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Abstract

In Bayesian data analysis, it is often important to evaluate quan-

tiles of the posterior distribution of a parameter of interest (e.g., to

form posterior intervals). In multi-dimensional problems, when non-

conjugate priors are used, this is often difficult generally requiring either

an analytic or sampling-based approximation, such as Markov chain

Monte-Carlo (MCMC), Approximate Bayesian computation (ABC) or

variational inference. We discuss a general approach that reframes this

as a multi-task learning problem and uses recurrent deep neural net-

works (RNNs) to approximately evaluate posterior quantiles. As RNNs

carry information along a sequence, this application is particularly useful

in time-series. An advantage of this risk-minimization approach is that
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we do not need to sample from the posterior or calculate the likelihood.

We illustrate the proposed approach in several examples.

Key words and phrases: Bayesian deep learning, machine learning, quantile estimation.

1. Introduction

We consider the common Bayesian scenario wherein we have a dataset, X,

generated from some parametrically specified distribution (X |θ, η) ∼ Pθ,η.

Here, we assume that θ ∈ R is a one-dimensional parameter of interest. For

simplicity, we assume that the nuisance parameter η ∈ Rp is finite-dimensional,

although this is not essential – in the Discussion, we provide more details on

handling an infinite-dimensional η. We further assume that (θ, η) follows a

known prior distribution g, i.e., (θ, η) ∼ g. In analyzing our dataset X, we

generally would like to evaluate the posterior distribution for θ:

dP (θ |X) =

∫
η
dPθ,η(X)g(θ, η)dη∫

θ,η
dPθ,η(X)g(θ, η)dθdη

.

The integral in the denominator is often analytically intractable. When the

likelihood function, dPθ,η(X), can be efficiently calculated (up to a normalizing

constant) one can draw samples from the posterior dP (θ |X) using stochastic

simulation techniques such as Markov Chain Monte Carlo (MCMC) and rejec-

tion sampling (Asmussen and Glynn, 2007). From these samples, any posterior
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summary can be computed. However, there are a number of situations in which

the likelihood is difficult to calculate yet it is relatively straightforward to sample

(η, θ) from g, and X from Pθ,η. A class of methods, known as Approximate

Bayesian Computation (ABC) methods, have been developed for inference in

this regime (e.g., Marjoram et al., 2003). These rely on simulating data from

the joint prior-likelihood distribution and computing the empirical distribution

of parameters drawn alongside data that are “close” to the observed data in

some sense. As ABC and more classical stochastic simulation techniques both

often use some form of rejection sampling, they can suffer in problems that are

complex or high dimensional. Furthermore, defining “close” as it pertains to

sampled data X, is nontrivial in many cases. For even a moderately large X,

informative summary statistics must be constructed to reduce rejection rate,

otherwise the problem becomes intractable. If summary statistics are not suit-

able for the particular setting, the approximation of the posterior will be poor

(Prangle, 2015).

In this work, we frame the calculation of posterior quantiles as an optimiza-

tion problem. We consider the posterior quantile functions as risk minimizers

with respect to particular losses. We approximate the function that minimizes

this risk by restricting our optimization to the class of functions that can be rep-

resented by recurrent neural networks (RNNs) (Rumelhart et al., 1985). Since
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we expect the posterior quantile to “update” as more data becomes available,

the recurrent structure is advantageous. Moreover, the recurrent framework al-

lows us to evaluate posterior quantiles for datasets of arbitrary length. Provided

our network architecture is adequate for the specific problem, our function class

will be sufficiently rich, and the risk minimizer over this class will be close to

the true posterior quantile function. We discuss how stochastic subgradient

optimization can be used to find local optima over this class. In particular, by

simulating parameters/data from our prior/likelihood, our neural network can

update its parameter estimates to “learn” how to evaluate posterior quantiles.

We refer to this as a “statistical meta-learning procedure”, as it uses simulated

data to learn a Bayesian-optimal statistical rule.

Another obvious advantage of RNNs is their natural compatibility with

time-series data, where the contribution of each observation to a parameter

of interest can depend on previous or later observations. RNNs share infor-

mation across recurrent steps, making them naturally suited to handling this

type of problem. Furthermore, many Bayesian time-series are difficult due to

the intractability of the likelihood (see Ghahramani (2001) for some examples).

Avoiding the approximation of the entire posterior distribution is favorable in

these scenarios when our target is credible intervals, for example.

Other work has proposed the use of deep learning in similar contexts. The
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idea of using RNNs as meta-learners was first introduced by Hochreiter et al.

(2001). Wong et al. (2018) use deep neural networks to approximate posterior

summaries – in particular they consider approximating the posterior mean of a

functional in high-dimensional problems. Creel (2017) build on this work, and

apply this approach to particular econometric models, using feedforward neural

networks to estimate posterior means. Chan et al. (2018) use exchangeable

neural networks to model population genetic data. They train on the fly, sim-

ulating new data each time they update the weights of their neural network.

However, they approximate the entire posterior using a parametric approach.

2. Reframing as an Optimization Problem

For any t ∈ (0, 1), let Qt(X) denote the tth quantile of the posterior of θ

under prior g and likelihood Pθ,η. Our goal is to learn the quantile functions

{Φ(t) := Qt(·) for all t ∈ T }, where T ⊆ (0, 1) either contains finitely many

elements or is equal to (0, 1).

