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Abstract: The extensive coverage of suicides in media has long been thought to be

responsible for triggering copycat suicides. However, the up-to-date evidence for a

copycat suicide effect is indirect and inconclusive. To examine whether media reported

suicides influence actual suicides and to identify a possible copycat effect, a flexible

threshold autoregressive model is proposed to explore whether and how reporting of

suicides in newspaper affecting the incidence of suicides. In particular, a penalized

smoothing least squares estimator is proposed to conveniently estimate the parame-

ters and unknown functions in the model. The performance of proposed method is

confirmed by simulation studies, and the asymptotic behaviours of corresponding es-

timators are studied under mild regularity conditions. The proposed model is applied

to investigate the relationship between the daily suicide incidence and the number of
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1 INTRODUCTION

reported suicides in a top-selling tabloid newspaper in Hong Kong from January 2002

to December 2006. Our proposed model has identified a copycat suicide effect due to

excessive media reporting and the threshold of the number of reports that may trigger

a copycat effect.

Key words and phrases: Autoregressive model, Copycat suicide effect, Penalized smooth-

ing least squares estimator, Time series data, Threshold model.

1. Introduction

The widespread suicide coverage in media has long been thought to be

responsible for triggering copycat suicides and many scientific papers have

discussed its impact (Phillips, 1974; Pirkis & Blood, 2001; Chen, Chen,

& Yip, 2011; Niederkrotenthaler et al., 2012; Niederkrotenthaler & Stack,

2017). Particularly, suicides of celebrities have been found to exert a larger

social impact (Yip et al., 2006; Fu & Yip, 2007; Chen et al., 2013). However,

up-to-date evidence for a copycat suicide effect is indirect, inconclusive and

not specific. In addition, the threshold for the number of reports that could

trigger a copycat effect has not been investigated.

To examine whether the reported suicides in media is related to actual

suicide incidence, coverage of the news reported suicides in a popular Hong

Kong based tabloid newspaper, the Apple Daily (AD), are recorded. The
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AD was on the top list of circulation in community, with a readership of

more than two million (the total population of Hong Kong is about seven

million) and a high penetration rate into Hong Kong household. Further-

more, the AD is famous for its reports on celebrities, gossip and scandals.

Capturing a wide readership with sensationalism, exaggerated headlines,

and attention-grabbing graphic images, the AD quickly became a top-selling

newspaper in Hong Kong soon after its first issue in 1995. Such kind of ex-

aggerated media reporting evidently has serious, adverse implications for

the media industry (Chen et al, 2013).

The Hong Kong suicide rate was particularly high from 2002 to 2006

especially in 2003. The epidemic SARS during the month of March-May in

2003 had seriously affected Hong Kong, resulting the worst unemployment

rate of 8.6 and the historically highest suicide rate. Furthermore, the suicide

rate after the death of a celebrity, Mr. Leslie Cheung, on April 1, 2003,

immediately surged by more than 20% in the following four to six weeks

and stayed at a high level until the end of that year (Yip et al., 2006).

The media coverage of Leslie’s death was extensive and sensational. Also,

the increasing charcoal-burning deaths rose to its historical level from its

inception in 1997, about 320 people in 2003, which significantly contributed

to the increase of suicide rate during that study period (Law et al., 2014).
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1 INTRODUCTION

The spread of charcoal burning death was also shown to be linked with

media report and Google search in Taiwan (Chang et al., 2015). The World

Health Organization, the International Association of Suicide Prevention

and many other organizations and press associations have issued guidelines

for reporting suicide incidences (WHO 2014).

Based on the Poisson time series autoregression model, Chen et al.

(2012) proposed a method to examine if widespread media reporting of

the suicide of a young female singer by charcoal burning increased suicide

rates in Taiwan, and they confirmed that a detailed description of a specific

suicide method of the celebrity may incur strong copycat effect. Cheng et

al. (2007) showed that there is a mutual causation between suicide report-

ing and suicide incidence; namely, greater number of reported suicide news

triggers more actual suicides and an increased number of actual suicides re-

sults in more reported suicides. Consequently, the impact of media coverage

on actual suicides is not linear, and instead multiplicative and interactive.

However, the evidence to date for understanding the copycat suicide effect

is still indirect and not clear (Cheng et al., 2012; Chen et al., 2011).

With online search tools, the information on daily number of articles

in AD with headlines containing key words (in Chinese) related to suici-

dal behavior (e.g., “suicide,” “building jumping,” “charcoal burning,” or
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“hanging”) during the period from January 2002 to December 2006 is col-

lected. The daily numbers of suicides are obtained from the Coroner’s Court

which is responsible for certifying any unnatural cause of death (including

suicide). The main purpose of the study is to explore the relation between

media reportage of suicides and suicide incidence.

Let Yt and Xt denote the number of suicides and the number of re-

ports in AD on day t (t = 0, . . . , n), respectively. Two characteristics are

incorporated into the model. The first one is whether there is a copycat

suicide effect. Researchers believe that the effect of Yt−j on Yt is amplified

if suicides are extensively reported in the media, but it is not clear that

how many reports can trigger the amplified effect of Yt−j on Yt. Second,

the effect of previous media coverage Xt−j and previous suicides Yt−j on Yt

may depend on the time gap j, such that the effects are stronger for recent

media coverage on suicides, and may diminish as they become remote. If

so, it is important to know when and how previous media coverage and pre-

vious suicides cease to have an effect. To address these issues, we propose

the following model:

E {Yt|Xs, Ys, s < t} = µ+

p∑
j=1

α1(j)Yt−j +

q∑
j=1

α2(j)Xt−jI(Xt−j ≥ c1)

+
w∑
j=1

α3(j)Xt−jYt−jI(Xt−j ≥ c2), (1.1)
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1 INTRODUCTION

where α1(j), α2(j) and α3(j) quantify the correlation strength among ob-

servations over time and reflect when and how the previous media coverage

and previous suicides cease to have an effect; c1, c2 are unknown threshold

parameters that relate to the occurrence of a copycat suicide effect; p, q, w

are the maximum time gaps for the second to the fourth term of the right-

hand side of (1.1) to be non-zero. The goal of this model lies mainly in

determining the threshold parameters ck and in estimating the size of the

effects α2(j) and α3(j), if the copycat effect occurs.

First of all, the proposed model (1.1) is a threshold model. The existing

threshold models can be broadly grouped into two categories. First, only

one threshold variable is included in the model. The threshold variable could

be either actual variable (Hanse, 1999, 2000; Chan, 1993; Caner & Hansen,

2001, 2008; Qian, 1998; Koop & Potter, 1999; Delgadoa & Hidalgo, 2000;

Li & Ling, 2012) or a combination of the multiple variables (Seo & Linton,

2007; Chen et al., 2006; Tsay, 1998). Second, multiple threshold variables

are included in the model. Chen et al. (2012) proposed a two-threshold vari-

able autoregressive (TTV-AR) model and applied grid search approach to

estimate threshold values. Ni et al. (2018), from the Bayesian point of view,

proposed a stochastic search variable selection method to study a subset

selection of the TTV-AR model and estimate the parameters simultane-
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ously. Wu & Chen (2007) proposed a threshold variable driven switching

AR model where the threshold variable is a random latent (unobservable)

indicator depending on covariates through link functions.

