue et al. (2012) and Goes et al. (2020), we set ψ = 2 and α =

max(p/n− 1, 0) + 1. The results for the Sparse Covariance setting can be seen

in Table 4 and the results for the Block Covariance setting are found in Table 5.

Across the Laplace and T5 error settings, regardless of covariance structure,

the HeavyCOAT procedure performs well in terms of both norms (specifically

the spectral norm) and selection consistency. Both kCOAT and sCOAT have

theoretical convergence and accuracy guarantees in cases where the fourth mo-

ment is bounded; though, their effectiveness in more extreme settings is unclear

(Avella-Medina et al., 2018). This may be a key reason as to the good perfor-

mance of the rank-based methods in the T5 and Laplace settings. In comparison,
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5.1 Performance Analysis

HeavyCOAT does not require the same moment assumptions; thus, can be ap-

plied more flexibly to situations where the underlying distribution may not be

known apriori. We further note that HeavyCOAT appears to be less conservative

than the rank-based methods, allowing for a higher TPR across settings. While

the FPR appears to be slightly inflated in comparison to kCOAT and sCOAT,

these differences may be explained through differences in the λ1 and λ2 selected

by the cross-validation procedure. To better understand the selection power of

HeavyCOAT compared to kCOAT and sCOAT, we compare these methods under

the sparse covariance setting via an ROC analysis in Section 5.2.

Table 3 and Table 4 are about here.

In both the block and sparse settings, we see the improvement of robust

analysis over the sample covariance under the presence of heavy tails. COAT

performs poorly in terms of error compared to all robust methods as the sample

covariance suffers as the tails become heavier. Further, the FPR of COAT meth-

ods may be more than twice as large as HeavyCOAT depending on the choice of

penalty. This is likely due to poor estimation in the Estimation Step causing er-

rors to propagate down to the Thresholding Step, yielding inappropriate results.

Thus, in settings where one may suspect the presence of heavy tails, a robust

viewpoint is a necessity.
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5.2 ROC Analysis

5.2 ROC Analysis

In this section, we perform compare the performance of HeavyCOAT, kCOAT,

and sCOAT through the receiver operating characteristic (ROC) curves. Through

this analysis, we demonstrate the improved performance of our proposed Heavy-

COAT procedure across various different choices of the tuning parameters λ1

and λ2. We focus our analysis on comparing the sparse covariance across the

Gaussian, Laplace, and T5 settings. Further, we analyze the ROC curves under

both the group-penalty (Figure 1) and fused-penalty (Figure 2).

Through these curves, we note that our proposed HeavyCOAT procedure

dominates the competitive procedures regardless of the error type or penalty

function. The kCOAT and sCOAT procedures are similar to one another, which

matches our previous numerical results. In the Gaussian setting, all methods are

relatively comparable which is to be expected as this setting exhibits no heavy-

tailed behavior.

6. Application to Microbial Inter-Taxa Analysis

In this section, we illustrate the potential usefulness of our method using micro-

biome data collected from n = 255 patients which exhibit forms of gastroin-

testinal disease (Morgan et al., 2015). For these individuals, various experimen-

tal factors were recorded, namely the use of antibiotics and the specific type of
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Figure 1: ROC curves for the choice of λ1 and λ2 for the sparse covariance

setting under the group lasso penalty. We compare HeavyCOAT, kCOAT, and

sCOAT across the Gaussian, Laplace, and T5 scale mixture models.
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Figure 2: ROC curves for the choice of λ1 and λ2 for the sparse covariance

setting under the fused lasso penalty. We compare HeavyCOAT, kCOAT, and

sCOAT across the Gaussian, Laplace, and T5 scale mixture models.
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disease. The use of antibiotics has been well-studied and greatly reduces micro-

biome diversity in patients (Morgan et al., 2015; Dudek-Wicher et al., 2018). In

regards to disease type, pouchitis refers to the inflammation of the ileal pouch

which may become a chronic condition that often requires surgical interven-

tion. The composition of the microbiome has been linked to the development

of pouchitis. However, individuals with Familal Adenomatous Polyposis (FAP)

undergo similar surgical intervention as individuals with inflammatory bowel

disease though often do not develop pouchitis. Thus, as pouchitis is influenced

by microbial composition, it is of interest to study the microbial dependence re-

lationships of FAP patients to elucidate any differences. For the disease type

analysis, the patients are split into two groups: FAP and non-FAP. In both the

antibiotics and the disease type analysis, it is of particular interest to study the

relationships between these bacterial taxa, as the inter-taxa dependence is linked

to various risk factors (Morgan et al., 2015; Becker et al., 2015).

