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Abstract:

The segmentation of data into stationary stretches also known as multiple change point

problem is important for many applications in time series analysis as well as signal process-

ing. Based on strong invariance principles, we analyze data segmentation methodology using

moving sum (MOSUM) statistics for a class of regime-switching multivariate processes where

each switch results in a change in the drift. In particular, this framework includes the data

segmentation of multivariate partial sum, integrated diffusion and renewal processes even if

the distance between change points is sublinear. We study the asymptotic behavior of the

corresponding change point estimators, show consistency and derive the corresponding local-

ization rates which are minimax optimal in a variety of situations including an unbounded

number of changes in Wiener processes with drift. Furthermore, we derive the limit distri-

bution of the change point estimators for local changes – a result that can in principle be

used to derive confidence intervals for the change points.

Key words and phrases: Change point analysis, Data segmentation, invariance principle,

moving sum statistics, multivariate processes, regime-switching processes

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



1. Introduction

Change point analysis aims at detecting and localizing structural breaks in time series

data with applications in a variety of fields such as neurophysiology (see Messer et al.

(2014)), genomics (compare Olshen et al. (2004), Niu and Zhang (2012), Li et al.

(2016), Chan and Chen (2017)), finance (Aggarwal et al. (1999), Cho and Fryzlewicz

(2012)), astrophysics (see Fisch et al. (2018)) or oceanographics (Killick et al. (2010)).

Early literature focused on testing for a single change point in the mean, moving

on to changes in more complex data structure where currently a main interest lies

in detecting changes in high-dimensional data; see e.g. Csörgö and Horvàth (1997);

Horváth and Rice (2014); Cho and Kirch (2020).

During the last two decades interest shifted from testing to the multiple change

problem aiming at segmenting the data into stationary stretches often focusing on

changes in the mean of i.i.d. Gaussian data (Cho and Kirch (2020)). While moving

sum (MOSUM) statistics were first considered for testing (Bauer and Hackl (1980),

Hušková and Slabỳ (2001)), they are better suited as a basis for data segmentation

(Yau and Zhao (2016), Eichinger and Kirch (2018), Meier et al. (2019), Cho and

Kirch (2021)).

We adopt a MOSUM approach to localize multiple changes in multivariate re-

newal processes where the analysis of neuronal firing patterns, so called spike trains,

is a very prominent example where data segmentation methods for renewal processes
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are useful. Indeed, many methods, e.g. Grün et al. (2002) or Schneider (2008)

use local approaches applied on segments with approximately constant intensity to

model the data. Furthermore, it is of great interest to study the joint behavior of

spike trains, compare e.g. Perkel et al. (1967), Brown and Mitra (2004) and Grün

and Rotter (2010). Chen et al. (2019) use non-parametric methods to detect change

points in neuropixel data, which consists of a large amount of neuronal firing pat-

terns, in order to make meaningful assertions about the whole or parts of the data. In

particular, they study firing patterns in several different brain areas and make asser-

tions on possible coordination between regions based on their change point patterns.

Messer et al. (2014) propose a MOSUM multiscale procedure to detect changes in

the firing intensity assuming that the firing patterns follow renewal processes with

piecewise constant intensity. Our work extends their results in several ways:

First, we prove consistency of the change point estimators and derive the cor-

responding localization rates where we allow for both linear as well as sublinear

bandwidths. Without the latter, consistency cannot be achieved in the important

situation where the distance between change points is sublinear. Additionally, we

go beyond the univariate case including some multivariate point processes based on

renewal processes in our analysis.

While our main interest lies in the detection of multiple changes in renewal

processes, we adopt a more general framework for deriving our theoretical results
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that also includes detecting changes in partial sum as well as diffusion processes. A

univariate version of that model with at-most-one change point has been considered

by Horváth and Steinebach (2000) and Kühn and Steinebach (2002). A univariate

version for finitely many change points has been considered by Kühn (2001) where

consistency for the number of change points has been shown. Those results are

now extended to include MOSUM methodology for the estimation of a possibly

unbounded number of change points in a multivariate setting, where we achieve a

minimax optimal separation rate in addition to a minimax optimal localization rate

(for the change point estimators) in case of a bounded number of change points as

well as for Wiener processes with drift (see Remark 4.2 below).

Organization of the material

In Subsection 2.1, we introduce a general multiple change point model followed by a

discussion of renewal processes as an import example for the model in Subsection 2.2.