The statistical inference of the threshold model (1.1) cannot be tackled

by a traditional regression problem as it involves the unknown threshold

parameters ck’s. A common practice is to estimate the thresholds by a sim-

ple grid search method: the threshold estimates are obtained from the point

yielding the least squared error across an arbitrarily finite number of can-

didate points. The computational time for a grid search on G grid points

is O(G2), which is computationally costly with a large G. The threshold

parameters also raise a challenge for deriving the asymptotical distribu-

tions of resulting estimators because standard asymptotic methods require

a smooth criterion function while our model is not the case. In this paper,

we propose a smoothing technique to solve the problem: the computation

with the proposed method is straightforward and can be accomplished using

a standard Newton-Raphson algorithm. Furthermore, this smoothing tech-

nique helps us to establish the asymptotic theory and construct a sandwich

formula to estimate the variances of estimators.

Another issue is on the estimations of αk(j), k = 1, 2, 3. Since j takes a

finite number of values, we can specify each αk(j) as a separate parameter.
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2 FTAR ESTIMATION

We call this a simple parametric method. This simple parametric approach

may loose information because αk(j) generally varies slowly over j; that

is, αk(j) is smooth in some sense. A common method that incorporates

the smoothness is a nonparametric smoothing technique. However, since

the arguments of αk(·), k = 1, 2, 3 are discrete and finite, the traditional

nonparametric method does not fit. In this paper, a penalized least squares

method is proposed to incorporate the smoothness of αk(·) with discrete

and finite argument.

The rest of this manuscript is organized as follows. We first introduce

the flexible threshold autoregressive (FTAR) method in Section 2 and then

establish asymptotic properties in Section 3. A brief discussion on the band-

width and tuning parameter selection is summarized in Section 4. Numerical

simulations and analyses of the Hong Kong suicide data with the FTAR pro-

cedure and other methods are provided in Sections 5 and 6, respectively. A

concluding discussion is given in Section 7. All technical proofs are deferred

to Appendix.

2. FTAR Estimation

For notational simplicity, we set p = q = w by replacing p, q and w in

model (1.1) with the maximum of p, q and w and setting some of αk(j)
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to be zero. Let V t = (Vt1, . . . , Vtp)
′ ≡ (Yt−1, Yt−2, . . . , Yt−p)

′ and X t =

(Xt1, . . . , Xtp)
′ ≡ (Xt−1, . . . , Xt−p)

′. Denote αk = (αk(1), . . . , αk(p))
′ for

k = 1, 2, 3, and c = (c1, c2)′ and Θ = (µ,α′1,α
′
2,α

′
3, c
′)′. Here, Θ represents

all parameters defined in model (1.1).

First, we develop estimators for c1 and c2. The objective least squares

function is not continuous with respect to c1 or c2. The discontinuity, which

stems from the indicator functions I(Xtj > ck), raises a challenge for compu-

tation and derivation of the asymptotic distributions for estimators (Sher-

man, 1993; Han, 1987; and Faraggi & Simon, 1996) In this manuscript, we

solve the discontinuity problem by using the kernel smoothing technique

(Brown & Wang, 2005; Lin et al., 2011). Let Φ denote the standard normal

distribution function. Note that if Xtj > ck, Φ ((Xtj − ck)/h)→ 1 as h→ 0,

while if Xtj < ck, Φ ((Xtj − ck)/h)→ 0, where the bandwidth h goes to zero

as the sample size increases; that is, Φ ((Xtj − ck)/h) → I(Xtj > ck). The

inequality (7.3) in the proof in Appendix B shows that when h is small

enough, the error from the approximation is negligible. Rather than a nor-

mal approximation, other approximations for I(Xtj > ck), such as a sigmoid

approximation (Ma & Huang, 2007), can also be used. With such an ap-

proximation, the computation for Θ, especially for c, is straightforward and

can be accomplished through a standard Newton-Raphson iterative algo-
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2 FTAR ESTIMATION

rithm. Finally, to incorporate the information that αk(j), k = 1, 2, 3 vary

slowly over j, we estimate Θ by minimizing the following penalized least

squares function:

Ln(Θ) = ln(Θ) + λJ(α1,α2,α3), (2.1)

with respect to Θ, where

ln(Θ) =
1

n

n∑
t=1

[
Yt − µ−

p∑
j=1

α1(j)Vtj

−
2∑

k=1

p∑
j=1

αk+1(j)XtjV
k−1
tj Φ ((Xtj − ck)/h)

]2

, (2.2)

λ is a tuning parameter and J(α1,α2,α3) is a penalty function to enforce

the smoothness on αk(·), k = 1, 2, 3. The choice of the penalty function

J(α1,α2,α3) is crucial. Note that αk(j) varies slowly over j and the argu-

ment of αk(·) is an ordinal variable, and then we may assume that αk(·)

changes smoothly between any two adjacent levels j and j + 1. This leads

to a quadratic second order difference penalty

J(α1,α2,α3) =
3∑

k=1

wk

p−1∑
j=2

{αk(j + 1)− 2αk(j) + αk(j − 1)}2 , (2.3)

where wk, k = 1, 2, 3, are weights for each coefficient function. The pur-

pose of introducing the weights wk is to make the quadratic second or-

der for αk(·) comparable by taking variations of corresponding variables

into account. Consequently, we can avoid using separate tuning parameters
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for each αk(·). In simulation studies and the real data analysis, we choose

w1 = median{SD(Vtj), j = 1, . . . , p}, w2 = median{SD(Xtj), j = 1, . . . , p}

and w3 = median{SD(XtjVtj), j = 1, . . . , p}. The simulation studies suggest

a good performance for these choices. This penalty mimics the cubic spline

by penalizing the L2-norm of the discrete version of the second-order deriva-

tives for the coefficients αk(·) to encourage smoothness of coefficients (Guo,

et al., 2015). Compared to the fused lasso penalty (Tibshirani et al., 2005),

the above penalty (2.3) is computationally simple and captures smoothly

varying features.

It is straightforward to develop a Newton-Raphson algorithm to solve

the minimization problem (2.1). The following notations are necessary to

present the gradient and Hessian matrix of Ln(Θ). Let α = (α′1,α
′
2,α

′
3)′,

φh(x) = φ(x/h)/h, where φ(·) is the standard normal density function , and

φ̇h(x) = ∂φh(x)/∂x is the derivative of φh(x); Υtj1(Θ) = Vtj, Υtjk(Θ) =

XtjV
k−2
tj Φ ((Xtj − ck−1)/h), k = 2, 3, Υtk(Θ) = (Υt1k(Θ), . . . ,Υtpk(Θ))′,

k = 1, 2, 3, Υt(Θ) = (Υt1(Θ)′,Υt2(Θ)′,Υt3(Θ)′)′; Υtjk(Θ) = XtjV
k−2
tj φh (Xtj − ck−1),

Υtk(Θ) = (Υt1k(Θ), . . . ,Υtpk(Θ))′, k = 2, 3; Υ̇tjk(Θ) = XtjV
k−2
tj φ̇h (Xtj − ck−1),
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2 FTAR ESTIMATION

Υ̇tk(Θ) = (Υ̇t1k(Θ), . . . , Υ̇tpk(Θ))′, k = 2, 3; Ω = D′D and

D =



1 −2 1 0 0 · · · 0 0 0

0 1 −2 1 0 · · · 0 0 0

0 0 1 −2 1 · · · 0 0 0

· · ·

0 0 0 0 0 · · · 1 −2 1


(p−2)×p

.

