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Abstract: Length-biased data are inevitably encountered in various fields rang-

ing from epidemiological cohort studies to studies of labor economics, attracting

much attention in the survival literature. A crucial goal of survival analysis is

to identify a subset of risk factors and their risk contributions among massive

clinical covariates. However, there has been no work on variable selection for

length-biased data due to the complex nature of such data and the lack of a con-

venient loss function. In this article, we propose an estimation method based on

the penalized estimating equations to obtain both sparse and consistent estima-

tor for length-biased data under the accelerated failure time (AFT) model. The

proposed estimator possesses selection and estimation consistency property. In

particular, we implement the method with SCAD penalty and local linear approx-

imation algorithm. We suggest selecting the tuning parameter by extended BIC

criterion in high-dimensional setting. Furthermore, a novel multi-stage SCAD
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penalized estimating equations procedure is developed to achieve enhanced es-

timation accuracy and sparsity in variable selection. Simulation studies show

that the proposed procedure has high accuracy and almost perfect sparsity. The

Oscar Awards data is analyzed as an application of the proposed method.

Key words and phrases: Accelerated failure time model; High-dimensional vari-

able selection; Length-biased data; Multi-stage penalization.

1. Introduction

Length-biased sampling, a special case of left truncation, is a frequently

used, convenient and economical sampling technique for the collection of

data in various fields, such as epidemiological cohort studies and studies of

labor economics. Length-biased data assumes that the incidence of event

onset follows a Poisson process (Zelen and Feinleib, 1969; Simon, 1980)

known as the stationarity assumption which is often suitable in practice, or

equivalently the truncation time follows a uniform distribution, and hence

occurs when the probability that an item is sampled is proportional to its

length. As a result, the observed time intervals from initiation to failure

tend to be longer than those in the target population in a prevalent cohort

study. An example of such data can be found in the study of dementia

among elderly people by the Canadian study of Health and Aging (CSHA)

(Asgharian et al., 2002; Addona and Wolfson, 2006; Shen et al., 2009; Qin
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and Shen, 2010). There were more than 10,000 Canadians over the age of 65

recruited and screened for prevalence of dementia. The approximate initial

date of dementia and the subsequent time of death and censoring were

recorded, for the individuals who were found to have dementia in the study

population. Those individuals who had dementia and did not survive to

the examination time were excluded from the investigation, and only those

individuals who had dementia and were still alive during the CSHA could

be observed, which could lead to length-biased sampling.

Extensive methodology development has focused on estimating the un-

biased target distribution in the presence of length-bias. One approach is

based on the conditional distribution of the observations given the sampling

process (Lagakos et al., 1988; Wang, 1991). Another approach is based on

the unconditional distribution (Vardi, 1982, 1985; Gill et al., 1988; Asghar-

ian et al., 2002, 2005), which requires the stationarity assumption. Recently,

the analysis of right-censored and length biased data has attracted atten-

tions from many researchers. A great challenge in analyzing such data is

informative censoring, that is, the dependence between the right censor-

ing time and the failure time. Another significant difficulty is that the

observed length-biased data change the model structure assumed for the

target population. Shen et al. (2009) developed estimating equation meth-
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ods for semiparametric transformation and accelerated failure time (AFT)

models to obtain the consistent estimators of the regression coefficients.

Qin and Shen (2010) proposed two estimating equation approaches for the

Cox model to analyze covariate effects. Ning et al. (2011) presented a gen-

eralized Buckley-James-type estimator under AFT model.

A crucial goal of survival analysis is to identify the risk factors and their

risk contributions. By the advent of modern data collection technologies,

a huge amount of clinical covariates, such as patients’ personal character-

istics, biomarkers and genotypes, are increasingly accessible from various

sources by researchers. A necessary but challenging task is to select a subset

of important variables upon which the hazard function or the survival time

depends, since it helps medical researchers build comprehensible models to

predict outcomes without information loss and leads to better disease diag-

nosis and treatment in the long run. This process, called variable selection

or feature selection, has been widely studied for linear models with uncen-

sored outcomes, including subset selection, least absolute shrinkage and se-

lection operator (LASSO) (Tibshirani, 1996), bridge regression (Fu, 1998),

smoothly clipped absolute deviation (SCAD) (Fan and Li, 2001), elastic

net (Zou and Hastie, 2005), adaptive LASSO (Zou, 2006) and minimax

concave penalty (MCP) (Zhang et al., 2010a). In the context of survival
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data analysis, some of the techniques aforementioned have been extended

to variable selection with censored outcome. For Cox’s proportional haz-

ards model, Tibshirani et al. (1997) applied LASSO to partial likelihood

function, Fan and Li (2002) employed SCAD penalty and derived oracle

property for its estimator, Zhang and Lu (2007) utilized adaptive LASSO

and obtained its theoretical property. For other models, Lu and Zhang

(2007) studied the proportional odds model by maximizing the penalized

marginal likelihood of ranks, Zhang et al. (2010b) investigated semipara-

metric linear transformation models by penalizing a profiled score from the

martingale estimating equation, Huang and Ma (2010) modeled the rela-

tionship between covariates and survival using the AFT models with bridge

penalization for variable selection and parameter estimation, Liu and Zeng

(2013) presented an estimation method for semiparametric transformation

models that involves minimizing a weighted negative partial loglikelihood

function plus an adaptive LASSO penalty. However, one may not select

variables for length-biased data using the techniques above, because the

estimation and inference treating the censored length-bias data as regular

censored data leads to substantial bias and inaccuracy (Shen et al., 2009).

Hence, it is necessary to develop a new method for such particular data.

To the best of our knowledge, there has been no work on variable selec-
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tion for length-biased data especially, when the dimension of covariates is

high. This is partially due to the information censoring length-biased data

involve and biased sampling changing the model structure assumed for the

target population. Another reason is that most estimation procedures for

length-biased data are based on estimating equations, which is very dif-

ferent from the likelihood based methods such as the estimator for Cox’s

proportional hazards model. The complex nature of length-biased data and

the lack of a convenient loss function hinder the existing variable selection

methods being directly applied to such data.

In this article, we propose a simple yet powerful method to obtain both

sparse and consistent estimator for length-biased data under AFT model.

