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Abstract: Since model selection is ubiquitous in data analysis, reproducibility of statis-

tical results demands a serious evaluation of reliability of the employed model selection

method, no matter what label it may have in terms of good properties. Instability

measures have been proposed for evaluating model selection uncertainty. However, low

instability does not necessarily indicate that the selected model is trustworthy, since low

instability can also arise when a certain method tends to select an overly parsimonious

model. F - and G-measures have become increasingly popular for assessing variable

selection performance in theoretical studies and simulation results. However, they are

not computable in practice. In this work, we propose an estimation method for F - and

G-measures and prove their desirable properties of uniform consistency. This gives the

data analyst a valuable tool to compare different variable selection methods based on

the data at hand. Extensive simulations are conducted to show the very good finite

sample performance of our approach. We further demonstrate the application of our

methods using several microarray gene expression data sets, with intriguing findings.

Key words and phrases: F -measure; G-measure; Gene expression; Model averaging;
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Reproducibility; Variable selection performance.

1. INTRODUCTION

Variable selection is of interest in many fields such as bioinformatics, genomics,

finance and economics, etc. In bioinformatics, for example, microarray gene

expression data are collected to identify cancer-related biomarkers in order to

differentiate affected patients from healthy individuals based on their gene ex-

pression profile. The number of variables, p, in typical microarray gene expres-

sion data is of 103−5 magnitude, while the number of subjects, n, is of 101−3

magnitude. For such problems where p � n, the penalized likelihood estima-

tion provides a class of methods for selecting the variables (see e.g., Fan and

Lv, 2010). However, it is well recognized in the literature that model selec-

tion methods, including penalization methods for high-dimensional data, often

encounter instability issues (Chatfield, 1995; Draper, 1995; Breiman, 1996a,b;

Buckland et al., 1997; Yuan and Yang, 2005; Lim and Yu, 2016). For example,

removing a few observations or adding small perturbations to the data may re-

sult in dramatically different sets of variables being selected (Meinshausen and

Bühlmann, 2006; Nan and Yang, 2014; Lim and Yu, 2016). This uncertainty in

variable selection, as is well known, may have severe practical consequences in

applications. At a larger scale, the reproducibility crisis is a major problem in

the science community (McNutt, 2014; Stodden, 2015).
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Variable selection uncertainty is mainly evaluated by instability measures

in existing literature, which test how sensitive a variable selection method is to

small changes of the data, either by subsampling (Chen et al., 2007), resampling

(Breiman, 1996b; Buckland et al., 1997) or perturbations (Breiman, 1996b).

However, a low instability measure does not necessarily indicate that a variable

selection result is reliable, since low instability can also arise when a method

tends to select an overly parsimonious model (e.g., the intercept-only model in

the extreme case).

There is therefore a great need for measures that can fully evaluate the

uncertainty of variable selection beyond instability. In variable selection, one

mainly cares about two types of errors: including unnecessary variables and

excluding important ones. F - and G-measures, appearing often in the field of

information retrieval (Billsus and Pazzani, 1998), are becoming popular tools for

assessing the overall variable selection performance (see e.g., Lim, 2011; Lim and

Yu, 2016). Specifically, the F -measure is the harmonic mean of precision and

recall, where precision (or positive predictive value) is defined as the fraction of

selected variables that are true variables, and recall (also known as sensitivity)

is defined as the fraction of the true variables that are selected. The G-measure

is the geometric mean of precision and recall. By combining precision and re-

call into one measure, one can evaluate the overall accuracy of a given variable

selection method. Clearly, a higher F (or G) value indicates better selection
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performance in an overall sense. However, previous work in the literature cal-

culates the F - (or G-)measure of a given selection method for simulated data

alone (where the true model is known) and they do not work for real data.

In this paper, we propose a method for performance assessment of (high-

dimensional) variable identification (PAVI) by estimating the F - or G-measure

based on the combination of multiple candidate models under a proper weighting

scheme. Our proposal works for both regression and classification and applies

to both synthetic and real data. Under sensible conditions, we show that our

estimates are uniformly consistent in estimating the true F - and G-measures for

any set of models to be checked. The candidate models can be very flexible. For

example, they can be obtained by penalization using Lasso (Tibshirani, 1996),

SCAD (Fan and Li, 2001), adaptive Lasso (Zou, 2006), MCP (Zhang, 2010) or

by other variable selection techniques. Two weighting schemes are considered

in this work: the adaptive regression by mixing (Yang, 2001) and weighting via

information criteria (see e.g., Nan and Yang, 2014). In the simulation section,

we show a very reliable estimation performance of our method for both classifi-

cation and regression. We further demonstrate our methods by analyzing several

microarray gene expression data from real applications. The real data analysis

suggests that PAVI is a very useful tool for evaluating the variable selection

performance of high-dimensional linear-based models. They provide useful in-

formation on the reliability and reproducibility of a given model when the true
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model is unknown. For example, one may justifiably doubt the reproducibility

of a model that has very small estimated F and G values.

The remainder of the paper is organized as follows. In Section 2, we de-

fine the F - and G-measures and introduce our estimation methods. Section

3 provides the theoretical justification for the PAVI estimators of the F - and

G-measures. Section 4 gives some implementation details of PAVI for both re-

gression and classification, including how to obtain the candidate models and

assign weights. Simulation results are presented in Section 5. We demonstrate

our methods by analyzing three well-studied gene expression datasets in Section

6. Conclusions are given in Section 7. The technical proofs are relegated to the

supplement, where additional numerical results are presented as well.

