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Abstract:

We consider a change-point test based on the Hill estimator to test for structural

changes in the tail index of Long Memory Stochastic Volatility time series. In

order to determine the asymptotic distribution of the corresponding test statistic,

we prove a uniform reduction principle for the tail empirical process in a two-

parameter Skorohod space. It is shown that such a process displays a dichotomous

behavior according to an interplay between the Hurst parameter, i.e., a parameter

characterizing the dependence in the data, and the tail index. Our theoretical

results are accompanied by simulation studies and the analysis of financial time

series with regard to structural changes in the tail index.

Key words and phrases: stochastic volatility; long-range dependence; change-

point tests; tail empirical process; heavy tails; chaining
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1. Introduction and motivation The tail behavior of the marginal

distribution of time series is of major relevance for statistics in applied sci-

ences such as econometrics and hydrology, where heavy-tailed data occur

frequently. More precisely, time series from finance such as the log returns

of exchange rates and stock market indices display heavy tails; see Man-

delbrot (1963). Furthermore, drastic events like the financial crisis in 2008

substantiate the importance of studying time series models that underlie

financial data. Against this background, the identification of changes in

the tail behavior of data-generating stochastic processes, that result in an

increase or decrease in the probability of extreme events, is of utmost in-

terest. In particular, the analysis of the tail behavior of financial data may

pave the way for a corresponding adjustment of risk management for capi-

tal investments and, therefore, prevent huge capital losses. Indeed, there is

empirical evidence that the tail behavior of financial time series may change

over time: Quintos et al. (2001) identify changes in the tail of Asian stock

market indices, Galbraith and Zernov (2004) find evidence for changes in

the tail behavior of returns on U.S. equities, and Werner and Upper (2004)

detect structural breaks in high-frequency data of Bund future returns.
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1.1 Tail index estimation and change-point problem3

1.1 Tail index estimation and change-point problem

Let Xj, j ∈ N, be a stationary time series whose marginal tail distribution

function F̄ is regularly varying with index −α, α > 0, i.e., P (X > x) =

x−αL(x), where L is slowly varying at infinity. We recall that a mea-

surable real-valued function is slowly varying at infinity if for all t > 0,

limx→∞ L(tx)/L(x) = 1. Typical examples for L include constant functions

or (iterated) logarithms. Since the tail behavior of Xj, j ∈ N, is primarily

determined by the value of the tail index α, identifying a change in the tail

of data-generating processes corresponds to testing for a change-point in

this parameter.

In particular, this means that, given a set of observations X1, . . . , Xn

with P (Xj > x) = x−αjL(x), j = 1, . . . , n, we aim at deciding on the testing

problem (H,A) with

H : α1 = · · · = αn

and

A : α1 = · · · = αk 6= αk+1 = · · · = αn

for some k ∈ {1, . . . , n− 1} .

Test statistics that are designed for identifying structural changes in the

tail index are naturally derived from an estimation of the tail index α. For
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1.1 Tail index estimation and change-point problem4

some general results on tail index estimation see Drees (1998a) and Drees

(1998b). In this article, we focus on two estimators that are motivated by

the fact that for a random variable X with tail index α

lim
u→∞

E
[
log

(
X

u

)
| X > u

]
= lim

u→∞

E
[
log
(
X
u

)
1 {X > u}

]
P (X > u)

=
1

α
=·· γ.

When we are given a set of observations X1, . . . , Xn, an approximation of

the unknown distribution of X by its empirical analogue gives the following

estimator for the tail index:

γ̂ ··=
1∑n

j=1 1 {Xj > un}

n∑
j=1

log

(
Xj

un

)
1 {Xj > un} , (1.1)

where un, n ∈ N, is a sequence with un →∞ and nF̄ (un)→∞. Replacing

the deterministic levels un in the formula for γ̂ by Xn:n−kn for some kn,

1 6 kn 6 n − 1 such that kn → ∞, kn/n → 0, where Xn:n > Xn:n−1 >

. . . > Xn:1 are the order statistics of the sample X1, . . . , Xn, yields the Hill

estimator

γ̂Hill =
1

kn

kn∑
i=1

log

(
Xn:n−i+1

Xn:n−kn

)
.

As the most popular estimator for the tail index, established in Hill (1975),

the Hill estimator has been widely studied in the literature. Its limiting dis-

tribution was obtained under various model assumptions, including linear

processes (Resnick and Stărică (1997)), β-mixing processes (Drees (2000)),

and Long Memory Stochastic Volatility models (Kulik and Soulier (2011)).
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1.1 Tail index estimation and change-point problem5

The first article that establishes a theory for change-point tests that are

based on the Hill estimator seems to be Quintos et al. (2001). While Quin-

tos et al. (2001) consider independent, identically distributed observations,

ARCH- and GARCH-type processes, Kim and Lee (2011) and Kim and

Lee (2012) extend their results to β-mixing processes and residual-based

change-point tests for AR(p) processes with heavy-tailed innovations. In

contrast, we study change-point tests for the tail index of Long Memory

Stochastic Volatility time series based on the two estimators γ̂ and γ̂Hill.

In fact, our results are the first to consider the change-point problem for

stochastic volatility models and time series with long-range dependence.

To motivate the design of test statistics for deciding on the change-point

problem (H,A), we temporarily assume that the change-point location is

known, i.e., for a given k ∈ {1, . . . , n− 1} we consider the testing problem

(H,Ak) with

Ak : α1 = · · · = αk 6= αk+1 = · · · = αn.

For this testing problem, change-point tests have been considered in Phillips

et al. (1990) and Koedijk et al. (1990). In order to decide on (H,Ak),

we compare an estimator γ̂k of the tail index based on the observations

X1, . . . , Xk to an estimator γ̂n of the tail index based on the whole sample
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X1, . . . , Xn. This idea leads to studying the following test statistic

Γk,n =
k

n

∣∣∣∣ γ̂kγ̂n − 1

∣∣∣∣ .
Under the assumption that the change-point location is unknown under

the alternative, it seems natural to consider the statistic Γk,n for every

potential change-point location k and to decide in favor of the alternative

hypothesis A if the maximum of its values exceeds a predefined threshold.

