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Abstract: A group testing study involves collecting samples from multiple indi-

viduals, pooling them, and testing them as a group. A realistic cost model for

such a study should consider the costs both for collecting the samples, and for

running the assays. Moreover, an efficient design should accommodate inaccura-

cies in any prespecified nominal test sensitivity and specificity values, and allow

them to vary with group size. In this work, we derive locally optimal designs

in this setting, and characterize their theoretical properties. We also provide

a guaranteed algorithm for constructing the designs on discrete design spaces.

Several simulated examples based on a real-world group testing study show that

the proposed designs have high efficiency, and are not strongly sensitive to the

working parameter specification that is used to obtain the locally optimal design.

Key words and phrases: Budget-constrained design, dilution effect, group testing.

1. Introduction

Group testing, first discussed by Dorfman (1943), plays an impor-

tant role in prevalence estimation and case diagnosis, and may become
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increasingly important in public health, environmental monitoring, and risk

surveillance, as sensors, assays, and data-driven risk monitoring proliferate

– see for example, Gastwirth (2000), Xie et al. (2001), Pilcher et al. (2005)

and Liu et al. (2011). A successful group testing study should be based on

an efficient and tractable design, in order to get the most information out

of limited resources. One critical aspect of efficient design in this setting

is the overall study cost (Turner, Stamey and Young, 2009), which arises

from separate costs due to collecting samples and running assays. Another

important issue is that specificity and especially sensitivity of the test may

decline with increasing group sizes, which is called dilution effects in the

literature (Zenios and Wein, 1998; McMahan, Tebbs and Bilder, 2013).

Many group testing studies for prevalence estimation utilize prespecified

values for the sensitivity and specificity, and therefore their designs involve

only one group size (Tu, Litvak and Pagano, 1995; Liu et al., 2012). How-

ever, Zhang et al. (2014) indicate that misspecified sensitivity and specificity

may introduce bias in the prevalence estimate. Therefore, here we estimate

the prevalence while treating the sensitivity and specificity as nuisance pa-

rameters inferred from the data.

Huang et al. (2017) theoretically characterize optimal designs for group

testing with uncertain testing parameters. However, since they do not in-
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corporate costs for assays and subjects, the optimal designs may place un-

tenably large numbers of subjects into large groups. In group testing, large

groups are important for sensitivity estimation, but it is arguably unlikely

that scarce samples would be utilized this way in practice. Therefore, intro-

ducing differential costs for subjects and assays, and in particular placing

a realistic cost on subject recruitment can lead to optimal designs in which

the largest group sizes are moderated.

Here we develop a theory and an algorithm to obtain optimal designs

for prevalence estimation in a realistic group testing setting. We allow

different costs for assays and for subjects, and accommodate uncertain test

accuracies which may vary with the group sizes. Our results indicate that

the optimal design substantially depends on the relative costs of assays and

subjects. Therefore, a simplified approach in which either assays or subjects

are taken to be cost-free may not be appropriate in many cases.

2. Preliminaries

Let θ = (p0, p1, p2)T, where p0 is the prevalence (the proportion of dis-

eased people in the population), and p1 and p2 are the sensitivity and speci-

ficity (true positive rate and the true negative rate of the test, respectively).

We first consider the case with unknown sensitivity and specificity that do

not change with the group size. We assume that p0 ∈ (0, 1), p1, p2 ∈ (0.5, 1],
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and false positives and false negatives occur randomly with rates 1−p2 and

1−p1, respectively. Hence, the positive response probability (either true or

false positive) of a trial with group size x is

π(x) = π(x|θ) = p1 − (p1 + p2 − 1) (1− p0)x . (2.1)

We consider designs subject to a known group size constraint 1 ≤ xL ≤

x ≤ xU <∞, where the limits on the group sizes are driven from practical

considerations such as the feasibility of the test. We note that when the

upper bound xU is large enough, it is often not a support point of the

optimal design in our setting, and therefore it does not impact the design

or analysis.

To introduce costs, we let the total budget be C0, and we assume that

the costs of performing an assay and enrolling a subject are, respectively,

q0 and q1, which in practice are known, where q0, q1 ≥ 0 and q0 + q1 > 0.

Without loss of generality, we rescale the total budget and the costs for assay

and subject with respect to the cost for individual test, q0 + q1. That is,

the (rescaled) total budget is C = C0/(q0 + q1), and the (rescaled) costs for

assay and subject are 1− q and q, respectively, for q = q1/(q0 + q1) ∈ [0, 1].