2. METHODOLOGY

Let us consider the generalized linear model framework. Denote X = (x1, . . . ,xn)ᵀ

the n × p design matrix with xi = (xi1, . . . , xip)
ᵀ, i = 1, . . . , n. Let y =

(y1, . . . , yn)ᵀ be the n-dimensional response vector. For regression with a con-

tinuous response, we consider the linear regression model,

y = Xβ∗ + ε,

where ε is the vector of n independent errors and β∗ = (β∗1 , . . . , β
∗
p)

ᵀ is a p-

dimensional coefficient vector of the true underlying model that generates the
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data. For classification, we consider the binary logistic regression model for ease

of presentation. Let Y ∈ {0, 1} be a binary response variable and X ∈ Rp

be a p-dimensional predictor vector. We assume that Y follows the Bernoulli

distribution given X = x, with conditional probability

Pr(Y = 1|X = x) = 1− Pr(Y = 0|X = x) =
ex

ᵀβ∗

1 + exᵀβ∗ . (2.1)

Let A∗ = supp(β∗) ≡ {j : β∗j 6= 0} be the index set of the variables in the

true model with size |A∗|, where | · | denotes the cardinality of a set. For both

regression and classification, we assume that the true model is sparse. In other

words, most coefficients in β∗ are exactly zero, so that |A∗| is small.

Let A0 = {j : β0
j 6= 0} be an index set of all nonzero coefficients from

any given variable selection result β0. One can use F - and G- measures to

evaluate the performance of A0. F - and G-measures take values between 0

and 1, and a higher value indicates better performance of the variable selection

method. The definitions of F - and G- measures rely on two quantities, precision

and recall. The precision pr for A0 is the fraction of true variables in the

given model A0, i.e., pr(A0) ≡ pr(A0;A∗) = |A0 ∩ A∗|/|A0|, and the recall

re for A0 is the fraction of variables in the true model A∗ that are selected, i.e.,

re(A0) ≡ re(A0;A∗) = |A0 ∩ A∗|/|A∗|. The F -measure for a given model A0

is defined as the harmonic mean of precision and recall, while the G-measure is
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defined as the geometric mean of the two. Specifically,

F (A0) = F (A0;A∗) ≡ 2× pr(A0)× re(A0)

pr(A0) + re(A0)
=

2|A0 ∩ A∗|
|A0|+ |A∗|

,

and

G(A0) = G(A0;A∗) ≡
√
pr(A0)× re(A0) =

|A0 ∩ A∗|√
|A0| · |A∗|

.

In penalized regression, it is well known that when the penalty level is in-

creased, fewer active variables are selected. Therefore, false positives are less

likely to happen, while false negatives become more likely. By taking the har-

monic (or geometric) mean of precision and recall, the F -measure (orG-measure)

integrates both false-positive and false-negative aspects into a single characteri-

zation. Given A0, a high F - or G-measure indicates that both false-positive and

false-negative rates are low. For example, if A∗ = (1, 1, 1, 0, 0, 0, 0) and A0
1 =

(1, 1, 1, 0, 0, 0, 1), then pr(A0
1) = 3/4, re(A0

1) = 1, F (A0
1) = 6/7 and G(A0

1) =

√
3/2. For the same A∗, if we consider a worse case A0

2 = (1, 1, 0, 0, 0, 0, 1),

then pr(A0
2) = 2/3, re(A0

2) = 2/3, F (A0
2) = 2/3 and G(A0

2) = 2/3. The F -

and G-measures are smaller than those in the first case due to the existence

of both under-selection and over-selection. In general, F - and G-measures are

conservative in the sense that both are more sensitive to under-selection than to

over-selection. Specifically, suppose |A∗| = m. If A0
3 over-selects one variable,

then |A0
3| = m+ 1, F (A0

3) = 2m/(2m+ 1), and G(A0
3) =

√
m/(m+ 1), while if

A0
4 under-selects one variable, then |A0

4| = m− 1, F (A0
4) = (2m− 2)/(2m− 1),
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and G(A0
4) =

√
(m− 1)/m. One can easily see that F (A0

3) > F (A0
4) and

G(A0
3) > G(A0

4).

In real applications, the true model A∗ is usually unknown, and thus we

cannot directly know F (A0) and G(A0) for any given model A0. However, by

borrowing information from a group of given models, we can estimate F (A0)

and G(A0) from the data. Suppose that we have a set of candidate models

S = {A1, . . . ,AK}, which can be obtained from a preliminary analysis. When

the model size p is small, we can use a full collection of all-subset models S = C,

where

C = {∅, {1}, . . . , {p}, {1, 2}, {1, 3}, . . . , {1, . . . , p}}

with 1, . . . , p represent the indices of the p variables. If p is too large, we

can choose S as a group of models obtained from penalized methods such as

Lasso, adaptive Lasso, SCAD and MCP, etc. Define w = {w1, . . . , wK} as the

corresponding data-driven weights for S = {A1, . . . ,AK}, where wk ≥ 0 for

k = 1, . . . , K and
∑K

k=1wk = 1. In Section 4.1, we further describe how we

acquire S and w. For now we assume these are already properly acquired. For

each Ak, we define the estimated precision and recall for A0 (relative to Ak) as

pr(A0;Ak) = |A0 ∩Ak|/|A0| and re(A0;Ak) = |A0 ∩Ak|/|Ak|, and propose the

following F̂ (A0) by PAVI to estimate F (A0)

F̂ (A0) =
K∑
k=1

wkF (A0;Ak) = 2
K∑
k=1

wk
|A0 ∩ Ak|
|A0|+ |Ak|

. (2.2)
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Similarly, we propose Ĝ(A0) by PAVI to estimate G(A0)

Ĝ(A0) =
K∑
k=1

wkG(A0;Ak) = 2
K∑
k=1

wk
|A0 ∩ Ak|√
|A0| · |Ak|

. (2.3)

We define the (sample) standard deviation of F̂ (A0) as

sd
(
F̂ (A0) =

√√√√ K∑
k=1

wk
(
F (A0;Ak)− F̂ (A0)

)2
. (2.4)

Similarly, the (sample) standard deviation of Ĝ(A0) is

sd
(
Ĝ(A0)

)
=

√√√√ K∑
k=1

wk
(
G(A0;Ak)− Ĝ(A0)

)2
. (2.5)

In (2.2) and (2.3), F̂ (A0) and Ĝ(A0) are estimated using the candidate

models Ak ∈ S and weights wk ∈ w for k = 1, . . . , K. Intuitively, if higher

weights wk’s are assigned to those Ak’s that are closer to the true model A∗,

then F̂ (A0) and Ĝ(A0) should be able to better approximate the true values

of F (A0) and G(A0), respectively. In Section 4.2, we discuss the methods for

computing weights w from the data.

