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Envelope Quantile Regression ∗

Shanshan Ding, Zhihua Su, Guangyu Zhu and Lan Wang

Abstract

Quantile regression offers a valuable complement of classical mean regression for

robust and comprehensive data analysis in a variety of applications. We propose

a novel envelope quantile regression method (EQR) that adapts a nascent technique

called enveloping (Cook, Li, and Chiaromonte, 2010) to improve the efficiency of stan-

dard quantile regression. The new method aims to identify material and immaterial

information in a quantile regression model and use only the material information for

estimation. By excluding the immaterial part, the EQR method has the potential

to substantially reduce the estimation variability. Unlike existing envelope model

approaches which mainly rely on the likelihood framework, our proposed estimator

is defined through a set of nonsmooth estimating equations. We facilitate the esti-

mation via the generalized method of moments (GMM) and derive the asymptotic

normality of the proposed estimator by applying empirical process techniques. Fur-

thermore, we establish that EQR is asymptotically more efficient than (or at least as

asymptotically efficient as) the standard quantile regression estimators without im-

posing stringent conditions. Hence, our work advances the envelope model theory to

general distribution-free settings. We demonstrate the effectiveness of the proposed

method via Monte-Carlo simulations and real data examples.

∗Shanshan Ding and Zhihua Su are co-first authors. Shanshan Ding is Assistant Professor, Department
of Applied Economics and Statistics, University of Delaware. Zhihua Su is Associate Professor, Department
of Statistics, University of Florida. Guangyu Zhu is Assistant Professor, Department of Computer Science
and Statistics, University of Rhode Island. Lan Wang is Professor, School of Statistics, University of
Minnesota. The research of Lan Wang is supported by National Science Foundation grant DMS-1512267.
The research of Zhihua Su is supported by National Science Foundation grant DMS-1407460.

1

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



Key Words: sufficient dimension reduction; envelope model; reducing subspace; gen-

eralized method of moments, asymptotic efficiency.

1 Introduction

Envelopes were first proposed by Cook, Li, and Chiaromonte (2010) for response reduction

and parsimonious estimation in multivariate linear regression with normal errors. In this

setting, the envelope approach has been proved to achieve asymptotic efficiency and reduce

estimation variability compared to standard methods. Since then, a variety of envelope

models have been developed and demonstrated promising performances in multivariate

statistical problems. For example, Su and Cook (2011, 2012) and Cook and Su (2013) sub-

sequently studied envelope methods for different data structure in linear regression models.

Cook, Helland, and Su (2013) used envelopes to study predictor reduction and established

a connection between envelope models and partial least squares. Based on the connection,

Zhu and Su (2019) derived the envelope-based sparse partial least squares method. Cook,

Forzani, and Zhang (2015) applied the envelope method to reduced rank regression. Cook

and Zhang (2015) extended the applicability of envelope model beyond linear regression,

such as in generalized linear regression and cox proportional hazard model. Su et al. (2016)

proposed sparse envelope models for variable selection in the multivariate linear regression

setting. Khare, Pal, and Su (2017) developed Bayesian envelope approaches. Li and Zhang

(2017) and Ding and Cook (2018) proposed envelopes for tensor and matrix regression

problems. Envelopes for spatial and time series data were studied by Rekabdarkolaee et al.
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(2017) and Wang and Ding (2018).

The existing works, however, were developed mainly for mean regression and likelihood-

based models. The estimation and inference thus often rely on the maximum likelihood

principle. In particular, the asymptotic efficiency of the envelope estimators often requires

normality assumption. One major objective of this article is to develop a new non-likelihood

based framework for enveloping and to advance the envelope theory to general distribution-

free settings to potentially improve efficiency. Although developed in the context of quantile

regression, our framework can also be extended to other statistical methods and procedures.

Quantile regression (Koenker and Bassett, 1978; Koenker, 2005) is a popular regression

technique and is widely used in economics, health sciences and many other fields. It does

not require distributional assumptions on error terms and thus is a flexible distribution-

free regression technique. By accommodating varying covariate effects at different quantile

levels, quantile regression is able to provide a more complete picture of the relationship

between the response variable and covariates. In addition, It is capable to incorporate

heterogeneous covariates effects and is robust to outliers. Because of its good statistical

properties and flexibility in practice, quantile regression has become a popular alterna-

tive to least squares regression, and has gained considerable interest in recent years. For

example, Knight (1998), He and Shao (2000), Chernozhukov (2005), He and Zhu (2011),

Feng, He, and Hu (2011), Yang and He (2012) and many others have extensively studied

the theoretical properties and inference tools of quantile regression under different settings.

Portnoy and Koenker (1997), Chen and Wei (2005), Koenker (2011) and others have in-

vestigated the computational perspectives of quantile regression. Quantile regression has
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also been extended to longitudinal and survival data analysis (He et al., 2002; Portnoy,

2003; Wei et al., 2006; Peng and Huang, 2008; Wang and Wang, 2009; Xu et al., 2017,

among many others). We refer to Koenker (2005, 2017) and Koenker et al. (2017) for a

comprehensive review on quantile regression.

In this article, we propose a new approach called envelope quantile regression (EQR)

that adapts a nascent technique called enveloping (Cook, 2018) by introducing dimension

reduction into quantile modeling. In a variety of settings, it is reasonable to assume there

exist linear combinations of the predictors which are irrelevant to the conditional quantiles

of the response and these combinations do not affect the conditional quantiles through their

association with the remaining combinations. Thus, we can focus on a subspace of the full

predictor space that is directly relevant to the model fitting. We call the relevant part of

the predictors as material information and the remaining part as immaterial information.

Using immaterial information in model fitting is likely to increase estimation variation. The

new EQR approach does not change the traditional objectives of quantile regression, but by

fully utilizing information in both predictors and response, it can distinguish such material

and immaterial information when modeling the conditional quantiles, and synchronously

exclude immaterial information from model estimation. With this simultaneous dimension

reduction and regression fitting, the EQR method can improve estimation efficiency and

the efficiency gains can be substantial when the immaterial variation is large.

The main contribution of this article is three-fold. First, we develop a new EQR ap-

proach that adapts the ideas of enveloping to quantile regression and achieves efficiency

gains. We prove that the EQR estimator is
√
n-consistent and asymptotically normal, and
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more importantly, it is asymptotically more efficient than (or at least as asymptotically

efficient as) the standard quantile regression estimators without imposing stringent condi-

tions. In addition, whilst we mainly focus on linear quantile regression in this paper, our

approach can be naturally extended to partially linear quantile regression, censored quantile

regression and other settings. Second, our formulation offers the first non-likelihood based

envelope method with theoretical justification on asymptotical efficiency. It establishes a

new framework for enveloping and advances the recent development of envelopes to gen-

eral distribution-free procedures with possibly nonsmooth objective functions. Third, the

theoretical development of the EQR estimator is based on rather different techniques than

those used in existing envelope models and quantile regression. The proposed estimator

is defined through a set of nonsmooth estimating equations. We facilitate the estimation

via the generalized method of moments (GMM) that not only ensures desirable theoretical

properties but further improves asymptotic efficiency of the estimators. Empirical process

techniques are employed for establishing asymptotics, which can be used to handle both

nonsmooth and over-parametrized models, and can be potentially applied to more complex

enveloping problems.