We then model the cost of a trial with group size x as

c(x) = 1− q + qx.
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Under a fixed budget, having q = 0 means that subjects incur no cost, thus

is equivalent to the scenario with a fixed number of trials. Similarly, the

scenario with q = 1, i.e., assays are cost-free, is equivalent to the scenario

with a fixed number of subjects.

For a study consisting of ni trials with group size xi for i = 1, . . . , k, we

denote its budget-constrained design as ξ = {(xi, wi)}ki=1, where wi is the

proportion of budget expended at group size xi, expressed as

wi = nic(xi)/C, (2.2)

and the total budget C =
∑

j njc(xj). The log-likelihood function in θ is

(omitting an unimportant additive constant)

L(θ) =
k∑
i=1

{yi log(π(xi|θ)) + (ni − yi) log(1− π(xi|θ))}

= C

(
k∑
i=1

wi
c(xi)

{
yi
ni

log(π(xi|θ)) +

(
1− yi

ni

)
log(1− π(xi|θ))

})
.

(2.3)

The maximum likelihood estimate (MLE) of θ, θ̂, is obtained by maximizing

(2.3), and the covariance matrix of θ̂ is asymptotically proportional to the

inverse of the information matrix of ξ, which is

M(ξ) =
k∑
i=1

wiλ(xi)f(xi)f(xi)
T, (2.4)
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where

λ(x) = {c(x)π(x)(1− π(x))}−1 ,

f(x) =
(
(p1 + p2 − 1)x(1− p0)x−1, 1− (1− p0)x,−(1− p0)x

)T
.

We note that in equations (2.3) and (2.4), c(x) plays the role of an inverse

weight in both the log-likelihood function and the information matrix.

Our main goal is to accurately estimate the prevalence, where other

unknown parameters are treated as nuisance parameters. Therefore, we use

the Ds-optimality criterion, which seeks a design minimizing the asymptotic

generalized variance of a given subset of model parameters. In this study a

Ds-optimal design maximizes

Φs{M(ξ)} = − log
(
M(ξ)−

)
11

(2.5)

among all designs under which p0 is estimable, where for a matrix of M ,

M11 is its (1, 1) entry and M− is a generalized inverse M . Note that the

Ds-optimality above is equivalent to c-optimality with c = (1, 0, 0)T (Atkin-

son, Donev and Tobias, 2007, Chap. 17.5), which minimizes the asymptotic

variance of cTθ̂. The optimal group sizes of a Ds-optimal design may be non-

integer-valued. For practical use, we further say that a design is DI
s -optimal

(‘I’ stands for ‘integers’) if it is Ds-optimal among all designs supported on

the positive integers [xL, xU ] ∩ N. According to (2.4) and (2.5), we can see
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that the optimality of a design depends on unknown parameters (p0, p1, p2)T

and the cost parameter q, but is invariant to the total budget C.

3. Ds-optimal budget-constrained designs

We first consider the design space as the interval [xL, xU ] to get an

overview of the behavior of Ds-optimal budget-constrained designs. The

main tools used in this section are the general equivalence theorem (Kiefer,

1974) and the following two lemmas. Note that the three results still hold

when the design space [xL, xU ] is replaced by [xL, xU ]∩N, which are used to

obtain DI
s -optimal designs in Section 3.1. For the Ds-criterion, we say that

a design ξ with finitely many group sizes is valid if p0 is estimable under ξ.

The first result describes the collection Ξ of all valid designs, through the

following lemma. The proofs of this lemma and other results are detailed

in the on-line supplement.

Lemma 1. For the Ds-criterion (2.5), Ξ consists of all designs having at

least three support points in [xL, xU ].

This lemma also shows that all valid designs under model (2.1) have

nonsingular information matrices. Moreover, for three group sizes x1 <

x2 < x3, letting F = (f(x1), f(x2), f(x3)), (v1, v2, v3)T = F−1 · (1, 0, 0)T,

ui = {λ(xi)
−1v2

i }1/2 and wsi = ui/
∑

j uj for i = 1, 2, 3. We have the

following lemma to determine the optimal weights on the three group sizes.
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Moreover, when a three-point design is described by its support points, its

weights are obtained from this lemma without further mention.