The quantity Qt(X) is the solution in q to

P (θ ≤ q | X) = t ,

where we assume for simplicity that this posterior is continuous.

Our approach hinges on the fact that Qt can be written as the solution to
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an optimization problem. In particular,

Qt(X) = argminQ E [ρt (θ −Q(X))] , (2.1)

where ρt(u) = u (t− I {u < 0}) is the asymmetric L1 norm (or “pinball loss”,

as referred to by Koenker and Hallock, 2001), and the minimization is taken

over all functions that are measurable with respect to σ(X) (the sigma-algebra

generated by the data). Note that in the case where t = 0.5, this loss is

precisely a scaled L1 loss.

Directly solving (2.1) is intractable in general over the space of all mea-

surable functions. Instead we restrict the problem to a rich finite-dimensional

subclass: those functions that can be represented by deep recurrent neural net-

works. This is known to be a very rich class (Cybenko, 1989; Bach, 2017). In

this case, our optimization problem consists of finding

β∗ = argminβ E [ρt (θ −Qβ(X))]

= argminβ

∫
θ,η,X

ρt (θ −Qβ(X)) dPθ,η(X)g(θ, η)dθdη ,

(2.2)

where Qβ is a deep recurrent neural network that takes as input each of the n

observations in X, and outputs a single value; and β is the vector of weight

and bias parameters in the neural network. For this network to be an effective

estimator, we may need a large number of parameters: the network needs to

learn both how to combine inputs to get the output, as well as what values to

store in memory across recurrent steps.
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2.1 Relation to Quantile Regression

2.1 Relation to Quantile Regression

The asymmetric L1 norm described above is most commonly used in quantile

regression. However, unlike quantile regression, which is generally engaged

with in the frequentist context, where the goal is to estimate a quantile or

distribution of a conditional outcome given a set of features, the outcomes

and covariates aren’t fixed. In fact, the only similarity between our proposed

method and quantile regression is the use of pinball loss. We are attempting

to learn one or many posterior quantiles as functions of data simulated from

the prior and likelihood, Qt : X → R, as a minimizer of (2.1) over the joint

distribution of (X, θ),
∫
η
dPθ,η(X)g(θ, η)dη. We do this without ever engaging

with a single, fixed, observed dataset, but rather through engaging with many

simulated datasets. Reframing the derivation of the posterior quantile in this

way is the key that allows us to leverage deep learning for posterior quantile

approximation.

2.2 Motivation for Recurrent Structure

2.2.1 Time Series and Sequential Models

RNNs are advantageous for posterior inference in sequential models because

they pass information sequentially by design. For illustrative purposes, consider
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2.2 Motivation for Recurrent Structure

the second-order moving-average model described in Section 3.5:

Xj ∼ Zj + θ1Zj−1 + θ2Zj−1.

The observed sequence X depends on the parameters of interest, {θ1, θ2}, only

through an unobserved, latent sequence Z.

For most choices of likelihood over Z and choices of prior over θ, the

likelihood P (X | θ) is not tractable. Furthermore, the contribution of Xj to

the posterior distribution depends on the values of Xj−1, Xj−2. Because we

cannot sample from the posterior directly for non-trivial choices of likelihood

and prior, and because the data are sequential, an RNN is a good choice for

posterior estimation. Later, in Section 3.5, we show that our proposed method

outperforms several others in credible interval estimation.

2.2.2 Canonical Exponential Family

To motivate the choice of a recurrent neural network, as opposed to a simpler

multilayer perceptron, we consider a d-parameter canonical exponential family

indexed by θ with a conjugate prior on θ, namely

p(x|θ) = h(x) exp(θ⊤T (x)− g(θ))

pη0,γ0(θ) = k(η0, γ0) exp(η0(γ
⊤
0 θ − g(θ)))
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2.2 Motivation for Recurrent Structure

for θ ∈ Rd. It follows that, if X = {x1, · · · , xn} where X1, · · · , Xn
iid∼ p(·|θ),

p(θ|X) = pη′,γ(X)(θ)

with η′ = n+η0, and γ(X) =
∑n

i=1 T (xi)

n+η0
+ η0

n+η0
γ0. By the factorization theorem,

in this simple setting, there exists a (d + 1)-parameter sufficient statistic for

θ|X, namely [
∑n

i=1 T (Xi), n]. Therefore, we can write Qt recurrently as

Qt(X) = h [xn, f(xn−1, f(. . . f(x1, β) . . .))]

for some fixed β ∈ Rd+1, h : Rd+2 → R, and some f : Rd+2 → Rd+1.

Here f(xi,
∑i−1

j=1 T (xj), i − 1) = {
∑i

j=1 T (xj), i}. We can think of f as the

“memory” function that tracks the sufficient statistic across recurrent steps,

while h(
∑n

i=1 T (Xi), n) = F−1(t), where F−1 is the quantile function of pη′,γ′ ,

so h calculates Qt(X) from the sufficient statistic. Note that increasing d is

equivalent to increasing the size of the memory across recurrent steps.

While it is not true that we can write Qt(X) in this way for a general

likelihood and prior, we hope that for some sufficiently large memory size there

exists an h, f such that

Qt(X) ≈ h [xn, f(xn−1, f(. . . f(x1, β) . . .))] .