Most existing envelope approaches are focused on continuous variables, so does the

EQR method. When categorical predictors are present, we develop the partial envelope

quantile model that applies the enveloping idea only to the continuous predictors. We will

show that the partial envelope quantile model improves the estimation efficiency of the

regression coefficients, especially those of the continuous predictors.

The rest of the article is organized as follows. In Section 2, we briefly review linear
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quantile regression and propose the EQR method. In Section 3, we establish theoretical

properties for the EQR estimators and demonstrate their efficiency. Section 4 presents

the new GMM estimation procedure and discusses dimension selection procedures for the

proposed EQR. Section 5 demonstrates the empirical performance of the EQR method via

simulations and real examples. Section 6 is devoted to the development of partial envelope

regression quantile regression for data with categorical predictors. We conclude with a

brief discussion in Section 7. Technical details, proofs, and additional simulation results

are given in a supplement.

To facilitate our discussion, we introduce the following notations that will be used

throughout the article. Let Rr×u be the set of all r × u matrices and let Sm×m be the set

of all m × m real and symmetric matrices. For any A ∈ Rr×u(u ≤ r), Span(A) is the

subspace of Rr spanned by the columns of A. Let PA = A(ATA)†AT be the projection

onto Span(A), and let QA = Ir − PA be the projection onto Span(A)⊥, the orthogonal

complement of Span(A), where † denotes the Moore-Penrose inverse and Ir is the identity

matrix of dimension r. Note that PA and QA can be equivalently denoted by PA and QA,

where A = Span(A). Let ‘vec’ denote the vectorization operator that stacks the columns

of an argument matrix. Let ‘vech’ represent the half-vectorization operator that vectorizes

only the lower triangular of a symmetric matrix. We use || · || to represent Frobenius norm.
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2 Envelope quantile regression

2.1 A brief review of quantile regression

Consider a univariate response variable Y and a p-dimensional predictor vector X ∈ Rp.

Let FY (y|X = x) = P (Y ≤ y|X = x) be the cumulative distribution function (CDF) of Y

given X = x. The τ -th conditional quantile of Y is defined as

QY (τ |X = x) = inf{y : FY (y|X = x) ≥ τ}, 0 < τ < 1.

A linear quantile regression model assumes a linear relationship between the τ -th condi-

tional quantile of Y and the predictors, that is,

QY (τ |X) = µτ + βTτ X, (2.1)

where µτ is the intercept and βτ ∈ Rp is the slope vector of the τ -th conditional quantile

of Y |X. The primary objective of quantile regression is to estimate βτ , for any 0 < τ < 1,

and then to make statistical inference about βτ . The standard method to obtain β̃τ , the

estimator of βτ , is to solve

(µ̃τ , β̃τ ) = argmin
µτ∈R,βτ∈Rp

n∑
i=1

ρτ (Yi − µτ − βTτ Xi), (2.2)

where (Yi,Xi), i = 1, . . . , n, is a random sample of (Y,X), and ρτ (z) = z[τ − I(z <

0)] is a piecewise linear loss function. This objective function can be efficiently solved
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by linear programming algorithms. Furthermore, the estimator β̃τ is
√
n-consistent and

asymptotically normal.

Note that the minimizer in (2.2) is also a root of the estimating equations

1

n

n∑
i=1

Wi[I(Yi < µτ + βTτ Xi)− τ ] = op(n
−1/2), (2.3)

where Wi = (1,XT
i )T . For a detailed background of quantile regression, we refer to Koenker

(2005).

2.2 Envelope quantile regression

We now introduce the EQR approach to distinguish material and immaterial information in

terms of modeling the conditional quantiles of the response. The EQR approach builds on

the observations that in a variety of applications some part of the predictors are irrelevant to

modeling the conditional quantile of the response and do not affect the response through

the rest. For example, a disease may be related to a few genetic pathways, while these

pathways are uncorrelated with other pathways that are not responsible for the disease.

To mathematically formulate this statement, suppose that for the given quantile level

τ of interest, there exists a subspace Sτ = Span(Γτ ) of Rp, where Γτ ∈ Rp×dτ (dτ ≤ p) is a

semi-orthogonal basis of Sτ , such that

i) QY (τ |X) = QY (τ |PSτX) and ii) Cov(PSτX,QSτX) = 0, (2.4)
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where PSτ and QSτ are projection matrices defined at the end of Section 1.

The first part of (2.4) means that QY (τ |X) depends on X only through PSτX. Hence

PSτX contains full information for modeling the τ -th conditional quantile of Y . The second

part indicates that PSτX is uncorrelated with QSτX, which ensures that QSτX does not

provide information about the τ -th conditional quantile of Y through its association with

PSτX. Thus, X affects the τ -th conditional quantile of Y only through PSτX. We call

PSτX the material part of X, and QSτX the immaterial part of X. Let ΣX denote the

covariance matrix of X. By Cook, Li, and Chiaromonte (2010), if a subspace Sτ is spanned

by the eigenvectors of ΣX and it contains βτ , then Sτ satisfies the conditions in (2.4).

There are applications that would naturally satisfy (2.4). For example, suppose all

coordinates of X are equally correlated such that ΣX = σ2
XIp + r1p1

T
p , where r is a

constant and 1p is a p-dimensional vector of 1’s, and βτ has a sparse structure such

as βτ = (1, 2, 0, . . . , 0)T . Note that the eigenvectors of ΣX include 1p and any vector

in Span(1p)
⊥. Let v1 = (r − 1,−1, . . . ,−1)T and v2 = (−1, r − 1,−1, . . . ,−1)T . Since

vT1 1p = 0, vT2 1p = 0, v1 and v2 are eigenvectors of ΣX. We can take Sτ = Span(v1, v2, 1p).

Because βτ ∈ Sτ , Sτ satisfies i) and ii) in (2.4). This example demonstrates that if X is

equally correlated and βτ is sparse, we can find a subspace that satisfies conditions (2.4).

Another example is when ΣX has a low rank decomposition. Suppose ΣX has the struc-

ture ΣX = AAT + cIp, where c is a constant, A ∈ Rp×k, and k < p. Then Span(A) is

spanned by eigenvectors of ΣX. Such a low rank covariance structure occurs in a wide

range of applications such as factor analysis where the variation of the predictor vector can

mostly be explained by a small number of common factors or principal components. If βτ
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is contained in Span(A), we can take Sτ = Span(A). Thus, Sτ satisfies conditions (2.4).

If βτ is not contained in Span(A), let A = Span(A). Then any vector in the orthogonal

complement of A is an eigenvector of ΣX. We can write βτ = PAβτ + QAβτ , and let

v = QAβτ . Note that v is an eigenvector of ΣX. Let Sτ = Span({A, v}), then βτ ∈ Sτ and

Sτ satisfies conditions in (2.4). So for any vector βτ , whether it has a sparsity structure

like βτ = (∗, · · · , ∗, 0, · · · , 0) or not, we can find a subspace Sτ with dimension at most

k + 1 that satisfies conditions (2.4). Note that we use a sparse βτ in some examples only

for a simple illustration, (2.4) does not require sparsity in βτ .

