
 

 

 

 

 

 

 

 

 

Statistica Sinica Preprint No: SS-2020-0357 

Title Test for Conditional Variance of Integer-Valued Time 

Series 

Manuscript ID SS-2020-0357 

URL http://www.stat.sinica.edu.tw/statistica/ 

DOI 10.5705/ss.202020.0357 

Complete List of Authors Yuichi Goto and  

Kou Fujimori 

Corresponding Author Yuichi Goto 

E-mail yuu510@fuji.waseda.jp 

Notice: Accepted version subject to English editing. 



Statistica Sinica

TEST FOR CONDITIONAL VARIANCE

OF INTEGER-VALUED TIME SERIES

Yuichi Goto, Kou Fujimori

Waseda University, Shinshu University

Abstract: In this paper, a test for the conditional variance of stationary and

ergodic integer-valued time series is investigated. This hypothesis testing problem

is motivated by the fact that a form of the conditional variance of the process

is determined by the conditional distribution and the conditional mean. First,

we estimate unknown parameters of the intensity function by M-estimator and

prove the strong consistency and asymptotic normality. Second, we show that

the proposed test is the asymptotic size α and consistent. Finally, we elucidate

the nontrivial power of the proposed test for the local alternative. The proposed

test statistic can be applied to various problems such as specification tests for

intensity functions, tests for overdispersion and underdispersion, and goodness

of fit tests for ergodic and stationary integer-valued time series. The simulation

study illustrates the finite sample performance of the proposed test. The number

of patients with Escherichia coli in the state of Germany is also analyzed.
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1. Introduction

Integer-valued time series have been paid more and more attention in sev-

eral fields including the analysis of data concerning finance and the analysis

of the number of patients with infectious diseases among others. One of the

most fundamental integer-valued time series is a Poisson process, whose con-

ditional distribution given past information is Poisson distribution. Based

on Poisson process, we can develop various statistical models such as Pois-

son integer-valued AR model of order p, in short, INAR(p), and Poisson

integer-valued GARCH model of order p and q, in short, INGARCH(p, q).

Franke (2010), Neumann (2011) and Doukhan et al. (2012) investigated the

stability of such models of Poisson processes. Not only Poisson distribution

but also negative binomial distribution is well used to construct statistical

models of integer-valued time series. See, e.g., Davis and Wu (2009), Zhu

and Joe (2010) and Christou and Fokianos (2014).

For spatial point processes or multidimensional count processes, we

are interested in the second order moment functions of point processes.

We can detect whether the observed point pattern is Poisson, clustering

point process and repulsive point process, i.e., the observed points tend

to make clusters or not by observing the second order moment functions

called K-function and the pair correlation function if the process is sta-
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tionary. Therefore, it is possible to deal with the goodness of fit test for

the multidimensional stationary Poisson process by using such second order

moment functions of point processes, see e.g., Heinrich (1991). From this

perspective, we can see that the second order moment of point processes

may be essential to construct the various models of point processes.

Inspired by such researches, we focus on the second order moment, in

particular, variances of conditional distributions of one-dimensional integer-

valued time series in this paper. We suppose that the stationary and ergodic

integer-valued time series {Zt}t∈Z on the probability space (Ω,F , P ) satisfies

the following condition:

E(Zt|Ft−1) = λt, Var(Zt|Ft−1) = κ(λt), t ∈ Z, (1.1)

where {Ft}t∈Z is a filtration defined by

Ft = σ(Zs, s ≤ t), t ∈ Z,

λt is an Ft−1 measurable random variable and κ is some function or func-

tional of λt. Such models are mentioned by, for example, Aknouche et al.

(2018). If the intensity includes unknown parameters, i.e., λt = λt(θ)

with some unknown parameter θ, we can consider the parametric models

of integer-valued time series. Our model includes various types of integer-

valued time series. Actually, for Poisson processes, we can take κ(λt) = λt
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and for negative binomial processes, we can take κ(λt) = λt(r + λt)/r

with a positive parameter r. More generally, if the conditional distribu-

tion of {Zt} given past information is one-parameter exponential family,

i.e., Zt|Ft−1 ∼ p(z|ηt), where p(z|ηt) = exp(ηtz − A(ηt))h(z), z ≥ 0 with

Ft−1 measurable random variable ηt, a known function A(·) which is twice

differentiable and a known function h(·), we have that E(Zt|Ft−1) = B(ηt)

and Var(Zt|Ft−1) = B′(ηt), where B(·) is the first derivative of A(·). There-

fore, our model includes such cases since we can take λt = B(ηt) and the

differential operator as κ.

In this paper, we discuss an M-estimation method to estimate unknown

parameters for parametric models of integer-valued time series given by

(1.1). Davis and Liu (2016) investigated the maximum likelihood estimator

for integer-valued time series whose conditional distributions belong to the

one-parameter exponential family and its asymptotic behavior. Poisson

and negative binomial quasi maximum likelihood estimation for parametric

models are discussed by, e.g., Ahmad and Francq (2016) and Aknouche

et al. (2018), respectively. Moreover, Aknouche and Francq (2020) proposed

the weighted least square estimators for various models. They also proved

that the estimator achieved asymptotic efficiency under some appropriate

conditions.
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On the other hand, we investigate the asymptotic behavior of general

M-estimator including the (quasi) maximum likelihood estimator, the least

square estimator, and the weighted least square estimator.

We propose the hypothesis testing problem for κ, which determines the

conditional variance of the integer-valued time series. The testing problem

is given by follows:

H0 : κ = κ0, H1 : κ 6= κ0. (1.2)

Considering this test, we can detect, for example, whether the conditional

distribution of the observed process is Poisson or negative binomial among

others for the appropriate function or functional κ0. We construct the

test based on the second moment and derive the asymptotic distribution

under the null hypothesis and the consistency of this test. Without as-

sumptions on conditional distributions, we can apply the proposed test

statistics to various problems investigated in the existing literature. For

example, the specification test which is discussed by, e.g., Neumann (2011),

Fokianos and Neumann (2013), and Leucht and Neumann (2013) for Pois-

son INGARCH(1, 1) and Schweer (2016) for the first-order Markov chain

models. .