Our first contribution is to construct a working loss function based on the

complex estimating equations for length-biased data and then minimize the

working loss function with a sparse penalty. Due to the complex structure

of length-biased data, we found that the typical penalization method does

not produce a very good estimator with finite sample size, although the

asymptotic theory supports it. Our second contribution is that we further

develop a novel multi-stage sparse penalization procedure (such as SCAD)

to achieve more efficient estimation and better sparsity in variable selection.

The remainder of the paper is organized as follows. A description of
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length-biased data and the derivation of asymptotically unbiased estimat-

ing equation are given in Section 2. The estimator for length-biased data

under AFT model is proposed in Section 3. Section 4 describes the imple-

mentation, in which the local linear approximation algorithm is introduced

and tuning parameter selection problem is discussed. Section 5 derives the

theoretical properties for the proposed estimator. Simulation studies and a

real data analysis is presented in Section 6. Proof and detailed simulation

results are given in supplementary materials.

2. Notation and Model

2.1 Length-biased data

Let T̃ be the uncensored survival time measured from the initiating

event to failure without length-bias, A be the time from the initiating event

to examination, V be the duration measured from examination to failure,

and C be the censoring time from examination. T̃ is left truncated by A,

which means, one can only observe T among those T̃ > A in a length-biased

sampling, where T = A + V is the observed survival time. Here, A is also

known as the truncation variable (or backward recurrence time) and V as

the residual survival time (or forward recurrence time).

With right censoring, we have a random sample (Yi, Ai, δi, Xi), i =

1, 2, · · · , n, where Yi = min(Ti, Ai + Ci), Ti = Ai + Vi, δi = I(Vi ≤ Ci),
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Xi is a (p + 1) × 1 vector of covariates for the ith subject usually with

intercept and n is the sample size. In addition, we assume Ci is indepen-

dent of (Ai, Vi) given Xi following literature. We further assume that the

right-censoring variable C is independent of covariates X.

Denote fU as the unbiased density function of T̃ , the density function

for the length-biased data T conditional on T̃ > A given the covariates

X = x has the following form (Shen et al., 2009):

g(t|x) =
tfU(t|x)

µ(x)
, µ(x) =

∫ ∞
0

sfU(s|x)ds

where fU(t|x) denotes the unbiased density given the covariates x, and

µ(x) <∞.

2.2 Accelerated Failure Time Models

Consider the AFT model (Kalbfleisch and Prentice, 1980; Cox and

Oakes, 1984), which is assumed that the logarithm of the survival time

is linearly related to the covariates of interest as,

log T̃ = XTβ + ε, (2.1)

where X is a covariate vector with intercept and β is a (p+1)×1 parameter

vector to estimate and ε has an unknown distribution with mean zero.

According to Shen et al. (2009), estimating equations for estimation of

parameters β can be derived using inverse probability of censoring weighting

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



Variable Selection for Length-biased Data 9

techniques. Let SC(t) = P (C > t) be the survival function of C. Under the

stationarity assumption, the joint distribution of (A, V ) and (A, T ) given

covariates X has the following form

fA,V (a, v|X = x) = fU(a+ v|x)I(a > 0.v > 0)/µ(x),

which can be found in the literature (Zelen, 2006; Asgharian et al., 2005).

The probability of observing the failure data is

P (A = a, Y = y, C ≥ y − a|X = x) = P (A = a, V = y − a, C ≥ y − a|X = x)

= fU(y|x)SC(y − a)/µ(x).

Based on the joint distribution of (A, Y ) and C conditional on covariates

X, we have

E
[ δ

π(Y )
(log Y −XTβ)

]
=E
{
E
[ δ

π(Y )
(log Y −XTβ)

∣∣∣X = x
]}

=E
{ 1

µ(x)

∫ ∞
0

[ 1

π(y)

∫ y

0

SC(y − a)da
]
fU(y|x)(log y − xTβ)dy

}
=E
{ 1

µ(x)
E
[
(log T̃ −XTβ)

∣∣∣X]} = 0,

where π(t) =
∫ t
0
SC(u)du. Then the estimating equation can be constructed

as:

Ũ(β) =
n∑
i=1

Xi
δi

π(Yi)
(log Yi −XT

i β) = 0.
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Since the censoring distribution is often unknown in practice, it is commonly

used to replace the unknown censoring distribution by its consistent Kaplan-

Meier estimator

ŜC(t) =
∏
s≤t

(
1− ∆NC(s)

Y (s)

)
,

where NC(t) =
∑n

i=1N
C
i (t), NC

i (t) = I(Yi − Ai ≤ t, δi = 0), Y (t) =∑n
i=1 Yi(t), Yi(t) = I(Yi−Ai ≥ t). Thus, an asymptotic unbiased estimating

equation follows:

U(β) =
n∑
i=1

Xi
δi

π̂(Yi)
(log Yi −XT

i β) = 0,

where π̂(t) =
∫ t
0
ŜC(u)du is a consistent plug-in estimator for π(t).

Denote

ỹ(p+1)×1 =
1

n

n∑
i=1

δiXi log Yi
π̂(Yi)

=
1

n
XTDy,

X̃(p+1)×(p+1) =
1

n

n∑
i=1

δiXiX
T
i

π̂(Yi)
=

1

n
XTDX (2.2)

as working data, where D = diag( δ1
π̂(Y1)

, · · · , δn
π̂(Yn)

), X = (X1, · · · , Xn)T , y =

(log Y1, · · · , log Yn)T , then the asymptotic unbiased estimating equation can

be written as

U(β) = n · (ỹ − X̃β) = 0. (2.3)

Consequently, a closed-form solution for β is

X̃
−1
ỹ = (XTDX)−1XTDy. (2.4)
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It is important to note that (2.4) only holds in low dimensions, because X̃

is not invertible when its dimension is greater than the rank of D.

3. Methodology

3.1 Penalized estimating equations

In order to apply the modern penalization estimation method for vari-

able selection in high-dimensions, we need to have a loss function because

the common formulation of those methods is a loss plus a sparse penalty.