In Section 3, we describe how to estimate change points based on MOSUM statistics:

First, we introduce the MOSUM statistics in 3.1, before presenting the estimators for

the structural breaks in 3.2. In 3.3 we derive some asymptotic results for the MOSUM

statistics that are required for threshold selection and can also be used in a testing

context. In Section 4 we show that the corresponding data segmentation procedure is

consistent. Finally, we derive the localization rates in addition to the corresponding
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asymptotic distribution of the change point estimators for local changes. In Section

5, we present some results from a small simulation study. The proofs can be found

in the Supplementary Materials S2.

2. Multiple change point problem

2.1 Model

While our main interests lies in detecting changes in renewal processes, we prove the

results for the following more general model that additionally includes partial sum

and certain diffusion processes.

Consider P < ∞ stochastic processes {R(j)
t,T : 0 ≤ t ≤ T} in continuous time of

dimension p with (unknown) drift (µ(j)
T ·t) and (unknown) covariance (Σj,T ·t) fulfilling

regularity assumptions specified in Assumption 2.1 below. These P processes can

be thought of as background processes with only one of them being active at each

time in the sense of driving the increments of our observation process. Consequently,

at each time point we only observe the active process and do not know the exact

structure of any of these processes. To elaborate, for cℓ < t ≤ cℓ+1 we observe

Zt,T =
(
R(cℓ+1)

t,T − R(cℓ+1)
cℓ,T

)
+

ℓ∑
j=1

(
R(cj)

cj ,T − R(cj)
cj−1,T

)
, (2.1)

where 0 = c0 < c1 < . . . < cqT
< cqT +1 = T are the unknown change points and the

number of change points qT can be bounded or unbounded.
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2.1 Model

The upper index (cj) at the process R·,T indicates (with a slight abuse of notation)

the active process between the (j − 1)-th and the j-th change point. We define the

change in drift between two neighboring regimes by

di,T := µ
(ci+1)
T − µ

(ci)
T ̸= 0 for all i = 1, . . . , qT , (2.2)

where di,T is bounded but we allow for di,T → 0 as long as the convergence is slow

enough (see Assumption 3.1). For ease of notation we frequently drop the dependency

on T for the above quantities in the following. The aim of data segmentation involves

the consistent estimation of the number and location of the change points as well as

the derivation of the corresponding localization rates.

We assume that the underlying processes {R(j)
t,T }, j = 1, . . . , P, fulfill the following

joint invariance principle towards a Wiener processes. If the underlying processes are

independent, then this simplifies to the validity of an invariance principle for each of

these P processes.

Assumption 2.1.

Denote the joint process by Rt,T =
(

R(1)
t,T

′
, . . . , R(P )

t,T

′
)′

as well the joint drift by

µT =
(

µ
(1)
T

′
, . . . , µ

(P )
T

′
)′

, where ′ indicates the matrix transpose. For every T > 0

there exist (p · P )-dimensional Wiener processes Wt,T with covariance matrix ΣT

and

Σ(i)
T = (ΣT (l, k))l,k=p (i−1)+1,...,p i
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2.1 Model

with

∥Σ(i)
T ∥ = O(1), ∥Σ(i)

T

−1
∥ = O(1),

such that, possibly after a change of probability space, it holds that for some sequence

νT → 0

sup
0≤t≤T

∥R̃t,T − Wt,T ∥ = sup
0≤t≤T

∥ (Rt,T − µT t) − Wt,T ∥ = OP

(
T

1
2 νT

)
,

where R̃t,T = Rt,T − µT t denotes the centered process.

The covariance matrix Σ(i)
T relates to the i-th underlying process {R(i)

t,T } and

plays an important role in the below limit results. On the other hand, the cross-

dependence between different driving processes does not influence these limit results

because at each time only one process actively influences the observed process and

the increments of the joint process are asymptotically independent due to the joint

invariance principle.

The assumption on the norm of the covariance matrices is equivalent to the

smallest eigenvalue of Σ(i)
T being bounded in addition to being bounded away from

zero (both uniformly in T ). In many situations, the covariance matrices will not

depend on T , in which case this assumption is automatically fulfilled under positive

definiteness. The convergence rate νT in the invariance principle typically depends

on the number of moments that exist. Roughly speaking, the more moments the

original process has, the faster νT converges.
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2.2 Renewal and some related point processes

The corresponding univariate model with at most one change was first consid-

ered by Horváth and Steinebach (2000) and further used in a single-change setting by

Steinebach (2000), Kirch and Steinebach (2006), Gut and Steinebach (2002; 2009).

Kühn and Steinebach (2002) make use of the Schwarz information criterion for the

estimation of the number of change points in a related univariate framework with

a bounded number of change points. Using information criteria is computationally

much more expensive with quadratic computational complexity if compared to MO-

SUM procedures with linear computational complexity as proposed in this paper.