First, we obtain

∂Ln(Θ)

∂µ
= − 2

n

n∑
t=1

[Yt − µ−α′Υt(Θ)] ,

∂Ln(Θ)

∂α
= − 2

n

n∑
t=1

[Yt − µ−α′Υt(Θ)] Υt(Θ) + 2(λI3 ⊗ Ω)α,

∂Ln(Θ)

∂c1

=
2

n

n∑
t=1

[Yt − µ−α′Υt(Θ)]α′2Υt2(Θ),

∂Ln(Θ)

∂c2

=
2

n

n∑
t=1

[Yt − µ−α′Υt(Θ)]α′3Υt3(Θ),

where I3 is a 3-dimensional identity matrix, and ⊗ means the Kronecker

product. Then, the gradient of Ln(Θ) follows as

g(Θ) ,
∂Ln(Θ)

∂Θ
= (

∂Ln(Θ)

∂µ
,
∂Ln(Θ)

∂α′
,
∂Ln(Θ)

∂c1

,
∂Ln(Θ)

∂c2

)′.

The elements for the Hessian matrix H(Θ) , ∂2Ln(Θ)
∂Θ∂Θ′

are given by:

∂2Ln(Θ)

∂µ2
= 2,

∂2Ln(Θ)

∂µ∂α′
=

2

n

n∑
t=1

Υt(Θ)′,

∂2Ln(Θ)

∂µ∂c1

= − 2

n

n∑
t=1

α′2Υt2,c1(Θ),
∂2Ln(Θ)

∂µ∂c2

= − 2

n

n∑
t=1

α′3Υt3,c2(Θ),
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∂2Ln(Θ)

∂α∂α′
=

2

n

n∑
t=1

Υt(Θ)Υt(Θ)′ + 2(λI3 ⊗ Ω),

∂2Ln(Θ)

∂α∂c1

= − 2

n

n∑
t=1

α′2Υt2,c1(Θ) +
2

n

n∑
t=1

[Yt − µ−α′Υt(Θ)]
(

0
Υt2,c1 (Θ)

0

)
,

∂2Ln(Θ)

∂α∂c2

= − 2

n

n∑
t=1

α′3Υt3,c2(Θ) +
2

n

n∑
t=1

[Yt − µ−α′Υt(Θ)]
(

0
0

Υt3,c2 (Θ)

)
,

∂2Ln(Θ)

∂c2
1

=
2

n

n∑
t=1

[α′2Υt2,c1(Θ)]
2 − 2

n

n∑
t=1

[Yt − µ−α′Υt(Θ)]α′2Υt2,c1c1(Θ),

∂2Ln(Θ)

∂c1∂c2

=
2

n

n∑
t=1

(α′2Υt2,c1(Θ)) (α′3Υt3,c2(Θ)) ,

∂2Ln(Θ)

∂c2
2

=
2

n

n∑
t=1

[α′3Υt3,c2(Θ)]
2 − 2

n

n∑
t=1

[Yt − µ−α′Υt(Θ)]α′3Υt3,c2c2(Θ),

where Υt2,c1(Θ) = ∂Υt2(Θ)/∂c1,Υt3,c2(Θ) = ∂Υt3(Θ)/∂c2,Υt2,c1c1(Θ) =

∂2Υt2(Θ)/∂c2
1 and Υt3,c2c2(Θ) = ∂2Υt3(Θ)/∂c2

2. Finally, with an initial value

Θ(0) for Θ, we update the estimate of Θ at the (k + 1)-th iteration by

Θ(k+1) = Θ(k) −
(
H(θ(k))

)−1
g(Θ(k))

until convergence.

To initialize the algorithm, we choose the initial values of c1 and c2,

for example, as c1 = c2 = mediant,jXtj. Given c1 and c2, we estimate the

parameters µ and α by minimizing the squared errors without penalty,

which is a standard least squares problem.
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3 LARGE SAMPLE PROPERTIES OF THE ESTIMATORS

3. Large sample properties of the estimators

Now, we establish the consistency and asymptotic normality of the FTAR

estimator. Without loss of generality, we assume the support of Xtj is [0, 1].

Some regularity conditions are stated in Appendix A. Denote Θ1 ≡ (µ,α′)′,

and the true values of Θ, Θ1 and c by Θ0, Θ10 and c0, respectively. The

consistency of Θ̂ is presented in Theorem 1.

Theorem 1. Under Conditions A.1 to A.3 in Appendix A, it follows that

‖ Θ̂1 −Θ10 ‖= Op(n
−1/2 + λ) and ‖ ĉ− c0 ‖= Op(

√
h/n+ λ

√
h).

It is expected that there exists a root−n consistent penalized estimator

for the common regression coefficients Θ1 with λ = o( 1√
n
). However, the

estimator for c converges to the true values is at a rate O(
√
h/n) with

λ = o( 1√
n
), which is faster than root-n. Although a little surprising, this

result is not new and has been observed by Seo & Linton (2007). It is due

to the fact that the observed information for c is through I(Xtj > c1) and

I(Xtj > c2), which are indicator functions from zero to one. The jump

implies an infinite derivative and brings a large amount of information for

c. From simulation experiments, we also observe that the mean squared

errors for the estimator of c are smaller than those for other regression

coefficients. See Table 1 for details.
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Furthermore, under some mild conditions, the penalized smoothing es-

timator is asymptotically normal.

Theorem 2. Under Conditions A.1 to A.3 in Appendix A, it follows that

√
n(Θ̂1 −Θ10 + λV −1

11 b)→ N(0, V −1
11 Σ2V

−1
11 ),√

n

h
(ĉ− c0 − hλV −1

22 V
′

12V
−1

11 b)→ N(0, V −1
22 Σ1V

−1
22 ),

where V11, V22, V12,Σ1,Σ2 and b are defined in Appendix B.

Therefore, both Θ̂1 and ĉ can be asymptotic unbiased by choosing

a small turning parameter λ = o( 1√
n
) . Proofs of Theorems 1 and 2 are

provided in Appendix C.

4. Selection of bandwidth and smoothing parameter

The estimation procedure requires selecting a bandwidth h. The leading

terms for the estimators of the regression parameters, Θ̂1, are independent

of the bandwidth h, indicating that the bandwidth h is not crucial for the

asymptotic performance of Θ̂1. The asymptotic variance and bias of ĉ are

of order O(h/n) and
√
nhλ respectively, which are both decreases as h de-

creases. Thus, smaller h may lead to a better estimator. However, numerical

studies show that for extremely small h, the proposed estimator may be un-

stable. Our extensive numeric results suggest that h can be the minimum
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4 SELECTION OF BANDWIDTH AND SMOOTHING PARAMETER

difference between any two values of the Xt so that the Φ((Xtj− ck)/h) can

well-approximate the indicator function around the threshold parameters.

In practice, we can generate a sequence of h around this minimum value

and find an appropriate one which generates stable estimates.

Next, we consider the smoothing parameter λ for α. Most existing

tuning parameter selection methods are designed for independent data.

Cai, Fan & Yao (2000) proposed an analogue to the cross-validation (CV)

method for the structure of time series data, and we use their method to

select λ. Given an m smaller enough, we first use R subseries of lengths

n−r×m(r = 1, . . . , R) from the beginning to estimate the unknown coeffi-

cient functions and parameters, and then compute the one-step forecasting

errors for the following section of the time series with length m, based on

the estimated model. Finally, we choose the value for λ which minimizes

the average mean squared (AMS) error, AMS(λ) =
∑R

r=1AMSr(λ), where

AMSr(λ) =
1

m

n−rm+m∑
t=n−rm+1

{
Yt − µ̂r −

p∑
j=1

α̂r1(j)Vtj

−
2∑

k=1

p∑
j=1

α̂rk+1(j)XtjV
k−1
tj I(Xtj ≥ ĉrk)

}2

, (4.1)

and µ̂r, α̂rk(j), ĉ
r
1 and ĉr2 are estimates for µ, αk(j), c1 and c2, based on

the data {(Yt,X t,V t), t = 1, . . . , n− rm} given λ, k = 1, 2, 3, j = 1, . . . , p.