In fact, the subspace Sτ in (2.4) always exists since it can be trivially chosen as the full

space Rp. However, the subspace might not be unique and what is of interest is the smallest

subspace such that the conditions holds. To address the uniqueness of the material part,

we consider the intersection of all such subspaces that satisfy (2.4), which is minimal and

well defined. To see so, let’s first introduce the definition of a reducing subspace given in

Cook, Li, and Chiaromonte (2010).

Definition 1. A subspace R ⊆ Rp is said to be a reducing subspace of M ∈ Rp×p if R

decomposes M as M = PRMPR + QRMQR.

This definition is commonly used in the literature of invariance subspace and functional

analysis (Conway, 1990). Lemma 1 connects our formulation to reducing subspaces.

Lemma 1. Under model (2.1), (i) QY (τ |X) = QY (τ |PSτX) if and only if βτ ∈ Sτ ; (ii)

Cov(PSτX,QSτX) = 0 if and only if Sτ is a reducing subspace of ΣX.

For part (i), since QY (τ |X) = µτ + βTτ PSτX + βTτ QSτX = QY (τ |PSτX), we have
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QSτβτ = 0, and therefore βτ ∈ Sτ . For the other direction, if βτ ∈ Sτ , QY (τ |X) =

µτ + βTτ PSτX. Then QY (τ |X) = QY (τ |PSτX). Part (ii) holds as it can be shown that

ΣX = PSτΣXPSτ + QSτΣXQSτ when Cov(PSτX,QSτX) = 0.

Therefore, based on Lemma 1, (2.4) holds if and only if Sτ is a reducing subspace of

ΣX that contains βτ . Such a reducing subspace might not be unique. However, by the

property of reducing subspaces, the intersection of all reducing subspaces that contain βτ

is also a reducing subspace containing βτ , and it is unique and minimal. Thus, to achieve

maximum reduction and efficiency gains, this smallest reducing subspace that contains βτ

is of interest. We call it the ΣX-envelope of βτ , and denote it as EΣX
(βτ ), or Eτ .

To establish the EQR model, let Φτ ∈ Rp×uτ (uτ ≤ p) be a semi-orthogonal basis of

Eτ and Φ0τ ∈ Rp×(p−uτ ) be a semi-orthogonal basis of E⊥τ , the orthogonal subspace of Eτ .

We first assume that the envelope dimension uτ is known. The determination of envelope

dimension will be discussed in Section 4. Since βτ ∈ Eτ , we can write βτ in a coordinate

form as βτ = Φτητ , where ητ is the coordinate of βτ relative to the basis Φτ . In addition,

because Eτ is a reducing subspace of ΣX, ΣX can be decomposed into two orthogonal parts:

ΣX = PEτΣXPEτ + QEτΣXQEτ . Therefore, model (2.1) can be reparameterized into an

envelope structure:

QY (τ |X) = µτ + ηTτ ΦT
τ X

ΣX = ΦτΩτΦ
T
τ + Φ0τΩ0τΦ

T
0τ ,

(2.5)

where Ωτ ∈ Ruτ×uτ and Ω0τ ∈ R(p−uτ )×(p−uτ ) are positive definite matrices that serve as

coordinates of PEτΣXPEτ and QEτΣXQEτ relative to the bases Φτ and Φ0τ , respectively.

We call this model the envelope quantile regression (EQR) model.
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By incorporating the idea of enveloping into the formulation of quantile regression, the

new EQR model utilizes underlying information in both the predictors and response to

identify the material and immaterial information, and connect the parameter of interest,

βτ , only to the material part. This leads to efficiency gains in parameter estimation. For a

simple illustration, suppose that the envelope basis Φτ is known and E(X) = 0. Let β̃τ be

the standard estimator of βτ from (2.1). Then the asymptotic variance of β̃τ , denoted as

avar(
√
nβ̃τ ), is ω2Σ−1X under an i.i.d. error model (Koenker, 2005), where ω is a constant.

Since Φτ is known, the envelope estimator of βτ is then β̂τ = Φτ η̂τ and

avar(
√
nβ̂τ ) = Φτavar(

√
nη̂τ )Φτ = ω2Φτ

[
Var(ΦT

τ X)
]−1

Φτ = ω2ΦτΩ
−1
τ ΦT

τ .

Thus, avar(
√
nβ̃τ ) − avar(

√
nβ̂τ ) = ω2Σ−1X − ω2ΦτΩ

−1
τ ΦT

τ = ω2Φ0τΩ
−1
0τ ΦT

0τ ≥ 0, where

the last equation holds because Σ−1X = ΦτΩ
−1
τ ΦT

τ + Φ0τΩ
−1
0τ ΦT

0τ . Therefore, the envelope

estimator is asymptotically more efficient than (or at least as efficient as) the standard quan-

tile estimator, and efficiency gains can be quite substantial when the immaterial variation

Φ0τΩ
−1
0τ ΦT

0τ of Σ−1X is relatively large. In Section 3, we will give more rigorous justification

of the asymptotic efficiency of EQR estimators under general settings, while the estimation

algorithm will be presented in Section 4.

In addition, the total number of free parameters in βτ and ΣX under the EQR model

is uτ + p(p + 1)/2, where uτ for ητ , uτ (p − uτ ) for Span(Φτ ), uτ (uτ + 1)/2 for Ωτ , and

(p− uτ )(p− uτ + 1)/2 for Ω0τ ; while without enveloping, the number of free parameters in

βτ and ΣX is p+p(p+1)/2. The EQR model reduces the number of parameters by p−uτ .
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3 Theoretical results

Consider the quantile regression model (2.1) with an arbitrary quantile level of interest τ .

Denote the conditional density function of Y |X as fY |X. Denote the asymptotic variance of

a general statistic Mn as avar(
√
nMn). Let θ := (θT1 ,θ

T
2 )T ∈ R2p+1+s, where θ1 = (µτ ,β

T
τ )T

represents the parameters in the conditional quantile regression, θ2 = (vech(ΣX)T ,µT
X)T

contains parameters in the marginal distribution of X, and s = p(p+ 1)/2 is the dimension

of vech(ΣX). Let θ∗ = (θT1 , vech(ΣX)T )T be a collection of parameters that are directly

related to the envelope model (2.5). Here θ, θ1 and θ∗ are all relevant to τ but for

convenience, we omit the subscript τ for these notations.