3. THEORY

In this section, we show that the proposed estimators F̂ and Ĝ are uniformly

consistent for the true F and G, respectively, over the set of all models to be

checked. The theory relies on the property, referred to as weak consistency (see

Definition 1 and Nan and Yang, 2014), of the data-dependent model weights
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w = {w1, . . . , wK}, and the weak inclusion property which entails if a model

screening process is applied to reduce the model list (Definition 2).

Definition 1 (Weak consistency). The weighting vector w = (w1, . . . , wK)ᵀ is

weakly consistent if

∑K
k=1wk · |Ak∇A∗|

|A∗|
p−→ 0 as n→∞,

where ∇ denotes the symmetric difference between two sets.

Remark 1. The definition basically says that w is concentrated enough around

the true model A∗ so that the weighted deviation |Ak∇A∗| eventually diminishes

relative to the size of the true model. When the true model is allowed to increase

in dimension as n increases, including the denominator |A∗| in the definition

makes the condition more likely to be satisfied.

The following theorem shows that under the weak consistency condition, the

estimators F̂ and Ĝ are uniformly consistent (the proof is in the supplement).

Theorem 1 (Uniform consistency of F̂ and Ĝ). Suppose the model weighting w

is weakly consistent. Then F̂ and Ĝ based on PAVI are uniformly consistent in

the sense that

sup
A0∈C

|F̂ (A0)− F (A0)| p−→ 0 as n→∞;

sup
A0∈C

|Ĝ(A0)−G(A0)| p−→ 0 as n→∞.

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



From this theorem we see that if the model weighting mostly focuses on

models that are sensibly close to the true model, then our estimated F̂ and Ĝ

will be close to their respective true values. Clearly, we also have E|F̂ (A0) −

F (A0)| → 0 and E|Ĝ(A0)−G(A0)| → 0 uniformly.

Theorem 2 (Uniform convergence of sd
(
F̂
)

and sd
(
Ĝ
)
). Suppose the model

weighting w is weakly consistent. Then sd
(
F̂
)
and sd

(
Ĝ
)
based on PAVI con-

verge to 0 in probability uniformly in the sense that

sup
A0∈C

|sd
(
F̂ (A0)

)
| p−→ 0 as n→∞;

sup
A0∈C

|sd
(
Ĝ(A0)

)
| p−→ 0 as n→∞.

From this theorem we see that if the model weighting is sensible, then sd
(
F̂
)

and sd
(
Ĝ
)

will be close to zero. The results also support reliability of our PAVI

method.

Theorems 1 and 2 rely on the weak consistency of w. Clearly, when the

candidate models in S are all poor, weak consistency may not be plausible. One

can choose all-subset models C as S when p is small, since it always contains A∗.

However, in the high-dimensional case, it would be computationally infeasible to

use C and a model screening process may be applied (e.g., considering solution

paths of model selection methods).

Definition 2 (Weak inclusion property). A set of candidate models S obtained

by a model screening process is called weakly inclusive with respect to w on C

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



if
∑

k∈Swk is bounded away from zero in probability.

Theorem 3. Under the assumption that the weighting vector w on the all-subset

models C is weakly consistent, as long as S is weakly inclusive, the conclusions

of Theorems 1 and 2 still hold.

Remarks on this result are given in the supplement.

4. IMPLEMENTATION

4.1 Candidate models

We discuss how to choose the candidate models for computing F̂ and Ĝ. To get

the candidate models, we can use a complete collection of all-subset models, i.e.,

choose S = C. However, in the high-dimensional case where p� n, it is almost

impossible to use all subsets due to high computational cost.

We show in the following how it is done for linear and logistic regression

models in the high-dimensional setting. Similar procedures apply to other

likelihood-based models. Given n independent observations {(xi, yi)}ni=1 for the

pair (X, Y ), we can fit the linear or logistic regression model by minimizing the

penalized negative log-likelihood

min
β∈Rp
−`(β) +

p∑
j=1

pλ(βj), (4.6)
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4.2 Weighting methods

where −`(β) = (2n)−1
∑n

i=1(yi − xᵀ
iβ)2 for linear regression and

−`(β) = n−1
n∑
i=1

{−yi log πi − (1− yi) log(1− πi)}

for the logistic regression, where πi = Pr(Yi = 1|Xi = xi) is the probability in

(2.1) for observation i. The nonnegative penalty function pλ(·) with λ ∈ [0,∞)

can the Lasso (Tibshirani, 1996), SCAD (Fan and Li, 2001), MCP (Zhang, 2010),

or other regularizers.

We compute the models S = {Aλ1 , . . . ,AλL} for, e.g., Lasso, SCAD and

MCP, respectively, on the solution paths {β̂
λ1
, . . . , β̂

λL} for decreasing sequences

of tuning parameters {λ1, . . . , λL}. These models are then combined together as

a set of candidate models S = {SLasso,SSCAD,SMCP}. One can efficiently compute

the whole solution paths of Lasso using glmnet (Friedman et al., 2010), and of

SCAD and MCP using ncvreg (Breheny and Huang, 2011).

4.2 Weighting methods

There are several different methods in the literature for determining the weights

w = {w1, . . . , wK}. For example, Buckland et al. (1997) and Leung and Bar-

ron (2006) proposed information-criterion-based methods for weighting, such as

those using AIC (Akaike, 1973) and BIC (Schwarz, 1978); Hoeting et al. (1999)

proposed the Bayesian model averaging (BMA) method for weighting; and Yang

(2001) studied a weighting strategy named the adaptive regression by mixing

(ARM), which computes the weights by data splitting and cross-assessment. It
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4.2 Weighting methods

was proven in Yang (2001) that the weighting by ARM delivers the best rate

of convergence for regression estimation. In Yang (2000), the ARM weighting

method was also extended to the classification setting. When the number of

models in the candidate-model set is fixed, BMA weighting is consistent (thus

weakly consistent). From Yang (2007), when one properly chooses the data

splitting ratio, the ARM weighting can be consistent. More recently, Lai et al.