The test for overdispersion is also an important example. Weiß et al.

(2019) dealt with the overdispersion problem for INAR(1) processes. We
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consider this problem as a special case of the testing problem provided

in (1.2). Finally, we can consider the goodness of fit test based on our

test statistics defined for the testing problem (1.2). Goodness of fit tests

for integer-valued time series have been intensively investigated. For in-

stance, Meintanis and Karlis (2014) and Hudecová et al. (2015) proposed

the goodness of fit test based on the joint probability generating function

for INAR(1) and INARCH(1,1) models. Unlike their approach, we deal

with goodness of fit tests as the special case of our testing problem (1.2)

under stationarity and the condition that the underlying process belongs to

our model.

In summary, the novelties of this paper are threefold. First, our theory

enables us to deal with several problems such that the goodness of fit tests,

specification tests for intensity functions, and tests for overdispersion and

underdispersion simultaneously. Second, our model encompasses the non-

linear INGARCH(p,q) model. Third, we need not specify the underlying

conditional distribution.

This paper is organized as follows. In Section 2, we introduce our fun-

damental setups for parametric models, hypothesis testing problems which

we are mainly interested in, the test statistics and some regularity condi-

tions. The main theoretical results are presented in Section 3. We propose
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the M-estimator and derive the asymptotic behavior of the estimator under

appropriate conditions in Subsection 3.1. We also prove that the proposed

test statistics are asymptotically normal under the null and the consistency

of the test in Subsection 3.2. The nontrivial power of the proposed test is

clarified for the local alternative. We provide the applications of the pro-

posed test statistics in Section 4. This section shows that our test can be

used for the specification test, detection of overdispersion, and goodness

of fit tests. Section 5 illustrates the finite sample performance of the test

statistics. In Section 6, we analyze the number of patients with Escherichia

coli. All proofs in this article, additional examples of the goodness of fit

test, and the expressions of the higher moments for several distributions are

available on Supplementary Material.

Hereafter, for every v ∈ Rd for d ∈ N, we write ‖v‖`q :=
(∑d

i=1 |vi|q
)1/q

.

We use the symbol > for the transpose of vectors and matrices. For a

smooth function f : Rd → R, we write the gradient and Hessian of f

by ∂/∂xf(x) := (∂/∂x1f(x), . . . , ∂/∂xdf(x))> and ∂2/(∂x∂x>)f(x) :=

(∂2/(∂xi∂xj)f(x))1≤i,j≤d , respectively. For a random sequence {Xn} and a

random variable X, Xn →p X, as n→∞ denotes the convergence in prob-

ability, and Xn ⇒ X, as n→∞ denotes the convergence in distribution.
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2. Settings

Let {Zt} be an integer-valued time series or non-negative time series on the

probability space (Ω,F , P ) with conditional expectation, for any t ∈ Z,

E (Zt|Ft−1) := λ(Zt−1, Zt−2, . . . ;θ0), (2.3)

where Ft−1 is the σ-field generated by {Zs, s ≤ t − 1}, λ is a known mea-

surable intensity function on [0,∞)∞ × Rd to (δ,+∞) for some δ > 0, and

θ0 ∈ Rd is an unknown parameter. Assuming that the observed stretch

{Z1, · · · , Zn} is available. We define, for t ∈ N ∪ {0},

λt(θ) := λ(Zt−1, Zt−2, . . . ;θ), λ̃t(θ) := λ(Zt−1, Zt−2, . . . , Z1,x0;θ).

where x0 ∈ [0,∞)∞ be an initial parameter. Here, λ̃t(θ) plays a role as

a proxy for λt(θ). Examples of x0 are given in Remark 2. Let θ̂n be

an estimator of θ0 which is endowed with the strong consistency and
√
n-

consistency. More precisely, θ̂n is satisfied with the following two conditions;

θ̂n → θ0 a.s. as n→∞ and
√
n
(
θ̂n − θ0

)
= Op(1) as n→∞. (2.4)

The construction of such estimators is described in Section 3.

The conditional variance is given by vt := Var (Zt|Ft−1) = E (Z2
t |Ft−1)−

λ2t (θ0). If the conditional distribution of {Zt} follows Poisson, negative

binomial with parameters r and r/(r+λt(θ0)), and exponential distribution
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with parameter 1/λt(θ0), then the conditional variance is given by vt =

λt(θ0), λt(θ0)(r+λt(θ0))/r, and λ2t (θ0), respectively. Thus, the conditional

variance can be denoted as vt = κ(λt(θ0)), where κ is a measurable function

on [δ,∞) to (0,∞). More generally, κ can be some functional. However,

for simplicity, we suppose that κ is some function.

In this paper, we discuss the testing problem whose null hypothesis is

that the conditional variance takes a specific form. More precisely, the null

and alternative hypotheses are,

H0 : κ := κ0, H1 : κ 6= κ0,

where κ0 is a measurable function. We propose the following test statistic

Tn which can be calculated via the observations {Zt}1≤t≤n for every n ∈ N;

Tn :=
1√
Mn

Mn∑
t=1

{
(Zt − λ̃t(θ̂n))2 − κ0(λ̃t(θ̂n))

}
, (2.5)

where {Mn}n∈N is an N-valued sequence with 0 < Mn ≤ n and Mn →∞ as

n→∞. These statistic is motivated by the fact that, under the null H0, the

sequence {(Zt − λt(θ0))2 − κ0(λt(θ0)) : t ∈ Z} is a martingale difference.

Remark 1. One may think that it is better to use

1√
n

n∑
t=1

{
(Zt − λ̃t(θ̂n))2 − κ0(λ̃t(θ̂n))

}
(2.6)
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instead of (2.5). However, we can show that the difference between (2.6)

and

1√
n

n∑
t=1

{
(Zt − λt(θ0))2 − κ0(λt(θ0))

}
is not asymptotically negligible as n→∞ and the asymptotic distribution

of the test statistic under the null hypothesis depends on that of estimator

θ̂n. Hence, we introduce the sequence Mn and we discuss the asymptotic

null distributions of the test statistics in the following two cases; (a) Mn =

o(n) and (b) Mn = n.