We first consider unitizing estimating equations for the estimation of the unknown

parameter vector θ. We take (2.2), and the first and second order moment conditions of

X to be our estimation equations:

hn(θ) =


h1,n(θ1)

h2,n(θ2)

h3,n(θ2)

 =


1
n

∑n
i=1 Wi[I(Yi < µτ + βTτ Xi)− τ ]

vech(ΣX)− vech(SX)

µX − X̄

 =
1

n

n∑
i=1

g(Zi;θ) = op(n
−1/2),

(3.1)

where SX = 1
n

∑n
i=1(Xi − µX)(Xi − µX)T is the sample covariance matrix of X given

µX, Zi = (Yi,X
T
i )T , and g(Zi;θ) = (gT1 (Zi;θ1), g

T
2 (Zi;θ2), g

T
3 (Zi;θ2))

T with g1(Zi;θ1) =

Wi[I(Yi < µτ + βTτ Xi) − τ ], g2(Zi;θ2) = vech(ΣX) − vech{(Xi − µX)(Xi − µX)T}, and

g3(Zi;θ2) = µX −Xi.

Let θ̃ and θ̃
∗

denote the standard estimators of θ and θ∗ from solving the estimating
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equation (3.1) without enveloping, and let θ0 and θ∗0 be the true values of θ and θ∗,

respectively. Since the parameters of main interest are βτ and ΣX in EQR model, and in

addition the estimator of µX is X̄, which remains unchanged under enveloping and has the

same asymptotic distribution in both the envelope and non-envelope settings, we neglect

µX in the following theoretical development.

To investigate the asymptotic behavior of the estimator of θ∗, we require the following

regularity conditions.

(C1) For any x in the support of X, the conditional distribution of Y|X = x is absolutely

continuous, with the continuous density fY|X uniformly bounded away from 0 and∞

at ξ0(τ |x), the τ -conditional quantile of Y |X = x under θ0.

(C2) The expectation Eθ0 [g(Z;θ)] is twice differentiable at θ0 with
∂Eθ0

[g(Z;θ)]

∂θT

∣∣∣
θ=θ0

having

full rank and a finite Frobenius norm. The matrix Eθ0 [g(Z;θ0)g
T (Z;θ0)] is positive

definite and has a finite Frobenius norm, and in addition, the array
∂Eθ0

[g(Z;θ)gT (Z;θ)]

∂θT

∣∣∣
θ=θ0

has a finite Frobenius norm.

(C3) E||X||3 is bounded. In addition, the support Θ of θ is compact and θ0 is an interior

point of Θ.

Conditions (C1) and (C3) are standard in the literature of quantile regression. Con-

dition (C2) is a regular assumption for estimating equations. The following theorem 1

establishes the asymptotic distribution of the standard estimator θ̃ of θ∗.

Theorem 1. Under the regularity conditions (C1)-(C3),
√
n(θ̃

∗−θ∗0) converges in distribu-

tion to a multivariate normal distribution with mean zero and covariance matrix avar(
√
nθ̃
∗
) =
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U−1VU−1, where

U =

Eθ0 [fY |X(ξ0(τ |X))WWT ] 0

0 Is


and

V =

τ(1− τ)Eθ0 [WWT ] 0

0 varθ0{vech[(X− µX,0)(X− µX,0)
T ]}

 ,

with µX,0 being the true value of µX.

The proof of Theorems 1 is given in Section A of the supplement. Theorem 1 shows

that the standard estimator θ̃1 = (µ̃τ , β̃
T

τ )T for the conditional quantile regression from

solving hn(θ) = 0 is asymptotically independent of the standard estimator vech(Σ̃X) for

the marginal distribution of X. In addition, let θ̃1,m denote the estimator of θ1 obtained

directly by minimizing (2.1). It follows from the results in Knight (1998) and Koenker

(2005) that θ̃1 is asymptotically equivalent to θ̃1,m.

Under the envelope setting, we denote the parameters in the coordinate representation

of the EQR model (2.5) into the vector

ζτ =
(
µτ ,η

T
τ , vec(Φτ )

T , vech(Ωτ )
T , vech(Ω0τ )

T
)T

=
(
ζτ,1, ζ

T
τ,2, ζ

T
τ,3, ζ

T
τ,4, ζ

T
τ,5

)T
,
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and define the parameter of interest θ∗ as

θ∗ =


µτ

βτ

vech(ΣX)

 =


µτ

Φτητ

vech(ΦτΩτΦ
T
τ + Φ0τΩ0τΦ

T
0τ )

 :=


ψ1(ζτ )

ψ2(ζτ )

ψ3(ζτ )

 = ψ(ζτ ). (3.2)

Note that under enveloping, the estimating equations in (3.1) are reparameterized as:

hn(θ) =


h1,n(θ1)

h2,n(θ2)

h3,n(θ2)

 =


1
n

∑n
i=1 Wi[I(Yi < µτ + ηTτ ΦT

τ Xi)− τ ]

vech(ΦτΩτΦ
T
τ + Φ0τΩ0τΦ

T
0τ )− vech(SX)

µX − X̄

 . (3.3)

The number of equations in (3.3) is 1 + 2p + p(p + 1)/2. It is greater than the number

of free parameters in µτ , βτ , µX and ΣX under the envelope parameterization, which is

1 + uτ + p + p(p + 1)/2. Therefore it cannot be guaranteed that all equations can be

made to zero simultaneously. Hence the solution of (3.3) may not exist. Instead, we

propose to estimate the parameters by utilizing the idea of generalized method of moments

(GMM; Hansen, 1982) for the parsimonious envelope model. Let ζ
′

τ = (ζTτ ,µ
T
X)T and

ψ0(ζ
′

τ ) := (ψT (ζτ ),µ
T
X)T = θ. The envelope GMM estimator θ̂g of θ is then defined as

θ̂g = argmin
θ:θ=ψ0(ζ

′
τ )

hTn (θ)∆̂hn(θ), (3.4)

where ∆̂ is chosen to be any
√
n-consistent estimator of

{
Eθ0 [g(Z;θ0)g

T (Z;θ0)]
}−1

, for

example, ∆̂ =
{
n−1

∑n
i=1 g(Zi; θ̃)gT (Zi; θ̃)

}−1
. In Section 4, we will propose an estimation
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procedure to attain the envelope GMM estimator θ̂g.

Let θ̂
∗
g denote the envelope GMM estimator of θ∗, the parameter of interest. We next

establish asymptotic theory for θ̂
∗
g and compare it with the standard estimator θ̃

∗
.

Theorem 2. (1) Under the regularity conditions (C1)-(C3), assume that the support of

the envelope parameter vector ζτ is compact, then
√
n(θ̂

∗
g−θ∗0) converges in distribution to

a multivariate normal distribution with mean zero and covariance matrix

avar(
√
nθ̂
∗
g) = Ψ(ΨTUV−1UΨ)†ΨT ,

where Ψ = ∂ψ(ζτ )/∂ζ
T
τ is the gradient matrix of ψ(ζτ ) relative to ζτ . Its explicit expression

is given in the supplement (B.6).

(2) In addition, avar(
√
nθ̂
∗
g) ≤ avar(

√
nθ̃
∗
).

The proof of Theorem 2 is given in Section B of the supplement. The main challenge

of the proof lies in the fact that objective function in (3.4) is not only nonsmooth but also

over-parameterized. We employ empirical process techniques (Van Der Vaart and Wellner,

1996; Van der Vaart, 1998) and the results in Newey and McFadden (1994) and Shapiro

(1986) for the derivation. The theorem shows asymptotic normality for the envelope GMM

estimator θ̂
∗
g of the joint parameters in the quantile regression and the covariance matrix of

X. More importantly, it establishes the asymptotic efficiency of θ̂
∗
g relative to the standard

estimator θ̃
∗
. Thus, by utilizing information in both the predictors and response, the new

EQR approach can lead to gains in efficiency in the quantile regression estimation.