In fact, note that if the size of the memory exceeds the number of observations,

the set of order statistics is sufficient.
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2.3 Discretized Multi-task Learning

An advantage of the recurrent structure is that it allows us to get an ap-

proximation of a posterior quantile for a dataset of arbitrary length. In the

case where the data are independent and identically distributed, this is partic-

ularly useful, as we are learning how to “update“ the posterior as the number

of observations grows. Using a feedforward architecture, one could only ob-

tain posterior quantile approximations for datasets of a fixed size, one which is

compatible with the input layer of the network.

This proposed recurrent neural network can take in a dataset and return

an approximation to a single posterior quantile. It is also possible to design a

network which learns more than a single quantile, and potentially all quantiles.

These extensions are described in what follows.

2.3 Discretized Multi-task Learning

We first extend our procedure to simultaneously approximate {Qt} for a dis-

crete collection of t with a single network. Let T denote that discrete set of

quantiles and write mT = |T |. We use a multi-task learning network architec-

ture (Ruder, 2017) with shared hidden nodes and internal weights, and a set of

mT task-specific output nodes leading out of the shared, final hidden layer for

approximating the mT quantiles. Let βin denote the shared internal weights;

and βout(t) denote the task-specific output weights for estimating Qt. In this
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2.4 Continuous Quantile Learning

case, to find the optimal weights, β∗
in and β∗

out(t), t ∈ T , we must find

argminβin,βout(t):t∈T

∑
t∈T

wt E
[
ρt
(
θ −Qβin,βout(t)(X)

)]
(2.3)

with wt > 0 denoting predefined costs — for example, one might take wt = 1

for all t ∈ T . This hard sharing multi-task learning framework that shares

internal nodes across tasks seems sensible, as intermediate representations of

the data that are useful for posterior calculations are likely not quantile-specific.

However, one might consider modifying this to allow a “final stage” with several

hidden layers specific to each quantile.

2.4 Continuous Quantile Learning

We further extend this to the construction of a single network that approxi-

mates all quantiles of the posterior simultaneously. To begin, we consider the

optimization problem

Q = argminQ

∫ 1

0

w(t) E [ρt (θ −Q(t,X))] dt , (2.4)

where w is any positive integrable function on (0, 1). The solution to (2.4), Q,

is a function that takes as input both t and X, and returns the tth posterior

quantile, i.e., Q(t,X) = Qt(X), as follows directly from (2.1). By approximat-

ing the problem in (2.4) using neural networks, we can build a single network

to simultaneously approximate all quantiles.
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2.5 Optimization

Without loss of generality, we can assume that
∫ 1

0
w(t)dt = 1. Then, for

random T drawn from density w, we can rewrite (2.4) as

Q = argminQ E [ρT (θ −Q(T,X))] , (2.5)

where the expectation is now over T , θ and X.

As noted above, we approximate the solution to (2.4) using a deep neural

network by solving the optimization problem

β∗ = argminβ E [ρT (θ −Qβ(T,X))] , (2.6)

where Qβ is a network that takes as input the dataset and the selected quantile,

and returns a single output. The architecture of this network is similar to the

single quantile problem described in the beginning of Section 2, except that T

is included as an additional input at every recurrent step.

2.5 Optimization

Let ℓ1, ℓM and ℓC denote the losses in criteria (2.2), (2.3), and (2.6), respec-

tively. Optimization of all three can be conducted using standard stochastic

subgradient-based methods (Nedic and Bertsekas, 2001). In particular, for the

loss (2.2), we see that the sub-differential of our loss, ∇ℓ1 (β), consists of

∇ℓ1 (β) ∋ −E [ρ̇t (θ −Qβ(X))∇Qβ(X)] ,
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2.5 Optimization

where ∇Qβ(X) is a subgradient of our network; and ρ̇, defined pointwise as

ρ̇t(u) = tI(u > 0)+(1− t)I(u < 0), is a subgradient of the quantile loss func-

tion. There are many subgradients based on how one defines ρ̇t(0). Stochastic

subgradients can be calculated by sampling a (θ, η) pair from g and a dataset

X from Pθ,η, and then plugging these into

∇̂ℓ1(β) = ρ̇t (θ −Qβ(X))∇Qβ(X) . (2.7)

By linearity, stochastic subgradients can be similarly calculated for the multi-

task learning criterion, ℓM .

For continuous quantile learning, our expectation-based formulation, ℓC ,

allows us to easily calculate stochastic subgradients. In particular, given a

sampled (θ, η) pair, a dataset X sampled from Pθ,η, and a T sampled from w,

we can calculate

∇̂ℓC(β) = ρ̇T (θ −Qβ(X))∇Qβ(X) (2.8)

and note that E[∇̂ℓC(β)] is in the sub-differential of ℓC at β.

The full approximation procedure for 2.2 is described in Algorithm 1. We

repeatedly sample (θ,X) pairs, and use those pairs to train our neural network.

Note that steps 3 and 4 are generally done by back propagation, and that this

algorithm can be extended using linearity for the multi-task learning criterion

ℓM and having the network output one prediction for each quantile of interest.
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For the optimization described by 2.6, we need only sample a T from w before

we calculate the gradient in step 3. While simple stochastic gradient descent is

described here, extension to more complex stochastic optimization techniques

that use adaptive learning rates/ momentum (such as Kingma and Ba, 2014;

Smith and Topin, 2017) can be and are actually employed in simulations in

practice.