Cai, Fan & Yao (2000) suggested using m = [0.1n] and R = 4. Our simu-
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lation studies and application show that this method can yield reasonable

smoothing parameters.

5. Simulation studies

In this section, simulation studies are conducted to assess the finite-sample

performance of the FTAR method. We evaluate the performance of the

FTAR method by comparing it to the least squares method without penalty

(termed LS-UNP), so we can determine how much efficiency the proposed

method can obtain with the incorporated smoothness of αk(·). We are also

interested in the effects of the bandwidth h and the smoothing parame-

ter λ on the resulting estimators. Finally, we investigate the performance of

FTAR in choosing λn with the formula (4.1). The performance of estimators

is assessed via the empirical bias and standard deviation of resulting estima-

tors. To be specific, for αk = (αk(1), . . . , αk(p))
′, we assess empirical Bias =[

1
p

∑p
j=1{E∗α̂k(j)− αk(j)}2

]1/2

, SD =
[

1
p

∑p
j=1E

∗{α̂k(j)− E∗α̂k(j)}2
]1/2

and the root of MSE, RMSE =
√

Bias2 + SD2, where E∗(·) is the empirical

expectation over 200 simulated data sets.

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



5 SIMULATION STUDIES

We simulate observations under the following model:

Yt =

p∑
j=1

α1(j)Yt−j +

p∑
j=1

α2(j)Xt−jI(Xt−j ≥ c1)

+

p∑
j=1

α3(j)Xt−jYt−jI(Xt−j ≥ c2) + εt, (5.1)

where Xt ∼ Unif(0, 4), εt ∼ N (0, 1), c1 = 2, and c2 = 3. We choose

αk(j), k = 1, 2, 3 according to the following three cases:

(1) if p = 15,

• α1(j) = −0.006(j − (p− 10)/2)2/((p/2− 5)2 + 0.03,

• α2(j) = −4.5(j − (p− 4)/2)2/((p/2− 2)2 + 18,

• α3(j) = −0.004(j − (p− 6)/2)2/((p/2− 3)2 + 0.02;

(2) if p = 30,

• α1(j) = −0.006(j − (p− 10)/2)2/((p/2− 5)2 + 0.0165,

• α2(j) = −4.5(j − (p− 4)/2)2/((p/2− 2)2 + 14.4,

• α3(j) = −0.003(j − (p− 6)/2)2/((p/2− 3)2 + 0.01;

(3) if p = 60,

• α1(j) = −0.006(j − (p− 10)/2)2/((p/2− 5)2 + 0.0075,

• α2(j) = −4.5(j − (p− 4)/2)2/((p/2− 2)2 + 18,

• α3(j) = −0.003(j − (p− 6)/2)2/((p/2− 3)2 + 0.006.
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The basic idea behind these settings is that for each p, α1(j), α2(j) and

α3(j) are selected to generate similar variances for each term in (5.1). In

addition, we consider the fourth setting with c1 = 2, p = 10 and εt ∼

N (0, 0.32), in which α1(j) and α2(j) have similar shapes with that of the

real data without the interaction term:

(4) • α1(j) = 0.0008(j − 12)2 − 0.0008,

• α2(j) = 0.004(j − 5)2 + 0.025.

For each setting, we use a sample size n = 200 with sequences with a

length n+ p to accommodate the auto-regression structure. The summary

statistics of estimated parameters are reported in Table 1 for p = 15, 30, 60

and 10, from which we can draw the following conclusions:

(1) Both the FTAR and the LS-UNP methods are unbiased. The esti-

mator for c performs almost the same in most of cases because the

penalty is not imposed on c. However, the FTAR for α1,α2 and

α3 generates much smaller standard deviations and hence has much

smaller MSE’s than the LS-UNP method, suggesting that the FTAR

for α1,α2 and α3 is better than the LS-UNP in terms of the MSE.

(2) Comparing the simulation results for p = 15, 30, 60 and 10, we can see

that the differences on MSE between the proposed method and the
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5 SIMULATION STUDIES

LS-UNP increases as p increases. This can be attributed to the fact

that the degrees of freedom for the parameter space are controlled in

our method, as a result of smoothing α̂k(·), k = 1, 2, 3. In contrast,

the dimension of parameter space for the LS-UNP increases linearly

with an increasing p.

(3) The empirical standard deviations of the proposed estimators for c1

and c2 are smaller than those for α1 and α2 under all settings in

Table 1, while α3 has a small MSE due to its small scale. These

results confirm the asymptotic result in Theorem 2 that ĉ has a faster

converging rate than α̂k, k = 1, 2, 3.

Figures 1, 2, 3 and 4 present the estimates and 95% point-wise confi-

dence bands of α1(j), α2(j) and α3(j), j = 1, . . . , p, under three settings

(p = 15, 30, 60 and 10), using the proposed method with AMS-tuned λ.

The results in Figures 1 to 4 suggest that the performance of the proposed

method with AMS-tuned parameters is quite satisfactory.

Finally, we investigate the effect of varying h on the resulting estimates.

We fix λ at 0.44, 6.66, 30 for p = 15, 30, 60, respectively. In order to show

all RMSE’s in the same figure, the sequence of RMSE over h is scaled to a

one-unit variance for each coefficient function. The scaled RMSE’s against

h for each parameter are shown in Figure 5, which suggest that a smaller
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Table 1
Simulation results for p = 15, 30, 60, 10 using the proposed method with

λ = 0.007, 0.60, 4.88, 1.54, respectively, and the LS-UNP method.

Proposed LS-UNP
Bias SD RMSE Bias SD RMSE

p=15 α1 0.00087 0.00793 0.00797 0.00077 0.01614 0.01616
α2 0.03005 0.16802 0.17068 0.01875 0.21356 0.21438
α3 0.00004 0.00036 0.00036 0.00003 0.00039 0.00039
c1 0.00001 0.00145 0.00145 0.00003 0.00147 0.00147
c2 0.00007 0.00108 0.00108 0.00004 0.00098 0.00098

p=30 α1 0.00105 0.00524 0.00535 0.00184 0.01681 0.01691
α2 0.08210 0.42211 0.43002 0.08953 0.62154 0.62796
α3 0.00005 0.00033 0.00034 0.00007 0.00049 0.00050
c1 0.00011 0.00178 0.00178 0.00006 0.00165 0.00166
c2 0.00004 0.00186 0.00186 0.00022 0.00296 0.00297

p=60 α1 0.000253 0.002078 0.002094 0.001629 0.021288 0.021350
α2 0.021940 0.216963 0.218070 0.033450 0.344298 0.345919
α3 0.000008 0.000112 0.000112 0.000014 0.000191 0.000191
c1 0.000019 0.000260 0.000261 0.000011 0.000131 0.000131
c2 0.000002 0.000056 0.000056 0.000002 0.000031 0.000032

p=10 α1 0.00645 0.02048 0.02147 0.00671 0.06292 0.06328
α2 0.00284 0.00947 0.00989 0.00125 0.01537 0.01542
c1 0.00013 0.00224 0.00224 0.00079 0.01127 0.01129