(2015) proposed Fisher’s fiducial-based methods for deriving probability density

functions as weights on the set of candidate models. They showed that, under

certain conditions, their method is consistent when p is diverging and the size

of the true model is either fixed or diverging. In this paper, we only consider

the ARM weighting and weighting based on an information criterion.

Weighting using ARM for linear regression

To get the ARM weights, we randomly split the data D = {(xi, yi)}ni=1 into a

training set D1 and a test set D2 of (approximately) equal size. We train the

linear regression model on D1 and evaluate its prediction performance on D2,

based on which the weights w = {w1, . . . , wK} can be computed. Let β(k)
s be

the sub-vector of β(k) representing the nonzero coefficients of model Ak, and let

x
(k)
s ∈ R|Ak| be the corresponding subset of selected predictors. When p is large,

the ARM weighting performs poorly for measuring the model deviation. One

way to fix this is to add a non-uniform prior e−ψCk in the weighting computation
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4.2 Weighting methods

with

Ck = sk log
ep

sk
+ 2 log(sk + 2), (4.7)

where sk is the number of non-constant predictors for model k. The first term

sk log ep
sk

is an upper bound of log
(
p
sk

)
, which characterizes which model it is

among the log
(
p
sk

)
many possibilities. This is followed by

(
p

sk

)
=

∏sk−1
j=0 (p− j)
sk!

≤ psk

sk!
≤
(
pe

sk

)sk
(4.8)

using Stirling’s approximation. The second term in (4.7) represents the number

of variables to be estimated. From an information-theoretic perspective, Ck can

be regarded as an upper bound on the descriptive complexity of model Ak. This

concept plays a crucial role in model selection theory (Yang, 1999; Wang et al.,

2014; Ye and Yang, 2019). Besides this interpretation, one can also treat e−ψCk

as the prior probability assigned to the models from a Bayesian viewpoint. The

constant ψ > 0 controls the relative importance of the prior weight on the final

weights, which can be specified by the user. From a theoretical point of view,

when ψ is bigger than 5.1, the complexity term is big enough to control the

selection bias and results in minimax optimal estimations (Yang, 1999). But

the bound 5.1 is more due to technical reasons. In practice, a smaller choice

often works very well. Based on previous works (Nan and Yang, 2014; Ye et al.,

2018; Ye and Yang, 2019) and our own numerical studies (Section 6 of the

supplement), we found that ψ = 1 or 2 often delivers the best numerical results.
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4.2 Weighting methods

The ARM weighting method for linear regression models is summarized in

Algorithm 1.

Algorithm 1: ARM weighting procedure for linear regression.

1 Randomly split D into a training set D1 and a test set D2 of equal size.

2 For each Ak ∈ S, fit a standard linear regression of y on x
(k)
s using the training set

D1 and get the estimated regression coefficient β̂
(k)

s and the estimated standard

deviation σ̂(k)
s .

3 For each Ak, compute the prediction x
(k)ᵀ
s β̂

(k)

s on the test set D2.

4 Compute the weight wk for each candidate model Ak:

wk =
e−ψCk(σ̂(k)

s )−n/2
∏

(x
(k)
si ,yi)∈D2

exp(−(σ̂(k)
s )−2(yi − x

(k)ᵀ
s β̂

(k)

s )2/2)∑K
l=1 e

−ψCl(σ̂(l)
s )−n/2

∏
(x

(l)
si ,yi)∈D2

exp(−(σ̂(l)
s )−2(yi − x

(l)ᵀ
s β̂

(k)

s )2/2)

for k = 1, . . . ,K, where Ck, k = 1, . . . ,K is defined in (4.7).

5 Repeat the steps above (with random data splitting) L times to get w
(l)
k for

l = 1, . . . , L, and get wk = 1
L

∑L
l=1 w

(l)
k .

Weighting using ARM for logistic regression

The ARM weighting method for logistic regression models is similar. We sum-

marize it in Algorithm 2.

Weighting using modified BIC for linear and logistic regression

Information criteria such as BIC can be used as alternative ways for computing

the weights. Let `k be the maximized likelihood for model k. Recall that BIC
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Algorithm 2: ARM weighting procedure for logistics regression.

1 Randomly split D into a training set D1 and a test set D2 of equal size.

2 For each Ak ∈ S, fit a standard logistic regression of y on x
(k)
s using the data in D1

and get the estimated conditional probability function p̂(k)(x
(k)
s ), k = 1, . . . ,K,

p̂(k)(x(k)
s ) ≡ Pr(Y = 1|X(k)

s = x(k)
s ) = exp(x(k)ᵀ

s β̂
(k)

s )/(1 + exp(x(k)ᵀ
s β̂

(k)

s )).

3 For each Ak, evaluate p̂(k)(x
(k)
s ) on the test set D2.

4 Compute the weight wk for each model Ak in the candidate models:

wk =
e−ψCk

∏
(x

(k)
s,i ,yi)∈D2

p̂(k)(x
(k)
s,i )yi

(
1− p̂(k)(x

(k)
s,i )
)1−yi

∑K
l=1 e

−ψCl
∏

(x
(l)
s,i,yi)∈D2

p̂(l)(x
(l)
s,i)

yi
(
1− p̂(l)(x

(l)
s,i)
)1−yi , k = 1, . . . ,K.