2.2 Renewal and some related point processes

In this section, we explain the connection of our model to renewal processes, which

are also considered in the simulation study. Further examples such as partial sum and

diffusion processes can be found in the Supplementary Material (see Section S1.1).

We consider P independent sequences of p-dimensional point processes that are re-

lated to renewal processes in the following way: For each i = 1, . . . , P we start with

p̃ ≥ p independent renewal processes R̃
(i)
t,j , j = 1, . . . , p̃, from which we derive a

p-dimensional point process R(i)
t = B(i)

(
R̃

(i)
t,1, . . . , R̃

(i)
t,p̃

)′
, where B(i) is a (p × p̃) -

matrix with non-negative integer-valued entries. By Lemma 4.2 in Steinebach and
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2.2 Renewal and some related point processes

Eastwood (1996) Assumption 2.1 is fulfilled for a block-diagonal ΣT with

Σ(i)
T = B(i)D

(
σ2(i)
µ3(i)

)
B(i)′

,

with D
(

σ2(i)
µ3(i)

)
= diag

(
σ2

1(i)
µ3

1(i)
, . . . ,

σ2
p̃(i)

µ3
p̃(i)

)
,

where µj(i) and σ2
j (i) are the mean and variance of the corresponding inter-event

times. Steinebach and Eastwood (1996) and Csenki (1979) consider p̃ = p but

use inter-event times that are dependent for j = 1, . . . , p. In such a situation, the

invariance principle in Assumption 2.1 still holds if the intensities are the same across

components with Σ(i)
T = Σ(i)

IET/µ3
1(i), where Σ(i)

IET is the covariance of the vector of

inter-event times – a setting that we adopt in the simulation study. If the intensities

differ, then by Steinebach and Eastwood (1996) an invariance principle towards a

Gaussian process can still be obtained, where each component still is a Wiener process

but the increments from one component may depend on the lagged behavior of

the other components, where the lag increases with time. MOSUM procedures for

related univariate renewal processes have been considered in Messer et al. (2014),

Messer et al. (2017) as well as Messer and Schneider (2017). However, they have not

derived any consistency results for their change point estimators and only considered

linear bandwidths.
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3. Data segmentation procedure

3.1 Moving sum statistics

By assumption the drifts of the two active processes to the left and right of a change

point differ, see (2.2); on the other hand, in a stationary stretch away from any change

point the drift is the same. Because the difference in drift can be estimated by a

difference of increments, we propose the following moving sum (MOSUM) statistic

that is based on the moving difference of increments with bandwidth h = hT

Mt = Mt,T,hT
(Z) = 1√

2h
[(Zt+h − Zt) − (Zt − Zt−h)]

= 1√
2h

(Zt+h − 2Zt + Zt−h) . (3.3)

If there is no change, then this difference will fluctuate around 0, while it will be

different from 0 close to a change point. On the one hand, the bandwidth should

be chosen to be as large as possible (to get a better estimate obtained from a larger

’effective sample size’ of the order h). On the other hand, the increments should not

be contaminated by a second change as this can lead to situations where the change

point can no longer be reliably localized by the signal. This observation is reflected

in the following assumptions on the bandwidth:

Assumption 3.1. For νT as in Assumption (2.1) the bandwidth h < T/2 fulfills

ν2
T T log T

h
→ 0.
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3.1 Moving sum statistics

Furthermore, it isolates the i-th change point in the sense of

h ≤ 1
2 ∆i, where ∆i = min(ci+1 − ci, ci − ci−1). (3.4)

Additionally, the signal needs to be large enough to be detectable by this bandwidth,

i.e.

∥di∥2 h

log
(

T
h

) → ∞. (3.5)

Combining (3.4) and (3.5) shows that – with an appropriate bandwidth h –

changes are detectable as soon as

∥di∥2 ∆i

log
(

T
∆i

) → ∞. (3.6)

In case of the classical mean change model as in Subsection S1.1 of the Supplementary

Material this is known to be the minimax-optimal separation rate that cannot be

improved (see Proposition 1 of Arias-Castro et al. (2011)).