Fig 1. Panels (1), (2) and (3) show the estimates for α1(j), α2(j), α3(j), j = 1, . . . , 15,
and the associated 95% point-wise confidence bands for p = 15 and AMS-tuned λ = 0.007,
respectively.
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h being preferred. However, extremely small h causes sensitivity to initial

values. Therefore, we fix h = 0.001 for p = 10, 15, 30 and h = 0.0001 for
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5 SIMULATION STUDIES

Fig 2. Panels (1), (2) and (3) show the estimates for α1(j), α2(j), α3(j), j = 1, . . . , 30,
and the associated 95% point-wise confidence bands for p = 30 and AMS-tuned λ = 0.60,
respectively.
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Fig 3. Panels (1), (2) and (3) show the estimates of α1(j), α2(j), α3(j), j = 1, . . . , 60,
and the associated 95% point-wise confidence bands for p = 60 and AMS-tuned λ = 4.88,
respectively.
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p = 60, respectively.
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Fig 4. Panels (1) and (2) show the estimates of α1(j) and α2(j), j = 1, . . . , 10, and
the associated 95% point-wise confidence bands for p = 10 and AMS-tuned λ = 1.54,
respectively.
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Fig 5. Root-MSE for p = 15, 30, 60 for various values of h given λ = 0.007, 0.60, 4.88,
respectively.
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6. Analyzing Hong Kong suicide data and media reportage

In order to examine whether the reported suicides in media influences actual

suicides, we apply the proposed method to analyze the coverage in term of

the number of reported suicides in a Hong Kong based tabloid newspaper

(the AD) during the period from January 2002 to December 2006 via the
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6 ANALYZING HONG KONG SUICIDE DATA AND MEDIA
REPORTAGE

WISENEWS search. In total, there were 1,827 such reports. January 2002

to December 2006 is taken as the study period as Hong Kong’s suicide rate

increased to its historical maximum, with a rate of 18.6 per 100,000 (i.e.,

1,264 suicide deaths in 2003, an average of about three deaths each day).

The number of reports is on a daily basis. Due to zero reporting in

many days, we aggregate both daily number of suicides reported by AD

and actual suicides with a weekly average. The outcome variable Yt can

be regarded as a continuous variable. The histogram and Q-Q plot of the

weekly average show that its distribution is close to a normal one, which

makes the developed model applicable. Figure 6 displays the aggregated

daily numbers of reported and actual suicides in Hong Kong for each week

from January 2002 to December 2006. The raw curves in Figure 6 show

some lags of spikes between the AD reported and actual suicides.

As described in Section 1, we fit the following model on the data:

E {Yt|Ys, s < t,Xs, s ≤ t} = µ+

p∑
j=1

α1(j)Yt−j +

p∑
j=1

α2(j)Xt−jI(Xt−j ≥ c1)

+

p∑
j=1

α3(j)Xt−jYt−jI(Xt−j ≥ c2).

First, we consider a relatively large order p = 10 to investigate the au-

toregression property. We take h = 0.001 which is around the minimum

difference between any two values of theXt, as well as can generate stable es-
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Fig 6. Plots of the averaged daily numbers of suicide reported by AD and actual suicides
in Hong Kong for each week from January 2002 to December 2006, respectively.
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timates. The cross-validation method defined in Section 4 yields λ = 18.71.

The estimates of parameters and their standard deviations are shown in

Table 2 and Figure 7. The calculation of standard deviation is done via the

resampling method described in Fan & Yao (2003) with 500 bootstrapping

samples. The results in Figure 7 show that α̂1(·) is significantly different

from zero and α̂3(·) is not significantly different from zero.

Therefore, we refit the model by removing the interaction term. Esti-

mates for c1 is also shown in Table 2, and estimates for α1(·) and α2(·) are
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6 ANALYZING HONG KONG SUICIDE DATA AND MEDIA
REPORTAGE

Table 2
Estimate, standard deviation and 95% CI for thresholds.

Estimate SD 95% CI
With interaction c1 2 0.07 (1.87, 2.13)

c2 3 0.05 (2.90, 3.10)
Without interaction c1 2 0.05 (1.90, 2.10)

Fig 7. Panels (1), (2) and (3) show the estimates of α1(j), α2(j), α3(j) and the associated
95% point-wise confidence bands, respectively.
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plotted in Figure 8, which are based on λ = 104.22. The estimate for α1(·)

implies the effect of the previous suicides declines as they become remote as

expected. The α̂2(·) and its 95% confidence bands suggest that the copycat

effect of media coverage is at the borderline of significance, which can last

for a long time up to 8 weeks. ĉ1 = 2 implies that a copycat suicide effect

occurs when the number of reports is more than two.

For comparison purposes, we also fit the data with a simple time series
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Fig 8. Panels (1) and (2) show the estimates of α1(j), α2(j) based on the model without
the interaction term, and the associated 95% point-wise confidence bands, respectively.
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regression with the form of

E {Yt|Ys, s < t,Xs, s ≤ t} = µ+

p∑
j=1

α1(j)Yt−j +

p∑
j=1

α2(j)Xt−j,

with p = 8. The estimates for α1(·) and α2(·) are plotted in Figure 9. The

results show that α̂1(·) is marginally different from zero and α̂2(·) is not

significantly different from zero. Comparing our results in Figure 8 with

those in Figure 9, we can see our method implies a clearer trend and a

narrower confidence band, and hence is more efficient.

7. Discussion

We have proposed a flexible threshold autoregressive (FTAR) model to ex-

plore whether and how reportage of suicide relating to the incidence of

suicides. A penalized smoothing least squares estimator is adopted to es-

timate parameters and unknown functions. The proposed FTAR method
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7 DISCUSSION

Fig 9. A simple time series regression model at lag-8.
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yields an accurate estimate for the effect of reportage, which is confirmed

by simulation studies. Theoretical properties, including uniform consistency

and asymptotical normality, are proved under mild regularity conditions.

Our model identifies a copycat suicide effect, which occurs when the number

of reported cases is greater than two.

We also confirm an association between media reportage and the inci-

dence of suicides. Although the effect diminishes in the beginning, remote

media reportage can still trigger copycat effect. More importantly, in our

model we set up threshold parameters to identify the occurrence of a copycat

suicide effect. It is of further interest to investigate the pattern of copycat

suicide effect, which will be reported in another paper.
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Appendix A

Condition A.1:

1. f(x1,xr|v1,vr; r) ≤M ≤ ∞, for all r ≥ 1, where f(x1,xr|v1,vr; r) is

the conditional density of (X1,Xr) given (V 1,V r), and f(v|x) ≤M <∞,

where f(v|x) is the conditional density of V t given X t = x.
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2. The process {X t,V t, Yt} is α-mixing with
∑

k k
c[α(k)]1−2/δ < ∞

for some δ > 2 and c > 1 − 2/δ, where α(k) = sup{|Pr(A ∩ B) −

Pr(A)Pr(B)|;A ∈ F0
−∞, B ∈ F∞k }, F ba is the σ-algebra generated by

{(X t,V t, Yt); a ≤ t ≤ b}.

3. E|V t|2δ <∞, where δ is given in condition A.1.2.

4. X t is bounded with compact support [0, 1]p.

Condition A.2:

1. Assume that E{Y 2
1 + Y 2

l |X1 = x1,X l = x2,V 1 = v1,V l = v2} ≤

M <∞ for all l > 1.