5 Repeat the steps above (with random data splitting) L times to get w
(l)
k for

l = 1, . . . , L, and get wk = 1
L

∑L
l=1 w

(l)
k .

is IBIC
k = −2 log `k + sk log n. To accommodate the huge number of models, an

extra term was added by Yang and Barron (1998) to reflect the additional price

one needs to pay for searching through all the models. Including this extra term

in the information criteria, we calculate the weights by a modified BIC (BIC-p)

information criterion:

wk = exp(−Ik/2− ψCk)/
K∑
l=1

exp(−Il/2− ψCl), k = 1, . . . , K. (4.9)

5. SIMULATION

In order to study the performance of estimated F - and G-measures, we con-

duct simulations for several well-known variable selection methods (for both

regression and classification) under various settings. We consider numerical ex-
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5.1 Setting I: regression models

periments for both n < p and n ≥ p cases, with specified structural feature

correlation (i.e., independent/correlated). We also consider some special set-

tings of the true coefficients such as decaying coefficients.

5.1 Setting I: regression models

For the regression case, the response Y is generated from the following model

Y = Xβ + ε,

where ε ∼ N(0, σ2). To study how the estimation performance varies with the

noise level σ2, we choose nine σ-values evenly spaced between 0.01 and 5. The

predictors xi and the coefficient vector β are generated according to the following

settings:

Example 1. n = 200, p = 8, β = (3, 1.5, 2, 0, 0, 0, 0, 0)ᵀ. Predictors xi for

i = 1, . . . , n are generated as n i.i.d. observations from N(0, Ip).

Example 2. Same as Example 1 except n = 1000.

Example 3. n = 200, p = 2000, β = (β1, . . . , βp)
ᵀ, where (β1, β2, β3) =

(3, 1.5, 2) and (β4, . . . , β2000) are zero. Predictors xi for i = 1, . . . , n are sampled

as n i.i.d. observations from N(0, Ip).

Example 4. n = 200, p = 30, components 1–5 of β are 10.5, components

6–10 are 5.5, components 11–15 are 0.5 and the rest are zero, so there are 15
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5.1 Setting I: regression models

nonzero predictors, including five large ones, five moderate ones and five small

ones. Predictors xi for i = 1, . . . , n are generated from X ∼ Np(0,Σ) with

Σ = (0.4|j−k|)p×p, thus the pairwise correlation between Xj and Xk is 0.4|j−k|.

Example 5. n = 200, p = 200, components 1–5 of β are 10.5, components

6–10 are 5.5, components 11–15 are 0.5 and the rest are zero. Predictors xi for

i = 1, . . . , n are generated from X ∼ Np(0,Σ). The covariance structure Σ is set

as follows: the first 15 predictors (X1, . . . , X15) and the remaining 185 predictors

(X16, . . . , X200) are independent. The pairwise correlation between Xj and Xk in

(X1, . . . , X15) is 0.4|j−k| with j, k = 1, . . . , 15. The pairwise correlation between

Xj and Xk in (X16, . . . , X200) is 0.4|j−k| with j, k = 16, . . . , 200.

We apply four penalized methods, Lasso, adaptive Lasso, MCP and SCAD

to the data from Examples 1–5, and denoted by ALasso, AAdLasso, AMCP and

ASCAD the resulting models, respectively. We use glmnet for computing ALasso

and AAdLasso, and ncvreg for computing AMCP and ASCAD. Five-fold cross-

validation is used for penalty parameter tuning in all these procedures. Because

we know the true model A∗ = {j : βj 6= 0} in the simulation, we can report

the true F (A0) and G(A0) measures for each model-under-check A0 ∈ {ALasso,

AAdLasso, AMCP, ASCAD}. For comparison, we also compute estimated F̂ and

Ĝ using two different weighting methods, ARM and BIC-p (the modified BIC)

with prior adjustment ψ = 1. The number of observations in the training

set for computing the ARM weight is half of the sample size bn/2c, and the
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5.1 Setting I: regression models

corresponding repetition time is 100.

All simulation cases are repeated for 100 times and the corresponding values

are computed and averaged. We compare F̂ (A0) and Ĝ(A0) with the true F (A0)

and G(A0) in Figure 1 for Example 1, and in Figures A1–A4 of the supplement

for Examples 2–5. Overall, F̂ (A0) and Ĝ(A0) using ARM and BIC-p weighting

can well reflect the trends of F (A0) and G(A0) in the sense that, both the

true curves and the estimated curves trend down as σ2 increases. And the

estimation accuracy drops as σ2 increases. The estimated F̂ (A0) and Ĝ(A0)

properly reflect the true performance of a given A0. For example, in Figures

A2, A3 and A4, we see that the performance of Lasso deteriorates significantly as

σ2 increases, due to the fact that it tends to over-select variables under higher

noise levels. In contrast, adaptive Lasso, MCP and SCAD have more robust

performance against the high noise. F̂ (A0) and Ĝ(A0) can correctly reflect

these aforementioned facts. From the results, we find that MCP is the best

performer with the highest true/estimated F - and G-measures in Examples 2–

5, while adaptive Lasso is the best performer in Example 1.

By comparing Figures 1 and A1, we see that the sample size influences

the estimation performance: large samples produce more accurate F̂ (A0) and

Ĝ(A0). Gains in the estimation accuracy from increased sample sizes are due to

the fact that more information results in better assigned weights on the candidate

models.
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5.1 Setting I: regression models
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Figure 1: Regression case (Example 1).
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5.2 Setting II: classification models

In Figure A4, the over-estimation in Adaptive Lasso, SCAD and MCP, when

σ is large, is due to the fact that highly weighted candidate models miss several

small coefficients variables, which is caused by the decaying coefficients and

worsened by correlation between the variables. While for Lasso, when σ is

small, PAVI can find good candidate models to put high weights on, thus the

estimation is good; when σ is larger, the candidate models with high weights

miss several true variables. At the same time, Lasso chooses more redundant

variables when σ becomes larger. Therefore, the precision is under-estimated,

so does the F -measure.

5.2 Setting II: classification models

For the classification case, we randomly generate n i.i.d observations {yi,xi}ni=1.