To illustrate the efficiency gains, we consider a special case of i.i.d error models and
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assume that X is multivariate normal and E(X) = 0. After some simplification of the

form of the asymptotic variance given in Theorem 1 and Theorem 2 (see Section B of the

supplement), we have

avar(
√
nβ̃τ ) =

τ(1− τ)

f 2(ξ(τ))
Σ−1X ,

and

avar(
√
nβ̂g,τ ) =

τ(1− τ)

f 2(ξ(τ))
ΦτΩ

−1
τ ΦT

τ + (ηTτ ⊗Φ0τ )T
−1(ητ ⊗ΦT

0τ )

where

T =
f 2(ξ(τ))

τ(1− τ)
(ητη

T
τ )⊗Ω0τ + Ωτ ⊗Ω−10τ + Ω−1τ ⊗Ω0τ − 2Iuτ ⊗ Ip−uτ .

Compared to the simple illustration example given in Section 2.2, the asymptotic vari-

ance of β̂g,τ has an additional term (ηTτ ⊗Φ0τ )T
−1(ητ ⊗ΦT

0τ ), which can be considered as

the cost for estimating the envelope as it is unknown in general. Theorem 2 shows that

even with this estimation cost, the envelope GMM estimator β̂g,τ is still asymptotically

more efficient than (or at least as asymptotically efficient as) the standard estimator β̃τ .

Statistical inference for the envelope GMM estimator can be performed based on the

asymptotic distribution in Theorem 2. One can estimate the asymptotic variance with

âvar(
√
nθ̂
∗
g) = Ψ̂(Ψ̂

T
ÛV̂

−1
ÛΨ̂)†Ψ̂

T
, where Ψ̂, Û and V̂ are consistent estimators of Ψ, U

and V, respectively. Correspondingly, âvar(
√
nθ̂
∗
g)→ avar(

√
nθ̂
∗
g) in probability. Then sta-

tistical inference can be made based on asymptotic normality. The consistent estimator of Ψ

can be easily obtained using the estimated envelope parameters, and the consistent estima-

tor of V can be provided by moment estimation. The estimation of U is not straightforward
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as it involves unknown density function, which is a problem that also occurs in standard

quantile regression inference. We can adopt the kernel-based estimation approach (Powell,

1991; Koenker, 2005) to achieve consistent estimation of U(1) = Eθ0 [fY |X(ξ0(τ |X))WWT ]

with Û(1) = (nhn)−1
∑n

i=1K(ξ̂i(τ |X)/hn)WiW
T
i under certain Lipschitz continuity condi-

tions on f , where ξ̂i(τ |X) = Yi − µ̂g,τ − β̂
T

g,τXi, and K(·) and hn are kernel function and

bandwidth satisfying hn → 0 and
√
nhn →∞. For example, Powell (1991) used the kernel

K(ξ̂i(τ |X)) = I(|ξ̂i(τ |X)| < hn)/2. One might refer to Powell (1991) and Koenker (2005)

for more details on the choices of K(·) and hn.

On the other hand, bootstrap is a useful alternative for the inference of the EQR

estimator and is widely used in standard quantile regression (QR) inference (Knight, 1999;

Koenker, 2005; Wang and Wang, 2009; Feng et al., 2011, among many others). For example,

one can apply paired bootstrap or wild bootstrap to make inference for the EQR estimator

under heteroscedastic errors. These methods have been shown to achieve consistency in QR

inference (Knight, 1999; Feng et al., 2011). We applied paired bootstrap in our numerical

studies (see Figures 1 and 2). It performs fairly well and shows accurate estimation of the

standard deviations as compared to those obtained from repeated samples.

For statistical inference, the EQR estimator might lose some efficiency compared to its

theoretical asymptotic variance due to the estimation uncertainty of the unknown param-

eters. In this circumstance, the performance of the EQR estimator might fall into either

one of the following two scenarios. First, when the immaterial variation of the data is sub-

stantial, even if the envelope dimension is relatively large (e.g. close to the full dimension),

EQR could still outperform the standard QR. In this case, the efficiency gains from iden-
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tifying and removing immaterial information could overcome the estimation uncertainty,

leading to more efficient estimators and smaller mean squared errors (MSE). On the other

hand, when the immaterial variation is relatively small while the envelope dimension is

large, the efficiency gains from enveloping might be inadequate to overcome the cost of

uncertainty in estimating the envelope subspace and parameters. In this case, the estima-

tion uncertainty (including both the estimation of the envelope dimension and envelope

parameters) could counteract and surpass the efficiency gains, resulting in relatively close

or worse performance of the EQR estimator compared to the QR estimator. Simulation

studies illustrating these two cases are provided in Section D.1 of the supplement.

If parameters in (2.1) do not have the envelope structure, the EQR estimator β̂g,τ may

still have a smaller MSE compared to the standard QR estimator β̃τ based on the bias-

variance tradeoff. To be more specific, although the EQR estimator might be biased, it

could have a smaller estimation variance. Then if the reduction of the estimation variance

is substantial, the EQR estimator will have a smaller MSE. A simulation is included in

Section D.2 of the supplement for illustration.

4 Estimation

In the literature on envelope models, estimation is routinely performed by optimizing a

standard objective function, such as the log likelihood function, under the envelope pa-

rameterization. These existing envelope estimation techniques usually require the first two

derivatives of the objective function (Cook, Li, and Chiaromonte, 2010; Cook and Zhang,
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2016; Cook, Forzani, and Su, 2016). However, the objective function for quantile regression

(2.2) is non-smooth.

We start with estimating equation (3.3). In (3.3), Φτ is not estimable as it can be

any orthogonal basis of EΣX
(βτ ), and only EΣX

(βτ ) = Span(Φτ ) is estimable. To obtain

an estimator of EΣX
(βτ ), we have to perform a Grassmann manifold optimization, which

can be slow and difficult in sizable problems. Cook, Forzani, and Su (2016) proposed a

reparameterization of Φτ such that the Grassmann manifold optimization problem can be

converted to an unconstrained matrix optimization problem. It is shown that the com-

puting speed is greatly improved under the new parameterization. Therefore we adopt

this reparameterization for our problem and this does not affect our theoretical results.