As a result, a change-point test for the testing problem (H,A) that rests

upon the estimator γ̂ defined by (1.1) bases test decisions on the values of

the statistic

Γn ··= sup
t∈[t0,1]

t

∣∣∣∣ γ̂bntcγ̂n
− 1

∣∣∣∣ (1.2)

with t0 ∈ (0, 1) and with the sequential version of γ̂ defined by

γ̂bntc ··=
1∑bntc

j=1 1{Xj > un}

bntc∑
j=1

log

(
Xj

un

)
1{Xj > un}. (1.3)

Likewise, a test statistic based on the Hill estimator is given by

Γ̃n ··= sup
t∈[t0,1]

t

∣∣∣∣ γ̂Hill(t)

γ̂Hill(1)
− 1

∣∣∣∣
with the sequential version of γ̂Hill defined by

γ̂Hill(t) ··=
1

bkntc

bkntc∑
i=1

log

(
Xbntc:bntc−i+1

Xbntc:bntc−kbntc

)
.
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In this context, the most comprehensive theory for change-point tests

is presented in Hoga (2017). The author considers a number of test statis-

tics based on different tail index estimators and derives their asymptotic

distributions under the assumption of β-mixing data generating processes.

In the following, we derive the asymptotic distribution of both estima-

tors, i.e., γ̂bntc and γ̂Hill(t), and the corresponding tests statistics, i.e., Γn and

Γ̃n, under the hypothesis of stationary time series data. For this purpose,

we first prove a limit theorem for the tail empirical process of Long Mem-

ory Stochastic Volatility time series in two parameters. This limit theorem

does not necessarily relate to the change-point context. It can therefore be

considered of independent interest and, thus, as the main theoretical result

of our work. Our theoretical results are accompanied by simulation studies.

As an empirical application of our tests, we consider Standard & Poor’s

500 daily closing index covering the period from January 2008 to December

2008, the year of the financial crisis. We identify a change in the data at

exactly one day after Lehman Brothers filed for bankruptcy protection, an

event which is thought to have played a major role in the unfolding of the

crisis in 2007 — 2008.
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1.2 Tail empirical process

In order to derive the limit distribution of the tail estimators γ̂bntc and

γ̂Hill(t), parametrized in t, and the corresponding test statistics Γn and Γ̃n,

it is crucial to note that

γ̂bntc =
1∑bntc

j=1 1{Xj > un}

bntc∑
j=1

log

(
Xj

un

)
1{Xj > un}

=
1

T̃n(1, t)

∫ ∞
1

s−1T̃n(s, t)ds , (1.4)

where

T̃n(s, t) =
1

nF̄ (un)

bntc∑
j=1

1 {Xj > uns} .

As a result, asymptotics of the considered statistics can be derived from a

limit theorem for the two-parameter tail empirical process

en(s, t) ··=
{
T̃n(s, t)− T (s, t)

}
, s ∈ [1,∞], t ∈ [0, 1], (1.5)

where T (s, t) does not correspond to the mean of T̃n(s, t), but rather to the

limit of that mean, i.e., to

T (s, t) ··= ts−α. (1.6)

Among others, the tail empirical process in one parameter, i.e., en(s, 1),

s ∈ [1,∞], has previously been studied in Mason (1988), Einmahl (1990),

and Einmahl (1992) for independent, identically distributed observations,
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in Rootzén (2009) for absolutely regular processes, and in Kulik and Soulier

(2011) for Long Memory Stochastic Volatility time series. For the latter, the

convergence of the two-parameter tail empirical process will be discussed in

Section 2.2.

1.3 Long Memory Stochastic Volatility model

A phenomenon that is often encountered in the context of financial time

series corresponds to the fact that the observations seem to be uncorre-

lated, whereas their absolute values or higher moments tend to be highly

correlated. Another characteristic of financial time series is the occurrence

of heavy tails. In particular, the distribution of the considered data often

exhibits tails that are heavier than those of a normal distribution. The

previously described features of financial data can be covered by stochastic

volatility models.

Stochastic volatility model

The Long Memory Stochastic Volatility model that is taken as a basis of

the theoretical results established in this article can be considered as a

generalization of stochastic volatility models considered, for example, in

Taylor (1986). Initially, this model had been introduced by Breidt et al.
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(1998) and, independently, by Harvey (2002). An overview of stochastic

volatility models with long-range dependence and their basic properties is

given in Deo et al. (2006) and in Hurvich and Soulier (2009).

Stochastic volatility time series Xj, j ∈ N, are typically defined via

Xj = Zjεj with Zj = exp

(
1

2
Yj

)
, (1.7)

where εj, j ∈ N, is a sequence of independent, identically distributed ran-

dom variables with mean 0, and Yj, j ∈ N, is a Gaussian process, indepen-

dent of εj, j ∈ N.

While these models are often restricted to modeling a relatively fast

decay of dependence in Yj, j ∈ N, the so-called Long Memory Stochastic

Volatility model allows for long-range dependence. In what follows, we will

specify a corresponding dependence structure for Yj, j ∈ N.

Transformed Gaussian processes

The rate of decay of the autocovariance function is crucial to the definition

of long-range dependence in time series.

Definition 1. A (second-order) stationary, real-valued time series Yj, j ∈

Z, is called long-range dependent if its autocovariance function γ satisfies

γY (k) ··= Cov (Y1, Yk+1) ∼ k−DLγ(k), as k →∞,
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with D ∈ (0, 1) for a slowly varying function Lγ. We refer to D as long-

range dependence (LRD) parameter; see Pipiras and Taqqu (2017), p. 17.

The transformed random variables Zj = G (Yj), j ∈ N, can be consid-

ered as elements of the Hilbert space L2 ··= L2 (R, ϕ(x)dx), i.e., the space

of all measurable, real-valued functions which are square-integrable with

respect to the measure ϕ(x)dx associated with the standard normal density

function ϕ, equipped with the inner product

〈G1, G2〉L2 ··=
∫ ∞
−∞

G1(x)G2(x)ϕ(x)dx = E [G1(Y )G2(Y )] ,

where G1, G2 ∈ L2(R, ϕ(x)dx) and Y denotes a standard normally dis-

tributed random variable. In order to characterize the dependence structure

of transformed Gaussian processes, we consider their expansion in Hermite

polynomials.