We make the following assumptions.

Assumption 1. (A0) {Zt} is strictly stationary and ergodic.

(A1) There exists a generic positive and integrable random variable V and

a constant ρ such that 0 < ρ < 1,

sup
θ∈Θ

∣∣∣λ̃t(θ)− λt(θ)
∣∣∣ ≤ V ρt a.s.

and sup
θ∈Θ
|κ0(λ̃t(θ))− κ0(λt(θ))| ≤ V sup

θ∈Θ
ρt a.s..

(A2) λt(θ) is differentiable with respect to θ and κ is differentiable.

(M1) The random variables Z4
t , supθ∈Θ λ

4
t (θ), supθ∈Θ κ

2
0 (λt(θ)),

supθ∈Θ κ
′
0
2 (λt(θ)), supθ∈Θ

∣∣∣ ∂∂θiλt(θ)
∣∣∣4, |(Zt − λt(θ0))2 − κ0(λ(θ0))|2+δ,

supθ∈Θ |`′(Zt, λt(θ))|4, and supθ∈Θ |`′′(Zt, λt(θ))|2 are integrable.
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Remark 2. The broad class of integer-valued time series and non-negative

time series satisfies (A0) and (A1). We consider the family of distribution

{Zξ : ξ ∈ Ξ} with mean ξ. The family is called stochastic equal mean

order property if, for ξ ≤ ξ′ and any x ∈ R, P(Zξ > x) ≤ P(Zξ′ > x).

By (Aknouche and Francq, 2020, Theorem 3.3), under the condition that

nonlinear INGARCH(p,q) model satisfies the contractive condition of the

intensity function and the summation of its coefficients being less than 1

and the process satisfies stochastic equal mean order property, there exists

a strictly stationary and ergodic solution. More precisely, for non-negative

time series {Zt} such that

E (Zt|Ft−1) := λ(Zt−1, . . . , Zt−p, λt−1, . . . , λt−q) (2.7)

with the stochastic equal mean order property and the contractive condi-

tion, for z1, . . . , zp, w1, . . . , wq ∈ R,

∣∣λ(z1, . . . , zp, w1, . . . , wq)− λ(z′1, . . . , z
′
p, w

′
1, . . . , w

′
q)
∣∣

≤
p∑
i=1

αi |zi − z′i|+
q∑
j=1

βj
∣∣wj − w′j∣∣ (2.8)

and
∑p

i=1 αi+
∑q

j=1 βj < 1, there exists a strictly stationary and ergodic so-

lution {Zt}. For example, the one-parameter exponential family Davis and

Liu (2016), autoregressive conditional duration model, additive duration

models, and many zero-inflated distributions satisfy the stochastic equal
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mean order property (See Aknouche and Francq (2020) for details). Under

the conditions of the above, we can show that supθ∈Θ

∣∣∣λ̃t(θ)− λt(θ)
∣∣∣ ≤ V ρt

a.s. by (Aknouche and Francq, 2020, Lemma A.1). In practice, one needs

to choose an initial value x0. Doukhan and Kengne (2015) put Zt = 0 for all

t ≤ 0 to calculate the λ̃t. Ahmad and Francq (2016) also give some examples

for INGARH(1,1) model. Our simulation, we use Z0, λ̃0(θ) =
∑n

t=1 Zt/n

and ∂
∂θ
λ0(θ) = 0 for INGARCH(1,1) model. Note that the effect of the

initial value is asymptotically negligible by making use of Assumption (A1).

3. Main theorems

In this section, we present the main results.

3.1 Asymptotic behavior of the estimator for the parameter

In this subsection, we briefly review the asymptotic behavior of M-estimator,

which is essentially developed by Ahmad and Francq (2016), Aknouche et al.

(2018), Aknouche and Francq (2019), and Aknouche and Francq (2020).

Hereafter, we assume that the estimator θ̂n is defined as the following

M-estimator.

θ̂n := arg max
θ∈Θ

L̃n(θ), L̃n(θ) :=
1

n

n∑
t=1

`(Zt,λ̃t(θ)), (3.9)
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3.1 Asymptotic behavior of the estimator for the parameter

where `(·,·) is a measurable function. To derive the asymptotic behavior of

θ̂n, we impose the following conditions.

Assumption 2. (B1) The function ` is almost surely continuous with

respect to the second component and λt(θ) is almost surely continuous

with respect to θ.

(B2) It holds that∣∣∣∣sup
θ∈Θ

`(Zt,λ̃t(θ))− sup
θ∈Θ

`(Zt,λt(θ))

∣∣∣∣→ 0 a.s. as t→∞.

(B3) It holds that

E (`(Zt,λt(θ0))) <∞.

(B4) The function E`(Zt,λt(θ)) with respect to θ has a unique maximum

at θ0.

(B5) The parameter space Θ is a compact set.

(C6) The function ` is twice continuously differentiable with respect to the

second component and λt(θ) is twice continuously differentiable with

respect to θ.

(C7)The following conditions hold true;∥∥∥∥`′(Zt, λ̃t(θ))

(
∂

∂θ
λ̃t(θ)− ∂

∂θ
λt(θ)

)∥∥∥∥
`1

= O(t−1/2−δ) a.s. as n→∞,
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3.1 Asymptotic behavior of the estimator for the parameter

and, as n→∞,∥∥∥∥ ∂∂θλt(θ)
(
`′(Zt, λ̃t(θ))− `′(Zt, λt(θ))

)∥∥∥∥
`1

= O(t−1/2−δ) a.s.,

where δ > 0.

(C8) There exists a neighborhood V (θ0) of θ0 such that

E

(
sup

θ∈V (θ0)

∣∣∣∣ ∂2

∂θi∂θj
`(Zt,λt(θ))

∣∣∣∣
)
<∞ for i, j = 1, . . . , d.