2. Assume that h→ 0 and nh→∞. Further, assume that there exists

a sequence of positive integers sn such that sn → ∞, sn = o(
√
nh), and

(n/h)1/2α(sn)→ 0, as n→∞.

3. There exists δ∗ > δ, where δ is given in condition A.1.3, such that

E{|Yt|δ
∗|V t = v,X t = x} ≤M <∞

for any v and x in supports of V t and X t, respectively, and

α(n) = O(n−θ
∗
),

where θ∗ ≥ δδ∗/{2(δ∗ − δ)}.

4. E|V t|2δ
∗
<∞, and n1/2−δ/4hδ/δ

∗−1/2−δ/4 = O(1).

Condition A.3:
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1. Let fj be the density function of Xtj. The density function fj(·) is

positive and has continuous second derivatives on [0, 1].

2. λ→ 0, h2log(n)→ 0 and nh→∞ as n→∞.

The above conditions are used for deriving the convergence properties.

Conditions A.1 and A.2 are similar to those in Cai, Fan, & Yao (2000).
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Appendix B: Notations and Lemma

Let fj be the density function of Xtj, where fj,s(xtj, xts) is the joint density

of Xtj and Xts, Θ0 is the true value of Θ, and vk =
∫
xkφ2(x)dx.

σ2(V t,X t) = var(Yt|V t,X t),

bk(Θ) =

p∑
j=1

v0α
2
k+1(j)c2

kfj(ck)E
(
σ2(V t,X t)V

2(k−1)
tj |Xtj = ck

)
,

Υtj1,0(Θ) = Υtj1(Θ),Υtjk,0(Θ) = XtjV
k−1
tj I

(
(Xtj > ck−1)/h

)
, k = 2, 3,

Ctk(Θ) =

p∑
`=1

αk+1(`)Xt`V
k−1
t` φ

(
(Xt` − ck)/h

)
,

Fk(Θ) = 2

p∑
j=1

α2
k+1(j)c2

kv0fj(ck)E[V 2
tj|Xtj = ck],

F (Θ) =

p∑
j 6=l

α2(j)α3(l)c1c2fj,l(c1, c2)E(Vtl|Xtj = c1, Xtl = c2),

κkjl = 2

p∑
m=1

αl+1,0(m)cl,0fm(cl,0)E

[
V l−1
tm [VtjI(k = 1) +XtjV

k−1
tj I(Xtj > ck−1,0)I(k 6= 1, j 6= m)

+cl,0VtjI(cl,0 > ck−1,0)I(k 6= 1)I(j = m)]

∣∣∣∣Xtm = cl,0

]
,

ϕl(Θ) = 2

p∑
j=1

αl+1(j)clfj(cl)E(V l−1
tj |Xtj = cl),

δkjmv = 4Eσ2(V t,X t)Υtjk,0(Θ0)Υtvm,0(Θ0),

ζ1(Θ) =

p∑
j 6=s

α2(j)α3(s)c1c2fj,s(c1, c2)E
(
σ2(V t,X t)Vtj|Xtj = c1, Xts = c2

)
, ζ2 = 4Eσ2(V t,X t),

$kj = 4Eσ2(V t,X t)Υtjk,0(Θ0), ϑkj = 2EΥtjk,0(Θ0), ρkjmv = 2EΥtjk,0(Θ0)Υtvm,0(Θ0),

Σ11 = ζ2, Σ22 = (δ1i1j)i≤p,j≤p,Σ33 = (δ2i2j)i≤p,j≤p,Σ44 = (δ3i3j)i≤p,j≤p,Σ12 = ($1j)j≤p,

Σ13 = ($2j)j≤p,Σ14 = ($3j)j≤p,Σ23 = (δ1i2j)i≤p,j≤p,Σ24 = (δ1i3j)i≤p,j≤p,Σ34 = (δ2i3j)i≤p,j≤p,

A11 = 2, A22 = (ρ1j1v)1≤j,v≤p, A33 = (ρ2j2v)1≤j,v≤p, A44 = (ρ3j3v)1≤j,v≤p, A12 = (ϑ1j)j≤p,

A13 = (ϑ2j)j≤p, A14 = (ϑ3j)j≤p, A23 = (ρ1j2v)1≤j,v≤p, A24 = (ρ1j3v)1≤j,v≤p, A34 = (ρ2j3v)1≤j,v≤p,
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B1 = (ϕl)l=1,2, B2 = (κ1jl)1≤j≤p,l=1,2, B3 = (κ2jl)1≤j≤p,l=1,2, B4 = (κ3jl)1≤j≤p,l=1,2,

Σ1 = diag(b1(Θ0), b2(Θ0)), V12 = (B′1, B
′
2, B

′
3, B

′
4)′, V22 = diag(F1, F2),b = (0,α′0A

′)′,

A = 2


Ω 0 0

0 Ω 0

0 0 Ω

 , Σ2 =



Σ11 Σ12 Σ13 Σ14

Σ′12 Σ22 Σ23 Σ24

Σ′13 Σ′23 Σ33 Σ34

Σ′14 Σ′24 Σ′34 Σ44


, V11 =



A11 A12 A13 A14

A′12 A22 A23 A24

A′13 A′23 A33 A34

A′14 A′24 A′34 A44


.

Denote Uk(Θ) = 1
n

∑n
t=1Rt,k, k = 1, 2, where

Rt,k =

[
Yt − µ−

p∑
j=1

α1(j)Vtj −
2∑

k=1

p∑
j=1

αk+1(j)XtjV
k−1
tj Φ ((Xtj − ck)/h)

]

×

{
p∑
j=1

αk+1(j)XtjV
k−1
tj φh (Xtj − ck)

}
.

Lemma A.1 Under Conditions A.1 and A.2, if h → 0 and nh → ∞

as n→∞, we have

(a) hvar{Rt,k(Θ0)} = bk(Θ0) + o(1);

(b) h
∑n−1

j=1 |cov(R1,k(Θ0), R1+j,k(Θ0))| = o(1);

(c) nhvar{Uk(Θ0)} = bk(Θ0) + o(1).

Proof. Denote

Rt,k0 =

[
Yt − µ−

p∑
j=1

α1(j)Vtj −
2∑

k=1

p∑
j=1

αk+1(j)XtjV
k−1
tj I (Xtj > ck)

]

×

{
p∑
j=1

αk+1(j)XtjV
k−1
tj φh (Xtj − ck)

}
, k = 1, 2.

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



Suppose that Z is a standard normal variable. Then we have tail probability,

1−Φ(t) = P (Z ≥ t) =
1√
2π

∫ ∞
t

e−
z2

2 dz ≤ 1√
2π

∫ ∞
t

z

t
e−

z2

2 dz ≤ 1√
2πt

e−t
2/2,

(7.1)

for any t > 0. We first consider the case of Xtj > ck. To simplify the

notation, let x = (Xtj − ck)/h which is positive, since

|Φ(x)− I(x > 0)| = |Φ(x)− 1|I(Xtj ≥ ck +
√
h) + |Φ(x)− 1|I(ck < Xtj < ck +

√
h),

then, ∀ε > 0 and ∀s ≥ 1,

P (
|Φ(x)− I(x > 0)|

hs
> ε|Xtj > ck)

= P

(
|Φ(x)− 1|I(Xtj ≥ ck +

√
h) + |Φ(x)− 1|I(ck < Xtj < ck +

√
h)

hs
> ε|Xtj > ck

)

≤ P

(
|Φ(x)− 1|I(Xtj ≥ ck +

√
h)

hs
> ε/2|Xtj > ck

)

+P

(
|Φ(x)− 1|I(ck < Xtj < ck +

√
h)

hs
> ε/2|Xtj > ck

)

≤ P

(
|Φ(x)− 1|I(x ≥ 1/

√
h)

hs
> ε/2|Xtj > ck

)
+ P (ck < Xtj < ck +

√
h|Xtj > ck)

≡ I1 + I2.