Definition 2. For n > 0, the Hermite polynomial of order n is defined by

Hn(x) = (−1)ne
1
2
x2 d

n

dxn
e−

1
2
x2 , x ∈ R.

The sequence of Hermite polynomials constitutes an orthogonal basis of

L2. As a result, every G ∈ L2(R, ϕ(x)dx) has an expansion in Hermite poly-

nomials , i.e., for G ∈ L2(R, ϕ(x)dx) and Y standard normally distributed,

Statistica Sinica: Newly accepted Paper  
(accepted author-version subject to English editing)



1.3 Long Memory Stochastic Volatility model12

we have

G(Y )
L2

=
∞∑
r=0

Jr(G)

r!
Hr(Y ), (1.8)

where ‖ · ‖L2 denotes the norm induced by the inner product 〈·, ·〉L2 .

Under the assumption that, as k tends to∞, γY (k) converges to 0 with

a certain rate, the asymptotically dominating term in the series (1.8) is the

summand corresponding to the smallest integer r for which the Hermite

coefficient Jr(G) is non-zero. This index, which decisively depends on G, is

called Hermite rank.

Definition 3. Let G ∈ L2(R, ϕ(x)dx), E [G(Y )] = 0 for standard normally

distributed Y and let Jr(G), r > 1, be the Hermite coefficients in the

Hermite expansion of G. The smallest index k > 1 for which Jk(G) 6= 0 is

called the Hermite rank of G, i.e.,

r ··= min {k > 1 : Jk(G) 6= 0} .

Given the previous definitions, we specify model assumptions that are

taken as a basis for the results in the following sections.

Definition 4. Let the data generating process Xj, j ∈ N, satisfy

Xj = Zjεj, j ∈ N,
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where εj, j ∈ N, is a sequence of independent, identically distributed ran-

dom variables with mean 0, and Zj, j ∈ N, is a long-range dependent

transformed Gaussian process with Zj = σ(Yj), j ∈ N, for some stationary,

long-range dependent Gaussian process Yj, j ∈ N, with LRD parameter D

and a positive function σ. More precisely, assume that Yj, j ∈ N, admits

a linear representation with respect to an independent, standard normally

distributed sequence ηk, k ∈ Z, i.e.,

Yj =
∞∑
k=1

ckηj−k, j ∈ N,

with
∑∞

k=1 c
2
k = 1. Furthermore, suppose that (εj, ηj), j ∈ Z, is a sequence

of independent, identically distributed random vectors. A sequence of ran-

dom variables Xj, j ∈ N, which satisfies the previous assumption is called

a Long Memory Stochastic Volatility (LMSV) time series.

Remark 1. The model assumptions generalize the preceding concepts of

stochastic volatility models with long-range dependence by allowing for gen-

eral transformed Gaussian sequences Zj, j ∈ N, and dependence between

the sequences {Yj, j ∈ N}, and {εj, j ∈ N}. Instead of claiming mutual

independence of Yj, j ∈ N, and εj, j ∈ N, the sequence of random vectors

(ηj, εj) is assumed to be independent. In particular, this implies that for

a fixed index j, the random variables Yj and εj are independent, while Yj
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may depend on εi, i < j. In many cases, an LMSV model incorporating

this dependence structure is referred to as LMSV with leverage, as it allows

for so-called leverage effects in financial time series. Not taking account of

leverage, Definition 4 corresponds to the LMSV model considered in Kulik

and Soulier (2011), while a similar model with leverage is considered in

Bilayi-Biakana et al. (2019).

It can be shown that random variables Xj, j ∈ N, satisfying Definition

4 are uncorrelated, while their squares inherit the dependence structure

from the transformed Gaussian sequence Z2
j , j ∈ N. Moreover, Xj, j ∈ N,

inherits the tail behavior from the sequence εj, j ∈ N, if the marginal

distribution of the random variables εj, j ∈ N, has a regularly varying

right tail, i.e., F ε(x) ··= P (ε1 > x) = x−αL(x) for some α > 0 and a slowly

varying function L, and if E
[
σα+δ(Y1)

]
<∞ for some δ > 0. More precisely,

under these assumptions the following asymptotic equivalence holds:

P (X1 > x) ∼ E [σα(Y1)]P (ε1 > x) , as x→∞.

This result is known as Breiman’s Lemma; see Breiman (1965). On this

account, it follows that Definition 4 is suited for modeling the previously

described characteristic features of financial time series. In all following

sections, we will therefore assume that the data-generating process Xj,

j ∈ N, corresponds to a LMSV time series specified by Definition 4.
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1.4 Organisation of the paper

Equipped with the introductory remarks and definitions, we are in a po-

sition to discuss the structure of the paper. In Section 2 we state the

technical assumptions that are needed for our theoretical results. These

are followed by the main theorem on convergence of the two-parameter

tail empirical process (Theorem 3). Convergence of estimators of the tail

index (Corollary 1 ) and the test statistics (Corollary 2) are immediate con-

sequences. Simulation studies are presented in Section 3, while real-data

analysis can be found in Section 4. All the proofs are included in the supple-

mentary document. In order to establish convergence of the two-parameter

tail empirical process, we decompose it into a martingale and a long-range

dependent part. The latter is dealt with in the supplementary document.

For the former, we establish finite dimensional convergence using classical

tools from martingale theory, while tightness of the two-parameter mar-

tingale part is handled by chaining. This is a theoretical novelty in the

present context since the methods used in related papers are not suitable

(the method used in Kulik and Soulier (2011) cannot be applied to mod-

els with leverage, while the approach in Bilayi-Biakana et al. (2019) is not

well-suited for two-parameter processes).
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2. Main results

2.1 Assumptions

In this section, we establish the assumptions guaranteeing convergence of

the two-parameter tail empirical process for LMSV time series. Initially,

we specify the LMSV model yielding the main assumptions for the theory:

Assumption 1 (Main Assumptions). Let Xj = Zjεj, j ∈ N, satisfy Def-

inition 4 with Zj = σ(Yj), j ∈ N, for some stationary, long-range depen-

dent Gaussian process Yj, j ∈ N, with autocovariance function γY (k) ··=

Cov (Y1, Yk+1) ∼ k−DLγ(k), as k → ∞, D ∈ (0, 1), and some independent,

identically distributed sequence εj, j ∈ N, with regularly varying right tail,

i.e., F ε(x) ··= P (ε1 > x) = x−αL(x) for some α > 0 and a slowly varying

function L. Moreover, let r denote the Hermite rank of Ψ(y) ··= σα(y) and

assume that r < 1/D.