(C9) It holds for every t ∈ Z that

E
(
`′(Zt, λt(θ0))

∣∣Ft−1) = 0

(C10) For every i, j = 1, . . . , d, it holds that, for some δ > 0,

E

(∣∣∣∣ ∂∂θi `(Zt,λt(θ0)) ∂

∂θj
`(Zt,λt(θ0))

∣∣∣∣1+δ
)
<∞.

Hence, the following matrix

I := E

(
∂

∂θ
`(Zt,λt(θ0))

∂

∂θT
`(Zt,λt(θ0))

)
is well-defined.

(C11) The following conditions hold true;

E (`′′(Zt, λt(θ0))|Ft−1) 6= 0 a.s.,

and

s>
∂

∂θ
λt(θ0) = 0 ⇒ s = 0.
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3.1 Asymptotic behavior of the estimator for the parameter

(C12) The true value θ0 belongs to the interior of Θ.

Remark 3. The conditions described in Assumption 2 are fundamental

assumptions like identifiability of the intensity function and compactness

of parameter space, which are required to construct estimators with the

strong consistency and the asymptotic normality.

Under Assumptions 1 and 2, we have the following strong consistency

and the asymptotic normality of θ̂n.

Theorem 1. Under Assumptions 1 (A0) and 2 (B1)-(B5), it holds that

θ̂n → θ0 a.s. as n→∞.

Theorem 2. Under Assumption 1 (A0) and 2, it holds that

√
n
(
θ̂n − θ0

)
⇒ N(0, J−1IJ−1) as n→∞.

where

I :=E

(
∂

∂θ
`(Zt,λt(θ0))

∂

∂θ>
`(Zt,λt(θ0))

)
=E

(
(`′(Zt, λt(θ0)))

2 ∂

∂θ
λt(θ0)

∂

∂θ>
λt(θ0)

)
J :=− E

(
∂2

∂θ∂θ>
`(Zt,λt(θ0))

)
=− E

(
`′′(Zt, λt(θ0))

∂

∂θ
λt(θ0)

∂

∂θ>
λt(θ0)

)
.
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3.2 Asymptotic behaviors of the test statistics

Remark 4. Actually, there are some estimators θ̂n of θ0 which satisfies

the strong consistency and the asymptotic normality (CAN).

Ahmad and Francq (2016) proposed the Poisson quasi maximum likelihood

estimator (QMLE) and showed CAN. This estimator is efficient when the

underlying conditional distribution is Poisson. Similarly, Aknouche et al.

(2018) investigated the negative binomial QMLE. Moreover, Aknouche and

Francq (2020) suggested the exponential QMLE when underlying process

is non-negative time series. Under regularity conditions, the negative bi-

nomial QMLE and the exponential QMLE satisfy CAN property and are

efficient when the underlying distribution is negative binomial and expo-

nential distributions, respectively. However, the true parameter needs to

belong to the interior of the parameter space and if the underlying condi-

tional distribution is not correct, QMLEs cannot be efficient. To overcome

these drawbacks of QMLEs, Aknouche and Francq (2019) proposed the

weighted least squares estimator and show CAN property.

3.2 Asymptotic behaviors of the test statistics

In this subsection, we show our test is asymptotic size α and consistent.

Furthermore, the proposed test has a nontrivial power under the local al-
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3.2 Asymptotic behaviors of the test statistics

ternative. We introduce the following notations:

σ̂2
n :=

1

n

n∑
t=1

{
(Zt − λ̃t(θ̂n))2 − κ0(λ̃t(θ̂n))

}2

and

σ2 := E(
{

(Zt − λt(θ0))2 − κ0(λt(θ0))
}2

).

Then, we have the asymptotic null distribution.

Theorem 3. Suppose that the estimator θ̂n of θ0 is define by (3.9). Under

Assumptions 1, 2 and the null H0, the following (a) and (b) hold true.

(a) Suppose that Mn = o(n). Then, it holds that

Tn ⇒ N(0, σ2) as n→∞.

(b) Suppose that Mn = n. Then, it holds that

Tn ⇒ N(0, σ̃2) as n→∞,

where σ̃2 are defined as follows

σ̃2 := σ2 + L>J−1IJ−1L+ 2L>J−1C12,

with

L := E

(
κ′0(λt(θ0))

(
∂

∂θ
λt(θ0)

))
,

C12 := E

((
∂

∂θ
`(Zt,λt(θ0))

)>
{(Zt − λt(θ0))2 − κ0(λt(θ0))}

)
,

and the matrices I and J defined in Theorem 3.2.
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3.2 Asymptotic behaviors of the test statistics

Remark 5. When Mn := bcnc for some constant c such that 0 < c < 1, Tn

is asymptotically normal with mean 0 and variance σ2 + c(L>J−1IJ−1L +

2L>J−1C12). This result suggests that we choose Mn := n if L̂>Ĵ−1Î Ĵ−1L̂+

2L̂>Ĵ−1Ĉ12 < 0, otherwise we take Mn := o(n).

The asymptotic variances σ2 and σ̃2 can be estimated by σ̂2
n and

ˆ̃σ2
n = σ̂2

n + L̂>Ĵ−1Î Ĵ−1L̂+ 2L̂>Ĵ−1Ĉ12,

where

L̂ :=
1

n

n∑
t=1

κ′0(λ̃t(θ̂n))
∂

∂θ
λ̃t(θ̂n),

Î :=
1

n

n∑
t=1

∂

∂θ
`(Zt,λ̃t(θ̂n))

∂

∂θ>
`(Zt,λ̃t(θ̂n)),

Ĵ := − 1

n

n∑
t=1

∂2

∂θ∂θ>
`(Zt,λ̃t(θ̂n)),

and

Ĉ12 :=
1

n

n∑
t=1

(
∂

∂θ
`(Zt,λt(θ̂n))

)> {
(Zt − λ̃t(θ̂n))2 − κ0(λ̃t(θ̂n))

}
,

for both cases (a) and (b), respectively. When we consider the case (a),

we obtain the asymptotic size α tests if we reject H0 when σ̂−1|Tn| ≥ zα/2,

where zα/2 is the (1 − α/2)-quantile of the standard normal distribution.