Without loss of generality, we assume that the upper uτ × uτ block is invertible. Write

Φτ =

 Φτ1

Φτ2

 =

 Iuτ

Φτ2Φ
−1
τ1

Φτ1 ≡

 Iuτ

A

Φτ1 ≡ Φ∗τΦτ1. (4.1)

Then EΣX
(βτ ) and A have a one-to-one correspondence. To be more specific, for a uτ -

dimensional subspace of Rp, we have a unique representing basis Φ∗τ whose first uτ rows

form an identity matrix. So if we obtain an estimator of A, say Â, we can easily get

Φ̂
∗
τ following the structure in (4.1), and ÊΣX

(βτ ) = Span(Φ̂
∗
τ ). Now let η∗τ = Φτ1ητ

and Ω∗τ = Φτ1ΩτΦ
T
τ1 be the coordinates of βτ and ΣX with respect to Φ∗τ . Let ζ∗τ =

{µτ , vec(η∗τ )
T , vec(A)T , vech(Ω∗τ )

T , vech(Ω0τ )
T , vec(µX)T}T . Under this parameterization,
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(3.3) becomes

h∗n(ζ∗τ ) =


1
n

∑n
i=1 Wi{I[Yi < µτ + (Φ∗τη

∗
τ )
TXi]− τ}

1
n

∑n
i=1{vech(Φ∗τΩ

∗
τΦ
∗
τ
T + Φ0τΩ0τΦ

T
0τ )− vech[(Xi − µX)(Xi − µX)T ]}

1
n

∑n
i=1(µX −Xi)


≡ 1

n

n∑
i=1

g∗(Zi; ζ
∗
τ ). (4.2)

To obtain the GMM estimator, we use the following two-step algorithm:

Step 1. Obtain the estimator of ζ∗τ by minimizing h∗n(ζ∗τ )
Th∗n(ζ∗τ ), and denote it as ζ̃∗τ .

Step 2. Estimate the optimal weight matrix as

∆̂
−1

=

[
1

n

n∑
i=1

g∗(Zi; ζ̃
∗
τ )g
∗(Zi; ζ̃

∗
τ )
T

]−1
,

then obtain the GMM estimator ζ̂∗τ by minimizing the following quadratic form

Qn(ζ∗τ ) = h∗n(ζ∗τ )
T∆̂

−1
h∗n(ζ∗τ ).

Then µ̂τ , β̂τ = Φ̂
∗
τ η̂
∗
τ and Σ̂X = Φ̂

∗
τΩ̂
∗
τ (Φ̂

∗
τ )
T + Φ̂0τΩ̂0τΦ̂

T

0τ are the envelope GMM

estimators of µτ , βτ and ΣX.

To optimize the discontinuous GMM objective function, we use the function fminsearch

in the R package neldermead. This function does not require the derivative of the objective

function, and is also applicable to discontinuous objective functions. It uses Nelder-Mead
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method or downhill simplex method (Nelder and Mead, 1965) to find the minima of the

objective function. More information on the method can be found in Section E of the sup-

plement. The Nelder-Mead method has also been used for fitting other quantile regression

models (e.g. Koenker and Park, 1996; Otsu, 2003; Noufaily and Jones, 2013).

To select the dimension of the envelope EΣX
(βτ ), we apply the robust cross-validation

approach (RCV) (Oh et al., 2004). More specifically, we randomly divide the data into K

folds, use the kth fold for testing and the remaining K−1 folds for training. We repeat this

for k = 1, . . . , K, and aggregate the prediction error based on the quantile loss function.

For a fixed uτ , the RCV criterion is

RCV(uτ ) =
1

n

n∑
i=1

ρτ (Yi − µ̂τ,−k(i) − β̂
T

τ,−k(i)Xi),

where µ̂τ,−k(i) and β̂τ,−k(i) are computed using the data excluding the kth fold that the

ith observation resides. Since cross-validation often overfits, we pick uτ according to the

“one-standard error” rule. That is, we choose the smallest uτ whose error is no more than

one standard error above the minimum value of RCV. In our numerical studies, we found

that the performance of RCV is stable, even with small sample size.
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5 Simulation and data analysis

In this section, we demonstrate the efficiency gains of the EQR model with a numerical

experiment and a real data example. We consider the following simulation setting

Yi = µ+ αTXi + (5 + γTXi)εi, for i = 1, . . . , n,

where α = Φη1, γ = Φη2, and the error ε follows the standard normal distribution with

distribution function denoted by Fε. Here Φ ∈ Rp×u(u < p) is a semi-orthogonal matrix.

Hence µτ = µ + 5F−1ε (τ), βτ = Φ(η1 + η2F
−1
ε (τ)) = Φητ , Φτ = Φ and uπ = u, for

0 < τ < 1. We set p = 10, u = 2 and varied the sample size n from 50 to 1000. We set X

to follow a multivariate normal distribution with mean 0 and variance having the structure

ΦΩΦT + Φ0Ω0Φ
T
0 , where Φ0 is a completion of Φ, and Ω and Ω0 are the coordinate

matrices. We generated Φ with the first p/2 rows to be (−1/
√
p/2, 0) and the other rows

to be (0,−1/
√
p/2). The matrix Ω was a diagonal matrix with diagonal elements 50 and

100, Ω0 was an identity matrix, η1 was (−5
√
p/2,−5

√
p/2)T , η2 was (0,−

√
2p/20)T , and

µ was 5. Therefore α was a vector of 5 and γ was a vector with the first p/2 elements to

be 0 and the rest to be 0.1. For each sample size, 200 replications were generated. For each

replication, we fit the standard QR model (2.1) and the EQR model with uπ = 2. For each

element in βτ , we computed the estimation standard deviation from the 200 estimators.

We also generated 200 bootstrap repetitions using paired bootstrap, and computed the

bootstrap standard deviation. We considered τ = 0.5 and τ = 0.9. The results for a

randomly chosen element in βτ are summarized in Figures 1 and 2. The EQR model
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achieves obvious efficiency gains in this example. We compared the estimation standard

deviations of the standard QR estimator and the EQR estimator for each element in βτ .

We found that, at sample size 50, the EQR estimator reduced the estimation standard

deviation by 57.1% to 65.9% for τ = 0.5. Under the standard QR model, to reduce the

standard deviation by 65.9%, we need to increase the sample size by approximately 8.6

times the original sample size. The efficiency gain is more pronounced for τ = 0.9, the

EQR estimator reduced the estimation standard deviation by 71.0% to 75.9%. To achieve

a reduction of 75.9% in estimation standard deviation, we need to increase the sample

size by seventeen times the original sample size under the standard QR model. Figures 1

and 2 also show that the bootstrap standard deviation is a very good approximation to the

estimation standard deviation.
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Figure 1: Comparison of the EQR estimator and the standard QR estimator with uτ fixed
at true value (τ = 0.5). Lines — mark the standard deviations of the EQR estimator and
lines – – mark the standard deviations of the standard QR estimator. The lines with “+”
mark the bootstrap standard deviations for the corresponding estimators.
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Figure 2: Comparison of the EQR estimator and the standard QR estimator with uτ fixed
at true value (τ = 0.9). Lines — mark the standard deviations of the EQR estimator and
lines – – mark the standard deviations of the standard QR estimator. The lines with “+”
mark the bootstrap standard deviations for the corresponding estimators.

We also investigated the selection performance of five-fold RCV for each sample size. For

different sample sizes, the fraction in 200 replications that RCV selects the true dimension

is summarized in Table 1. It is quite stable across all the sample sizes in Table 1. With

small sample sizes, when it fails to select the true uτ , it tends to overestimate and picks a

larger dimension than the truth. In that case, we may achieve less efficiency gains, but we

do not lose any material information. Therefore we consider the performance of RCV to

be reasonable with small sample sizes.