For survival analysis with the Cox’s proportional hazard model, the loss

function is the negative log partial likelihood. For our study, due to the

lack of a convenient loss function, variable selection is more challenging. To

overcome the obstacle, we turn (2.3) into a working loss function. Note that

finding the root to (2.3) is equivalent to solving the following minimization

problem

min
β

(ỹ − X̃β)TW (ỹ − X̃β) (3.1)

where W is a positive definite matrix free of β. For example, a natural

choice for W is the identity matrix. Next, we treat the quadratic function

in (3.1) as a working loss function and consider minimizing the loss with a

sparse penalty to encourage sparsity:

min
β

(ỹ − X̃β)TW (ỹ − X̃β) + λ

p+1∑
j=2

Pλ(|βj|). (3.2)

In this work we consider a general folded concave penalty Pλ(|t|) and its
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definitions can be found in Section 5. It is important to note that the

intercept is not penalized in (3.2).

The working loss function idea is related to the recent penalized gener-

alized method of moments estimation studied by Caner (2009) and Fan and

Liao (2011) in the econometrics literature, which is seldom seen in statis-

tics field. Another related but different scheme is the penalized generalized

estimating equations studied by Johnson et al. (2008) in semiparametric

regression models and by Wang et al. (2012) for longitudinal data. These

authors have reported very encouraging results. We tried the first approach

and provided theoretical support. However, we also found in the numeric

study that the resulting estimator, although reduces the dimension greatly,

is still not very satisfactory. This issue has not been observed in the afore-

mentioned related work (Caner, 2009; Fan and Liao, 2011; Johnson et al.,

2008; Wang et al., 2012), which is due to the more complex structure of the

censored length-biased data. This difficulty motivates us to further develop

a new procedure which is presented in the next section.

3.2 Multi-stage penalized estimating equations

We propose an iterative multi-stage penalized estimating equation method.

The multi-stage variable selection is discussed in Bühlmann and Meier

(2008); Zou and Li (2008b) for penalized likelihood to reduce the num-
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ber of false positives, which can be very urgent in biological applications

since follow-up experiments can be costly and laborious.

Let the initial estimator be

β̂
(1)

= arg min
β

(ỹ − X̃β)T (ỹ − X̃β) + λ(1)
p+1∑
j=2

Pλ(|βj|). (3.3)

Suppose that at the k-th iteration we have a current estimator β̂
(k)

.

Denote active set Ak = {j : β̂
(k)
j 6= 0}, so β̂

(k)

Ak is the vector constituted by

the nonzero components of β̂
(k)

, and XAk is the dimension-reduced design

matrix with columns selected by Ak. For computing the next iteration esti-

mator β̂
(k+1)

, we first compute dimension-reduced working data (ỹAk , X̃Ak)

by XAk through (2.2). Then we consider the following optimization prob-

lem:

β̂
(k+1)

Ak = min
β

(ỹAk − X̃Akβ)TWAk(ỹAk − X̃Akβ) + λ(k+1)
∑

j∈Ak;j 6=1

Pλ(|βj|),

(3.4)

where WAk is a computed working matrix computed based on β̂
(k)

and Ak.

Specifically, given β̂
(k)

and the data y,X,

WAk =
[ 1

n

n∑
i=1

Xi

( δi
π̂(Yi)

(log Yi −XT
i β̂

(k)
)
)2
XT
i

]−1
=
[ 1

n
XT
Akdiag

(
(D(y−XAkβ̂

(k)

Ak))
2
)
XAk

]−1
,

The interpretation of WAk is that it is an estimate of the inverse of the

covariance matrix of the estimation equation. Note that we use identity
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matrix as preliminary weighting matrix in the first step because we have

no information about the covariance matrix of the estimation equation.

The penalization parameters λ(k) are not required to be the same. No

matter how we choose λ(k), active sets sequences Ak are always nested, that

is,

Ak ⊇ Ak+1

Therefore, we stop the iteration when we observe the convergence of the

current active set, that is,

if Ak = Ak+1 stop the iteration.

By the nested property, the convergence is guaranteed.

After convergence, the active set is the selected subset of important

variables. We also try to refit the coefficient by solving the unpenalized

estimation equation with the selected subset. This final step is for reducing

the estimation bias generated in the iterative penalization stage.

4. Implementation

4.1 LLA Algorithm and 2-step LLA solution

Our estimation method can work with all sparse penalties. In this work

we focused on the folded concave penalties that include SCAD and MCP

as two special cases. Since the penalty function is folded concave and non-

differentiable at point 0, optimization objective function can be difficult
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and sometimes has multiple local minimizers. We adopt the local linear ap-

proximation algorithm (LLA) proposed in Zou and Li (2008a) to compute

the proposed estimator. Fan et al. (2014) proved that the computed local

solution by LLA is the desired theoretical local solution, which resolved a

final missing puzzle in the folded concave penalization picture. Here we

directly present the LLA algorithm for solving (3.2). The same algorithm

is applied repeatedly in the iterative multi-stage penalized estimating equa-

tions procedure. For its derivation and explanations, readers are referred

to Zou and Li (2008a).

First, we compute the initial estimator as the LASSO penalized esti-

mator

β̂
lasso

= arg min
β

(ỹ − X̃β)TW (ỹ − X̃β) + λlasso

p+1∑
j=2

|βj|. (4.1)

Given the LASSO estimator, we compute

β̂
lla1

= arg min
β

(ỹ − X̃β)TW (ỹ − X̃β) +

p+1∑
j=2

P ′λ(|β̂lasso
j |)|βj|.

Given β̂
lla1

, we compute

β̂
lla2

= arg min
β

(ỹ − X̃β)TW (ỹ − X̃β) +

p+1∑
j=2

P ′λ(|β̂lla1
j |)|βj|.

Following Fan et al. (2014), we stop with β̂
lla2

as the solution.

4.2 Tuning parameter selection
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In a penalized estimation method, the choice of penalization parameter

is very important. The tuning parameter selection method in Caner (2009)

is based on subset selection which is only feasible in very low dimension. Fan

and Liao (2011) did not consider the tuning parameter selection problem.

Johnson et al. (2008) applied generalized cross-validation statistic and Wang

et al. (2012) conducted cross validation to tune the parameter which are

not applicable for length-biased data since the prediction error is hard to

define.