The same assertion holds true for case (b).

We can prove the consistency of the test as follows.
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3.2 Asymptotic behaviors of the test statistics

Theorem 4. Suppose that the estimator θ̂n of θ0 is define by (3.9). Under

alternative H1, Assumptions 1and 2, κ(λt(θ0)) being integrable, and

E(κ(λt(θ0))) 6= E(κ0(λt(θ0))),

where

κ(λt(θ0)) = E((Zt − λt(θ0))2|Ft−1),

it holds for every C > 0 that

P (|Tn| > C|H1)→ 1, n→∞.

Moreover, the next theorem shows that the test statistics Tn has a

nontrivial power.

Theorem 5. Suppose that the estimator θ̂n of θ0 is define by (3.9) and

Assumptions 1 and 2 hold. Under the local alternative hypothesis

H1,n : κ(x) = κn(x), x ∈ R,

where κn(x) := κ0(x) + h(x)/
√
Mn and h(x) is a measurable function such

as E|h(λt(θ0))|2+δ <∞ for some δ > 0, it holds that

Tn ⇒


N(E [h(λt(θ0))] , σ

2) Mn = o(n),

N(E [h(λt(θ0))] , σ̃
2) Mn = n,

as n→∞.
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From Theorem 5 and the Portmanteau theorem, we can derive the

nontrivial power. Under the local alternative H1,n and Mn = o(n), we have

P(σ̂−1n |Tn| > zα/2|H1,n)

→P

(
N(0, 1) ∈ (−∞,−zα/2 − σ−1E (h(λt(θ0))))∪

(zα/2 − σ−1E (h(λt(θ0))) ,∞)|H1,n

)
as n→∞.

This can be rewritten by the simple form 1−Φ(zα/2 − σ−1E (h(λt(θ0)))) +

Φ(−zα/2 − σ−1E (h(λt(θ0)))), where Φ is the cumulative distribution func-

tion of the standard normal distribution. Similarly, it holds that, un-

der the local alternative H1,n and Mn = n, P(ˆ̃σ−1n |Tn| > zα/2|H1,n) →

1− Φ(zα/2 − σ̃−1E (h(λt(θ0)))) + Φ(−zα/2 − σ̃−1E (h(λt(θ0)))) as n→∞.

Remark 6. Theorem 5 corresponds to (ii) of Proposition 2.3 of

Fokianos and Neumann (2013), which advocated the specification test for

the intensity function of Poisson process based on supremum of the Peason

residual. They elucidated the nontrivial power for the local alternative.

4. Applications

The proposed test statistics can be applied to various problems. We intro-

duce some of them in this section.
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Example 1 (Goodness of fit test). First important application is a good-

ness of fit test. Davis and Liu (2016) proposed the exponential family for

integer-valued time series which is defined as

pexp(z|η) := exp{ηz − A(η)}h(z)I{z ≥ 0},

where η is a natural parameter, A(·) and h(·) are known functions. If Zη

follows exponential family with a parameter η, it is known that the mean

and variance are given by λη := E(Zη) = A′(η) and Var(Zη) = A′′(η) > 0,

provided A(η) is twice differentiable with respect to η, respectively. Thus,

A′(η) is a strictly increasing function. From (Davis and Liu, 2016, Proposi-

tion A.1), the exponential family satisfies the stochastic equal mean order

property, that is, for η ≤ η′ (or equivalently for λη ≤ λη′), P(Zη > x) ≤

P(Zη′ > x) for any x ∈ R. Thus, there exists the strictly stationary and

ergodic solution for INGARCH(p,q) model under the condition which is

written in Remark 2. The null hypothesis is that

G0 : Zt follows the target distribution,

and the alternative is

G1 : Zt does not follow the target distribution.

The derivations of asymptotic variance of the following test statistics are

available in Appendix. The concrete examples are given as follows.
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Goodness of fit test for Poisson distribution. By setting η = λ,

A(η) = exp(λ), h(z) = 1/z!, Zη follows Poisson distribution with

a parameter λ, whose mean and variance are λ and λ, respectively.

Doukhan et al. (2013) showed the existence of moment of any order

under the contractive condition of the intensity function and the sum-

mation of its coefficients being less than 1. From Theorem 3, it holds

that, under the null G0, the following statistics converge to standard

normal distribution:

TPois
n :=


σ̂−1 1√

Mn

∑Mn

t=1

{
(Zt − λ̃t(θ̂n))2 − λ̃t(θ̂n)

}
Mn = o(n)

ˆ̃σ−1 1√
n

∑n
t=1

{
(Zt − λ̃t(θ̂n))2 − λ̃t(θ̂n)

}
Mn = n,

where

σ̂2 =
1

n

n∑
t=1

{
2λ̃t(θ̂n)2 + λ̃(θ̂n)

}
and ˆ̃σ2 is defined in Theorem 3 for κ0(λt(θ)) = λt(θ). Thus, we can

construct goodness of fit test for Poisson distribution.

Goodness of fit test for negative binomial distribution We define

η = log(1− p), A(η) = −r log(1− exp(η)), h(z) = z+r−1Cz, then Zη is

distributed negative binomial with parameter known r and unknown

p. Then, mean and variance of Zη are λ := r(1−p)/p and r(1−p)/p2 =

(λ + r)λ/r, respectively. Under appropriate moment condition and
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the null G0, the following test statistic converges to standard normal

as n→∞:

TNB
n :=
σ̂−1 1√

Mn

∑Mn

t=1

{
(Zt − λ̃t(θ̂n))2 − (λ̃t(θ̂n) + r) λ̃t(θ̂n)

r

}
Mn = o(n)

ˆ̃σ−1 1√
Mn

∑Mn

t=1

{
(Zt − λ̃t(θ̂n))2 − (λ̃t(θ̂n) + r) λ̃t(θ̂n)

r

}
Mn = n,

where

σ̂2 =
1

n

n∑
t=1

(
(6 + 2r)λ̃4t (θ̂n) + (12r + 4r2)λ̃3t (θ̂n) + (7r2 + 2r3)λ̃2t (θ̂n)

+ r3λ̃t(θ̂n)
)
/r3

and ˆ̃σ2 defined in Theorem 3 for κ0(λt(θ)) = λt(θ)(λt(θ) + r)/r. In the

case of r = 1, we obtain goodness of fit test for geometric distribution.