In this data, the microbial community was measured by 16s rRNA sequenc-

ing and sequence counts were clustered as Operational Taxonomic Units (OTU),

representing biological taxa (Morgan et al., 2015). In particular, the target mi-

crobiome dataset consists of 7000 species-level OTUs, which have been further

classified into p0 = 303 genera to reduce sequencing errors (Li, 2015). We fo-

cus on the sub-matrix of p = 302 genera by omitting the category of unclassified
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taxa. Of the 255 patients, n1 = 66 had used antibiotics in the previous month

before sampling and n2 = 189 did not take antibiotics.

The patients were also classified by disease type, where n1 = 39 patients

were classified with FAP and n2 = 216 were classified as non-FAP. In these

two-class cases, the choice of penalty function should be motivated by the un-

derlying biological framework. It is known that antibiotics are extremely influ-

ential and can greatly alter the microbiome composition (Morgan et al., 2015;

Dudek-Wicher et al., 2018). It is likely that the microbes that survive after an

antibiotics regimen retain similar dependence relationships, but it is unlikely that

the antibiotics group and the non-antibiotics group share similar values between

their underlying shape matrices. Thus, we use the group lasso penalty to encour-

age the shared sparsity pattern, and borrows information less aggressively. On

the other hand, as noted by Morgan et al. (2015), the difference between micro-

biome composition between disease-type is not a major factor. It is reasonable to

assume that the dependence structures and strengths between both disease-type

groups are similar. Employing the fused penalty in this setting is desirable as

it will improve estimation by strongly leveraging information on both sparsity

structure and covariance magnitude.

The correlation matrices were constructed from applying HeavyCOAT with

the group penalty for the antibiotics group and the non-antibiotics group and
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apply the fused penalty for the disease type analysis. To visualize these interac-

tions, we represent the correlation matrices via network graphs. To ensure net-

work stability, we implement a bootstrapping procedure to capture the relevant

edges. For each setting, we construct networks from applying our HeavyCOAT

procedure across 50 bootstrapped samples. We retain the edges that appear at

least 95% of the bootstrapped replicates, thereby presenting the most stable inter-

actions within the microbial network. The edge thickness represents the strength

of the correlation between nodes. The results for the antibiotics setting can be

found in Figure 3 and disease setting can be found in Figure 4. To better under-

stand the structure of these networks, we further implement the Louvain method

for community detection (Blondel et al., 2008) to identify sub-communities of

taxa within the correlation networks. These communities are denoted by the

circular or square node shape in Figure 3 and Figure 4. In all settings, we iden-

tify two unique clustering of taxa. Finally, we compute key network statistics

(average correlation and average node degree) for each setting in Table 3.

For ease of presentation, we present the relationships between the top 40

genera of these phyla as they are likely to be the most influential. We color each

node by the corresponding phyla. When the effect of antibiotics in Figure 3 we

observed a marked change in the sparsity pattern as expected. Firstly, after an-

tibiotic use, the overall diversity of the microbial network is drastically reduced
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Table 3: Average network statistics across group settings. The Degree column
denotes the average degree across all nodes within the network, and the Corre-
lation column lists the average correlation coefficient between taxa within each
network.

Setting Degree Correlation
Antibiotics 7.10 0.162

No Antibiotics 16.27 0.158
FAP 11.36 0.193

non-FAP 11.36 0.200

with far fewer active edges, which is can be seen by the large reduction in av-

erage degree in the antibiotic setting. This reduction in microbial diversity is

well studied (Hildebrand et al., 2019), as there may be fundamental disruptions

in these microbial systems after antibiotic use (Schwartz et al., 2020; Xu et al.,

2020; Seelbinder et al., 2020). For example, we observe that genera primarily

of the Firmicutes phylum remain active. Recent literature has shown that mem-

bers of the Firmicutes phylum may opportunistically dominate other phyla in the

post-antibiotics ecosystem (Ng et al., 2019).

When analyzing the key community memberships, we focus on the four

taxa identified by Morgan et al. (2015) as playing a pivotal role: Escherichia,

Roseburia, Bifidobacterium, Sutterella. When no antibiotics were used, we see

that Escherichia is in a unique community while Sutterella, Roseburia, and Bi-

fidobacterium are in a unique community. However, after antibiotics use, Bifi-

dobacterium and Escherichia are in a separate cluster from Roseburia, and Sut-
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terella disappears all together. This shift in community membership influenced

by the use of antibiotics may point to further evidence that the use of antibiotics

can fundamentally affect the relationships between surviving microbial taxa.