The assumption on the distance of the first and last change point to the boundary

of the process in (3.4) can be relaxed as no boundary effects can occur there.
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3.2 Change point estimators

3.2 Change point estimators

The MOSUM statistic Mt = mt + Λt as in (3.3) decomposes into a piecewise linear

signal term mt = mt,h,T and a centered noise term Λt = Λt,h,T with

√
2h mt =



(h − t + ci) di, for ci < t ≤ ci + h,

0, for ci + h < t ≤ ci+1 − h,

(h + t − ci+1) di+1, for ci+1 − h < t ≤ ci+1,

(3.7)

√
2h Λt =

√
2h Λt(R̃) (3.8)

=



R̃(ci+1)
t+h − 2R̃(ci+1)

t + R̃(ci+1)
ci

− R̃(ci)
ci

+ R̃(ci)
t−h, for ci < t ≤ ci + h,

R̃(ci+1)
t+h − 2R̃(ci+1)

t + R̃(ci+1)
t−h , for ci + h < t ≤ ci+1 − h,

R̃(ci+2)
t+h − R̃(ci+2)

ci+1
+ R̃(ci+1)

ci+1
− 2R̃(ci+1)

t + R̃(ci+1)
t−h , for ci+1 − h < t ≤ ci+1,

where R̃t := Rt − tµ for i = 0, . . . , qT and the upper index cj denotes the active

regime between the (j−1)-th and j-th change point (with a slight abuse of notation).

The signal term is a piecewise linear function that takes its extrema at the change

points and is 0 outside h-intervals around the change points. Additionally, the noise

term is asymptotically negligible compared to the signal term (see Theorem 3.1 for

the corresponding theoretical statement and Figure 1 for an illustrative example).

This motivates the following data segmentation procedure, that considers local

extrema that are big enough (in absolute value) as change point estimators: For
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3.2 Change point estimators

0

0 h c1 c2 T−h T

− T=100

0

0 h c1 c2 T−h T

− T=1000

0

0 h c1 c2 T−h T

− T=10000

Figure 1: Univariate MOSUM statistic with T = 100, 1 000, 10 000 (from left to

right), where the noise term (fluctuating around the signal) becomes smaller and

smaller relative to the signal term.

a suitable threshold β = βh,T (see Section 3.3 for a detailed discussion) we define

significant time points, where a point t∗ is significant if

M′
t∗ Â−1

t∗ Mt∗ ≥ β. (3.9)

Ât∗ is a symmetric positive definite matrix that may depend on the data and

fulfills

Assumption 3.2.

sup
h≤t≤T −h

∥∥∥Â−1
t,T

∥∥∥ = OP (1) , sup
i=1,...,qT

sup
|t−ci|≤h

∥∥∥Ât,T

∥∥∥ = OP (1).

A good (non data-driven) choice fulfilling this assumption is given by

Σt = Σt,T = Σ(ci)
T (3.10)
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3.2 Change point estimators

Figure 2: In the upper panel, the observed event times of a univariate renewal process

with 3 change points (i.e. 4 stationary segments) are displayed (where the plot needs

to be read like a text: It starts in the upper row on the left, then continues in the

first row and jumps to the second row and so on). The gray and white regions

mark the estimated segmentation of the data while the red intervals mark the true

segmentation.

In the lower panel, the corresponding MOSUM statistic with (relative) bandwidth

h/T = 0.07 is displayed. The gray areas are the regions where the threshold (α = 0.05

as in Remark 3.1) is exceeded (in absolute value). The blue solid lines indicate the

change point estimates obtained as local extrema that fall within the gray area

(making them significant). The true change points are indicated by the red dashed

lines. The green horizontal lines denote ηh-environments around the estimators.

0
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3.2 Change point estimators

for ci−1 < t ≤ ci, which guarantees scale-invariance of the procedure and allows

for nicely interpretable thresholds (see Section 3.3). The latter remains true for

estimators as long as they fulfill

sup
i=1,...,qT

sup
|t−ci|>h

∥∥∥∥Σ̂−1/2
t,T − Σ−1/2

t

∥∥∥∥ = oP

((
log T

h

)−1)
(3.11)

in addition to the above boundedness assumptions. In particular, this permits local

estimators that are consistent only away from change points but contaminated by the

change in a local environment thereof. The latter is typically the case for covariance

estimators, think e.g. of the sample variance contaminated by a change point. To

improve detectability it is beneficial if the estimator is additionally consistent directly

at the change point (see e.g. Eichinger and Kirch (2018)).

Typically, there are intervals of significant points (due to the continuity of the

signal) such that only local extrema of such intervals actually indicate a change

point. To define what a local extremum is, we require a tuning parameter 0 < η < 1.

This parameter defines the locality requirement on the extremum, where a point

t∗ is a local extremum if it maximizes the absolute MOSUM statistic within its

ηh-environment, i.e. if

t∗ = min
{

argmax
t∗−ηh≤t≤t∗+ηh

∥Mt∥.

}
(3.12)

The threshold β distinguishes between significant and spurious local extrema

that are purely associated with the noise term. The set of all significant local extrema
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3.2 Change point estimators

is the set of change point estimators with its cardinality an estimator for the number

of the change points.