Each binary response yi ∈ {0, 1} is generated according to the Bernoulli distri-

bution with the conditional probability Pr(Y = 1|X = xi) =
exp(xᵀ

i β)

1+exp(xᵀ
i β)

. The

explanatory variables X and the coefficient vector β are set under the same

configurations as in Examples 1–5.

The absolute differences between the true and estimated measures,

dF = |F̂ (A0)− F (A0)| and dG = |Ĝ(A0)−G(A0)|

are used to evaluate the estimation performance, where the smaller dF and dG,

the better the estimation performance.

All simulation cases are repeated for 100 times and the corresponding F (A0),
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5.2 Setting II: classification models

G(A0), F̂ (A0), Ĝ(A0), dF and dG values are computed and averaged. The results

are summarized in Table 1 for Example 1, and in Tables A1–A4 of the supple-

ment for Examples 2–5. The standard errors are also shown (in the parentheses).

As we can see from those tables, dF and dG are generally small, which indicates

that the estimated F̂ (A0) and Ĝ(A0) are good approximations to the true F (A0)

and G(A0), respectively. The estimated F̂ (A0) and Ĝ(A0) can reflect the true

advantage of a given variable selection method. For example, in Table 1, and

Tables A1–A4, we can see that adaptive Lasso, MCP and SCAD have better

variable selection performance than Lasso according to their larger true values of

F (A0) and G(A0). The estimated F̂ (A0) and Ĝ(A0) can correctly reflect these

differences in performance.

Our estimation method can still perform very well under the high-dimensional

setting, which can be seen from the small dF and dG in Table A2. However, the

results from Tables 4 and 5 show that the decaying coefficients and feature cor-

relation make the estimation of F̂ (A0) and Ĝ(A0) more difficult. In these two

cases, BIC-p methods tend to over-estimate F (A0) and G(A0) for MCP and

SCAD, while ARM tends to under-estimate F (A0) and G(A0) for Lasso and

adaptive Lasso.

The over-estimation problem of the BIC-p method mainly comes from over-

estimation of the recall part. The final model selected by SCAD misses several

true variables, thus the true recall is very small. However, if one uses the heavily
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5.2 Setting II: classification models

weighted candidate models that miss several true variables in the PAVI calcula-

tion, the recall would be over-estimated.

For SCAD and ARM combination, using the heavily weighted models that

miss several true variables in PAVI will give us over-estimation of the recall and

under-estimation of the precision, while these two effects cancel each other to

some degree.

The under-estimation by ARM methods mainly comes from the under-

estimation of the precision part, while the estimated recall is close to (slightly

over-estimating) the true recall. Lasso tends to miss true variables and over-

select redundant variables in the examples. Thus, the true precision of Lasso is

small.

For Lasso and BIC combination, using the heavily weighted models that

miss several true variables with small coefficients in PAVI computing will give

us over-estimation of the recall and under-estimation of the precision, while these

two effects cancel each other to some degree.

Both issues are mainly caused by the fact that the candidate models with

large weights could not recover all the variables with small true coefficients, and

the problem is further worsened by the existence of high correlation among the

features.
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Table 1: Classification case (Example 1).

F G dF dG

Lasso
True 0.670 (0.010) 0.712 (0.009)
ARM 0.711 (0.009) 0.747 (0.007) 0.046 (0.003) 0.039 (0.002)
BIC-p 0.687 (0.010) 0.726 (0.008) 0.017 (0.002) 0.014 (0.001)

AdLasso
True 0.944 (0.009) 0.949 (0.008)
ARM 0.899 (0.004) 0.908 (0.004) 0.066 (0.003) 0.060 (0.003)
BIC-p 0.946 (0.007) 0.950 (0.007) 0.018 (0.002) 0.016 (0.001)

MCP
True 0.968 (0.009) 0.971 (0.008)
ARM 0.903 (0.005) 0.913 (0.004) 0.079 (0.003) 0.072 (0.002)
BIC-p 0.961 (0.007) 0.965 (0.006) 0.019 (0.002) 0.017 (0.001)

SCAD
True 0.902 (0.012) 0.911 (0.010)
ARM 0.881 (0.006) 0.892 (0.006) 0.054 (0.003) 0.050 (0.003)
BIC-p 0.911 (0.010) 0.919 (0.009) 0.018 (0.002) 0.016 (0.001)

6. REAL DATA

In this section, we apply PAVI using candidate models from several model se-

lection methods to gene expression data for cancer-related biomarker identi-

fication. The biomarker selection process is usually under high-dimensional,

small-sample, and high-noise setting involving highly-correlated genes (Golub

et al., 1999; West et al., 2001). As such, the sets of genes identified may be

subject to substantial changes due to small perturbations in the data (Baggerly

et al., 2004; Henry and Hayes, 2012). Here we use F̂ and Ĝ to evaluate such

selection uncertainty.

Our goal is to provide a serious and careful analysis of the outcomes of
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6.1 Data description

Table 2: Summary of Colon, Leukemia, Prostate.

Data n
n1 n2 p

Data source(y = 1) (y = 0) (number of genes)

Colon 62 40 22 2000 Alon et al. (1999)
Leukemia 72 25 47 7129 Golub et al. (1999)
Prostate 102 52 50 12600 Singh et al. (2002)

several variable selection methods from multiple angles to understand the key

issues of interest. One may wonder if any strong statement can be said because

no one knows the truth. We hope our analysis provides strong enough evidence

that the estimated F and G values yield valuable information.

6.1 Data description

We consider three well-studied benchmark cancer datasets: Colon (Alon et al.,

1999), Leukemia (Golub et al., 1999) and Prostate (Singh et al., 2002). Table

2 provides a brief summary.

6.2 Methods/models to be examined

On these three datasets, we compare the variable selection performance of four

commonly used penalization methods: Lasso, adaptive Lasso, MCP and SCAD.