When comparing individuals of the non-FAP disease type to those of the

FAP disease type, the difference between the covariance structures are less ex-

treme. The two settings have identical correlation structure which is to be ex-

pected as the fused penalty aggressively ensures similar sparsity structures be-

tween groups. However, the edge weights between groups may vary. The corre-

lation strength in the FAP group is slightly less than that of the non-FAP group,

but the difference between disease types is less extreme than the effect of an-

tibiotics which is expected via the analysis conducted by Morgan et al. (2015).

Community membership also remains consistent across groups, further suggest-

ing that influence of disease type is not as impactful in differentiating microbial

communities. In both groups, the Firmicutes and Bacteroidetes phyla were the

most active which is to be expected as these two phyla are dominant within the

gut microbiome (Hildebrand et al., 2019; Morgan et al., 2015).

Figure 3 and Figure 4 are about here.
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7. Conclusion

We proposed the HeavyCOAT procedure to estimate the latent shape sub-matrix

of high-dimensional compositional data across multiple groups, which is a scalar

multiple of the covariance matrix when it exists. Unlike existing methods, Heavy-

COAT has improved estimation accuracy by modeling the heavy-tails using a

large class of elliptical distributions. We showed that whenK = 1, HeavyCOAT

has competitive theoretical properties. When the number of groups increases, as

may be common in practical microbiome data analysis, the use of the fused and

group penalties during the thresholding step allow us to leverage power across

the multiple groups and improve estimation. Finally, we applied HeavyCOAT to

gut microbiome data and identified biologically significant dependence patterns.

Currently, our method is agnostic to known structure within the data. For

example, in the microbiome setting, bacterial taxa can be naturally organized by

a phylogentic tree structure and we expect similar taxa to have a similar depen-

dence relationships. Further avenues of exploration include embedding known

structure into the thresholding scheme. For example, one could apply group

thresholding to vary the thresholding intensity across groups to account for this

structure.
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Supplementary Materials

In the supplementary note, we describe the ADMM for solving multiple shape

matrices in the thresholding step, present simulation results under additional set-

tings, and provide detailed technical derivations for the Lemmas and Theorems

presented in Section 2.
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Table 4: Comparison of the estimation and selection performance under the
sparse covariance setting with n = 100 and p0 = 150, 200, and 250 over 100
independent repetitions.

Laplace Mixture Setting T5 Mixture Setting
p0 = 150 p0 = 200 p0 = 250 p0 = 150 p0 = 200 p0 = 250

Forbenius Norm
HeavyCOAT-G 10.75 13.33 15.90 10.71 13.31 15.90

kCOAT-G 8.78 10.71 12.43 8.82 10.73 12.55
sCOAT-G 8.28 10.12 11.73 8.44 10.25 12.02
COAT-G 97.43 127.18 153.96 78.03 106.70 122.63

HeavyCOAT-F 9.99 12.14 14.13 9.96 12.14 14.13
kCOAT-F 8.44 10.13 11.47 8.40 10.05 11.42
sCOAT-F 8.44 10.13 11.47 8.40 10.05 11.42
COAT-F 89.36 112.69 142.33 70.47 92.45 103.77

Spectral Norm
HeavyCOAT-G 2.57 2.80 3.12 2.54 2.79 3.10

kCOAT-G 2.56 2.79 3.07 2.56 2.81 3.08
sCOAT-G 2.58 2.83 3.14 2.61 2.90 3.19
COAT-G 53.84 71.43 83.09 42.72 64.42 70.08

HeavyCOAT-F 9.99 12.14 14.13 9.96 12.14 14.13
kCOAT-F 8.44 10.13 11.47 8.40 10.05 11.42
sCOAT-F 8.44 10.13 11.47 8.40 10.05 11.42
COAT-F 89.36 112.69 142.33 70.47 92.45 103.77

True Positive Rate
HeavyCOAT-G 0.80 0.80 0.82 0.80 0.81 0.82

kCOAT-G 0.76 0.76 0.78 0.76 0.76 0.78
sCOAT-G 0.75 0.74 0.77 0.75 0.75 0.77
COAT-G 0.80 0.80 0.82 0.80 0.80 0.82

HeavyCOAT-F 0.78 0.77 0.80 0.77 0.77 0.80
kCOAT-F 0.74 0.74 0.77 0.74 0.74 0.76
sCOAT-F 0.74 0.74 0.77 0.74 0.74 0.76
COAT-F 0.80 0.80 0.82 0.79 0.79 0.81