Figure 2 shows an example illustrating these ideas: Away from the change points

the MOSUM statistic fluctuates around 0 (within the white area that is beneath the

threshold in absolute value) while it falls within the gray area close to the change

points – making corresponding local extrema significant. Furthermore, the statistic

does not need to return to the white area in order to have all changes estimated,

as can be seen between the first and second change point. Additionally, the figure

shows that (3.4) is required for theoretic considerations only but can be weakened in

practice in combination with a suitable η with ηh defining the minimal distance that

two MOSUM estimators can have. This is one of the major advantages of the η-

criterion based on significant local maxima as described here (in comparison to the ϵ-

criterion originally investigated by Eichinger and Kirch (2018) in the context of mean

changes, see also the discussion in Meier et al. (2019)). Results for the ϵ-criterion

can be obtained along the lines of our proofs below. In practical applications, if

η is chosen too large, some pairs of change points may be indistinguishable by our

procedure. On the other hand, too small a choice of η can lead to an increase

in the number of spurious and duplicate estimators, as can be seen in S1 in the

Supplementary Material. The latter is not a problem if a post-processing step as in

e. g. Cho and Kirch (2021) is applied.
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3.3 Threshold selection

3.3 Threshold selection

The procedure clearly depends on the choice of a threshold β = βh,T (see (3.9))

that can distinguish between significant and spurious local extrema. The following

theorem gives the magnitudes of the signal as well as the noise terms:

Theorem 3.1. Let the Assumptions 2.1, 3.1 and 3.2 hold.

(a) For the signal mt with ci − h < t < ci + h, it holds

m′
tÂ−1

t mt ≥ 1
2∥Ât∥

(h − |t − ci|)2

h
∥di∥2.

At other time points the noise term is equal to zero.

(b) For the noise term it holds for qT = 0, i.e. in the no-change situation,

(i) for a linear bandwidth h = γT with 0 < γ < 1/2

sup
γT ≤t≤T −γt

Λ′
tΣ−1

T Λt

D−→ sup
γ≤s≤1−γ

1
2γ

(Bs+γ − 2Bs + Bs−γ)′ (Bs+γ − 2Bs + Bs−γ) ,

where B denotes a multivariate standard Wiener process. In particular,

the squared noise term is of order OP (1).

(ii) for a sublinear bandwidth h/T → 0, it holds under Assumption 3.1 that

a
(

T

h

)
sup

h≤t≤T −h

√
Λ′

tΣ−1
T Λt − b

(
T

h

)
D−→ E,
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3.3 Threshold selection

where E follows a Gumbel distribution with P (E ≤ x) = e−2e−x and

a(x) =
√

2 log x

b(x) = 2 log x + p

2 log log x + log 3
2 − log Γ

(
p

2

)
.

In particular, the squared noise term is of order OP (log(T/h)).

The assertions remain true if an estimator for the covariance is used fulfilling

(3.11) uniformly over all h ≤ t ≤ T − h.

(c) In the situation of multiple change points, it holds that

sup
h≤t≤T −h

∥Λt∥ = OP (
√

log(T/h)).

To obtain consistency of the estimators, the threshold needs to be small enough

to be asymptotically negligible compared to the squared signal term as in Theo-

rem 3.1 (a) to guarantee that every change is detected with asymptotic probability

1. At the same time, the threshold needs to grow faster than the squared noise

term in Theorem 3.1 (c) so that false positives occur with asymptotic probability 0.

Hence, both conditions are fulfilled under the following assumption:

Assumption 3.3. The threshold fulfills:

βh,T

hT min
i=1,...,qT

∥di∥2 → 0,
log T

hT

βh,T

→ 0 (T → ∞).
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3.3 Threshold selection

In particular, larger bandwidths hT lead to a better detectability of the change

point, where due to (3.4) an upper bound related to the distance to the neighboring

change points applies. This is also confirmed by the simulation results in Table 4 in

the Supplementary Material.

The following remark introduces a threshold that has a nice interpretation in

connection with change point testing:

Remark 3.1. The threshold is often obtained as the asymptotic αT -quantile based

on the limit result in Theorem 3.1 (b) for some sequence αT → 0. In this case a

choice of (
− log log 1√

1−αT

)2

log T
hT

= O(1)

similar to Eichinger and Kirch (2018) can replace the slightly stronger lower bound

of Assumption 3.3 on the threshold without compromising our theoretical results.