Algorithm 1 Learn Qt(·)
Require: m = batch size, k = learning rate

for 0 ≤ i ≤ total iterations do

1. Simulate (θ1, η1), . . . (θm, ηm)
iid∼ g(θ, η)

2. Simulate X1 ∼ Pθ1,η1 , . . . , Xm ∼ Pθm,ηm

3. ∇̂ℓ(β)← 1
m

∑m
j=1 ρ̇t (θj −Qβ(Xj))∇Qβ(Xj)

4. β ← β − k ∇̂ℓ(β)

5. i← i+ 1

end for

3. Examples

In this section, we consider three examples. The first is simple, namely the

estimation of the median of iid gaussian observations using a gaussian prior,

the multi-task estimation of posterior deciles, as well as learning posterior quan-

14

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing) 



3.1 Gaussian Example

tiles continuously. The posterior quantiles here have a simple closed form, so

evaluating performance is very straightforward. For the second example, we

approximate the posterior median for the maximum component in a mixture

of finite mixtures (MFM). Finally, we approximate the posterior median for the

basic reproduction number in a Bayesian Stochastic SIR model.

For all examples, optimization was performed using Adam (Kingma and Ba,

2014) as implemented in TensorFlow (Abadi et al., 2016), with subgradients

calculated using mini-batches. Performance was evaluated in all simulation

settings based on mean loss, or estimated risk, over a held out test set. Error

bars at the conclusion of training represent a 95% confidence interval of the risk

of the neural network based on the sample standard error of a held out test set.

Where appropriate, we compare our neural networks to Stan, another general-

purpose posterior estimation tool, in addition to comparing to a specialized,

problem-specific tool.

3.1 Gaussian Example

We consider a simple example with observations x1, . . . , xn drawn iid from a

N(θ, 1) distribution, with θ drawn from a N(0, σ2) prior. Here, we would like

posterior quantiles for θ given our data. It is well known, in this case, that

θ |x1, . . . , xn ∼ N

(
x̄σ2

1/n+ σ2
,
(
n+ σ−2

)−1
)

15
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3.1 Gaussian Example

where x̄ = n−1
∑

i xi. Thus,

Qt(X) =
x̄σ2

1/n+ σ2
+

Φ−1(t)√
n+ σ−2

.

Furthermore, letting Xj = {x1, . . . , xj}, we have, for j ≥ 2

Qt(Xj) =
( j−1

j
x̄j−1 + xj)σ

2

1/j + σ2
+

Φ−1(t)√
j + σ−2

.

So, in this simple case, there exists an exact recurrent update step that uses

a two-dimensional sufficient statistic, {x̄j, j}. While this case is quite basic, it

is illustrative, and because we have access to the exact value of Qt(X), it is

trivial to evaluate the performance of our approximated posterior quantile.

We consider approximating the posterior median. In this specific case,

we can assess the quality of our network by comparing the pinball loss of our

network to the pinball loss of the true posterior median on a held-out test set.

We ran simulations using n = 100 observations, where θ has prior variance

σ2 = 1/100 (equal to the conditional variance of x̄). We use mini-batch Adam

for optimization, where each mini-batch contains 100 datasets, with a learning

rate of 10−2. Our network has 32 nodes per hidden layer and 4 hidden layers,

with ReLU activation functions. We evaluate the risk on a held-out test set of

500 datasets. Performance is summarized in Figure 1.

We also ran simulations using an identical prior and likelihood, but this time

attempting to simultaneously learn all 9 posterior deciles, with uniform weight
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3.1 Gaussian Example
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Figure 1: Risk curve for estimation of the posterior median in a Gaussian prior

and Gaussian likelihood simulation scenario. The risk of the true minimizer,

the posterior median, is standardized to be equal to one (red). Here, the

posterior median has closed-form. Our estimator has about 2% excess risk

when compared to the Bayes estimator.
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3.2 MFM Example

on the loss over the 9 tasks as described in 2.3. Performance is summarized

in Figure 2. We compare to the risk of the true posterior deciles, and are

able to obtain a risk which is close to the true posterior deciles. We evaluate

performance on a test set of 500 held-out datasets.

Finally, we ran simulations using the same prior and likelihood as above, but

the target of estimation was a random quantile which was sampled uniformly

on the unit interval, using the loss described in 2.6. We included the target

quantile as an input to our neural network at each recurrent step. We evaluated

performance on a test set of 500 held-out datasets and 500 held-out random

quantiles. We compare the average loss over this test set to the average loss

of the corresponding posterior quantiles, which have closed form. The results

are summarized in Figure 3.

3.2 MFM Example

We consider a slightly more complex case in which observations x1, . . . , xn

are drawn iid from a 1
k

∑k
i=1 N(θi, 0.01) distribution, with θ drawn from a

N(0, 0.25) prior, and k drawn from a Pois(4) prior shifted to have a minimum

of 1. The choice of variance for the prior and the likelihood were to ensure

some separation between the components.