We note that for a very strong dependence (D close to 0) a large range

of the Hermite ranks is allowed. For D close to 1 only rank 1 is allowed.

In the following, we list some technical conditions that characterize the

behavior of the slowly varying function L and the moments of σ (Y1). For

this, we introduce another condition on the distribution function Fε. This

definition stems from Drees (1998c).
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Definition 5 (Second order regular variation). Let F ε(x) = x−αL(x) for

some α > 0 and some slowly varying function L that is represented by

L(x) = c exp

(∫ x

1

η(u)

u
du

)

for some constant c and a measurable function η. Furthermore, we assume

that there exists a bounded, decreasing function η∗ on [0,∞), regularly

varying at infinity with parameter ρ > 0, i.e., η∗(x) = x−ρLη∗(x), such that

|η(s)| 6 Cη∗(s),

for some constant C and for all s > 0. We say that F ε is second order

regularly varying with tail index α and rate function η∗ and we write F ε ∈

2RV(α, η∗).

Second-order regular variation allows to control the difference between

F ε and the function u 7→ u−α; see Lemma 1 and 2 in the supplementary

file. Moreover, the specific form of L guarantees continuity of F ε.

Assumption 2 (Technical Assumptions). Suppose the main assumptions

hold. Additionally, we assume that

(TA.1) F ε ∈ 2RV (α, η∗) and η is regularly varying with index ρ;

(TA.2) un → ∞, nF (un) → ∞, η∗(un) = o

(
dn,r
n

+ 1√
nF (un)

)
, where dn,r is
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defined by

d2n,r = Var

(
n∑
j=1

Hr(Yj)

)
∼ crn

2−rDLrγ(n), cr =
2r!

(1−Dr)(2−Dr)
;

(2.9)

(TA.3) E
[
σα+max{ρ,α}+ϑ (Y1)

]
<∞ for some ϑ > 0;

(TA.4) E
[
(σ (Y1))

−1] <∞.

Remark 2. Assumption (TA.2) handles the bias which is created by cen-

tering the tail empirical process not by its mean, but rather by the limit of

that mean.

Example 1. The most commonly used second order assumption is that

L(x) = c exp

(∫ x

1

η(u)

u
du

)

with η(s) = s−αβ for some β > 0. It then holds that F ε(s) = C
(
s−α +O(s−(α(β+1)))

)
,

for s→∞, for some constant c > 0. Furthermore, we have

sup
s>1

∣∣∣∣F ε(uns)

F ε(un)
− s−α

∣∣∣∣ = O(u−αβn ).

In this case, (TA.2) can be replaced by the assumption u−αβn = o

(
dn,r
n

+ 1√
nF (un)

)
.
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2.2 Convergence of the tail empirical process

Recall that the tail empirical process in two parameters is defined by

en(s, t) ··=
1

nF̄ (un)

bntc∑
j=1

1 {Xj > uns} − ts−α, s ∈ [1,∞], t ∈ [0, 1].

The following theorem establishes a characterization of its limit. In

order to state this, we recall that a Hermite-Rosenblatt process of order r

with a self-similarity parameter H is a stochastic process Zr,H(t) defined

for all t > 0 by a multiple Wiener-Ito integral with respect to a standard

Brownian motion:

Zr,H(t) = ω(r,H)

∫ ∞
−∞

∫ x1

−∞
· · ·
∫ xr−1

−∞

(∫ t

0

r∏
j=1

(s− xi)
H− 3

2
+ ds

)
dB(xm) · · · dB(x1),

where x+ := max(0, x) and ω(r,H) > 0 satisfies

ω2(r,H) =
r!(2r(H − 1) + 1)(r(H − 1) + 1)(∫∞

0
[x(x+ 1)]H−

3
2dx
)r ·;

see Beran (2013), Section 3.7. In our case, H = 1 − rD
2

and hence the

restriction r < 1/D gives H > 1/2. We recall that the standard Brownian

motion has self-similarity parameter H = 1/2. Thus, H > 1/2 indeed

indicates a presence of long memory.

Theorem 3. Let Xj, j ∈ N, be a stationary time series with marginal tail

distribution function F̄ . Moreover, assume that Assumptions 1 and 2 hold.
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2.2 Convergence of the tail empirical process20

1. If n
dn,r

= o

(√
nF (un)

)
, then as n→∞,

n

dn,r
en(s, t)⇒ s−α

E [σα(Y1)]

Jr(Ψ)

r!
Zr,H(t), (2.10)

where Ψ(y) = σα(y), r is the Hermite rank of Ψ, Zr,H is an r-th order

Hermite process, H = 1− rD
2

, and d2n,r is defined in (2.9).

2. If
√
nF (un) = o

(
n
dn,r

)
, then as n→∞,

√
nF (un)en(s, t)⇒ W (s−α, t), (2.11)

where W denotes a standard Brownian sheet.

The convergence holds in a two-parameter Skorohod space, i.e., ⇒ denotes

weak convergence in D ([1,∞]× [0, 1]).

The dichotomy of the limiting process is explained by the decomposi-

tion of the tail empirical process into the sum of a martingale and a partial

sum of long-range dependent random variables, which can be viewed as a

special case of Doob’s decomposition; see the supplementary document. If

n
dn,r

= o

(√
nF (un)

)
, the martingale part in the decomposition becomes

negligible, such that the limiting process arises from the convergence of the

long-range dependent part. If
√
nF (un) = o

(
n
dn,r

)
, the long-range depen-

dent part in the decomposition becomes negligible, such that the limiting
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2.2 Convergence of the tail empirical process21

process arises from the convergence of the martingale part. The same de-

composition has already been employed in Kulik and Soulier (2011), Betken

and Kulik (2019), and Bilayi-Biakana et al. (2019).