Table 1: The fraction that RCV selects the true dimension
n 50 100 200 500 1000

τ = 0.5 89% 96% 99% 99% 100%
τ = 0.9 93% 97% 96% 99% 100%

Now we compute the estimation standard deviation of the EQR estimator again, but

using the selected uτ instead of the true uτ . This estimation standard deviation includes the
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Figure 3: Comparison of the EQR estimators and the standard QR estimator with τ = 0.5.
The line — marks the standard deviations of the EQR estimator with true uτ , the line —
with ∗ marks the standard deviations of the EQR estimator with selected uτ and the line
– – marks the standard deviations of the standard QR estimator.

variability in model selection and the variability of the EQR estimator given the selected

uτ . The results are included in Figures 3 and 4. To ease the comparison, we also included

the lines for the EQR estimators with uτ fixed at the true value. At sample size n = 50,

the EQR estimator with selected uτ reduces the estimation standard deviation of the QR

estimator by 51.7% to 59.3% for τ = 0.5 and by 63.9% to 72.6% for τ = 0.9. Compared

with the results with true uτ , the EQR estimator loses some efficiency gains due to the

variability in the selection but the EQR estimator is still more efficient than the standard

QR estimator. We also included the MSE for the EQR estimator and the standard QR

estimator in Figures 5 and 6. With n = 50, the EQR estimator with true uτ reduces the

MSE by 81.2% to 88.0% for τ = 0.5 and by 91.7% to 94.0% for τ = 0.9. The EQR estimator

with selected uτ reduces the MSE by 75.9% to 83.2% for τ = 0.5 and by 87.1% to 92.1%

for τ = 0.9. The reduction in MSE is mainly due to the efficiency gains. In this simulation,
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Figure 4: Comparison of the EQR estimators and the standard QR estimator with τ = 0.9.
The line — marks the standard deviations of the EQR estimator with true uτ , the line —
with ∗ marks the standard deviations of the EQR estimator with selected uτ and the line
– – marks the standard deviations of the standard QR estimator.

RCV always overestimates uτ , which loses some efficiency but does not bring in bias. In

fact, the squared bias of the EQR estimator is about the same as the QR estimator (see

the results in Section D.3 of the supplement).
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Figure 5: Comparison of the EQR estimators and the standard QR estimator with τ = 0.5.
The line — marks the MSE of the EQR estimator with true uτ , the line — with ∗ marks
the MSE of the EQR estimator with selected uτ and the line – – marks the MSE of the
standard QR estimator.
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Figure 6: Comparison of the EQR estimators and the standard QR estimator with τ = 0.9.
The line — marks the MSE of the EQR estimator with true uτ , the line — with ∗ marks
the MSE of the EQR estimator with selected uτ and the line – – marks the MSE of the
standard QR estimator.

We further examined the EQR model with the baseball salary data (Watnik, 1998).

The data contain salaries for 337 non-pitchers for 1992 Major League Baseball season.

The histogram of the salaries is right-skewed, which means that some of the players have

much higher salaries than the others. The dataset also includes 12 measures of the players’

performance in the previous year, including batting average, on-base percentage, number

of runs, hits, doubles, triples, home runs, batted in, walks, strike-outs, stolen bases and

errors. Each predictor was scaled to have standard deviation 1. We fit the EQR model

to the data. RCV suggested uτ = 4 for τ = 0.5. Across all elements in βτ , the ratios

of bootstrap standard deviations of the standard QR estimator versus the EQR estimator

range from 0.99 to 6.78 with an average of 2.90. For τ = 0.9, uτ = 2 was selected by

RCV. The ratios of the bootstrap standard deviations range from 1.88 to 29.48 with an

average of 8.30. To get an efficient estimator whose estimation standard deviation is 1/8.3
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of the original standard deviation under the standard QR, we need to increase the sample

to 8.302 ≈ 70 times the original sample size. The efficiency gains of the EQR model is

massive in this example.

6 Partial envelope quantile regression model

Partial envelope quantile regression model is motived by applications where some predictors

are categorical. For example, in medical studies, gender and race are often measured as

covariates along with continuous variables such as gene expression intensities to study

causes of a certain disease. If categorical predictors are present, the EQR model cannot be

applied directly. To resolve this issue, we propose to envelop on the continuous predictors

and leave the categorical predictors intact. In this way, the coefficients of the continuous

variables can be estimated more efficiently, and the coefficients of the categorical variables

are estimated with about the same efficiency as the QR model. Specifically, let X =

(XT
1 ,X

T
2 )T , where X1 ∈ Rp1 contains the continuous predictors and X2 ∈ Rp2 contains the

categorical predictors, p1 + p2 = p. Then the QR model (2.1) can be written as

QY (τ | X) = µτ + βT1,τX1 + βT2,τX2, (6.1)

where β1,τ ∈ Rp1 is the coefficient vector of X1 and β2,τ ∈ Rp2 is the coefficient vector of

X2. Let µX1
and ΣX1 denote the mean and covariance matrix of X1. With the presence
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of X2, suppose Sτ is a subspace of Rp1 that satisfies the following two conditions

i) QY (τ | X) = QY (τ | PSτX1,X2) and ii) Cov(PSτX1,QSτX1) = 0. (6.2)

Then it can shown that Sτ is a reducing subspace of ΣX1 that contains β1,τ . The inter-

section of all such Sτ is called the partial ΣX1-envelope of β1,τ , denoted by EΣX1
(β1,τ ) or

E1,τ for short. We denote the dimension of EΣX1
(β1,τ ) as dτ (dτ ≤ p1). Since we only

consider the envelope on β1,τ , β2,τ remains intact. We call (6.1) a partial envelope quantile

regression (PEQR) model if conditions (6.2) are incorporated. Let Ψτ ∈ Rp1×dτ be an

orthonormal basis of EΣX1
(β1,τ ) and Ψ0,τ ∈ Rp1×(p1−dτ ) be a completion of Ψτ . Then the

coordinate form of the PEQR model is

QY (τ |X) = µτ + ηTτ ΨT
τ X1 + βT2,τX2

ΣX1 = ΨτΩτΨ
T
τ + Ψ0τΩ0τΨ

T
0τ ,

(6.3)

where β1,τ = Ψτητ , ητ ∈ Rdτ carries the coordinates of β1,τ with respect to Ψτ , Ωτ ∈

Rdτ×dτ and Ω0,τ ∈ R(p1−dτ )×(p1−dτ ) carry the coordinates of ΣX1 with respect to Ψτ and

Ψ0τ . Let s1 = p1(p1+1)/2. Then the number of parameters in this model is 1+p2+dτ +s1,

reduced from 1 + p1 + p2 + s1 without enveloping, and the parameter vector is

ζ1,τ = (µτ , vec(ητ )
T , vec(Ψτ )

T ,βT2,τ , vech(Ωτ )
T , vech(Ω0,τ )

T )T .