Lemma 2. The weights {wsi }3
i=1 are the unique optimal weights for the

group size x1 < x2 < x3 ∈ [xL, xU ], with

Φs{M({xi, wsi }3
i=1)} = −2 log

3∑
i=1

ui. (3.1)

For completeness, we introduce the general equivalence theorem as fol-

lows. For x ∈ [xL, xU ], let δx be the one-point design supported on x. For

a design ξ ∈ Ξ and x ∈ [xL, xU ], let φs(x, ξ) be the directional derivative of

Φs at M(ξ) in the direction M(δx),

φs(x, ξ) = lim
α→0+

1

α
(Φs{M(ξ)} − Φs{M((1− α)ξ + αδx)})

= λ(x)f(x)TM−1(ξ)f(x)− λ(x)fs(x)TM−1
s (ξ)fs(x)− 1,

(3.2)

where fs(x) is the 2 × 1 subvector of f(x) deleting its first element, and

Ms(ξ) is the 2 × 2 submatrix of M(ξ) after deleting its first row and first

column. Then we have the following general equivalence theorem.

Theorem 1. For a design ξs ∈ Ξ, the three assertions are equivalent:

(a) Φs{M(ξs)} = max
ξ∈Ξ

Φs{M(ξ)};

(b) max
x∈[xL,xU ]

φs(x, ξs) = min
ξ∈Ξ

max
x∈[xL,xU ]

φs(x, ξ);

(c) for an arbitrary group size xs of ξs, φs(xs, ξs) = max
x∈[xL,xU ]

φs(x, ξs) = 0.
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Any linear combination of designs satisfying (a)-(c) also satisfies (a)-(c).

Based on Lemmas 1, 2, and Theorem 1, we characterize the Ds-optimal

design by Theorem 2. It extends Theorem 3 in Huang et al. (2017) from

the special case with cost parameter q = 0 to an arbitrary q ∈ [0, 1].

Theorem 2. The Ds-optimal design ξs for estimating only the prevalence

is unique. It has three group sizes xL = xs1 < xs2 < xs3 ≤ xU with weights

given in Lemma 2.

Theorem 2 shows that some properties of Theorem 3 in Huang et al.

(2017) continue to hold for q ∈ [0, 1]: (i) the unique Ds-optimal design has

exactly three group sizes; to run a design with four or more distinct sizes

would lose efficiency for prevalence estimation; (ii) the information about

the prevalence, sensitivity, and specificity mainly come from xs2, xs3, and xs1,

respectively; (iii) having a smaller value of xL strictly improves the accuracy

of the estimation of p0, so xL should be set to one whenever possible.

On the other hand, as q increases, the inverse weight c(x) tends to

penalize larger group sizes. Therefore, when q > 0, xU may not be a

support point of ξs, and thus a two-dimensional optimization problem (x2

and x3 in equation (3.1)) needs to be solved for obtaining ξs. In contrast,

Theorem 3 in Huang et al. (2017) showed that when q = 0, xs3 must be xU ,

and xs2 can be obtained via a one-dimensional root finding algorithm.

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



Cost considerations for efficient group testing studies 10

Example 1. Let θ = (p0, p1, p2)T = (0.07, 0.93, 0.96)T (this parameter

setting is based on a chlamydia study in McMahan, Tebbs and Bilder

(2012)) and let [xL, xU ] = [1, 150]. We obtain the Ds-optimal design for

each q ∈ [0, 1], as shown in Figure 1. First we focus on the group sizes of

the Ds-optimal designs. Theorem 2 shows that the smallest group size xs1

of ξs must be the lower boundary xL. In Figure 1(a) we observe that the

intermediate and largest group sizes xs2 and xs3 decrease as the cost param-

eter q increases. Moreover, when xU is as large as 150, the largest group

size of a Ds-optimal design is strictly less than xU unless q approaches 0.

The optimal weights (proportions of budget) {ws1, ws2, ws3} of Ds-optimal

designs are shown in Figure 1(b). Under this parameter setting, the weight

ws2 at xs2 always dominates the other two weights ws1 and ws3. By observing

Figures 1 (a) and (b) we note that what really matters is whether q ≈ 0

or not, and the Ds-optimal designs are quite stable when q ≥ 0.4, which is

roughly supported on {1, 7, 77} with weights {0.09, 0.55, 0.36}.

Figure 1(c) shows another perspective on trial allocation related to cost.