The assumption
√
nF (un) = o

(
n
dn,r

)
yields the ”standard” conver-

gence (2.11), which in turn will imply the ”standard” convergence for the

change-point statistics studied below. This is important from an applica-

tion point of view. Indeed, the quantiles of (functionals of) the limiting

process in (2.11) are rather easy to simulate under the null hypothesis of

no change. Furthermore, under this limiting regime, a validity of the i.i.d.

bootstrap can be conjectured. On the other hand, the limiting process in

(2.10) is much harder to simulate. Indeed, first, one has to know the Her-

mite rank and the α-th moment of the unobservable process Yj. Next, even

if we know this, simulation of the Hermite-Rosenblatt process is not an easy

task. As such, it is important from a statistical point of view to be able, if

possible, to work under the regime that guarantees the validity of (2.11).

This is in fact the way we approach simulation studies.

Ignoring the slowly varying components,
√
nF (un) = o

(
n
dn,r

)
means

that n3/2−rD = o(u
α/2
n ). For a given long memory parameter D and the

Hermite rank r, this induces restrictions on the thresholds un for the ”stan-

dard” convergence (2.11) to hold. The stronger the memory is (that is, the
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smaller D is), the larger the threshold needed is. Intuitively, under strong

dependence, we can use only very extreme observations in order to remove

the effect of long memory.

Furthermore, if the rates n
dn,r

and
√
nF (un) are asymptotically equiv-

alent (up to a constant), it can be conjectured that a limiting process is

a linear combination of (uncorrelated, but not independent) limiting pro-

cesses that appear on the right-hand side of both (2.10)-(2.11).

2.3 Convergence of the tail estimators

Recall that the considered tail index estimators of γ = 1/α are defined by

γ̂bntc ··=
1∑bntc

j=1 1{Xj > un}

bntc∑
j=1

log

(
Xj

un

)
1{Xj > un}

and

γ̂Hill(t) ··=
1

bkntc

bkntc∑
i=1

log

(
Xbntc:bntc−i+1

Xbntc:bntc−kbntc

)
,

where kn and un are related by kn = bnF (un)c, so that kn → ∞ and

kn/n→ 0.

Based on Theorem 3 the limiting distributions of γ̂bntc and γ̂Hill(t) can

be established in D[t0, 1] for any t0 ∈ (0, 1).

Corollary 1. Let Xj, j ∈ N, be a stationary time series with marginal tail

distribution function F̄ . Moreover, assume that Assumptions 1 and 2 hold.
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1. If n
dn,r

= o

(√
nF (un)

)
, then as n→∞,

n

dn,r
t
(
γ̂bntc − γ

)
⇒ 0 ,

n

dn,r
t (γ̂Hill(t)− γ)⇒ 0

in D[t0, 1] for all t0 ∈ (0, 1).

2. If
√
nF (un) = o

(
n
dn,r

)
, then as n→∞,

√
nF (un)t

(
γ̂bntc − γ

)
⇒
∫ ∞
1

s−1W
(
s−α, t

)
ds− α−1W (1, t) (2.12)

√
knt (γ̂Hill(t)− γ)⇒

∫ ∞
1

s−1W
(
s−α, t

)
ds− α−1W (1, t) (2.13)

in D[t0, 1] for all t0 ∈ (0, 1).

Remark 3. 1. The zero limit in the first part of Corollary 1 stems from

a degenerate nature of the limiting process in (2.10). Indeed, the

limiting process is random in t and deterministic in s.

2. Following Kulik and Soulier (2011), we conjecture that the proper

scaling in the first case is an =
√
nF (un), as well, yielding the same

limit as in the second case. However, within the scope of this article,

we will not consider the corresponding argument in detail.

3. The limit in (2.12) and (2.13) corresponds to γB(t), t ∈ [0, 1], where

B is a standard Brownian motion.
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2.4 Asymptotic distribution of the test statistics

Recall that the considered test statistics for the change-point problem (H,A)

are defined by

Γn ··= sup
t∈[t0,1]

t

∣∣∣∣ γ̂bntcγ̂n
− 1

∣∣∣∣ and Γ̃n ··= sup
t∈[t0,1]

t

∣∣∣∣ γ̂Hill(t)

γ̂Hill(1)
− 1

∣∣∣∣ .
Using the convergence obtained in Corollary 1 we derive the asymptotic

distribution of the test statistics.

Corollary 2. Let Xj, j ∈ N, be a stationary time series with marginal tail

distribution function F̄ . Moreover, assume that Assumptions 1 and 2 hold.

If
√
nF (un) = o

(
n
dn,r

)
, then, for all t0 ∈ (0, 1), as n→∞,

√
nF (un) sup

t∈[t0,1]
t

∣∣∣∣ γ̂bntcγ̂n
− 1

∣∣∣∣⇒ sup
t∈[t0,1]

|B(t)− tB(1)| ,

√
kn sup

t∈[t0,1]
t

∣∣∣∣ γ̂Hill(t)

γ̂Hill(1)
− 1

∣∣∣∣⇒ sup
t∈[t0,1]

|B(t)− tB(1)| ,

where B(t), t ∈ [0, 1], denotes a standard Brownian motion.

3. Simulations

For all simulations, the following specifications are made:

Xj = σ(Yj)εj, j > 1 , (3.14)

where
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• εj, j > 1, is an independent, identically distributed sequence of

Pareto distributed random variables generated by the function rgpd

(fExtremes package in R);

• Yj, j > 1, is a fractional Gaussian noise sequence generated by the

function simFGN0 (longmemo package in R) with Hurst parameter H;

• σ(y) = exp(y).

Under the alternative, we insert a change of height h at location k =

bnτc by simulating independent, identically Pareto distributed observations

εj, j > 1, with εj, j = 1, . . . , k, having tail index α1 = . . . = αk = α and εj,

j = k + 1, . . . , n, having tail index αk+1 = . . . = αn = α + h. According to

Breiman’s lemma this induces a change in the tail index of the observations

X1, . . . , Xn.

We base test decisions on the statistic Γ̃n ··= max
16k6n−1

Γk,n, where

Γ̃k,n =
k

n

∣∣∣∣∣ γ̂Hill

(
k
n

)
γ̂Hill(1)

− 1

∣∣∣∣∣ with γ̂Hill (t) =
1

bkntc

bkntc∑
i=1

log

(
Xbntc:bntc−i+1

Xbntc:bntc−bkntc

)
,

(3.15)

and we choose a significance level of 5%.