In the simulation study in Section 5 we use this threshold with αT = 0.05. This

controls the family-wise error rate at level αT asymptotically related to testing each

time point for a possible change. In fact, Theorem 3.1 shows that such a threshold

with a constant sequence α yields an asymptotic test at level α which has asymptotic

power one by Theorem 4.1. Tests designed for the at-most-one-change as in Hušková

and Steinebach (2000), Hušková and Steinebach (2002) often have a better power,

but are not as good at localizing change points (see Figure 1 in Cho and Kirch (2020)

for an illustration).
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4. Consistency of the segmentation procedure

In this section, we show consistency of the above segmentation procedure for both the

estimators of the number and locations of the change points. Furthermore, we derive

localization rates for the estimators of the locations of the change points for some

special cases showing that they cannot be improved in general. This is complemented

by the observation that these localization rates are indeed minimax-optimal if the

number of change points is bounded in addition to observing Wiener processes with

drift. The following theorem shows that the change point estimators defined in (3.12)

are consistent for the number and locations of the change points.

Theorem 4.1. Let Assumptions 2.1, 3.1 – 3.3 hold. Let 0 < ĉ1 < . . . < ĉq̂T
be the

change point estimators (3.12). Then for any τ > 0 it holds

lim
T →∞

P
(

max
i=1,...,min(q̂T ,qT )

|ĉi − ci| ≤ τh, q̂T = qT

)
= 1.

The theorem shows in particular that the number of change points is estimated

consistently. For the linear bandwidth we additionally get consistency of the change

point locations in rescaled time, while for the sublinear bandwidths we even get a

convergence rate of h/T for the rescaled change points. Under the following stronger

assumptions, the localization rates can be further improved:

Assumption 4.1. (a) For any of the centered processes R̃(j) as in (3.8) and any

value θi = θi,T (which will be ci or ci ± h when the assumption is applied) it
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holds for any sequence DT ≥ 1 (bounded or unbounded)

sup
DT

∥di∥2 ≤s≤h

√
DT

∥∥∥R̃(j)
θi

− R̃(j)
θi±s

∥∥∥
s ∥di∥

= OP (ωT ).

(b) Let now the upper index θi denote the active stretch in the stationary segment

(θi, θi + s) respectively (θi − s, θi). Then, it holds for any sequence DT > 0

max
i=1,...,qT

sup
DT

∥di∥2 ≤s≤h

√
DT

∥∥∥R̃(θi)
θi

− R̃(θi)
θi±s

∥∥∥
s ∥di∥

= OP (ω̃T ).

The localization rates of the MOSUM procedure are determined by the rates

ωn, ω̃n which need to be derived for each example separately (at least for the tight

ones). For partial sum processes, the suprema in (a) are stochastically bounded by

the Hájék-Rényi inequality, while the assertion in (b) is fulfilled with a polynomial

rate in qT (see Cho and Kirch (2021), Proposition 2.1 (c)(ii)).

Remark 4.1. (a) For Wiener processes with drift we obtain ωT = 1 and ω̃T =√
log(qT ) (see Proposition S2.1 in the Supplementary Material).

(b) By the invariance principle in Assumption 2.1, all rates are clearly dominated

by T 1/2νT . However, this is often too liberal a bound (see Proposition 2.1 in

Cho and Kirch (2021) for some tight bounds in case of partial sum processes).

(c) Often, there exist forward and backwards invariance principles from some arbi-

trary starting value θi for each regime. This is the case for partial sum processes

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



and for (backward and forward) Markov processes due to the Markov property.

For renewal processes, this can be shown along the lines of the original proof

for the invariance principle (Csörgö et al. (1987)) because the time to the next

(previous) event is asymptotically negligible; see also Example 1.2 in Kühn and

Steinebach (2002)). In this case, the Hájék-Rényi results for Wiener processes

carry over (see Proposition S2.1 in the Supplementary Materials) to the differ-

ent processes underlying each regime, resulting in ωT = 1. For the situation

with a bounded number of change points this carries over to ω̃T .

Theorem 4.2.

Let Assumptions 2.1, 3.1 – 3.3 in addition to 4.1 hold. For q̂T < qT define ĉi = T

for i = q̂T + 1, . . . , qT .

(a) For a single change point estimator the following localization rate holds

∥di∥2 |ĉi − ci| = OP

(
ω2

T

)
.

(b) The following uniform rate holds true:

max
i=1,...,qT

∥di∥2 |ĉi − ci| = OP

(
ω̃2

T

)
.