By (7.1), we have

I1 ≤ P

(
1√
2πx

e−x
2/2I(x ≥ 1/

√
h)

hs
> ε/2|Xtj > ck

)
. (7.2)
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Noting that f(y) = 1
y
e−y

2/2 is monotonically decreasing function for y > 0,

we have
1√
2πx

e−x
2/2

hs
≤ 1√

2πh2s−1
e−1/2h → 0 when x ≥ 1/

√
h. Then

I1 ≤ P

(
1√

2πh2s−1
e−1/2hI(x ≥ 1/

√
h) > ε/2|Xtj > ck

)
→ 0.

Moreover, under condition A.3.1, we have

I2 = P (ck < Xtj < ck +
√
h|Xtj > ck)) = O(

√
h).

Thus,

lim
n→∞

P (
|Φ(x)− I(x > 0)|

hs
> ε|Xtj > ck)) = 0

which implies |Φ(
Xtj−ck

h
) − I(Xtj > ck)| = op(h

s) for any s ≥ 1. Similarly,

the same conclusion holds for Xtj < ck. In summary, we have

|Φ(
Xtj − ck

h
)− I(Xtj > ck)| = op(h

s), for any s ≥ 1. (7.3)

Hence,

Rt,k(Θ) = Rt,k0(Θ) +Rt,k(Θ)−Rt,k0(Θ)

= Rt,k0(Θ) + op(h
s). (7.4)

The rest of the proof is similar to that of Lemma A.1 in Cai, Fan & Yao

(2000) and only give the proof of (a).
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By conditioning on (Vt,Xt), we have

V ar
(
Rt,k0(Θ)

)
=

p∑
j=1

Eσ2(Vt,Xt)α
2
k+1(j)X2

tjV
2(k−1)
tj φ2

h (Xtj − ck)

+Eσ2(Vt,Xt)

p∑
j 6=j′

αk+1(j)αk+1(j′)XtjXtj′V
k−1
tj V k−1

tj′ φh (Xtj − ck)φh (Xtj′ − ck)

= I1 + I2.

Firstly,

I1 =

p∑
j=1

α2
k+1(j)E

∫
σ2(Vt,Xt)X

2
tjV

2(k−1)
tj φ2

h (Xtj − ck) fj(Xtj)dXtj

=
1

h2

p∑
j=1

α2
k+1(j)E

∫
σ2(Vt,Xt)X

2
tjV

2(k−1)
tj φ2

(
Xtj − ck

h

)
fj(Xtj)dXtj

=
1

h

p∑
j=1

α2
k+1(j)E

∫
σ2(Vt,Xt)(zh+ ck)

2V
2(k−1)
tj φ2 (z) fj(zh+ ck)dz

=
1

h

p∑
j=1

α2
k+1(j)E

∫
σ2(Vt,Xt){c2

k}V
2(k−1)
tj φ2 (z) {fj(ck)}dz

+
1

h

p∑
j=1

α2
k+1(j)E

∫
σ2(Vt,Xt){c2

k}V
2(k−1)
tj φ2 (z) {f ′j(ck)zh}dz

+
1

h

p∑
j=1

α2
k+1(j)E

∫
σ2(Vt,Xt){2zhck}V 2(k−1)

tj φ2 (z) {fj(ck)}dz

+
1

h

p∑
j=1

α2
k+1(j)E

∫
σ2(Vt,Xt){2zhck}V 2(k−1)

tj φ2 (z) {f ′j(ck)zh}dz + · · ·

=
1

h
bk(Θ) +O(1) +O(1) +O(h) + o(h).
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Similarly, one can prove I2 = o(h). Thus, we can get

hV ar
(
Rt,k0(Θ0)

)
= bk(Θ0) +O(h) = bk(Θ0) + o(1).

Appendix C: Proofs of Theorems

Proof of Theorem 1.

Let α1n = n−1/2+λ, α2n =
√
h/n+

√
hλ. Denote Θ0 = (µ0,α

′
10,α

′
20,α

′
30, c

′
0)′

to be the true value of Θ. We wish to show that for any given ε > 0, there

exists a large constant τ1, τ2 such that

Pr

[
min

‖u1‖=τ1,‖u2‖=τ2
Ln{Θ0 + (α1nu1

′, α2nu2
′)′} > Ln(Θ0)

]
≥ 1− ε,

where u1 has the same dimension as Θ1 and u2 has the same dimension

as c. This implies with a probability of at least 1 − ε, that there exists a

local minimum in the ball {Θ0 + (α1nu1
′, α2nu2

′)′ :‖ u1 ‖≤ τ1, ‖ u2 ‖≤ τ2}.

Hence, there exists a local minimum (Θ′1, c
′)′ such that ‖Θ1 − Θ10‖ =

Op(α1n), ‖ c− c0 ‖= Op(α2n).

With the definition Θ∗ = Θ0+(α1nu1
′, α2nu2

′)′ = (µ∗,α∗′1 ,α
∗′
2 ,α

∗′
3 , c

∗′)′,u =

(u′1,u
′
2)′, we have

Dn(u) = Ln(Θ∗)−Ln(Θ0) = ln(Θ∗)−ln(Θ0)+λ {J(α∗1,α
∗
2,α

∗
3)− J(α10,α20,α30)} .

Since ∂J(α)/∂α = Aα, by the standard argument on Taylor expansion of
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the likelihood function, we have

Dn(u) = α1nu1
′∂ln(Θ0)

∂Θ1

+ α2nu2
′∂ln(Θ0)

∂c
+

1

2
α2

1nu1
′∂

2ln(Θ0)

∂Θ1∂Θ′1
u1(1 + op(1))

+
1

2
α2

2nu2
′∂

2ln(Θ0)

∂c∂c′
u2(1 + op(1)) + α1nα2nu1

′∂
2ln(Θ0)

∂Θ1∂c′
u2(1 + op(1))

+λ {(α∗ −α0)′Aα0 + (α∗ −α0)′A(α∗ −α0)}

≡ I1 + I2 + I3 + I4 + I5 + I6,

where α∗ = (α∗′1 ,α
∗′
2 ,α

∗′
3 )′. Denote ∆tjk(Θ) ≡ Φ{(Xtj − ck)/h} − I(Xtj >

ck). By (7.3), we have

∣∣∣∣E∂ln(Θ0)

∂µ

∣∣∣∣ =

∣∣∣∣ 2nE
n∑
t=1

2∑
r=1

p∑
`=1

αr+1,0(`)Xt`V
r−1
t` ∆t`r(Θ0)

∣∣∣∣ = o(hs),

∣∣∣∣E∂ln(Θ0)

∂αk(j)

∣∣∣∣ =

∣∣∣∣ 2nE
n∑
t=1

2∑
r=1

p∑
`=1

αr+1,0(`)Xt`V
r−1
t` ∆t`r(Θ0)Υtjk(Θ0)

∣∣∣∣ = o(hs),

∣∣∣∣E∂ln(Θ0)

∂ck

∣∣∣∣ =

∣∣∣∣ 2

nh
E

n∑
t=1

Ctk(Θ0)
2∑
r=1

p∑
`=1

αr+1,0(`)Xt`V
r−1
t` ∆t`r(Θ0)

∣∣∣∣ = o(hs),

(7.5)

for k = 1, 2, 3, j = 1, . . . , p, where αr,0(`) is the true value of αr(`).