Our target of estimation here is the posterior median of θ(k), the maximum
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3.2 MFM Example
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Figure 2: Risk curve for estimation of the posterior deciles in a Gaussian prior

and Gaussian likelihood simulation scenario. The risk of the true minimizer,

the posterior deciles, is in set to one (red). Here, the posterior deciles have

closed-form. Our estimator has about 30% excess risk when compared to the

Bayes estimator.
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3.2 MFM Example
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Figure 3: Risk curve for estimation of the posterior quantiles in a Gaussian prior

and Gaussian likelihood simulation scenario. The quantile to estimate for each

of the 1500 simulated datasets was sampled uniformly at random from the unit

interval. The risk of the true minimizer, the posterior quantiles, is in set to one

(red). Here, the posterior quantiles have closed-form. Our estimator has about

5.6% excess risk when compared to the Bayes estimator.
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3.2 MFM Example

component. Note that this parameter is sensitive to the number of components,

with the distribution of θ(k)|X, k depending heavily on k, making procedures

that try to determine the number of clusters, such as BIC, inaccurate.

We ran simulations using n = 250 observations. We used mini-batch Adam

for optimization, where each mini-batch contains 150 datasets, with a learning

rate of 10−4. We used a network with 32 nodes per hidden layer, and 4 hidden

layers.

The reason for the larger mini-batch in this simulation setting is the in-

creased variability in the gradient due to the variable number of components.

A larger mini-batch size makes the stochastic optimization more stable. Perfor-

mance is summarized in Figure 4. We compared to a Julia package specialized

for obtaining approximate posteriors for this model class (Miller and Harrison,

2018), as well as Stan (Carpenter et al., 2016), using two strategies to esti-

mate the number of components. One strategy was to use BIC to estimate

the number of clusters, and the other was to use the prior mean number of

clusters. Stan then proceeded with the number of clusters fixed. As our pa-

rameter of interest is sensitive to the number of clusters, the Stan posterior

estimation framework does poorly. Our neural network approaches the risk of

the approximate posterior median given by a specialized package within about

15, 000 simulated datasets. We evaluated performance on a held-out test set
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3.3 Stochastic SIR Example

of 500 datasets.

3.3 Stochastic SIR Example

We also consider a stochastic SIR model. In this setting, we observe a disease

epidemic, and would like to estimate the posterior median for the basic repro-

duction number, R0. A stochastic SIR model is a continuous time stochastic

process that models how a disease interacts with a population of size N . At

each time t, there is a number of susceptible individuals, S(t), a number of

infected individuals, I(t), and a number of recovered individuals, R(t). The

disease is modeled according to the following differential equations

∂S(t)

∂t
= −βS(t)I(t)

N
+

√
βS(t)I(t)

N
ω1(∂t)

∂I(t)

∂t
=

βS(t)I(t)

N
− γI(t)−√

βS(t)I(t)

N
ω1(∂t) +

√
γI(t)ω2(∂t),

where β is the infection rate, γ is the recovery rate, and ω1, ω2 are standard

Wiener processes (Allen, 2017). The basic reproduction number, R0, is the

number of expected new infections an individual generates over the course of

their disease in a fully susceptible population, β/γ. This parameter, and its

posterior quantiles, are of interest in this problem (Clancy et al., 2008), since

R0 > 1 means the disease is likely to become an epidemic.
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3.3 Stochastic SIR Example
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Figure 4: Risk curve for estimation of the posterior median in a Gaussian prior

and Gaussian mixture likelihood simulation scenario, with a prior on the number

of mixture components. We compare to Stan, with 2 strategies for selecting

the number of components, as well as a specialized Julia package, BayesianMix-

tures. Our estimator has 87% excess risk when compared to BayesianMixtures,

though it is much improved over our Stan implementations, and it is possible

better architecture and more training would lead to better results.
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3.3 Stochastic SIR Example

We simulate from t = 0 to t = 100 using finite differences with ∂t = 0.01.

However, we only observe integer values of t, for a total of 101 observations.

In this setting, we observe both S(t) and I(t), though it is simple to reduce

the observed data to only R(t), for example. We specify the following priors

for β and γ,

β ∼ Γ(9, 0.05)

γ ∼ Γ(3, 0.05).

We selected these priors based on Clancy et al. (2008), tuning the values so

that sample paths expressed a variety of disease dynamics. We used mini-batch

Adam for optimization, where each mini-batch contains 100 datasets, with a

learning rate of 10−4. We used a network with 32 nodes per hidden layer, and

4 hidden layers.

Performance is summarized in Figure 5. We compared to Stan, where

we have attempted to solve this problem using finite differences. Our neural

network approaches the risk of Stan within about 30, 000 simulated datasets,

though this problem is slightly more difficult for us. We evaluated performance

on a held-out test set of 2000 datasets.

To see where our method can improve over Stan in this setting, consider

the same data-generating mechanism, but instead of observing S(t) and I(t)

for all integer values of t, we observe only t ∈ {0, 20, 40, 60, 80, 100}. In the
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3.3 Stochastic SIR Example
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Figure 5: Risk curve for estimation of the posterior median of the basic repro-

duction rate in the stochastic SIR simulation setting. We compare to a solution

produced in Stan, and both methods observe a grid of 101 timepoints. Our

estimator achieves a risk which is about 3% greater than the Stan implemen-

tation.
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3.4 HMM Example

case of our Stan implementation, we can only use finite differences over the

6 observations, since we do not marginalize out the drift and the stochastic

component over a finer, unobserved grid. Since our observed grid is sparse,

this leads to a very poor approximation of the true data generating mechanism.