False Positive Rate
HeavyCOAT-G 0.06 0.07 0.12 0.06 0.07 0.12

kCOAT-G 0.03 0.03 0.06 0.03 0.04 0.06
sCOAT-G 0.03 0.03 0.05 0.03 0.03 0.06
COAT-G 0.27 0.27 0.29 0.27 0.27 0.29

HeavyCOAT-F 0.05 0.05 0.10 0.05 0.05 0.10
kCOAT-F 0.02 0.02 0.05 0.02 0.03 0.05
sCOAT-F 0.02 0.02 0.05 0.02 0.03 0.05
COAT-F 0.34 0.34 0.36 0.33 0.33 0.35
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Table 5: Comparison of the estimation and selection performance under the
block covariance setting with n = 100 and p0 = 150, 200, and 250 over 100
independent repetitions.

Laplace Mixture Setting T5 Mixture Setting
p0 = 150 p0 = 200 p0 = 250 p0 = 150 p0 = 200 p0 = 250

Forbenius Norm
HeavyCOAT-G 15.70 19.00 22.01 15.70 19.02 22.00

kCOAT-G 15.00 17.83 20.46 14.88 17.75 20.29
sCOAT-G 14.73 17.39 19.88 14.57 17.29 19.68
COAT-G 61.31 81.85 94.76 49.86 64.11 72.14

HeavyCOAT-F 15.86 18.96 21.69 15.85 18.96 21.66
kCOAT-F 15.16 17.93 20.39 15.03 17.81 20.21
sCOAT-F 14.89 17.56 19.91 14.72 17.39 19.68
COAT-F 42.73 54.68 63.72 35.10 43.51 51.44

Spectral Norm
HeavyCOAT-G 3.12 3.38 3.48 3.12 3.36 3.49

kCOAT-G 3.91 4.18 4.33 3.88 4.14 4.29
sCOAT-G 4.15 4.42 4.58 4.11 4.38 4.53
COAT-G 31.85 41.24 49.06 25.76 32.56 33.02

HeavyCOAT-F 3.38 3.65 3.79 3.37 3.64 3.79
kCOAT-F 4.06 4.34 4.51 4.03 4.32 4.48
sCOAT-F 4.28 4.57 4.74 4.24 4.53 4.69
COAT-F 19.05 24.61 28.46 15.35 18.45 21.81

True Positive Rate
HeavyCOAT-G 0.26 0.20 0.16 0.26 0.20 0.16

kCOAT-G 0.19 0.15 0.12 0.19 0.15 0.12
sCOAT-G 0.17 0.13 0.11 0.17 0.13 0.11
COAT-G 0.30 0.27 0.24 0.28 0.25 0.22

HeavyCOAT-F 0.19 0.14 0.12 0.19 0.15 0.12
kCOAT-F 0.16 0.12 0.10 0.16 0.12 0.10
sCOAT-F 0.15 0.11 0.09 0.15 0.11 0.09
COAT-F 0.19 0.16 0.13 0.17 0.14 0.12

False Positive Rate
HeavyCOAT-G 0.00 0.00 0.00 0.00 0.00 0.00

kCOAT-G 0.00 0.00 0.00 0.00 0.00 0.00
sCOAT-G 0.00 0.00 0.00 0.00 0.00 0.00
COAT-G 0.23 0.23 0.23 0.23 0.23 0.23

HeavyCOAT-F 0.00 0.00 0.00 0.00 0.00 0.00
kCOAT-F 0.00 0.00 0.00 0.00 0.00 0.00
sCOAT-F 0.00 0.00 0.00 0.00 0.00 0.00
COAT-F 0.21 0.21 0.21 0.18 0.19 0.19
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Figure 3: Networks for the estimated correlation networks between major phyla

of the antibiotic group (Left) and the non-antibiotic group (Right). Taxa are

sorted into communities via the Louvain method of community detection and

are identified by a circle shape and square shape respectively.

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing) 



REFERENCES

Figure 4: Networks for the estimated correlation networks between major phyla

of the FAP group (Left) and the non-FAP group (Right). Taxa are sorted into

communities via the Louvain method of community detection and are identified

by a circle shape and square shape respectively.
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