For the computation of the test statistic, the choice of kn is consid-

ered a delicate issue. In fact, it has been shown in Hall (1982) that the
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optimal choice of kn depends on the tail behavior of the data-generating

process. Due to this circularity, DuMouchel (1983) suggests to choose kn

proportional to the sample size. As noted in Quintos et al. (2001), a cor-

responding choice of kn has been shown to perform well in simulations and

is widely used by practitioners. Hence, we choose kn as p percent of the

sample size n, where p = 10% or p = 20%. This is a standard choice in the

context of high quantile estimation.

The power of the testing procedures is analyzed by considering different

choices for the height of the level shift, denoted by h, and the location of the

change-point, denoted by τ . In the tables, the columns that are superscribed

by h = 0 correspond to the frequency of a type 1 error, i.e., the rejection

rate under the hypothesis.

Both Hurst parameter and tail index, seem to have a significant effect

on the rejection rates of the change-point test. An increase in dependence,

i.e., an increase of the Hurst parameter H, leads to an increase in the

number of rejections. On the one hand, this leads to an increase of power,

on the other hand, it results in a larger deviation of the empirical size

from the significance level. An increase of tail thickness, i.e., a decrease

of the tail parameter α, however, results in an improvement of the test’s

performance in that the empirical power increases while the empirical size
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draws closer to the level of significance. Indeed, if the tail is thicker, you

have more observations that are informative about the tail, such that tail

changes become easier to detect. Moreover, the empirical power of the test

is higher for changes to heavier tails, i.e., the test tends to detect changes

with a negative change-point height h better.

Considering small values of H and α, i.e., for heavy-tailed time series

with unincisive long-range dependence, the simulation results concur with

the expected behavior of change-point tests: An increasing sample size goes

along with an improvement of the finite sample performance, i.e., the em-

pirical size approaches the level of significance and the empirical power

increases; the empirical power of the testing procedures increases when the

height of the level shift increases; and the empirical power is higher for

breakpoints located in the middle of the sample than for change-point loca-

tions that lie close to the boundary of the testing region. A comparison of

the rejection rates in Table 1 and 3 reveals that an increase of tail thickness

is better detected in the presence of late changes, i.e., when τ = 0.75, than

in the presence of early changes, i.e., when τ = 0.25.
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α = 4 α = 3 α = 2

p n h = −1 h = −0.5 h = 0 h = 0.5 h = 1 h = −1 h = −0.5 h = 0 h = 0.5 h = 1 h = −1 h = −0.5 h = 0 h = 0.5 h = 1

H
=

0
.6

0.1 300 10.1 9.4 9.2 8.9 8.8 11.8 9.2 9.1 9.0 8.8 14.5 10.5 9.7 9.9 9.2

500 8.8 7.5 7.6 7.0 7.1 9.9 8.3 8.1 7.3 6.9 20.3 10.5 7.8 7.2 7.5

1000 6.8 6.6 6.2 5.6 5.3 9.4 6.7 5.7 6.1 5.2 37.3 10.6 6.2 6.1 7.5

0.2 300 7.0 6.5 6.7 6.1 7.1 7.5 7.6 7.3 6.4 6.9 15.6 8.9 7.2 7.4 7.3

500 6.9 5.9 5.5 5.8 5.7 7.4 6.0 5.5 5.8 5.8 26.2 8.4 6.0 6.2 7.0

1000 4.8 4.7 4.8 4.6 4.9 7.7 5.1 4.2 4.6 4.6 52.1 9.6 4.7 5.5 7.2

H
=

0
.7

0.1 300 11.4 11.3 10.5 10.2 11.3 12.2 12.1 10.6 9.8 10.5 16.8 12.5 11.4 10.2 10.4

500 10.4 9.7 9.7 9.2 9.2 12.5 10.3 9.3 8.8 9.1 20.6 11.0 9.6 9.6 9.1

1000 9.5 7.9 7.8 7.4 7.6 11.6 8.2 8.1 6.8 7.7 39.3 11.6 7.7 7.6 9.1

0.2 300 9.1 9.2 9.1 8.9 8.4 10.0 8.9 8.2 8.3 8.6 18.5 10.0 8.0 8.5 9.7

500 8.1 7.7 8.1 7.4 7.5 8.8 9.0 7.7 7.6 7.8 28.5 10.4 7.3 7.7 8.2

1000 7.3 7.1 6.8 6.4 6.7 10.3 7.1 6.8 6.6 6.5 57.1 11.4 6.8 6.6 8.8

H
=

0
.8

0.1 300 15.0 14.6 14.7 14.6 14.2 15.8 14.1 14.3 14.1 12.5 18.6 13.4 13.0 14.1 12.6

500 14.3 14.6 13.6 13.3 13.9 15.4 13.2 13.2 11.4 12.7 21.6 13.5 10.8 12.3 13.7

1000 13.6 13.3 13.0 12.6 12.9 16.4 13.5 12.9 11.7 11.5 43.4 14.5 10.7 10.8 12.8

0.2 300 13.9 13.9 13.7 13.2 13.3 13.4 12.5 12.6 12.7 13.0 20.3 12.5 10.7 11.9 10.9

500 13.8 13.3 12.4 12.3 13.0 14.1 12.6 12.7 12.6 13.7 32.6 13.5 10.1 11.1 12.1

1000 14.2 12.9 12.9 13.1 13.6 16.9 13.3 12.9 11.4 12.1 62.5 15.7 10.0 11.1 12.9

H
=

0
.9

0.1 300 19.9 19.3 19.0 19.6 19.3 18.8 17.6 18.9 18.9 18.9 19.2 16.8 16.6 16.5 17.7

500 20.6 20.7 20.9 20.6 21.1 19.0 19.1 18.4 18.3 18.6 25.2 16.0 15.2 16.4 17.5

1000 23.1 22.1 22.7 22.2 23.4 24.4 20.2 19.5 19.9 19.2 50.9 20.2 15.6 17.0 20.0

0.2 300 21.0 21.7 20.8 20.0 20.7 19.5 17.7 18.7 18.7 19.3 26.1 16.3 14.0 15.5 17.9

500 22.7 23.7 22.9 22.8 22.7 22.1 19.6 20.1 19.2 20.2 41.4 18.2 15.3 16.4 19.7

1000 26.7 26.3 26.2 25.8 27.4 28.7 23.2 22.7 23.7 23.9 75.5 24.3 17.5 20.0 22.2

Table 1: Rejection rates in % of the change-point test based on the statistic Γ̃n, kn = bnpc, for LMSV time series (Pareto distributed εj ,

j > 1) of length n with Hurst parameter H, tail index α and a shift in the mean of height h after a proportion τ = 0.25. The calculations are

based on 5,000 simulation runs.