Remark 4.2 (Minimax optimality). We have already mentioned beneath (3.6) that

the separation rate given there is minimax optimal (see Proposition 1 of Arias-

Castro et al. (2011)). Minimax optimal localization rates (derived in the context of
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changes in the mean of univariate time series, which is covered by the partial sum

processes in our framework) are known for a few special cases: First, the minimax

optimal localization rate for a single change point and in extension also for a bounded

number of change points is given by ωT = 1 in the above notation (see e.g. Lemma

2 in Wang et al. (2020)). Consequently, our procedure achieves minimax optimality

for a bounded number of change points under weak assumptions (as pointed out in

Remark 4.1 (c)). Secondly, the optimal localization rate for unbounded change points

under sub-Gaussianity (attained for partial sum process of i.i.d. errors) is given by

ω̃T =
√

log T (see Proposition 6 in Verzelen et al. (2020) and Proposition 2.3 in Cho

and Kirch (2021)). Indeed, we match this rate for Wiener processes with drift.

The following theorem derives the limit distribution of the change point estima-

tors for local changes which shows in particular that the rates are tight. In principle,

this result can be used to obtain asymptotically valid confidence intervals for the

change point locations. In case of fixed changes, the limit distribution depends on

the underlying distribution of the original process (see Antoch and Hušková (1999)

for the case of partial sum processes), where the proof can be done along the same

lines. We need the following assumption:

Assumption 4.2. Let di = di,T = ∥di∥ui + o(∥di∥) with ∥ui∥ = 1 and ∥di,T ∥ → 0.
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Assume that Y(j)
s = Y(j)

s (ci, D) with

Y(1)
s = R̃(ci)

ci−h+ s−D

∥di∥2
− R̃(ci)

ci−h− D
∥di∥2

,

Y(21)
s = R̃(ci)

ci+ s−D

∥di∥2
− R̃(ci)

ci− D
∥di∥2

, Y(22)
s = R̃(ci+1)

ci+ s−D

∥di∥2
− R̃(ci+1)

ci− D
∥di∥2

,

Y(3)
s = R̃(ci+1)

ci+h+ s−D

∥di∥2
− R̃(ci+1)

ci+h− D
∥di∥2

fulfill the following multivariate functional central limit theorem for any constant

D > 0 in an appropriate space equipped with the supremum norm

{
∥di∥ (Y(1)

s , Y(21)
s , Y(22)

s , Y(3)
s )′ : 0 ≤ s ≤ 2D

}
w−→

{
W̃s : 0 ≤ s ≤ 2D

}
,

where W̃ is a Wiener process with covariance matrix Ξ (not depending on D). For

−D ≤ t ≤ D denote Wt = (W(1)
t , W(21)

t , W(22)
t , W(3)

t )′ = W̃D+t − W̃D.

By Assumption 3.1 it holds h∥di∥2 → ∞, such that the distance h − 2D
∥di∥2 be-

tween Y(1) and Y(2j) (resp. between Y(2j) and Y(3)) diverges to infinity. As such for

processes with independent increments the processes Y(1), (Y(21), Y(22))′, Y(3) are

independent for T large enough. Additionally, under weak assumptions such as mix-

ing conditions this independence still holds asymptotically in the sense that W(1),

(W(21), W(22))′, W(3) are independent.

Functional central limit theorems for these processes follow from invariance prin-

ciples as in Assumption 2.1 with ΣT → Σ as long as such invariance principles

still hold with an arbitrary (moving) starting value, which is typically the case (see
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also Remark 4.1 (c)). As such, it typically holds that Ξ(1) = Ξ(21) = Σ(ci) and

Ξ(3) = Ξ(22) = Σ(ci+1) where Ξj = Cov(W(j)
1 ) and Σ(ci) is the covariance matrix

associated with the regime between the (i − 1)-th and i-th change point.

The following theorem gives the asymptotic distribution for the change point

estimators in case of local change points.

Theorem 4.3.

Let Assumptions 2.1, 3.1 – 3.3, 4.1 (a) with ωT = 1 and 4.2 hold. For q̂T < qT define

ĉi = T for i = q̂T + 1, . . . , qT . Let

Ψ(i)
t := − |t| +


u′

iW
(1)
t − 2 u′

iW
(21)
t + u′

iW
(3)
t , t < 0

u′
iW

(1)
t − 2 u′

iW
(22)
t + u′

iW
(3)
t , t ≥ 0.

Then, for all i = 1, . . . , qT , it holds that for T → ∞

∥di∥2 (ĉi − ci) D−→ argmax
{

Ψ(i)
t

∣∣∣∣t ∈ R
}

If there is a fixed number of changes qT = q with q fixed and a functional central

limit theorem as in Assumption 4.2 holds jointly for all q change points, then the

result also holds jointly.

Due to the Markov property of Wiener processes, {Ψ(i)
t : t ≥ 0} is independent

of {Ψ(i)
t : t < 0}.