In Supplementary Material, goodness of fit tests for binomial and gamma

distributions are introduced.

Example 2 (Specification test for the intensity function). Next important

application is a specification test for the intensity function. Neumann (2011)

investigated the specification test for the intensity function. Afterwards,

Fokianos and Neumann (2013) proposed the supremum type of specification

test. Leucht and Neumann (2013) advocated the L2 norm based test. They

assume Poisson INGARCH(1,1) model for the null hypothesis.
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The null hypothesis and the alternative are given by

K0 : λ = λ0 and K1 : λ 6= λ0,

We assume that the form of the conditional variance is known, that is,

vt = κ0(λt(θ0)). respectively. The test statistic for this test can be defined

as

T spec
n :=

1√
Mn

Mn∑
t=1

{
(Zt − λ0t )2 − κ0(λ0t )

}
.

From Theorem 3, it holds that, under the null K0, T
spec
n ⇒ N(0, σ2) as

n→∞. Furthermore, we assume the true intensity function is given by λ1

and appropriate moment conditions. Then, under the alternative K1, we

observe that

1√
Mn

T spec
n =

1

Mn

Mn∑
t=1

(
(Zt − λ1t )2 − κ0(λ1t ) + (λ1t − λ0t )2

+ 2(Zt − λ1t )(λ1t − λ0t ) + κ0(λ
1
t )− κ0(λ0t )

)
,

which, by the ergodic theorem, converges to E ((λ1t − λ0t )2 + κ0(λ
1
t )− κ0(λ0t ))

as n→∞. If this quantity does not equal to 0, the consistency of the test

holds. Thus, we obtain a size α and consistent test for intensity.

The proposed test statistics does not include Neumann (2011)’s statis-

tics, which is given by

TNeu
n :=

(
2

n

n∑
t=1

(
λ0t
)2)−1/2 1√

n

n∑
t=1

{
(Zt − λ0t )2 − Zt

}
. (4.10)
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Provided that underlying conditional distribution is Poisson, TNeu
n converges

to N(0, 1) as n→∞. On the other hand, our statistics for Poisson hypoth-

esis is defined as

T specPois
n := σ̂−1

1√
Mn

Mn∑
t=1

{
(Zt − λ0t )2 − λ0t

}
,

where σ̂2 =
∑n

t=1 (2(λ0t )
2 + λ0t ) /n,, which converges to N(0,1) as n → ∞

under Poissonian assumption.

We emphasize that the intensity function can be taken the form of the

nonlinear INGARCH(p,q) and our theory can be applied to other distribu-

tions than Poisson. See also Remark 2.

Our initial attempt is to construct a composite hypothesis whether or

not λt belongs to a given parametric family. Although the consistent test

can be constructed in theory, we noticed the empirical power of the test is

poor unless a discrepancy between the null and alternative is huge.

Example 3 (Detection of (conditional) overdispersion or underdispersion).

The conditional overdispersion (underdispersion) is the nature of a data

whose conditional variance is greater (less) than its conditional expectation.

Many papers devote modelings of integer-valued time series for data with

conditional overdispersion. For example, negative binomial distribution is

proposed to capture over-dispersion. It is important to decide whether
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data has an overdispersion or an underdispersion property by a statistical

procedure. This can be formulated as follows; the null hypothesis and the

alternative are defined as

R0 : E(Zt|Ft−1) = Var(Zt|Ft−1) a.s.

and

R1 : P (E(Zt|Ft−1) 6= Var(Zt|Ft−1)) > 0,

respectively. Putting κ0(λt(θ)) = λt(θ0), we define the following test statis-

tics

T disp
n :=


σ̂−1 1√

Mn

∑Mn

t=1

{
(Zt − λ̃t(θ̂n))2 − λ̃t(θ̂n)

}
Mn = o(n)

ˆ̃σ−1 1√
n

∑n
t=1

{
(Zt − λ̃t(θ̂n))2 − λ̃t(θ̂n)

}
Mn = n,

where

σ̂2 =
1

n

n∑
t=1

{
(Zt − λ̃t(θ̂n))2 − λ̃t(θ̂n)

}2

and ˆ̃σ2 is defined in Theorem 3 for κ0(λt(θ)) = λt(θ). These two statistics

converge to the standard normal distribution under the null hypothesis.

Hence, the test can be constructed in the same way as the discussion below

Theorem 3. Note that we do not assume that underlying conditional dis-

tribution is Poisson. There are remarkable examples of the process which

holds conditional equidispersion property other than Poisson distribution.

For example, the conditional expectation and variance can be separately
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modeled by the double exponential family (see Efron (1986)) in the same

way as Heinen (2003).

5. Numerical Study

First, we investigate the finite sample performance of our methods for good-

ness of fit test described in Example 1 in Section 4. Here, we assume

the intensity follows INGARCH(1,1) model; λt = ω + αZt−1 + βλt−1. The

unknown parameters are estimated by Poisson QMLE. The burn-in pe-

riod is 1000. The simulation procedure is as follows; first, we generate

n = (50, 100, 200, 300, 600, 900) samples from Poisson (Pois(λt)) or nega-

tive binomial (NB(λt, 4/(4 + λt))) INGARCH(1,1) models with parame-

ters (ω, α, β) = (1, 0.3, 0.2), (1, 0.3, 0.4), or (1.5, 0.3, 0.2). Then, we cal-

culate the proposed statistics for the null hypothesis κPois(x) := x and

κNB(x) = x(x+ 4)/4 with Mn = n4/5. We denote the statistics as TM when

Mn = n4/5. Finally, we iterate 1000 times and compute the rejection proba-

bility for the significance level 0.05. Note that we use Z0, λ̃0(θ) =
∑n

t=1 Zt/n

and ∂
∂θ
λ0(θ) = 0 as the initial values.