In order to tune the regularization parameter λ, we borrow the extended

BIC criterion from Chen and Chen (2008) for the linear regression model

to the estimation equation setting. In the context of linear regression, the

extended BIC is defined as

RSS

σ̂2
+ d log n+ 2γ log

(
p

d

)
, 0 ≤ γ ≤ 1,

where n denotes the sample size, d denotes the number of free parameters,

RSS is the residual sum of squares from the OLS fit, and σ̂2 is an estimator

of error variance computed by the full model. Moreover, γ = 1
2

for p = n

case as suggested by Chen and Chen (2008).

For the estimator from (3.4), we define the extended BIC criterion as

n · (ỹAk−X̃Akβλ)
TWAk(ỹAk−X̃Akβλ)+‖βλ‖0 · log n+log

(
|Ak|
‖βλ‖0

)
, (4.2)
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where ‖ · ‖0 is the L0-norm. The idea is to treat nWAk as the role of 1
σ̂2 in

the original extended BIC for linear regression model.

For the estimator from (3.3), the working inverse covariance matrix

is the identity matrix. If we consider the full model in order to get an

analogue of σ̂2 in linear regression, note that “sample size” is p+ 1, “model

size” is ‖ βλ ‖0, hence the “residuals” become zero because the number of

parameters is equal to the sample size of working data. To avoid dividing

zero, we define a similar extended BIC criterion as follows

(ỹ − X̃βλ)
T (ỹ − X̃βλ)

(
1 +
‖ βλ‖0 log(p+ 1) + log

(
p+1
‖βλ‖0

)
p+ 1− ‖βλ‖0

)
. (4.3)

We use (4.3) in the first stage of the multi-stage penalized estimating

equation procedure to get the first estimator. Then in the subsequent multi-

stage procedure, we have nWAk and can apply (4.2) to tune the estimator.

This practice has been tested in our simulation studies and worked well.

5. Theoretical properties

In this section we present the asymptotic results of our estimators for

high-dimensional variable selection and estimation. Denote the true param-

eter in (2.1) as β∗, the support set as A = {j : β∗ 6= 0} and its cardinality

as s = |A|. The sparse estimation problem often assumes that s is much

smaller than the dimension of β∗.
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Denote the problem we consider in (3.2) as

min
β
`n(β) + Pλ(|β|)

with `n(β) = ‖W 1
2 ỹ−W 1

2 X̃β‖22 a convex loss and Pλ(|β|) =
∑p+1

j=2 Pλ(|βj|).

A true oracle estimator knows the true support set and is obtained by (2.4)

using the true support set, that is

β̂
oracle

A =
(
XT
ADXA

)−1
XT
ADy, β̂

oracle

Ac = 0.

Before presenting our theorems, we first state some conditions:

(A) ‖β∗A‖min > (a+ 1)λ, where ‖ · ‖min is the minimum entrywise absolute

value and a is a constant defined in Condition (E);

(B) ε = (ε1, · · · , εn) are i.i.d. sub-Gaussian(σ) for some fixed constant

σ > 0, that is, E[exp(tεi)] ≤ exp(σ2t2/2);

(C) There exists constant M > m > 0, such that 1
M
< |π(Y )| < 1

m
;

(D) κ = minδ∈Rp+1;δ 6=0:‖δAc‖1≤3‖δA‖1
‖W

1
2 X̃δ‖22
‖δ‖22

∈ (0,+∞);

(E) Assume the folded concave penalty Pλ(|t|) defined on t ∈ (−∞,∞)

satisfying following assumptions:

(i) Pλ(t) is increasing and concave in t ∈ [0,∞) with Pλ(0) = 0;

(ii) Pλ(t) is differentiable in t ∈ (0,∞) with P ′λ(0) := P ′λ(0+) ≥ a1λ;
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(iii) P ′λ ≥ a1λ for t ∈ (0, a2λ];

(iv) P ′λ = 0 for t ∈ [aλ,∞) with pre-specified constant a > a2.

Where a1 and a2 are two fixed positive constants.

(F) X is a (p + 1) × 1 vector of bounded covariates, not contained in a

p-dimensional hyperplane;

(G) sup[t : Pr(V > t) > 0] ≥ sup[t : Pr(C > t) > 0] = t0 and Pr(δ = 1) > 0;

(H)
∫ t0
0

{
[(
∫ t0
t
SC(u)du)2]/[S2

C(t)SV (t)]
}
dSC(t) <∞, where SV (t) is the sur-

vival function for residual failure time;

(I) det
(
E[δXA(log Y −XT

Aβ
∗
A)/π(Y )]⊗2

)
<∞, where for a vector v, v⊗2 =

vvT ;

(J) det
( ∫ t0

0

{
H⊗2(s)/[S2

C(s)SV (s)]
}
dSC(s)

)
<∞,

where H(t) = E
{

[δXAI(Y ≥ s)
∫ Y
t
SC(u)du(log Y −XT

Aβ
∗
A)]/[π2(Y )]

}
;

(K) ΓA ≡ limn→∞
1
n
XT
ADXA is nonsingular.

Conditions (A)-(B) can be found in Fan et al. (2014) in order to cal-

culate the probability bound to ensure the convergence of LLA solution.

Condition (D) is similar to the restricted eigenvalue condition considered

by Bickel et al. (2009) in sparse linear regression. The assumptions in con-

dition (E) can be found in Fan et al. (2014), which summarize the previous
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works on the SCAD and the MCP. The derivatives of the SCAD penalty

and MCP penalty are

P ′λ(t) = λI{t≤λ} +
(aλ− t)+
a− 1

I{t>λ} for some a > 2,

P ′λ(t) = (λ− t

a
)+ for some a > 1,

respectively. It is obvious that a1 = a2 = 1 for the SCAD, and a1 =

1− a−1, a2 = 1 for the MCP.

Conditions (F)-(K) are exactly the same as those in Shen et al. (2009).