Remark 4.3. (a) If W(1), (W(21), W(22))′, W(3) are independent which is typically
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the case (see discussion beneath Assumption 4.2), then Ψ(i)
t simplifies to

Ψ(i)
t := − |t| +


√

σ2
(1) + 4 σ2

(21) + σ2
(3) Bt, t < 0

√
σ2

(1) + 4 σ2
(22) + σ2

(3) Bt, t ≥ 0,

where B is a (univariate) standard Wiener process and σ2
(j) = u′

iΞ(j)ui. Usually

(see discussion beneath Assumption 4.2) σ(21) = σ(1) and σ(22) = σ(3) further

simplifying the expression. For some examples such as partial sum processes

it holds Σt = Σ for all t, such that all σ(j) coincide. In this case this further

simplifies to

Ψ(i)
t := − |t| +

√
6 σ(1) Bt.

For univariate partial sum processes this result has already been obtained in

Theorem 3.3 of Eichinger and Kirch (2018). However, the assumption of Σt =

Σ is typically not fulfilled for renewal processes because the covariance depends

on the changing intensity of the process.

(b) If W(1), (W(21), W(22))′, W(3) are independent and Mt in (3.12) is replaced by

Σ−1/2
t Mt, then the Wiener processes W(j) are standard Wiener processes, such

that Ψ(i)
t simplifies to

Ψ(i)
t := − |t| +

√
6 Bt.

This shows that in this case the limit distribution of ĉi − ci does only depend

on the magnitude of the change di but not on its direction ui.
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Statistically, however, this is difficult to achieve as it requires a uniformly (in

t) consistent estimator for the usually unknown covariance matrices Σt.

5. Simulations and Discussions

5.1 Summary of Simulation results

For univariate partial sum processes extensive simulations as well as data examples

for MOSUM statistics have been conducted in Eichinger and Kirch (2018); Meier

et al. (2019), while results for renewal processes have been obtained by Messer et al.

(2014, 2017). In the Supplementary Material S1 we complement these findings by

simulations for multivariate renewal processes with multiple changes, where both

dependent and independent components as well as several choices for the matrix Ât

as in (3.9) are considered.

It turns out that using the diagonal matrix with the asymptotic variances can lead

to better or worse results than using the full asymptotic covariance matrix depending

on the nature of the change. From a statistical perspective it is thus advantageous

to use the diagonal matrix because the local estimation of the inverse of a covariance

matrix in moderately large or large dimensions is a very hard problem leading to a loss

in precision, while the diagonal elements are far less difficult to estimate consistently.

Using the diagonal matrix with the estimated variance instead of the true one leads

to a better detection power with a substantial improvement for some changes. As
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5.2 Discussion and Outlook

such local variance estimation can help boost the signal significantly but comes at

the cost of having a somewhat increased while still reasonable amount of spurious

and duplicate change point estimators.

Using a single bandwidth only works well for homogeneous changes in the sense

that the smallest change in intensity is still large enough compared to the smallest

distance to neighboring change points (for a detailed definition we refer to Cho and

Kirch (2021), Definition 2.1, or Cho and Kirch (2020), Definition 2.1). In some

applications with multiscale signals, where frequent large changes as well as small

isolated changes are present, this is no longer true. In such cases, several bandwidths

need to be used following by a pruning of the obtained candidates (see Cho and Kirch

(2021) for an information criterion based approach for partial sum processes as well

as Messer et al. (2014) for a bottom-up-approach for renewal processes). Similarly,

if the distance to the neighboring change points is unbalanced MOSUM procedures

with asymmetric bandwidths as suggested by Meier et al. (2019) may be necessary.

5.2 Discussion and Outlook

In this paper, a data segmentation for multivariate processes with changes in the

drift is introduced and corresponding consistency results are obtained extending the

work of Eichinger and Kirch (2018) and Messer et al. (2014). This is done in a

general framework where increments between change points are modeled by processes
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REFERENCES

fulfilling a joint invariance principle – a framework that includes renewal, partial sum

and also some diffusion processes with change points.

One drawback of the procedure is the use of a single bandwidth. In practice, the

identification of the optimal bandwidth turns out to be rather difficult as pointed out

e. g. by Cho and Kirch (2021) and Messer et al. (2014): On the one hand, one wants to

choose a large bandwidth in order to have maximum power, while on the other hand,

choosing a too large bandwidth may lead to misspecification or nonidentification of

changes. Furthermore, as can be seen in the simulation study, in a multiscale change

point situation (see Definition 2.1 of Cho and Kirch (2021)) no single bandwidth can

detect all change points. Therefore, one future topic of interest is the extension of

the proposed procedure to a true multiscale setup as in Cho and Kirch (2021).
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