Roughly speaking, we find that as the cost parameter q increases, only the

proportion of trials ts1 at xs1 increases, but the other two proportions de-

crease. By comparing Figures 1(b) and (c), we conclude that, as q increases,

to obtain a trial with large group size gets more expensive, and more budget
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(c) Proportions of trials against q

Figure 1: Properties of the Ds-optimal designs for Example 1.

at larger sizes is needed to get enough information about p1 for efficiently

estimating p0; on the other hand, the proportion of trials at the smallest

size still increases, which reflects the preference for less expensive trials. �

Remark 1. In the online supplement, Section S2, we also consider the D-

optimal design under the setting of Example 1, where D-criterion treats p0,

p1, and p2 as equally important. The D-optimal design also have exactly

three group sizes with the low boundary xL, and an intermediate size close

to that of the Ds-optimal design. However, a Ds-optimal design puts much
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more weight (proportion of budget) on its intermediate size (≥ 0.55 vs.

0.33). �

3.1. DI
s-optimal designs

In practice, the group sizes in a group testing design must be sup-

ported on the finite set [xL, xU ] ∩ N instead of the interval [xL, xU ]. To

obtain the optimal integer-valued group sizes, a natural approach would be

simple rounding of the Ds-optimal design ξs; however, to attain optimality

we develop an efficient numerical search procedure that yields DI
s -optimal

designs on [xL, xU ] ∩ N.

Intuitively, a DI
s -optimal design should be close to the corresponding

Ds-optimal design ξs obtained based on Theorem 2. Therefore, the three

support points of ξs after rounding form a good initial design. Then, by

Theorem 1, we know that either the initial design is optimal, or it can be

improved by adding a point which has a positive derivative (3.2). We then

recalculate the weights, by numerically optimizing (2.5). After dropping

points with zero weight, if any exist, we check the optimality of the new

design. These steps are iterated until optimality is attained.

The algorithm stops when the resulting design satisfies Theorem 1(c),

which guarantees optimality; otherwise, the design obtained in each itera-

tion is strictly better than the previous ones. Since [xL, xU ] ∩ N is finite,
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this algorithm must stop in finitely many steps. Also, due to the convexity

of the design criterion, this stepwise ascent algorithm converges to a global

optimum. The details of the search algorithm for obtaining a DI
s -optimal

design ξI are shown later in Section 4, together with the scenario having

dilution effects, as Algorithm 1. In practice, we have observed that the al-

gorithm tends to converge in very few steps, since the initial design is often

already close to (and in many cases, exactly equal to) a DI
s -optimal design.

We note that heuristic numerical search (e.g. Zhang et al. (2014))

may yield incorrect results. When θ = (0.05, 0.95, 0.995)T, q = 1, and

[xL, xU ] = [1, 150], our algorithm obtains a DI
s -optimal design having group

sizes {1, 8, 113}. Alternatively, a design supported on {1, 12, 150} is re-

ported by Zhang et al. (2014). By using Theorem 1, we find that our

design is optimal, but the other is not.

3.2. Design implementation

In the approximate design framework, the optimal weights only involve

the constraints wi > 0 and
∑
wi = 1. For practical use with a total

budget C, equation (2.2) shows that the number of trials at each point xi is

ni = Cwi/c(xi), which should be positive integers, introducing additional

restrictions on the weights.

For implementing a DI
s -optimal design ξI , we obtain the number of
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Table 1: Allocations of C1 on support points {1, 10, 81} when C = 10000.

xi 1 10 81 remaining Var(p̂0)

c(xi) 1 2.8 17 budget (×1/C)

additional 0 4 0 0.0 0.137634

trials ∆i 2 3 0 0.8 0.137645

5 2 0 0.6 0.137642

8 1 0 0.4 0.137640

11 0 0 0.2 0.137638

trials based on a variant of the efficient rounding procedure (Pukelsheim,

2006). For a budget-constrained design ξ = {(xi, wi)}ki=1 and a total budget

C, let {n0
i }ki=1 = {bCwi/c(xi)c}ki=1 and let C1 = C −

∑
i n

0
i c(xi), where bxc

is the largest integer that is not greater than x. Then, we allocate C1 at

each xi to obtain a design having trial counts {n0
i + ∆i}ki=1 with minimum

variance of the prevalence estimator, where ∆i ∈ N ∪ {0} for each i and∑
∆ic(xi) ≤ C1. Note that

∑
∆ic(xi) may be strictly less than C1, when

the remaining cost is less than c(min(xi)). Some details are presented in

the following example.