Statistica Sinica: Newly accepted Paper  
(accepted author-version subject to English editing)



α = 4 α = 3 α = 2

p n h = −1 h = −0.5 h = 0 h = 0.5 h = 1 h = −1 h = −0.5 h = 0 h = 0.5 h = 1 h = −1 h = −0.5 h = 0 h = 0.5 h = 1

H
=

0
.6

0.1 300 10.5 9.9 10.1 9.3 9.3 13.8 10.3 8.7 8.7 8.5 41.8 14.5 9.7 8.6 8.6

500 9.5 8.4 7.5 7.6 7.7 13.5 8.9 7.5 6.7 6.7 60.2 14.8 7.8 8.3 6.9

1000 8.2 6.4 5.8 5.9 4.9 15.8 8.6 6.6 5.0 5.5 85.3 19.5 6.2 7.2 7.3

0.2 300 8.3 7.4 6.3 7.1 6.4 10.1 8.0 6.7 7.2 6.2 48.5 11.2 7.2 7.3 7.1

500 6.8 5.7 6.4 5.4 5.1 10.8 6.6 5.7 5.8 5.5 68.7 12.3 6.0 6.1 7.1

1000 6.6 4.7 4.6 4.4 4.2 14.3 5.8 4.4 4.6 4.8 91.1 18.5 4.7 5.3 7.5

H
=

0
.7

0.1 300 12.5 11.4 10.9 10.8 10.1 15.3 12.0 10.6 10.0 10.3 44.3 15.9 11.4 10.0 10.2

500 11.9 10.5 9.2 9.2 8.5 16.1 11.2 9.4 8.9 8.0 62.6 16.6 9.6 8.2 9.1

1000 10.5 8.8 7.4 7.7 7.0 19.1 10.1 7.4 7.3 7.0 86.6 21.3 7.7 7.7 8.6

0.2 300 10.2 9.2 8.6 8.2 8.7 13.1 10.0 8.5 8.8 8.3 50.2 13.1 8.0 8.5 9.0

500 10.0 8.6 7.1 8.6 7.6 13.7 7.9 7.4 6.8 7.3 70.2 14.7 7.3 7.3 8.1

1000 9.2 6.7 7.1 7.2 7.1 17.2 7.4 6.2 6.4 6.4 91.9 21.1 6.8 7.7 9.0

H
=

0
.8

0.1 300 15.8 15.2 14.6 12.9 13.0 17.8 14.7 13.2 13.7 13.1 47.7 18.6 13.0 13.5 12.4

500 16.3 13.7 13.6 13.4 12.6 20.7 15.0 13.0 12.2 11.0 66.2 19.7 10.8 11.9 11.2

1000 16.5 14.6 13.2 12.1 11.4 25.2 14.5 13.3 11.1 10.9 88.1 25.4 10.7 11.3 11.5

0.2 300 15.0 12.9 12.7 13.5 13.2 17.3 14.3 12.0 12.0 11.0 56.0 17.4 10.7 11.2 11.8

500 15.1 13.6 12.5 12.7 12.0 19.7 14.4 12.4 10.5 12.3 74.3 19.2 10.1 10.9 11.8

1000 16.8 14.0 13.5 12.7 12.0 25.4 15.2 11.9 11.2 11.5 93.5 26.9 10.0 11.7 14.2

H
=

0
.9

0.1 300 22.2 19.6 19.6 20.6 18.3 23.5 19.1 17.7 17.5 17.2 53.0 21.5 16.6 15.1 16.2

500 22.4 21.0 20.1 20.3 18.2 26.4 20.3 17.7 17.3 16.7 71.5 24.4 15.2 15.1 15.9

1000 26.3 22.9 22.8 21.1 21.3 36.0 23.5 19.8 18.4 18.5 92.4 32.2 15.6 16.6 18.5

0.2 300 22.4 22.3 20.0 19.9 19.9 25.9 19.5 18.3 17.5 18.2 64.6 21.5 14.0 16.2 16.1

500 24.3 23.4 21.9 22.0 21.6 29.7 23.0 20.4 20.2 19.8 82.1 27.5 15.3 15.8 18.0

1000 30.8 28.0 27.1 25.5 26.5 39.7 27.1 22.7 23.2 22.7 96.6 37.2 17.5 19.2 23.0

Table 2: Rejection rates in % of the change-point test based on the statistic Γ̃n, kn = bnpc, for LMSV time series (Pareto distributed εj ,

j > 1) of length n with Hurst parameter H, tail index α and a shift in the mean of height h after a proportion τ = 0.5. The calculations are

based on 5,000 simulation runs.
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α = 4 α = 3 α = 2

p n h = −1 h = −0.5 h = 0 h = 0.5 h = 1 h = −1 h = −0.5 h = 0 h = 0.5 h = 1 h = −1 h = −0.5 h = 0 h = 0.5 h = 1