We first obtain the final model A0 for each method (the tuning parameter λ is

selected using five-fold cross-validation). Then we use PAVI to estimate F̂ (A0)

and Ĝ(A0) with two weighting schemes, ARM and BIC-p. The whole proce-

dure is repeated 100 times to average out randomness in the tuning parameter
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6.2 Methods/models to be examined

selection, and the averages of F̂ (A0), sd
(
F̂ (A0)

)
and Ĝ(A0), sd

(
Ĝ(A0)

)
are

summarized in Tables 3, 4 and A5. For comparison, we also include several

other models studied in the existing literature. Specifically, we consider Leung

and Hung, 2010 (L10), Yang and Song, 2010 (Y10), Chandra and Gupta, 2011

(C11) and Lee and Leu, 2011 (L11) for Colon, Leung and Hung, 2010 (L10),

Yang and Song, 2010 (Y10), and Ji et al., 2011 (J11; two kinds of models are

provided via different importance criterion in this work, denoted by J111 and

J112 hereafter respectively) for Leukemia, and Leung and Hung, 2010 (L10) and

Sharma et al., 2012 (S12) for Prostate.

Y10, J11 and S12 used linear-based variable selection techniques without

initial variable screening. Specifically, Y10 used the probit regression model;

J11 used the linear kernel support vector classifier (SVC); S12 used the linear

discriminant analysis (LDA) technique with nearest centroid classifier (NCC).

In contrast, L10, C11 and L11 used nonparametric variable selection techniques:

L10 used the support vector machine (SVM); C11 used the näıve Bayes classi-

fier (NBC) and SVM; L11 used SVM. In addition, we consider the Importance

Screening method (ImpS) by Ye et al. (2018), which uses a sparsity oriented

importance learning for variable screening.
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6.3 Results

Table 3: Estimated F - and G-measures and standard deviations for Colon. L10

has numerically zero F̂ and Ĝ values (bolded in the Table).

ARM BIC-p

F sd.F G sd.G F sd.F G sd.G
Lasso 0.147 0.024 0.280 0.022 0.205 0.066 0.332 0.058
AdLasso 0.194 0.165 0.255 0.211 0.309 0.191 0.361 0.209
MCP 0.349 0.045 0.459 0.035 0.460 0.130 0.544 0.093
SCAD 0.149 0.032 0.274 0.039 0.211 0.074 0.331 0.071
ImpS 0.524 0.081 0.596 0.065 0.656 0.176 0.698 0.118
L11 0.111 0.110 0.175 0.175 0.112 0.105 0.157 0.151
Y10 0.103 0.017 0.233 0.018 0.146 0.048 0.276 0.047
C11 0.184 0.020 0.317 0.022 0.223 0.076 0.333 0.082
L10 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

6.3 Results

The estimated F̂ and Ĝ of each model on Colon, Leukemia and Prostate are

reported in Tables 3, 4 and A5 (in the supplement), respectively. We find that

ImpS achieves almost the largest estimated F̂ and Ĝ on all three data sets. L10

has basically zero F̂ and Ĝ for Colon and Prostate. J111 and J112 has basically

zero F̂ and Ĝ for Leukemia. (These cases are bolded in Tables 3, 4 and A5.)

This suggests that, from a logistic regression modeling perspective, they may

have chosen “wrong” variables and they have very low recalls or precisions.

6.4 Are the zero F̂ and Ĝ values too harsh for the methods?

It is striking that the F̂ and Ĝ values for some selections are numerically zero,

which seems rather extreme. Does this mean those models are truly poor or

rather our performance assessment methodology fails? We would like to examine
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6.4 Are the zero F̂ and Ĝ values too harsh for the methods?

Table 4: Estimated F - and G-measures and standard deviations for Leukemia.

J111 and J112 have numerically zero F̂ and Ĝ values (bolded in the Table).

ARM BIC-p

F sd.F G sd.G F sd.F G sd.G
Lasso 0.083 0.025 0.206 0.026 0.079 0.012 0.203 0.014
AdLasso 0.323 0.044 0.432 0.031 0.322 0.039 0.434 0.033
MCP 0.168 0.170 0.221 0.210 0.061 0.089 0.078 0.108
SCAD 0.094 0.028 0.220 0.028 0.090 0.013 0.216 0.015
ImpS 0.525 0.065 0.591 0.042 0.573 0.129 0.636 0.102
J111 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
J112 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Y10 0.108 0.014 0.236 0.009 0.105 0.002 0.233 0.012
L10 0.212 0.180 0.265 0.224 0.336 0.089 0.419 0.110

the matter from three perspectives.

6.4.1 First perspective: the labels of the selected genes

First, let us examine the labels of the selected genes. We obtain the selected

genes in the literature. And we use five-fold cross-validation in penalty param-

eter tuning to obtain selected genes for the penalized regression models. In

Tables A6, A7 and A8, the results show that the genes selected by L10 (Colon

and Prostate), J111 and J112 (Leukemia) are mostly not supported by other

models. More specifically, the choices of variables by L10, J111 and J112 in those

cases share zero, one or at most two genes with the other methods, respectively.

(These cases are underlined in Tables A6, A7 and A8.)
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6.4 Are the zero F̂ and Ĝ values too harsh for the methods?

6.4.2 Second perspective: predictive accuracy

Secondly, we would like to examine the issue from a predictive accuracy per-

spective. We randomly split the dataset into 4/5 observations for training and

1/5 observations for testing. We fit the SVM models with those selected genes

on the training data using kernlab (Karatzoglou et al., 2004) and evaluate the

predictive accuracy on the testing data. The whole procedure is repeated 100

times and the averaged classification accuracy and “standard errors” (w.r.t. the

permutations) are recorded in Table 5. Alternatively, we may consider the para-

metric models. We fit the logistic regression with the genes selected (in Table

5). We find that L10, J111 and J112 have worse predictive accuracy (bolded

in Table 5) compared with the simpler model by ImpS, which adds evidence to

support the validity of their low F̂ and Ĝ values.

6.4.3 Third perspective: traditional model fitting

For the third perspective, we investigate the AIC, BIC, and deviance measures.