Example 2. Following Example 1, we let θ = (0.07, 0.93, 0.96)T, let q =

0.2, and let [xL, xU ] ∩ N = {1, 2, . . . , 150}. A DI
s -optimal design ξI is sup-
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ported on {1, 10, 81} with weights {0.104, 0.555, 0.341} and costs per test

{1, 2.8, 17}, respectively. The asymptotic variance of prevalence estimate

from ξI is 0.137633/C.

When the total budget is C =10,000, we have {n0
i }3
i=1 = {1042, 1981,

200} and C1 = 11.2. Table 1 shows all possible allocations of C1, and the

variance attains its minimum when the additional trials are at {0, 4, 0}.

Thus, we set the numbers of trials of the implemented design ξI(C) to be

{1042, 1985, 200}, with total number of trials 3,227, and total number of

subjects 37,092. We also note that, when C is large enough, such as this

example, the loss of design efficiency tends to be negligible, no matter how

we allocate C1 in Table 1. �

4. DI
s-optimal designs under dilution effects

In Section 3 we treated the sensitivity and specificity as constants with

unknown values. As noted in the introduction, dilution effects, which reduce

sensitivity or specificity for larger group sizes, are commonly seen, especially

when the allowable range of group sizes [xL, xU ] is wide. In this section, we

provide an algorithm to accommodate group testing with dilution effects.

The most natural form for dilution is decreasing sensitivity with in-

creasing group size (Zenios and Wein, 1998). For completeness, we also

consider the presence of diluted specificity. When there is a dilution effect
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on the sensitivity or on the specificity, we work respectively with the model,

p1(x) = p1(x|α) = link(α0 − α1 log(x)) or (4.1)

p2(x) = p2(x|β) = link(β0 − β1 log(x)), (4.2)

where link : R → [0, 1] is a link function for probability. For convenience

of interpreting the dilution models, we adopt the logistic regression in the

following context: link(u) = expit(u) = {1 + exp(−u)}−1 (also see equation

(4) in Zhang et al. (2014)). Thus, for instance, the sensitivity model has

the properties that expit(α0) is the baseline sensitivity p1(1), and that the

sensitivity has a nearly polynomial rate of decay, {1 + xα1 exp(−α0)}−1,

as the group size x grows. In other scenarios, log(x) in equations (4.1)

and (4.2) can be replaced by x, log2(x), etc., and another link function

can be adopted. Here we assume that α0, β0 > 0 and α1, β1 ≥ 0 so that

p1(1), p2(1) > 0.5 and p1, p2 monotonically decrease as x increases.

When only the sensitivity has a dilution effect, the corresponding in-

formation matrix becomes a variant of (2.4)

Mα(ξ) =
k∑
i=1

wiλ(xi)fα(xi)fα(xi)
T, (4.3)

where fα(x) = Hα(x)f(x) ∈ R4, and Hα(x) is a 4×3 block-diagonal matrix

with diagonal blocks (1, ∂p1(x)/∂α, 1). Similarly, when only the specificity

has a dilution effect, or when both the sensitivity and specificity have dilu-
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tion effects, the corresponding information matrices are, respectively,

Mβ(ξ) =
k∑
i=1

wiλ(xi)fβ(xi)fβ(xi)
T, and (4.4)

Mαβ(ξ) =
k∑
i=1

wiλ(xi)fαβ(xi)fαβ(xi)
T, (4.5)

where fβ(x) = Hβ(x)f(x) ∈ R4, fαβ(x) = Hαβ(x)f(x) ∈ R5, Hβ(x) =

diag(1, 1, ∂p2(x)/∂β), and Hαβ(x) = diag(1, ∂p1(x)/∂α, ∂p2(x)/∂β).

Extending the ideas in Section 3.1, our search algorithm is described as

follows. By Theorem 2, the Ds-optimal design supported on {xs1, xs2, xs3} can

be used to efficiently estimate p0 in the absence of dilution effects, and when

dilution effects exist, more points should be added. Note that in Theorem

2, the information of p1 and p2 mainly comes from the larger and smaller

group sizes, xs3 and xs1, respectively. Therefore, to form an initial design,

we add a size between xs2 and xs3 (or a size in (xs1, x
s
2)) if the sensitivity

(or specificity) is diluted. The optimal weights for these group sizes can be

obtained through Lemma 2 (when there is no dilution effect) or the lemma

below (when dilution effects exist).

Lemma 3.