Under regularity conditions (F)-(K), they proved that
√
n(β̂

oracle

A − β∗A)

converges weakly to a normal distribution with mean zero and covariance

matrix Γ−1A ΣAΓ−1A , in which ΣA is the asymptotic covariance matrix of

n−
1
2 UA(β∗A) = n−

1
2 (XT

ADy−XT
ADXAβ

∗
A). Further more, ΓA and ΣA can

be consistently estimated by

Γ̂A =
1

n
XT
ADXA, (5.1)

Σ̂A =
1

n

n∑
i=1

{
δiXAi

(log Yi −XT
Aiβ̂

oracle

A )

π̂(Yi)
+

∫ t0

0

Ĥ(t)dM̂i(t)

η(t)

}⊗2
,(5.2)

respectively, where

Ĥ(t) =
1

n

n∑
i=1

I(t ≤ Yi)δiXAi

∫ Yi

t

ŜC(u)du
(log Yi −XT

Aiβ̂
oracle

A )

π̂2(Yi)
,

M̂i(t) = I(Yi − Ai ≤ t, δi = 0)−
∫ t

0

I(Yi − Ai ≥ u)dΛ̂C(u),

η(t) =
1

n

n∑
i=1

I(Yi − Ai ≥ t),
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and Λ̂C(u) is the Nelson-Aalen estimator for the cumulative hazard function

of C.

To connect the true oracle estimator with our LLA estimator, we define

a so-called “working data oracle estimator” as

β̃
oracle

= (β̃
oracle

A ,0) = arg min
β:βAc=0

`n(β).

Since `n(β) is convex, the solution above is unique, namely,

β̃
oracle

A =
(
X̃
T

AW X̃A
)−1

X̃
T

AWỹ,

where X̃A stands for the columns of X̃ corresponding to the support set

and

∇j`n(β̃
oracle

) = 0, ∀j ∈ A,

where ∇j denoted the subgradient with respect to the jth component of β.

Denote Xo,Xo
A,X

o
Ac as the sub-matrixes formed by the rows in X,XA,XAc

where Ti is being observed, i.e. δi = 1. For simplicity, write

λAAmax = λmax

( 1

n
XoT
AXo

A
)
, λAAmin = λmin

( 1

n
XoT
AXo

A
)
, λA

cAc
max = λmax

( 1

n
XoT
AcX

o
Ac
)
,

where λmax(·), λmin(·) denote the maximum and minimum eigenvalues of a

matrix correspondingly.

We state the following asymptotic results for the estimator obtained by

(3.2).
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Theorem 1. Consider the folded concave penalized problem (3.2) for any

given positive definite matrix W with SCAD or MCP penalty. Denote

λWmax, λ
W
min as the maximum and minimum eigenvalues of W . Initialize the

LLA algorithm by β̂
lasso

which is obtained from (4.1). Given conditions

(A)-(E) and let a0 = min{1, a2}, if we pick λ ≥ 3
√
sλlasso
a0κ

, the solution of

LLA algorithm β̂ converges to β̃
oracle

after two iterations, with probability

at least 1− δlasso0 − δ1 − δ2, where

δ1 = 2(p+ 1− s) exp
(
− na21λ

2

8σ2M2(λWmax)
2λAcAcmax (λAAmax + λAcAcmax )2

)
,

δ2 = 2s exp
(
− n ·m4(‖β∗A‖min − aλ)2

2σ2M2

λAAmin
4

λAAmax(λ
AA
max + λAcAcmax )2

(λWmin

λWmax

)2)
,

δlasso0 = 2(p+ 1) exp
(
− nλ2lasso

32σ2(λWmax)
2M2(λAAmax + λAcAcmax )3

)
.

Thus, we have Pr(supp(β̂) = A) → 1 as n goes to infinity with supp(β̂)

denoting the support set of β̂. Moreover, for any ξ > 0, θ ∈ (0, 1
2
), we have

Pr
(
‖β̂ − β̂

oracle

A ‖max ≤ ξn−θ
)
≥ 1− δlasso0 − δ1 − δ2 − δ3,

where

δ3 ≤ 2s exp
(
− n1−2θξ2

16σ2

1

λAAmax

[
m2λAAmin

2
+
M4

m2

λAAmin
4

(λAAmax + λAcAcmax )2

(λWmin

λWmax

)2])
.

Remark 1. As discussed in Fan et al. (2014), it is also a good choice to use

zero to initialize the LLA algorithm. If β̂
initial

= 0, the first LLA iteration
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gives a LASSO estimator with λlasso = P ′λ(0). For both SCAD and MCP,

P ′λ(0) = λ. If λlasso = λ and a0κ ≥ 3
√
s, then after two more LLA iterations,

or equivalently after three iterations when initialized by zero, the solution

of LLA algorithm β̂ has the same asymptotic results in Theorem 1, as long

as we replace δlasso0 there with

δ00 = 2(p+ 1) exp
(
− nλ2

32σ2(λWmax)
2M2(λAAmax + λAcAcmax )3

)
.

6. Numerical Studies

6.1 Simulations

In this section we assess the performance of our proposed methods by

several numerical experiments and a real data analysis. We report average

numbers of correct and incorrect non-zero coefficients, along with the aver-

age of mean squared errors based on 1000 simulated data sets, 200 sample

size and p = 20, 100, 400 variables for the three penalized estimating equa-

tions estimators introduced above with LASSO penalty and SCAD penalty

in (3.3), multi-stage SCAD penalty in (3.4). Here, mean squared errors

are calculated by (β̂ − β∗)TΣ(β̂ − β∗), where Σ is the population covari-

ance matrix. To examine the inference results of non-zero coefficients in

the final estimate, we report the biases (Bias), standard errors (SE), mean

of asymptotic standard errors (ASE), and coverage probabilities (CP) of

nominal 95% confidence intervals for the multi-stage SCAD penalized es-
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timating equations estimator. Notice that the asymptotic standard errors

are calculated by the sandwich formula with (5.1) and (5.2) using non-zero

coefficients in the final estimate, and coverage probabilities are computed

based on these asymptotic standard errors.

The length-biased and right censored data are generated according to

the method in Shen et al. (2009). First we generate independent pairs

(Ai, T̃i) and keep the pairs that satisfy T̃i > Ai, where Ai is from a uniform

distribution U(0, τ) and T̃i are generated from the models below. Here τ is

chosen to be larger than the upper bound of the support of T̃ to satisfy the

stationarity assumption. The censoring time C is generated from a uniform

distribution U(0, ω0), where ω0 is chosen to achieve the desired censoring

ratio. 10 %, 30% and 60% censoring rates are considered in our simulation.