When comparing models fitted by maximum likelihood to the same data, the

smaller the AIC or BIC value, the better the model, from their respective stand

points.

From Table 6, the model for Colon with zero F̂ and Ĝ values also has

relatively large AIC, BIC and deviance values (bolded in the Table) compared

to the models with large F̂ and Ĝ values. The results are similar for the other
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6.4 Are the zero F̂ and Ĝ values too harsh for the methods?

Table 5: Comparisons of classification accuracy on Colon, Leukemia, and

Prostate using logistic regression and SVM, respectively.

Logistic Model

Colon Leukemia Prostate

ImpS 86.3 (0.8) ImpS 97.1 (0.3) ImpS 94.0 (0.4)
Lasso 80.0 (1.0) Lasso 99.8 (0.1) Lasso 97.0 (0.4)
AdLasso 85.5 (0.8) AdLasso 93.9 (0.5) AdLasso 99.8 (0.1)
MCP 85.1 (0.8) MCP 99.5 (0.1) MCP 98.7 (0.2)
SCAD 84.3 (0.8) SCAD 97.9 (0.3) SCAD 97.1 (0.2)
L11 80.4 (0.8) J111 89.4 (0.8) S12 96.5 (0.4)
Y10 90.9 (0.9) J112 89.8 (0.7) L10 59.0 (0.8)
C11 79.6 (1.0) Y10 91.2 (0.7)
L10 83.0 (0.9) L10 95.5 (0.4)

SVM Model

Colon Leukemia Prostate

ImpS 84.0 (0.9) ImpS 97.6 (0.3) ImpS 95.3 (0.4)
Lasso 75.8 (0.9) Lasso 99.1 (0.2) Lasso 96.3 (0.4)
AdLasso 79.0 (0.9) AdLasso 95.8 (0.4) AdLasso 96.6 (0.3)
MCP 83.1 (1.1) MCP 99.0 (0.2) MCP 97.1 (0.3)
SCAD 86.0 (0.9) SCAD 99.1 (0.2) SCAD 96.4 (0.3)
L11 79.0 (1.1) J111 88.6 (0.8) S12 95.5 (0.4)
Y10 78.3 (1.0) J112 87.4 (0.9) L10 59.3 (0.9)
C11 77.1 (0.9) Y10 90.2 (0.6)
L10 72.4 (0.9) L10 92.2 (0.6)

Table 6: Estimated AIC, BIC and deviance for Colon, Leukemia and Prostate.

Colon Leukemia Prostate

AIC BIC Dev. AIC BIC Dev. AIC BIC Dev.
Lasso 26.0 53.6 0.0 56.0 119.7 0.0 62.0 143.3 0.0
AdLasso 34.9 49.8 20.9 12.0 25.6 0.0 22.0 50.8 0.0
MCP 32.1 44.9 20.1 16.0 34.2 0.0 16.0 36.9 0.0
SCAD 26.0 53.6 0.0 48.0 102.6 0.0 38.0 87.8 0.0
ImpS 35.5 44.1 27.5 8.0 17.1 0.0 12.0 27.7 9.4
L11 51.4 70.5 33.4 J111 20.0 42.7 0.0 S12 36.1 49.2 26.1
Y10 40.0 82.5 0.0 J112 18.0 38.4 0.0 L10 140.1 158.5 126.1
C11 45.2 68.6 23.2 Y10 38.0 81.2 0.0
L10 48.6 63.5 34.6 L10 10.0 21.3 0.0
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two data sets, except that the deviance values for Leukemia are extremely small

due to the easy classification nature of the data.

In summary, we see that the low (near zero) F̂ and Ĝ values for the above

investigated sets of selected genes are supported from the three perspectives.

Our PAVI approach provides a valid tool for checking the reliability and repro-

ducibility of a given set of selected variables when the true model is not known.

To be fair, we want to emphasize that the poor F̂ and Ĝ values of some of

the selection methods are based on the logistic regression perspective, although

Table 5 seems to suggest that logistic regression works at least as well as SVM.

7. CONCLUSION

There are many variable selection methods, but so far most of investigations

on their behaviors are limited to theoretical studies and somewhat scattered

simulation results, which may have little to do with a specific dataset at hand.

There is a severe lack of valid performance measures that are computable based

on data alone. This leads to the pessimistic view that “For real data, nothing

can be said strongly about which method is better for describing the data gener-

ation mechanism since no one knows the truth.” Sound implementable variable

selection diagnostic tools can shed a positive light on the matter.

Nan and Yang (2014) proposed an approach to gain insight on how many

variables are likely missed and how many are not quite justifiable for an outcome
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of a variable selection process. In real applications, it is often of interest and

important to summarize the two types of selection errors into a single measure

to characterize the behavior of a variable selection method. Due to this reason,

F - and G-measures are gaining popularity in model selection literature. If we

are given a data set for which several model selection methods are considered,

prior to this work, the available model diagnostic tools can only tell us (a)

which methods are more unstable; (b) how many terms are likely missed or

unsupported. This information, unlike the F - and G-measures, may not be

enough to give one a good sense of the overall model selection performance. In

this paper, we have advanced the line of research on model selection diagnostics

by providing a valid estimation of F - and G-measures.

We have proved that the estimated F - and G-measures are uniformly consis-

tent as long as the weighting is weakly consistent. The simulation results clearly

show that the F̂ and Ĝ values based on our PAVI approach nicely characterize

the overall performance of the model selection outcomes. The information can

be utilized for comparing different methods for the data at hand.

We have used three real data examples to demonstrate the utility of our

PAVI methodology. There have been many variable selection results reported in

the literature on these data sets. A careful study with multiple perspectives has

provided strong evidence to suggest that some of the variable selection outcomes

may be far away from the best set of variables to use for logistic regression or
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SVM with the given information.

Supplementary Materials

Text document: Supplementary material for “Performance Assessment of

High-dimensional Variable Identification”. (.pdf file)
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