However, for our RNN, we can simulate over a grid of arbitrary granularity, but

only train on the 6 observed time-points. The results of this can be seen in

Figure 6. We see that, due to the misspecification of Stan, our method has

lower risk after a small number of observed datasets. This is an example of

how stochastic simulation techniques can fail when calculating the likelihood

exactly is computationally intractable.

3.4 HMM Example

We also consider a Hidden Markov Model (HMM) example. In this setting,

we observe a sequence of values, y1, . . . , y100. These values are emissions from

hidden states x1, . . . , x100 which are not observed. There are three possible

states at each xi, {s1, s2, s3}. We selected the following prior and likelihood

for these simulations:
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3.4 HMM Example
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Figure 6: Risk curve for estimation of the posterior median of the basic repro-

duction rate in the stochastic SIR simulation setting. We compare to a solution

produced in Stan, and both methods observe only 6 timepoints. Our estimator

had about a 44% reduction in risk over the Stan implementation.
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3.4 HMM Example

θ ∼ N(0, 1)

Z1, Z2, Z3 ∼ N(θ, 1)

X0 ∼ U({s1, s2, s3})

yi|Xi = sj ∼ N(Zj, 1)

P (Xi+1 = sj|Xi = sk) =
e|zj−zk|∑3
j=1 e

|zj−zk|

So, the hidden states represent unobserved means from which observed

Gaussian random variables are drawn. The transition probability between states

is proportional to the exponentiated ℓ1-distance between those states. Our goal

is to make inference on the posterior distribution of θ, the center of these unob-

served means, θ|y1, . . . , y100. This model is a simplified version of the type of

continuous-emission HMMs used in speech recognition (Ananthi and Dhanalak-

shmi, 2015).

We estimated 90% credible intervals on a held out test set of 2000 se-

quences. We compared to standard importance sampling ABC with Gaussian

kernel weights. As Y is too high-dimensional to be computationally tractable,

we instead used the deciles of the Y sequence as a summary statistic. We

generated 1000 importance samples per observed sequence, and estimated the
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3.5 Order Two Moving Average Example

0.05 and 0.95 posterior quantiles from this sample with a bandwidth of 1.

Results can be seen in Figure 7. In this simulation scenario, it is difficult

to choose sensible summary statistics. The recurrent network had a marginal

coverage of 88.95% and an average interval width of 2.11. ABC with summary

statistics had a marginal coverage of 50.35% and an average interval width of

0.92. The prior quantiles, as a reminder, have an interval width of 3.29 and

marginal coverage of 90%. So, ABC with these summary statistics is more

conservative than the prior, while the RNN leverages the information to provide

narrower intervals. The RNN is ideal in this scenario because of the difficulty

of the problem, and the sequential nature of the observed data.

3.5 Order Two Moving Average Example

Finally, we consider another latent variable model, an order-two moving-average

model. Suppose we observe a sequence X with

Xj ∼ Zj + θ1Zj−1 + θ2Zj−1

where Zj are latent Gaussian random variables. We would like to obtain

a 90% credible interval on θ2. Note that if the Zj follow a non-Gaussian

distribution, the likelihood P (X | θ) is intractable. However here, we can draw
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3.5 Order Two Moving Average Example
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Figure 7: Standardized risk of the estimated 90% credible interval for the center

of unobserved hidden state means.

30

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing) 



3.5 Order Two Moving Average Example

comparisons to the exact posterior distribution.

The likelihood and prior are identical to (Wong et al., 2018). The Zi are

standard Gaussian, and θ1, θ2 are uniform over a specific triangular region such

that they are identifiable.

We compare our method to the semi-automatic ABC procedure described

in (Fearnhead and Prangle, 2011), transforming the input data into the vector

of 1-gap products, XjXj+2. We chose this transformation because the sample

mean of XjXj+2 is a consistent estimator of θ2. Using a polynomial basis

expansion of this transformed X, we then use linear regression to estimate the

posterior mean, and use that estimate as a summary statistic. Fearnhead and

Prangle call the method ”semi-auto ABC“, as although the procedure can be

automatic, the choice of transformation in this problem is not. We also compare

to a method proposed in (Wong et al., 2018). In that work, the authors use

a Deep Neural Network to estimate the posterior mean. Then, they use that

estimate as a summary statistic for ABC. In both settings, we use rejection

sampling to obtain the approximate posterior. The rejection scheme, as well as

the number of samples drawn, were calibrated to have approximately the same

runtime as our RNN method. Methods were tested on a held-out set of 1000

sequences.

Loss results can be seen in 8. As both comparison methods use an estimate
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3.5 Order Two Moving Average Example
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Figure 8: Standardized risk of the estimated 90% credible interval for the second

order coefficient in a moving average model.

of the posterior mean as a summary statistic, it is not surprising that their

performances are poor in the tails. Our method directly targets the 90% credible

interval, and has approximately correct coverage while maintaining relatively

narrow interval widths.
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3.6 Summary of Coverage Results

3.6 Summary of Coverage Results

For all of the simulation settings above, we estimated 90% posterior credible

intervals. A comparison of our coverage results to various other estimators

can be seen in Table 1. Our RNN estimators outperform or have comparable

performance to STAN in every simulation setting. We maintain approximately

correct marginal coverage, while having much narrower intervals than the prior.