H
=

0
.6

0.1 300 10.7 9.4 9.1 9.0 8.8 13.5 9.8 8.4 8.6 8.3 45.8 13.4 9.4 7.7 8.0

500 8.5 7.7 6.7 7.2 6.3 12.5 8.7 7.3 7.4 7.1 61.3 14.0 7.6 7.4 7.2

1000 6.6 6.2 5.6 5.2 5.6 14.6 7.4 6.3 5.4 4.8 83.5 16.5 6.6 5.9 5.8

0.2 300 7.3 7.3 6.2 7.3 6.2 9.6 7.1 6.1 6.0 6.3 45.2 10.6 6.5 6.2 5.9

500 6.8 5.8 5.5 5.6 5.2 9.6 6.7 5.8 5.0 5.2 63.3 11.5 6.4 5.1 5.6

1000 5.8 5.3 4.6 4.5 3.4 11.3 5.6 4.4 4.7 4.9 87.3 15.0 5.1 5.0 5.8

H
=

0
.7

0.1 300 12.7 11.0 12.2 11.4 10.6 15.7 11.5 10.2 10.3 9.9 47.2 15.5 10.0 9.8 9.8

500 11.3 9.9 9.3 9.2 9.5 14.8 9.6 10.3 9.6 8.6 60.9 14.7 9.0 8.1 8.7

1000 9.7 8.9 8.0 7.6 7.2 16.5 9.8 8.1 6.8 6.9 83.6 18.6 7.6 7.7 7.1

0.2 300 10.1 10.5 8.3 8.3 8.4 12.0 9.9 9.1 8.6 8.6 47.2 11.9 8.1 7.9 7.6

500 9.5 8.4 7.5 7.8 7.3 12.6 8.1 7.1 7.1 8.1 64.4 14.1 7.8 7.4 6.8

1000 8.8 7.0 7.1 6.3 6.2 15.0 8.4 6.3 6.3 6.7 87.4 16.4 6.2 6.2 6.7

H
=

0
.8

0.1 300 16.1 14.5 14.9 12.9 14.9 17.9 15.4 13.5 14.0 13.4 49.7 17.4 13.5 12.1 11.7

500 16.1 14.5 14.1 13.7 12.2 19.6 14.7 13.5 11.9 11.5 64.8 18.9 12.3 10.7 11.0

1000 15.5 14.3 13.3 12.9 12.1 21.8 15.0 11.8 11.4 10.4 84.2 22.3 11.0 10.3 10.6

0.2 300 15.9 12.8 13.6 13.3 12.9 16.0 13.0 13.0 12.8 11.3 50.3 16.0 10.8 9.9 10.0

500 14.7 13.4 12.9 12.3 12.4 19.3 13.6 11.9 11.8 11.7 67.5 17.5 10.1 10.0 9.7

1000 15.7 14.1 12.9 12.6 12.1 22.2 13.9 12.4 11.6 11.5 88.2 21.8 9.9 10.0 10.8

H
=

0
.9

0.1 300 21.6 20.4 18.6 19.3 19.1 24.4 20.1 17.4 17.4 17.8 55.8 21.5 15.7 14.9 14.5

500 22.4 21.4 20.9 20.0 18.8 25.9 19.5 18.8 17.5 16.7 70.4 23.4 15.3 14.8 14.7

1000 25.5 22.7 21.7 22.1 21.6 31.8 22.0 19.2 18.2 18.7 88.2 29.1 14.5 15.3 15.0

0.2 300 22.6 21.0 19.1 19.8 20.6 24.0 19.5 18.2 17.8 17.7 61.2 21.7 14.6 13.5 14.2

500 24.0 23.1 23.4 22.1 21.2 28.0 21.3 20.2 19.1 18.7 74.7 25.0 15.2 15.4 15.7

1000 29.7 26.3 26.9 25.9 27.2 34.9 25.1 22.7 22.7 23.6 91.5 33.5 17.6 16.9 18.9

Table 3: Rejection rates in % of the change-point test based on the statistic Γ̃n, kn = bnpc, for LMSV time series (Pareto distributed εj ,

j > 1) of length n with Hurst parameter H, tail index α and a shift in the mean of height h after a proportion τ = 0.75. The calculations are

based on 5,000 simulation runs.
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4. Data

The analysis of financial time series, such as stock market prices, usually

focuses on log returns instead of the observed data itself. As an example,

we consider the log returns of the daily closing indices of Standard & Poor’s

500 (S&P 500, in short) defined by

Lt ··= log

(
Pt
Pt−1

)
,

where Pt denotes the value of the index on day t, in the period from January

2007 to December 2010; see Figure 1. The data set has been obtained from

Yahoo Finance and consists of n = 1014 observations.

Comparing the plots of the sample autocorrelation function of the log

returns and the sample autocorrelation function of their absolute values in

Figure 2, we observe a phenomenon that is often encountered in the context

of financial data: the log returns of the index appear to be uncorrelated,

whereas the absolute log returns tend to be highly correlated.

Also, the plot in Figure 1 shows that the considered time series exhibits

volatility clustering, meaning that large price changes, i.e., log returns with

relatively large absolute values, tend to cluster. This indicates that ob-

servations are not independent across time, although the absence of linear

autocorrelation suggests that the dependence is nonlinear; see Cont (2005).
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Figure 1: Daily closing index of Standard & Poor’s 500 and its log returns

from January 2007 to December 2010

.
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Figure 2: Sample autocorrelation of the log returns and the absolute log

returns of Standard & Poor’s 500 daily closing index from January 2007

to December 2010. The two dashed horizontal lines mark the bounds for

the pointwise 95% confidence interval of the autocorrelations under the

assumption of data generated by white noise.
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Another characteristic of financial time series is the occurrence of heavy

tails. In particular, probability distributions of log returns often exhibit

tails which are heavier than those of a normal distribution. For the S&P

500 data, this property is highlighted by the Q-Q plot in Figure 3.
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Figure 3: Q-Q plot for the log returns of Standard & Poor’s 500 daily

closing index from January 2007 to December 2010.

All of the previously described features of financial data can be covered

by the LMSV model considered in our paper.

In view of the fact that the LMSV model captures properties of the log

returns of Standard & Poor’s 500 daily closing index, we are interested in

analyzing the data with respect to a change in the tail index.

We base the test decision on the statistic defined in (3.15). We choose
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Change-point test for the tail parameter

kn = bnpc, i.e., p defines the proportion of the data that the estimation of

the tail index is based on. Choosing p = 0.1, the value of the test statistic

corresponds to Γ̃n = 1.48207. The 95%-quantile of the limit distribution

supt∈[0,1] |B(t)− tB(1)| equals 1.3463348. Choosing the critical value for

the hypothesis test correspondingly, the value of Γ̃n therefore indicates a

change-point in the tail index at a level of significance of 5%.

A natural estimate for the change-point location is given by that point

in time k, where Γk,n attains its maximum. For the considered data, this

point in time corresponds to September 16, 2008, i.e., one day after Septem-

ber 15, 2008, the day Lehman Brothers filed for bankruptcy protection; see

Figure 4.

Supplementary Materials

The supplementary material contains all the proofs of the paper.
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from January 2007 to December 2010. The red dashed line indicates the

estimated change-point location.
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