The results are summarized in Tables 1-4. Tables 1 and 2 show the

tests based on the proposed statistics Tn and TM have good size control

overall. For small sample size, TM provides better size than Tn. Instability
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of the Poisson QMLE can explain this for small samples. For relatively

large sample sizes, the tests’ sizes are close to the nominal size 0.05 and are

almost the same.

On the other hand, Tables 3 and 4 show that, as the sample size gets

larger, the powers of both tests increase. The test based on Tn is more

powerful than the test based on TM .

ω = 1, α = 0.3, β = 0.2

Statistic \ n 50 100 200 300 600 900

Tn 0.102 0.092 0.077 0.043 0.039 0.040

TM 0.090 0.051 0.045 0.045 0.041 0.039

ω = 1, α = 0.3, β = 0.4

n 50 100 200 300 600 900

Tn 0.103 0.088 0.048 0.052 0.049 0.051

TM 0.075 0.064 0.036 0.037 0.048 0.045

ω = 1.5, α = 0.3, β = 0.2

n 50 100 200 300 600 900

Tn 0.097 0.072 0.064 0.059 0.049 0.048

TM 0.059 0.046 0.049 0.044 0.046 0.047

Table 1: The empirical size at the nominal size 0.05 for Poisson IN-

GARCH(1,1) models and κPois
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ω = 1, α = 0.3, β = 0.2

Statistic \ n 50 100 200 300 600 900

Tn 0.122 0.084 0.083 0.047 0.041 0.047

TM 0.062 0.052 0.030 0.036 0.038 0.038

ω = 1, α = 0.3, β = 0.4

Statistic \ n 50 100 200 300 600 900

Tn 0.097 0.093 0.073 0.063 0.061 0.040

TM 0.070 0.060 0.033 0.035 0.035 0.040

ω = 1.5, α = 0.3, β = 0.2

Statistic \ n 50 100 200 300 600 900

Tn 0.107 0.081 0.072 0.074 0.040 0.041

TM 0.075 0.046 0.045 0.038 0.037 0.046

Table 2: The empirical size at the nominal size 0.05 for NB INGARCH(1,1)

models and κNB

ω = 1, α = 0.3, β = 0.2

Statistic \ n 50 100 200 300 600 900

Tn 0.734 0.894 0.986 0.999 1.000 1.000

TM 0.460 0.596 0.782 0.885 0.978 0.997

ω = 1, α = 0.3, β = 0.4

Statistic \ n 50 100 200 300 600 900

Tn 0.911 0.990 1.000 1.000 1.000 1.000

TM 0.719 0.893 0.985 0.996 1.000 1.000

ω = 1.5, α = 0.3, β = 0.2

Statistic \ n 50 100 200 300 600 900

Tn 0.885 0.984 1.000 1.000 1.000 1.000

TM 0.66 0.8482 0.960 0.989 1.000 1.000

Table 3: The empirical power at the nominal size 0.05 for Poisson IN-

GARCH(1,1) models and κNB
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ω = 1.5, α = 0.3, β = 0.2

Statistic \ n 50 100 200 300 600 900

Tn 0.003 0.009 0.38 0.8017 0.990 1.000

TM 0.087 0.190 0.297 0.373 0.564 0.704

ω = 1, α = 0.3, β = 0.4

Statistic \ n 50 100 200 300 600 900

Tn 0.000 0.03 0.627 0.888 0.991 0.997

TM 0.164 0.313 0.487 0.594 0.82 0.9192

ω = 1.5, α = 0.3, β = 0.2

Statistic \ n 50 100 200 300 600 900

Tn 0.001 0.023 0.655 0.921 0.992 0.999

TM 0.145 0.280 0.445 0.540 0.795 0.902

Table 4: The empirical power at the nominal size 0.05 for NB IN-

GARCH(1,1) models and κPois

Next, we illustrate finite sample performance of the proposed method

for specification test described in Example 2 in Section 4. The null hy-

pothesis we investigate here is INARCH(1) model λt = ω + αZt−1 and the

alternative hypothesis INARCH(1) with different coefficients from the null.

We set the sample size n ∈ {100, 200, 300, 600, 900}, the number of iteration

is 1000, and the significance level α = 0.05. We compute our statistics T spec
n

and Neumann (2011)’s statistic TNeu
n defined in (4.10).

The simulation results are shown in Tables 5-8. Tables 5 and 6 display

the empirical sizes of the tests based on T spec
n and TNeu

n close to 0.05 as the
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ω = 1, α = 0.4

Statistic \ n 100 200 300 600 900

T spec
n 0.082 0.073 0.066 0.074 0.056

TNeu
n 0.044 0.047 0.055 0.066 0.044

ω = 1, α = 0.6

T spec
n 0.090 0.059 0.054 0.059 0.052

TNeu
n 0.046 0.038 0.054 0.053 0.050

Table 5: The empirical sizes at the nominal size 0.05 for Poisson

INARCH(1) model λt = ω + αZt−1

ω = 1, α = 0.4

Statistic \ n 100 200 300 600 900

T spec
n 0.128 0.116 0.073 0.073 0.058

TNeu
n 0.722 0.925 0.985 1.000 1.000

ω = 1, α = 0.6

T spec
n 0.138 0.123 0.109 0.073 0.088

TNeu
n 0.906 0.994 1.000 1.000 1.000

Table 6: The empirical sizes at the nominal size 0.05 for NB INARCH(1)

model λt = ω + αZt−1 with r = 4

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



sample size becomes larger except for Neumann (2011)’s test of negative

binomial case. This is because Neumann (2011)’s test is constructed by use

of the property of Poisson distribution.

The empirical powers are indicated in Tables 7 and 8. For Poisson case,

both tests have good powers when the coefficient of the alternative is larger

than that of the null. On the other hand, our proposed test works well for

large sample sizes in every case when the conditional distribution follows

negative binomial.