4. Discussion

In this manuscript we have proposed a method for using deep recurrent neural

nets to approximate posterior quantiles of a univariate parameter of interest

from a possibly multivariate Bayesian problem. To fit this neural net, it is only

necessary to sample from the prior and likelihood – posterior samples never

need to be drawn, and, so long as we can sample from Pθ,η, the likelihood itself

never needs to be calculated. We propose three types of networks: a simple

network for estimating a single, pre-specificed, conditional quantile; a multi-

task network for estimating a finite set of pre-specified quantiles; and a slightly

more complex network for estimating the entire conditional quantile function.

We show, in increasingly complex settings, that a recurrent neural network can

approximate single posterior quantiles approximately as accurately as specific
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Gaussian
Method Coverage Interval Width Loss
RNN 0.906 0.241 0.0149
Exact Posterior 0.8958 0.233 0.0146
Prior Quantiles 0.903 0.323 0.0203

Mixture of Finite Mixtures
Method Coverage Interval Width Loss
RNN 0.942 0.339 0.019
Stan (BIC) 0.130 0.283 0.377
BayesianMixtures 0.921 0.147 0.009
Prior Quantiles 0.900 1.225 0.079

Stochastic SIR
Method Coverage Interval Width Loss
RNN 0.879 4.12 0.321
Stan 0.878 2.773 0.198
Prior Quantiles 0.900 10.17 0.935

Sparse Stochastic SIR
Method Coverage Interval Width Loss
RNN 0.9105 3.64 0.362
Stan 0.586 2.55 0.926
Prior Quantiles 0.900 10.17 0.935

Hidden Markov Model
Method Coverage Interval Width Loss
RNN 0.890 2.11 0.137
ABC 0.504 0.92 0.260
Prior Quantiles 0.900 3.29 0.203

Order Two Moving Average
Method Coverage Interval Width Loss
Exact Posterior 0.90 0.417 0.029
RNN 0.865 0.527 0.035
Semi-Auto ABC 0.440 0.476 0.135
Post-Mean DNN 0.466 0.400 0.108

Table 1: Coverage of 90% credible intervals using various posterior estimators

in several simulation settings. Estimators exhibiting poor marginal coverage are

highlighted in red.
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state-of-the-art methods that attempt to sample from the posterior directly.

To simplify the exposition, in Section 1, we assumed that the nuisance

parameter, η, belongs to a finite-dimensional space. In fact, we did not make

use of this assumption in this manuscript – we only require that one can sam-

ple parameters from the prior, and subsequently sample data from the corre-

sponding likelihood. Therefore, in nonparametric Bayes problems, where an

infinite-dimensional parameter can be sampled from a prior and the data can

be sampled from the likelihood, the proposed method can be immediately used

to estimate a univariate summary of this infinite-dimensional parameter.

Compared to other generalized tools for posterior approximation, such as

Stan, our method is advantageous in cases where the likelihood is not easily

calculable. In the second stochastic SIR model, the results of which are in

Figure 6, we are able to achieve a lower loss than a natural implementation in

Stan. We reach a lower loss because our Stan implementation must necessarily

misspecify the likelihood in order to get posterior estimates.

It is interesting to draw parallels to the ABC methodology and link the con-

trast to different forms of smoothing methods used in classical nonparametric

problems. Both the ABC methodology and our meta-learning procedure aim

to approximate a quantile using many draws from the prior-likelihood. In ABC,

the function mapping from the observed data to a quantile of the posterior
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distribution is approximated via a local smoother that only uses information

from simulation replicates near the data that was originally observed. This is

analogous to kernel smoothing methods in nonparametric regression settings,

where a regression function estimate at a single predictor value x only relies

on observations with predictors near x – for bounded kernels, a perturbation

of distant observed predictor values has no impact on the regression fit at a

distant point. Our neural network approach, on the other hand, uses all simu-

lated data points to learn a rich neural network approximation to the function

mapping from the observed data to a posterior quantile. This is analogous

to series estimators from nonparametric statistics, where linear models are fit

using a collection of basis functions applied to the observed predictors – here, a

perturbation of distant observed predictor values can have a nontrivial impact

on the regression fit at a given point.

Our proposed method is also quite similar to other Bayesian deep learning

methodologies, such as the exchangeble network proposed in Chan et al. (2018).

However, our networks exhibit good performance in both exchangeable and non-

exchangeable cases. One critical advantage of our recurrent networks is that we

are able to get predictions for sequences or datasets of arbitrary length. This

is not possible with an exchangeble network. However, as noted in Vaswani

et al. (2017), the memory in a recurrent network is a bottleneck in a number of
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contexts. Therefore, as dependence between datapoints which are far apart in

our sequences grows, the size of the memory in our recurrent nodes must grow

as well. The fixed memory size of recurrent nodes could also be beneficial in an

online learning setting, however. As new data are acquired, our RNN estimator

could quickly calculate new posterior estimates without the need for retraining.

Further investigation into the potential applications to online inference should

be conducted.