The estimation of parameters in PEQR is similar to that in EQR. We adopt the
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reparametrization in (4.1). Let Ψτ,1 be the matrix that contains the first dτ rows in

Ψτ , and let Ψτ,2 be the matrix that contains the remaining rows in Ψτ . Without loss of

generality, we assume that Ψτ,1 is nonsingular. Let Ψ∗τ = ΨτΨ
−1
τ,1, η

∗
τ = Ψτ,1ητ and Ω∗τ =

Ψτ,1ΩτΨ
T
τ,1. Then Ψ∗τ = (Idτ ,A

T
1 )T , where A1 = Ψτ,2Ψ

−1
τ,1. We write Xi = (XT

1,i,X
T
2,i)

T

and Wi = (1,XT
i )T , i = 1, · · · , n. Under the PEQR model, define

h∗n(ζ∗1,τ ) =


1
n

∑n
i=1 Wi{I[Yi < µτ + (Ψ∗τη

∗
τ )
TX1,i + βT2,τX2,i]− τ}

1
n

∑n
i=1{vech(Ψ∗τΩ

∗
τΨ
∗
τ
T + Ψ0τΩ0τΨ

T
0τ )− vech[(X1,i − µX1

)(X1,i − µX1
)T ]}

1
n

∑n
i=1(µX1

−X1,i)


≡ 1

n

n∑
i=1

g∗n(ζ∗1,τ ), (6.4)

where ζ∗1,τ = (µτ , vec(η∗τ )
T , vec(A1)

T ,βT2,τ , vech(Ω∗τ )
T , vech(Ω0,τ )

T ,µT
X1

)T . We follow the

procedures in Section 4, and use a two-step algorithm to get the GMM estimator of ζ∗1,τ .

Step 1. Find the estimator ζ∗1,τ by minimizing h∗n(ζ∗1,τ )
Th∗n(ζ∗1,τ ), and denote it as ζ̃

∗
1,τ .

Step 2. Estimate the optimal weight matrix as

∆̂
−1

=

[
1

n

n∑
i=1

g∗n(ζ̃
∗
1,τ )g

∗
n(ζ̃

∗
1,τ )

T

]−1
,

and get the GMM estimator ζ̂
∗
1,τ as the minimizer of the following quadratic form

Qn(ζ∗1,τ ) = h∗n(ζ∗1,τ )
T∆̂

−1
h∗n(ζ∗1,τ ).
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Then the envelope GMM estimators of β1,τ and ΣX1 are β̂1,τ = Ψ̂
∗
τ η̂
∗
τ and Σ̂X1 =

Ψ̂
∗
τΩ̂
∗
τΨ̂
∗T
τ + Ψ̂0τΩ̂0τΨ̂

T

0τ .

The selection of the dimension for EΣX1
(β1,τ ) can be performed by RCV.

The asymptotic variance of the envelope GMM estimator can be derived similarly as in

Theorem 2. As βτ = (βT1,τ ,β
T
2,τ )

T , θ∗ in the PEQR setting is then θ∗ = (µτ ,β
T
1,τ ,β

T
2,τ , vech(ΣX1)

T )T .

Let θ̂
∗
pe denote the PEQR estimator of θ∗ and let θ̃

∗
denote the standard estimator of θ∗

by directly solving the estimating equations without enveloping. Let θ∗0 be the true value

of θ∗. As discussed in the EQR model, we ignore µX1
with no loss of generality.

Theorem 3. Under the same conditions as in Theorem 2, (1)
√
n(θ̂

∗
pe − θ∗0) converges in

distribution to a normal distribution with mean zero and covariance matrix avar(
√
nθ̂
∗
pe) =

G(GTUpeV
−1
pe UpeG)†GT , where G = ∂θ∗/∂ζT1,τ is the gradient matrix of θ∗ relative to

ζ1,τ ,

Upe =

Eθ0 [fY |X(ξ0(τ |X))WWT ] 0

0 Is1


and

Vpe =

τ(1− τ)Eθ0 [WWT ] 0

0 varθ0{vech[(X1 − µX1,0)(X1 − µX1,0)
T ]}

 ,

with µX1,0 being the true value of µX1
.

(2) In addition, avar(
√
nθ̂
∗
pe) ≤ avar(

√
nθ̃
∗
).

Theorem 3 suggests that PEQR improves the estimation efficiency of β1,τ , while it does
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not sacrifice the estimation efficiency of β2,τ . The proof of Theorem 3 is briefly described

in Section C of the supplement.

We then demonstrate the performance of PEQR with a simulation and an example. To

save space, we present the simulation setting and results in Section D.4 of the supplement,

where PEQR demonstrates efficiency gains in estimating the parameters compared to the

standard QR. We provide details on the real data analysis below.

We applied the PEQR model to the Boston housing data (Harrison and Rubinfeld,

1978). The data contain housing value and 13 attributes for 506 owner-occupied homes

in suburbs of Boston. The 13 attributes include one categorical variable: Charles River

dummy variable, which takes value 1 if tract bounds river and 0 otherwise. The 12 contin-

uous variables include crime rate, nitric oxides concentration, pupil-teacher ratio by town

and others. Each continuous variable was scaled to have sample standard deviation 1. We

took the house value of the homes as response and the 13 attributes as predictors. As

the distribution of the response is right skewed, we fit the standard QR model and the

PEQR model to the data. RCV suggested dτ = 3 for τ = 0.5 and dτ = 2 for τ = 0.9. We

computed the bootstrap standard deviation from the standard QR model and the PEQR

model for each element in βτ , and took the ratio. The ratios ranged from 0.88 to 3.44 with

an average of 2.12 for τ = 0.5, and they ranged from 0.83 to 5.50 with an average of 3.57

for τ = 0.9. The PEQR model demonstrates efficiency gains in this example.
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7 Discussion

In this article, the EQR approach along with its variant PEQR are developed to reduce

estimation variation and improve efficiency for quantile regression. The new EQR method

utilizes information in both the predictors and response by connecting the covariance matrix

ΣX of X to the parameter of interest βτ for identifying material and immaterial information

in estimating βτ , while synchronously excluding immaterial information from estimation.

With this simultaneous dimension reduction and regression fitting, the new method can

lead to gains in efficiency. It also advances the recent development of envelopes to general

distribution-free procedures with possibly nonsmooth objective functions, and offers new

technical tools for justification of asymptotic efficiency. The idea of EQR can be naturally

extended to other quantile regression settings, such as censored quantile regression and

partially linear quantile regression, for survival and other complex data analysis. On the

other hand, since ΣX is incorporated in the estimation procedure, the number of parameters

in EQR can be large when the number of predictors increases. Hence a direct application

of EQR to high dimensional settings is hard. To overcome this issue, a penalized EQR

model can be considered by imposing sparsity on the parameters βτ , ΣX, and the weighted

matrix ∆ in the GMM estimation, inspired by Su et al. (2016) and Qian et al. (2018). The

theoretical properties of the associated estimators require further investigation. We leave

the penalized EQR model as a potentially interesting future research project.

SUPPLEMENTARY MATERIALS

The supplementary materials contain proofs, technical details, and additional simula-
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tions.
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