Tables in this paper present part of the simulation results. For full detailed

results, see supplementary material online.

Example 1. The first example is adopted from Shen et al. (2009). Consider

the AFT model

log T̃ = XTβ + ε,

where X = (1, X1, X2, · · · , Xp)
T and β = (1, 1, 1, 0p−2). X2k−1 are i.i.d.

Bernoulli variables with P (X2k−1 = 1) = 0.5, X2k are i.i.d. uniform

variables on (0, 1), k = 1, 2, · · · . Random error ε is generated from: (1)
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U(−0.5, 0.5), (2) Exp(5)− 0.2 , (3) N(0, 0.32) .

Table 1 summarizes the average numbers of correct and incorrect non-

zero coefficients, along with the average of mean squared errors. It can be

inferred that all the true variables are selected by the three methods with

almost 100% frequency. It can also be observed that LASSO and SCAD es-

timator will select far more incorrect non-zero coefficients than multi-stage

SCAD, so the multi-stage is needed to achieve an almost perfect selection

accuracy. In addition, we examine the inference results for the multi-stage

SCAD penalized estimating equations estimator in Table 2. The empiri-

cal biases are mostly less than 3% and 5.62% in the worst case, indicating

the proposed estimator achieves outstanding accuracy. Note that the ex-

ponential random error setting violates the sub-Gaussian error assumption,

the simulation results presented in supplementary materials are still quite

good. However, it is interesting to observe that the asymptotic standard er-

rors calculated by the sandwich formula (5.1) and (5.2) are always slightly

smaller than the Monte Carlo standard error, leading to a more or less

decrease in the empirical coverage probabilities than 95% nominal level,

especially dramatic when the dimension is high. The underestimation of

the estimated standard errors than the sample standard errors can also be

observed in variable selection literature for survival data (Lu and Zhang,
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2007; Zhang and Lu, 2007; Johnson et al., 2008; Zhang et al., 2010b; Li and

Gu, 2012). It is observed that the discrepancy between ASE and SE will

decrease when sample size becomes large (Zhang and Lu, 2007; Li and Gu,

2012).

Example 2. Consider the underlying population distribution of T̃ follow

log T̃ = XTβ + ε,

where X = (1, X1, · · · , Xp)
T and Xis are marginally standard normal ran-

dom variables with pairwise correlations Cor(Xi, Xj) = ρ|i−j|, i.e. autore-

gressive correlation structure AR(ρ). ρ = 0.5, 0.8 are taken into account.

We set β = (2, 0.3, 0.3, 0, 0, 0.3, 0p−5). ε is generated from N(0, 0.22).

From Table 3 we see that the multi-stage SCAD penalized estimating

equations estimator is still encouraging, though it has a little chance to

miss some true variables when censoring rate is 60% and dimension is high.

This false negative rate, however, can be acceptable when comparing a great

amount decrease of false positives with LASSO and SCAD. The asymptotic

standard errors in Table 4 are still underestimated as well as the coverage

probabilities.

6.2 Real data

The proposed approach is applied to the Oscar Awards data analyzed
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and compiled by Redelmeier and Singh (2001). The dataset could be found

in Han et al. (2011), where a detailed description is given. It is a list of all

766 nominees for Oscar awards from 1929 to 2000, and only 327 died before

the study ended. This means that the censoring ratio is about 57.3%.

Several authors (Redelmeier and Singh, 2001; Han et al., 2011; Chen

et al., 2015; Ma et al., 2016) are interested in finding out whether winning

an Oscar Award causes the actor or actress’ expected lifetime to increase.

Redelmeier and Singh (2001) fitted a Cox’s proportional hazards model and

claimed that life expectancy was 3.9 years longer for Oscar Award winners

than for other less recognized performers. Han et al. (2011) stated that

previous studies have suffered from healthy performer survivor bias, which

is, candidates who are healthier will be able to act in more films and have

more chance to win Oscar Awards. They adapted Robins’ rank preserv-

ing structural accelerated failure time model and g-estimation method, and

concluded there is no strong evidence that winning an Oscar increases life

expectancy. Both Chen et al. (2015) and Ma et al. (2016) treated the sur-

vival time of performers as length-biased right-censored data, and they con-

ducted monotone rank estimation method for transformation models and

estimation method for semiparametric transformation models respectively

to analyze this data. They all had the conclusion that a performer winning
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Oscar may not have longer lifetime span than those without winning.

However, it is also of our interest to study the association between

survival time and other nine variables of performers’ information in the

dataset as well as wining an Oscar Award. They are indicators including

gender (male=1, female=0), born in USA (yes=1, no=0), white (yes=1,

no=0), change name (yes=1, no=0), genre is drama (yes=1, no=0), and

count variables with number of total films in career, number of four-star

films, number of times the performer won an Oscar, number of times the

performer was nominated for an Oscar.

Denote T as the time from birth to death, A as the truncation variable,

that is the time from the performer’s birth year to the first Oscar nomination

year. Based on the formal test proposed by Addona and Wolfson (2006),

the p-value of this test is 0.3, suggesting the dataset satisfies the stationarity

assumption and can be treated as censored length-biased data.

We standardize the count variables and apply our proposed the multi-

stage SCAD penalized estimating equations estimator to the dataset. The

results of non-zero coefficient variables are shown in Table 5, along with

their standard errors and 95% confidence intervals. The indicator of whether

the performer has won an Oscar is not selected, implying winning an Oscar

has nothing to do with life expectancy increase. Other significant variables
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shows that female nominees tend to live longer than male nominees, USA

performers are likely to live shorter than others, the number of total films

and the number of four-star films in career have a positive effect on per-

formers’ life expectancy. Part of these results are consistent with those in

Ma et al. (2016). The refitted model is

log T̃ = 4.2004−0.1106∗Gender−0.1232∗USA+0.0019∗NOTF+0.0058∗NOFF.

To further explore the data and reduce possible modeling biases, we

add all the possible interaction of variables as well as the quadratic terms of

count variables to the initial model, totally 59 predictors. Table 6 presents

the scaled variables selected by the multi-stage SCAD penalized estimating

equations estimator. The refitted model is

log T̃ = 4.2029+0.0065∗NOFF−0.1519∗Gender∗USA+0.0021∗USA∗NOTF.