As with other posterior sampling and approximation methodologies, we an-

ticipate that our method will suffer from the curse of dimensionality. For MCMC

methods, the curse of dimensionality typically occurs when the parameters are

high-dimensional. In contrast, for our method, we do not expect that having a

high-dimensional nuisance parameter η will negatively impact the performance

of our method since we only estimate the posterior of a univariate parameter

θ. However, our method is susceptible to the curse of dimensionality in the

data structure, since the method is implicitly smoothing across possible data

realizations. One approach to try to improve performance of our method in the

presence of high-dimensional data would be to increase the richness of our net-

work. Because we can simulate an unlimited number of prior-likelihood draws

for our stochastic gradient steps, using a very rich network will not lead to over-

fitting, though the optimization scheme may require more draws to converge.
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Therefore, when the data are high-dimensional, we expect that our method will

benefit greatly from the dramatic recent progress in neural network software

that enables users to leverage massive computational power to quickly optimize

deep networks.

5. Appendix

5.1 Feedforward Comparison

As an illustrative example of how an RNN outperforms a Feedforward network

in posterior quantile estimation, we performed simulations which make a direct

comparison. In Figure 9, we show that a feedforward network with an identical

internal structure (same number of hidden nodes per layer and number of layers)

is outperformed by a recurrent counterpart in estimating a 90% credible interval

for the maximum component of a mixture of finite mixtures. Furthermore, the

majority of the cases where our method is best-suited involve series data where

the likelihood is not easily calculable, making the RNN an even more preferable

option.

5.2 Rate of Convergence

According to the Bernstein-von Mises theorem, any posterior quantile should

concentrate around the true parameter at a rate of O(1/
√
n). For the Gaus-

38

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing) 



5.2 Rate of Convergence
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Figure 9: Standardized risk of a feedforward neural network vs. a recurrent

neural network. Targets of estimation are the 0.05 and 0.95 posterior quantiles

of the maximum component in a mixture of finite mixtures with a prior on the

number of components. Both networks have 3 hidden layers and 10 nodes per

hidden layer.
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5.3 Distribution Function Analysis

sian conjugate prior simulation setting, we trained several networks with varying

sample sizes to predict the 0.05 quantile. Averaging the distance from these

estimates to the true values over a large test set give us the approximate con-

vergence rate. In Figure 10, we see a log-log plot of the 0.05 quantile distance

from the true value vs. sample size. The slope of the imposed line of best fit is

−0.48. Therefore, we see that the 0.05 quantile concentrates around the true

parameter at approximately a rate of O(1/
√
n), though we admit this relation-

ship is not perfectly linear. While ideally we would also show this convergence

in more complicated simulation settings, doing so requires training a separate

neural network for each value of n, which is computationally expensive for more

complex examples. Note also that as n increases, the optimal architecture and

training regime changes. However, all of the networks use to produce this con-

vergence plot were identical in their architecture and training regimen. This is

one reason why the convergence rate is not exact.

5.3 Distribution Function Analysis

In the continuous estimation setting, where the quantile to be estimated is an

imput to the RNN, it is possible to obtain an estimate for the entire distribu-

tion function by inputting a grid of quantiles. In the Gaussian conjugate prior

scenario, it is also possible to compare this estimated distribution function with
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5.3 Distribution Function Analysis
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Figure 10: Log( Mean absolute difference ) between estimated 0.05 quantile

and true value. The line of best fit is superimposed.
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5.3 Distribution Function Analysis

Figure 11: True posterior distribution functions vs. RNN estimated distribution

function. Horizontal lines represent the 0.05 and 0.95 quantiles.

the true posterior distribution, since it has closed-form. One example of this

can be seen in Figure 11. While the distribution function is easier to estimate

than the density function, one could imagine binning predicted quantile values

to achieve a density estimate.
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5.4 Conditional Coverage Analysis

5.4 Conditional Coverage Analysis

Risk is not an ideal measure of performance, but it is the best option in some

cases. Other measures worth considering, such as marginal coverage and in-

terval width, are reported in Table 1. However, conditional coverage is still

of interest. In the Gaussian conjugate prior setting, where we have direct ac-

cess to the posterior distribution, we can stratify by the sufficient statistic, the

sample mean, to obtain a measure of conditional coverage, seen in Figure 12.

We see that, apart from extreme values of the sufficient statistic, we obtain

approximately correct conditional coverage as well.

5.5 Permutation Invariance

In the first two simulation settings presented, the posterior distribution of our

parameter of interest is invariant to permutations of the input data. In the

first of these examples, the Gaussian conjugate prior scenario, we analyzed the

performance of our model by averaging predictions from permutations of the

input data. Two examples of this can be seen in Figure 13.

Another potential solution to exchangeability is sorting the input data.

When we tested coverage in Table 1, we sorted the input data for the Mixture

of Finite Mixture example, which improved performance. In this specific set-
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5.5 Permutation Invariance
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Figure 12: Conditional coverage of RNN posterior quantile estimates, stratified

by sample mean. Dotted lines represent values in the lowest or highest 1% of

our test set.

44

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing) 



5.5 Permutation Invariance

Figure 13: Boxplot of predicted values under permutation with superimposed

true posterior value for two example datasets.

ting, because we are interested in the posterior distribution of the maximum

component, sorting is an intuitive solution.
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Deep Learning for Bayesian Posterior Inference
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