6. Empirical study

In this section, we analyze the weekly number of patients with Escherichia

coli in a state of Germany from January 2001 to May 2013. This data set

(called ecoli hereafter) has 646 observations and can be found in tscount

(Liboschik et al., 2017). The plot of observations and the sample ACF are

as shown in Figures 1 and 2, respectively. The sample mean and the sample

variance are given by 20.33 and 88.62, respectively, and, thus, ecoli exhibits

overdispersion.

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



ω = 1, α = 0.4, ω′ = 1, α′ = 0.2,

Statistic \ n 100 200 300 600 900

T spec
n 0.208 0.252 0.287 0.457 0.533

TNeu
n 0.060 0.080 0.137 0.209 0.336

ω = 1, α = 0.4, ω′ = 1, α′ = 0.6

T spec
n 0.289 0.627 0.823 0.992 0.999

TNeu
n 0.290 0.460 0.543 0.758 0.872

ω = 1, α = 0.4, ω′ = 1, α′ = 0.8

T spec
n 0.996 1.000 1.000 1.000 1.000

TNeu
n 0.990 0.999 1.000 1.000 1.000

ω = 1, α = 0.6, ω′ = 1, α′ = 0.2

T spec
n 0.103 0.105 0.121 0.112 0.138

TNeu
n 0.398 0.706 0.858 0.994 1.000

ω = 1, α = 0.6, ω′ = 1, α′ = 0.4

T spec
n 0.177 0.194 0.231 0.312 0.388

TNeu
n 0.077 0.113 0.160 0.317 0.480

ω = 1, α = 0.6, ω′ = 1, α′ = 0.8

T spec
n 0.496 0.855 0.957 1.000 1.000

TNeu
n 0.512 0.717 0.839 0.981 0.993

Table 7: The empirical powers at the nominal size 0.05 for the null being

Poisson INARCH(1) model λt = ω+αZt−1 and the alternative being Poisson

INARCH(1) model λt = ω′ + α′Zt−1
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ω = 1, α = 0.4, ω′ = 1, α′ = 0.2,

Statistic \ n 100 200 300 600 900

T spec
n 0.363 0.449 0.539 0.746 0.886

ω = 1, α = 0.4, ω′ = 1, α′ = 0.6

T spec
n 0.130 0.353 0.623 0.940 0.989

ω = 1, α = 0.4, ω′ = 1, α′ = 0.8

T spec
n 0.741 0.933 0.976 0.990 0.992

ω = 1, α = 0.6, ω′ = 1, α′ = 0.2

T spec
n 0.457 0.616 0.760 0.937 0.978

ω = 1, α = 0.6, ω′ = 1, α′ = 0.4

T spec
n 0.383 0.519 0.590 0.797 0.894

ω = 1, α = 0.6, ω′ = 1, α′ = 0.8

T spec
n 0.058 0.166 0.337 0.744 0.883

Table 8: The empirical powers at the nominal size 0.05 for the null being

NB INARCH(1) model λt = ω+αZt−1 with r = 4 and the alternative being

NB INARCH(1) model λt = ω′ + α′Zt−1 with r = 4
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Figure 1: The weekly number of the patients with Escherichia coli in a state

of Germany from January 2001 to May 2013
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Figure 2: The sample ACF of ecoli

First, we determine the order p̂ and q̂ of INGARCH(p,q) by minimiza-

tion of the Takeuchi’s information criterion (TIC) (see Takeuchi (1976) and

Konishi and Kitagawa (2008, p.60)), that is, p̂ and q̂ are defined as

(p̂, q̂) := arg min
max(p,q)≤5

TIC(p, q), TIC(p, q) := −2nL̃n(θ̂n) + 2tr
(
Ĵ−1Î

)
.

Table 9 displays TIC values for p and q such that max(p, q) ≤ 5 and

this table indicates that (p, q) = (5, 4) is an appropriate order in the sense

of TIC. The estimated parameters are given as follows; ω̂ = 2.594 (the

perception of INGARCH (5,4)), (α̂1, α̂2, α̂3, α̂4, α̂5) = (3.724×10−1, 2.392×

10−4, 1.853 × 10−2, 3.238 × 10−4, 1.002 × 10−5) (the autoregression coeffi-

cients with respect to {Zt}), and (β̂1, β̂2, β̂3, β̂4) = (4.763 × 10−1, 3.505 ×

10−3, 3.660× 10−4, 4.260× 10−5) (the regression coefficients with respect to

{λt}).
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p\q 0 1 2 3 4 5

0 -39320.96 -52888.12 -52895.60 -52944.33 -52919.67 -52962.39

1 -53310.82 -53888.15 -53895.34 -53900.00 -53904.75 -53909.33

2 -53690.14 -53893.83 -53907.72 -53917.73 -53922.09 -53927.31

3 -53798.05 -53900.78 -53915.98 -53920.67 -53915.95 -53927.28

4 -53838.29 -53905.73 -53923.63 -53927.48 -53926.64 -53938.76

5 -53849.16 -53907.63 -53920.39 -53924.59 -53939.10 -53921.30

Table 9: TIC values for INGARCH(p,q)

Next, we apply our proposed tests based on Tn, TM1 , and TM2 with

M1 := bn59/60c and M2 := bn58/60c for the null hypothesis is that the

underlying conditional distribution follows Poisson distribution or NB dis-

tribution with r = 1, . . . , 50.

As we expected, all three tests reject the Poisson hypothesis. When

the null hypothesis is negative binomial, any one of three tests reject the

hypothesis for r = 1, . . . , 14, 24, . . . 50 and all three tests accept NB distri-

bution with r = 15, . . . , 23. Consequently, a plausible modeling of ecoli is

INGARCH(5,4) with NB conditional distribution for r = 15, . . . , 23.

Supplementary Materials

All proofs of Theorems 1-5, additional examples of the goodness of fit test,

and the explicit forms of the higher moments for several distributions are

available on the Supplementary Materials.
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