The binary variable indicating winning an Oscar is still outside of the active

set. Again, the number of four-star films is selected, suggesting that it is

a crucial predictor for the lifetime of movie stars and there is a positive

association between a good physical condition and plenty of high-quality

films.

7. Discussion

In this paper, we proposed an estimation method based on the penalized
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estimating equations to achieve a sparse estimation with high-dimensional

covariates for length-biased data under the AFT model. Theoretical re-

sults guarantee the selection and estimation consistency property of the

proposed estimator. Moreover, a multi-stage penalized estimating equa-

tions procedure is developed to achieve enhanced estimation accuracy and

sparsity. Numerical results also demonstrate the excellent performance of

our estimator for both variable selection and model estimation.

Although we assumed C is independent of X in our paper because we

may not know in advance that which covariates C depends on. However,

generalizing derivations to the setting with a covariate-dependent censoring

distribution is not conceptually difficult, such as fitting a semiparametric or

parametric model and plug covariate-specific censoring distribution Sc(·|x)

into the estimating equations (Shen et al., 2009; Chen and Zhou, 2012), as

long as we know the dependent covariates in advance.

As suggested by a referee, we may consider an augmented-based esti-

mator (Gorfine et al., 2017), treating censoring indicator as a special case

of missing indicator. This estimator has a doubly-robust advantage, that

is, the estimator is consistent when either the censoring distribution does

not depend on the covariates, or the posited model for the conditional ex-

pectation is correct. This is a welcomed feature since we assumed censoring

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



Variable Selection with Censored Length-Biased Data 31

distribution does not depend on the covariates for variable selection. How-

ever, the corresponding computation can be much more intensive and how

to well choose a posited model for the conditional expectation term is worth

study. This is an interesting problem which deserves further investigation.
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Table 1: Average numbers of correct and incorrect non-zero coefficients and
average of mean squared errors from 1000 simulated datasets for Example
1, with their standard errors shown in the parenthesis

LASSO SCAD MS-SCAD

error p censoring C I MSE C I MSE C I MSE

unif 100 10% 2.00 28.68 0.036 2.00 36.48 0.041 2.00 0.78 0.005

(0.03) (8.89) (0.015) (0) (8.96) (0.009) (0) (1.6) (0.007)

30% 2.00 28.37 0.038 2.00 36.35 0.045 2.00 0.76 0.006

(0.05) (9.53) (0.016) (0) (9.41) (0.01) (0) (1.48) (0.007)

60% 2.00 30.66 0.047 2.00 38.61 0.061 2.00 1.28 0.013

(0.03) (11.03) (0.02) (0) (9.91) (0.014) (0) (2.29) (0.017)

400 10% 2.00 54.94 0.055 2.00 72.06 0.056 2.00 2.07 0.011

(0) (17.96) (0.018) (0) (15.72) (0.007) (0) (2.97) (0.012)

30% 2.00 57.94 0.053 2.00 77.25 0.061 2.00 2.14 0.014

(0) (19.63) (0.018) (0) (17.22) (0.008) (0) (3.16) (0.015)

60% 2.00 106.30 0.063 2.00 117.13 0.072 2.00 4.00 0.031

(0) (40.09) (0.023) (0) (33.27) (0.01) (0) (7.24) (0.054)

normal 100 10% 2.00 29.56 0.038 2.00 37.41 0.043 2.00 0.40 0.004

(0.03) (9.31) (0.016) (0) (9.25) (0.011) (0) (0.94) (0.005)

30% 2.00 29.41 0.040 2.00 37.22 0.048 2.00 0.56 0.005

(0) (9.49) (0.016) (0) (9.21) (0.012) (0) (1.32) (0.007)

60% 2.00 31.50 0.049 2.00 39.28 0.065 2.00 0.84 0.010

(0) (10.75) (0.021) (0) (9.93) (0.016) (0) (1.85) (0.016)

400 10% 2.00 56.87 0.058 2.00 73.03 0.058 2.00 1.02 0.007

(0.03) (18.16) (0.019) (0) (15.66) (0.008) (0) (2.2) (0.01)

30% 2.00 59.95 0.058 2.00 78.39 0.063 2.00 1.43 0.010

(0.03) (20.14) (0.019) (0) (17.35) (0.009) (0) (2.93) (0.015)

60% 2.00 103.52 0.069 2.00 116.18 0.075 2.00 3.61 0.026

(0) (38.9) (0.025) (0) (32.38) (0.012) (0.03) (8.56) (0.037)
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Table 2: Estimates of coefficients for Multi-Stage SCAD, their biases, stan-
dard errors, mean of asymptotic standard errors, and coverage probabilities
for nominal 95% confidence intervals from 1000 simulated datasets for Ex-
ample 1

unif normal

p censoring Bias SE ASE CP Bias SE ASE CP

100 10% b1 -0.0022 0.0534 0.0496 92.3 -0.0050 0.0556 0.0531 92.8

b2 -0.0068 0.0947 0.0856 90.4 -0.0007 0.0992 0.0911 91.8

30% b1 -0.0040 0.0565 0.0532 92.5 -0.0047 0.0603 0.0560 91.6

b2 -0.0135 0.0997 0.0913 92.5 -0.0111 0.1047 0.0958 92.1

60% b1 -0.0059 0.0698 0.0626 90.5 -0.0061 0.0738 0.0664 91.8

b2 -0.0197 0.1277 0.1083 88.7 -0.0137 0.1254 0.1142 91.3

400 10% b1 -0.0104 0.0542 0.0470 89.5 -0.0075 0.0558 0.0514 91.4

b2 -0.0250 0.0967 0.0808 87.4 -0.0136 0.1016 0.0883 89.5

30% b1 -0.0124 0.0600 0.0503 87.5 -0.0085 0.0576 0.0542 91.8

b2 -0.0226 0.1072 0.0867 85.8 -0.0278 0.1055 0.0929 88.8

60% b1 -0.0235 0.0762 0.0567 81.0 -0.0189 0.0780 0.0609 83.2

b2 -0.0529 0.1575 0.0982 76.1 -0.0562 0.1551 0.1054 80.1
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Table 3: Average numbers of correct and incorrect non-zero coefficients
and average of mean squared errors from 1000 simulated datasets for Ex-
ample 2, with their standard errors shown in the parenthesis; AR(ρ) is the
autoregressive correlation structure for predictors