Denote Akj ≡ Eσ2(V t,X t)Υ
2
tjk,0(Θ0). Furthermore, similar to Lemma
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1, we have

Γ1=̂

[
var{∂ln(Θ0)

∂α1(1)
}, · · · , var{∂ln(Θ0)

∂α1(p)
}, var{∂ln(Θ0)

∂α2(1)
}, · · · , var{∂ln(Θ0)

∂α3(p)
}
]′

=
4

n
· (A11, · · · , A1p, · · · , A3p)

′ + o(hs),

Γ2=̂var{∂ln(Θ0)

∂µ
} =

4

n
· Eσ2(V t,X t) + o(hs),

Γ3=̂

[
var{∂ln(Θ0)

∂c1

}, var{∂ln(Θ0)

∂c2

}
]′

=
1

nh
{b1(Θ0), b2(Θ0)}′ +O(1/n).(7.6)

Combining (7.5) and (7.6), we have

∂ln(Θ0)

∂α
= E{∂ln(Θ0)

∂α
}+Op(Γ

1/2
1 ) = Op(

1√
n

),

∂ln(Θ0)

∂µ
= E{∂ln(Θ0)

∂µ
}+Op(Γ

1/2
2 ) = Op(

1√
n

),

∂ln(Θ0)

∂c
= E{∂ln(Θ0)

∂c
}+Op(Γ

1/2
3 ) = Op(

1√
nh

).

then

I1 = Op(α1nτ1/
√
n), I2 = Op(α2nτ2/

√
nh). (7.7)

Similar to Lemma 1, we also obtain

E
∂2ln(Θ0)

∂µ2
= V ar(

∂2ln(Θ0)

∂µ2
) = 2,

E
∂2ln(Θ0)

∂µ∂αk(j)
= 2EΥtjk,0(Θ0) + o(hs),

V ar
∂2ln(Θ0)

∂µ∂αk(j)
=

4

n

[
EΥ2

tjk,0(Θ0)− E2Υtjk,0(Θ0)

]
+ o(1/n),

E(
∂2ln(Θ0)

∂αk(j)∂αm(v)
) = 2EΥtjk,0(Θ0)Υtvm,0(Θ0) + o(hs),

V ar(
∂2ln(Θ0)

∂αk(j)∂αm(v)
) =

4

n

[
EΥ2

tjk,0(Θ0)Υ2
tvm,0(Θ0)− {EΥtjk,0(Θ0)Υtvm,0(Θ0)}2

]
+ o(1/n).
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Hence,

I3 = Op(α
2
1nτ

2
1 ). (7.8)

Similarly, we have

E
∂2ln(Θ0)

∂c2
k

=
Fk(Θ0)

h
+O(1), E{∂

2ln(Θ0)

∂c2
k

}2 =
F 2
k (Θ0)

h2
+O(1 + (nh2)−1),

E
∂2ln(Θ0)

∂c1∂c2

= F (Θ0) +O(
1

h
exp

{
−(c1,0 − c2,0)2

4h2

}
),

E{∂
2ln(Θ0)

∂c1∂c2

}2 = F 2(Θ0) +O(exp

{
−(c1,0 − c2,0)2

2h2

}
),

then we obtain,

I4 = Op(α
2
2nτ

2
2 /h). (7.9)

Finally, by

E
∂2ln(Θ0)

∂αk(j)∂cl
= κkjl +O(h), E{ ∂

2ln(Θ0)

∂αk(j)∂cl
}2 = κ2

kjl +O(h2),

E
∂2ln(Θ0)

∂µ∂cl
= ϕl +O(h), E{∂

2ln(Θ0)

∂µ∂cl
}2 = ϕ2

l +O(h2),

we get

I5 = Op(α1nα2nτ1τ2). (7.10)

By (7.7),(7.8),(7.9), (7.10) and coupling with I6 = Op(λα1nτ1 + λα2
1nτ

2
1 ),

choosing large τ1, τ2, then I1,I2, I5 are dominated by I3, I4. This completes

the proof of Theorem 1. �
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Proof of Theorem 2.

According to Theorem 1, when λ = o(1/
√
n), it can easily be shown that

there exists a
√
n-consistent estimator Θ̂1 = (µ̂, α̂′)′ and

√
n/h-consistent

estimator ĉ, satisfying the following equations

∂ln(Θ̂)

∂Θ1

+ λb̂ = 0,

∂ln(Θ̂)

∂c
= 0,

where b̂ = (0, α̂′A′)′ is a vector of 3p+ 1 dimension. By Taylor expansion,

−
√
n
∂ln(Θ0)

∂Θ1

=
∂2ln(Θ0)

∂Θ1∂Θ′1

√
n(Θ̂1 −Θ10)(1 + op(1))

+
√
h
∂2ln(Θ0)

∂Θ1∂c′

√
n

h
(ĉ− c0)(1 + op(1)) +

√
nλb̂,

−
√
nh
∂ln(Θ0)

∂c
=
√
h
∂2ln(Θ0)

∂c∂Θ′1

√
n(Θ̂1 −Θ10)(1 + op(1))

+h
∂2ln(Θ0)

∂c∂c′

√
n

h
(ĉ− c0)(1 + op(1)). (7.11)

Since

E(
∂ln(Θ0)

∂ck
)2 =

1

nh
bk(Θ0) +O(1/n),

E
∂ln(Θ0)

∂c1

∂ln(Θ0)

∂c2

=
1

n
ζ1 +O(h)

E
∂ln(Θ0)

∂αk(j)

∂ln(Θ0)

∂αm(v)
=

1

n
δkjmv + o(hs/n),

E(
∂ln(Θ0)

∂µ
)2 =

1

n
ζ2 + o(hs/n),

E
∂ln(Θ0)

∂µ

∂ln(Θ0)

∂αk(j)
=

1

n
$kj + o(hs/n),
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we get nh(∂ln(Θ0)
∂c )⊗2 →p Σ1 and n(∂ln(Θ0)

∂Θ1
)⊗2 →p Σ2. Then by CLT we have

√
nh
∂ln(Θ0)

∂c
→ N(0,Σ1),

√
n
∂ln(Θ0)

∂Θ1

→ N(0,Σ2). (7.12)

Furthermore, from the proof of Theorem 1, we know that ∂2ln(Θ0)
∂Θ1∂Θ′1

→p V11,

∂2ln(Θ0)
∂Θ1∂c′ →p V12, h∂

2ln(Θ0)
∂c∂c′ →p V22. Based on all these results coupled with

(7.11),(7.12) and Slutsky’s theorem, we obtain

√
n(Θ̂1 −Θ10 + λV −1

11 b)→ N(0, V −1
11 Σ2V

−1
11 ),√

n

h
(ĉ− c0 − hλV −1

22 V
′

12V
−1

11 b)→ N(0, V −1
22 Σ1V

−1
22 ),

where b is defined in Appendix B. We complete the proof of Theorem 2. �

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)


	Introduction
	FTAR Estimation
	Large sample properties of the estimators
	Selection of bandwidth and smoothing parameter
	Simulation studies
	Analyzing Hong Kong suicide data and media reportage
	Discussion
	Acknowledgement
	Appendix A
	Appendix B: Notations and Lemma
	Appendix C: Proofs of Theorems