LASSO SCAD MS-SCAD

p censoring C I MSE C I MSE C I MSE

AR(0.5) 100 10% 3.00 68.70 0.018 3.00 70.39 0.033 3.00 2.99 0.005

(0) (10.74) (0.005) (0) (7.51) (0.009) (0) (6.95) (0.008)

30% 3.00 66.87 0.022 3.00 68.68 0.044 3.00 5.27 0.009

(0) (10.16) (0.007) (0) (7.82) (0.015) (0) (8.82) (0.013)

60% 3.00 65.43 0.036 3.00 68.89 0.131 2.99 7.36 0.023

(0) (8.77) (0.011) (0) (7.69) (0.065) (0.11) (9.66) (0.029)

400 10% 3.00 230.92 0.030 3.00 263.35 0.437 3.00 3.98 0.006

(0) (29.47) (0.005) (0) (24.64) (0.096) (0.08) (8.22) (0.011)

30% 3.00 243.69 0.034 3.00 251.83 0.507 2.99 2.65 0.006

(0) (25.98) (0.006) (0) (24.77) (0.1) (0.12) (5.53) (0.011)

60% 3.00 213.96 0.036 3.00 218.36 0.551 2.91 1.98 0.015

(0) (25.11) (0.01) (0) (25.66) (0.091) (0.34) (4.59) (0.051)

AR(0.8) 100 10% 3.00 40.19 0.010 3.00 44.45 0.019 3.00 1.80 0.004

(0) (11.61) (0.003) (0) (9.43) (0.005) (0.03) (4.06) (0.005)

30% 3.00 39.78 0.012 3.00 44.58 0.023 3.00 2.15 0.005

(0) (11.59) (0.004) (0) (9.63) (0.006) (0.03) (4.24) (0.006)

60% 3.00 43.01 0.020 3.00 47.42 0.042 2.99 4.36 0.014

(0) (10.89) (0.007) (0) (9.68) (0.016) (0.12) (5.84) (0.017)

400 10% 3.00 154.67 0.022 3.00 190.94 0.14 2.99 6.57 0.010

(0) (30.32) (0.004) (0) (27.58) (0.047) (0.08) (11.15) (0.014)

30% 3.00 169.42 0.026 3.00 211.08 0.218 2.98 3.00 0.007

(0) (32.17) (0.006) (0) (27.18) (0.072) (0.13) (6.26) (0.011)

60% 3.00 187.90 0.037 3.00 194.92 0.383 2.86 1.80 0.012

(0) (27.73) (0.01) (0) (27.81) (0.134) (0.39) (2.95) (0.017)
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Table 4: Estimates of coefficients for Multi-Stage SCAD, their biases, stan-
dard errors, mean of asymptotic standard errors, and coverage probabilities
for nominal 95% confidence intervals from 1000 simulated datasets for Ex-
ample 2; AR(ρ) is the autoregressive correlation structure for predictors

AR(0.5) AR(0.8)

p censoring Bias SE ASE CP Bias SE ASE CP

100 10% b1 -0.0020 0.0211 0.0188 90.7 -0.0019 0.0338 0.0290 90.4

b2 -0.0003 0.0228 0.0191 87.4 0.0003 0.0370 0.0307 90.6

b5 -0.0017 0.0189 0.0166 89.4 -0.0023 0.0248 0.0203 87.3

30% b1 0.0008 0.0236 0.0196 88.6 0.0001 0.0350 0.0301 90.3

b2 -0.0030 0.0244 0.0197 86.6 -0.0035 0.0373 0.0319 89.9

b5 -0.0022 0.0220 0.0172 86.9 -0.0026 0.0276 0.0216 87.6

60% b1 -0.0025 0.0358 0.0222 78.4 0.0012 0.0496 0.0333 84.0

b2 -0.0056 0.0384 0.0224 78.2 -0.0078 0.0574 0.0357 81.8

b5 -0.0062 0.0376 0.0196 75.0 -0.0103 0.0426 0.0249 79.6

400 10% b1 0.0028 0.0242 0.0186 88.5 0.0024 0.0362 0.0268 84.7

b2 -0.0033 0.0278 0.0186 88.6 -0.0028 0.0406 0.0285 85.0

b5 -0.0018 0.0218 0.0163 87.5 -0.0060 0.0301 0.0193 82.7

30% b1 -0.0002 0.0247 0.0201 90.0 0.0005 0.0387 0.0293 87.5

b2 -0.0029 0.0303 0.0201 88.9 -0.0004 0.0436 0.0312 87.4

b5 -0.0030 0.0316 0.0174 86.4 -0.0055 0.0409 0.0204 85.5

60% b1 -0.0066 0.0580 0.0246 83.7 0.0012 0.0675 0.0353 83.0

b2 -0.0041 0.0568 0.0250 83.3 -0.0064 0.0832 0.0370 82.6

b5 -0.0158 0.0657 0.0208 82.9 -0.0271 0.0861 0.0233 79.5

Table 5: Variable selection results for Oscar data
Coef SE 95% CI

Gender -0.1106 0.0328 ( -0.1749 , -0.0463 )

USA -0.1232 0.0263 ( -0.1747 , -0.0716 )

NOTF 0.0666 0.0155 ( 0.0362 , 0.0970 )

NOFF 0.0359 0.0112 ( 0.0140 , 0.0578 )

† Note: Gender: male=1, female=0; USA: whether born in
USA,yes=1, no=0; NOTF: number of total films; NOFF:
number of four-star films.
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Table 6: Variable selection results for Oscar data with quadratic and inter-
action terms

Coef SE 95% CI

NOFF 0.0406 0.0092 ( 0.0226 , 0.0585 )

Gender*USA -0.1519 0.0375 ( -0.2253 , -0.0785 )

USA*NOTF 0.0721 0.0166 ( 0.0396 , 0.1046 )

† Note: Gender: male=1, female=0; USA: whether born in
USA,yes=1, no=0; NOTF: number of total films; NOFF: umber
of four-star films.
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