(a) For group testing with one dilution effect (either sensitivity or speci-

ficity), if the four distinct sizes {x1, x2, x3, x4} satisfy that F∗ = (f∗(x1),

f∗(x2), f∗(x3), f∗(x4)) is invertible, where f∗ = fα or fβ, respectively,
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then the Ds-optimal weights at these sizes are proportional to (λ(xi)
−1v2

i )
1/2

for i = 1 . . . 4, where (v1, v2, v3, v4) = F−1
∗ · (1, 0, 0, 0)T.

(b) For group testing with two dilution effects (both sensitivity and speci-

ficity), if the five distinct sizes {x1, x2, x3, x4, x5} satisfy that Fαβ =

(fαβ(x1), fαβ(x2), fαβ(x3), fαβ(x4), fαβ(x5)) is invertible, the Ds-optimal

weights at these sizes are proportional to (λ(xi)
−1v2

i )
1/2 for i = 1 . . . 5,

where (v1, v2, v3, v4, v5) = F−1
αβ · (1, 0, 0, 0, 0)T.

Based on the ideas above, and applying Theorem 1 (where the informa-

tion matrix (2.4) should be replaced by Mα, Mβ, or Mαβ if dilution effects

exist), we provide Algorithm 1 to obtain DI
s -optimal designs. The use of

Algorithm 1 is demonstrated in the example below, and we also comment

on some of the patterns we observe.

Algorithm 1. Let Ω = [xL, xU ] ∩ N and let x
(0)
1 < x

(0)
2 < x

(0)
3 be the three

support points of ξs for θ = (p0, p1(1), p2(1))T in Theorem 2 after rounding.

Set X0 =
{
x

(0)
1 , x

(0)
β (if p2 is diluted), x

(0)
2 , x

(0)
α (if p1 is diluted), x

(0)
3

}
, where

x
(0)
α = b(x(0)

2 + x
(0)
3 )/2c and x

(0)
β = b(x(0)

1 + x
(0)
2 )/2c. Set W0 be the optimal

weights obtained from Lemma 2 or Lemma 3 at points in X0. Set ξ0 =

{X0,W0}. For j = 0, 1, . . . , do:

Step 1. Set xj = arg max
Ω\Xj

φs(x, ξj). If φs(xj, ξj) ≤ 0, output ξj and stop.

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



Cost considerations for efficient group testing studies 19

Step 2. Set Xj+1 = Xj ∪ {xj}, and obtain

Wj+1 = arg max
W

{
Φs{M(Xj+1,W )}; min(W ) ≥ 0,

∑
w∈W

w = 1

}
.

The weights W are available in closed-form (Lemmas 2 and 3) if the

design is minimally supported. Otherwise, W can be obtained by solv-

ing a convex optimization.

Step 3. Set ξj+1 = {Xj+1,Wj+1} after deleting those (x,w) with w = 0.

Example 3. To better understand the structure of optimal designs in the

presence of dilution effects, and how they relate to the optimal designs

in the setting without dilution, we considered several numerical examples.

Following Examples 1 and 2, we let p0 = 0.07, [xL, xU ]∩N = {1, 2, . . . , 150},

q = 0.2. We further let the sensitivity and the specificity be respectively

0.93 and 0.96 at group size 1 (α0 = 2.6 and β0 = 3.2), and consider α1, β1

respectively vary from 0 to 0.5. Figure 2 shows how the sensitivity and

specificity decay as the group sizes.

Table 2 shows DI
s -optimal designs for several setting with or without

dilution effects. When there is no dilution effect, the design supported on

{1, 10, 81} is DI
s -optimal under the model with information matrix (2.4).

When the experimenters include dilution effects in the group testing model,

the information matrix becomes (4.3), (4.4) or (4.5).
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0.93=expit{2.6}

expit{2.6-0.3log(x)}

expit{2.6-0.5log(x)}
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(a) Sensitivity functions

0.96=expit{3.2}

expit{3.2-0.3log(x)}

expit{3.2-0.5log(x)}
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(b) Specificity functions

Figure 2: The sensitivity and specificity functions for Example 3.

If sensitivity is diluted, the new support point falls between x2 and x3

but does not approach either of them, while if specificity is diluted, the new

support point falls near the lower end of the range of group sizes. This is

consistent with the fact that larger group sizes are more informative about

sensitivity, and small group sizes are more informative about specificity.

However, the new support points cannot approach the extremes of the range

of allowable group sizes, because these points are already included in the

design, and we need to observe results for sufficiently many distinct group

sizes to be able to estimate the slope parameters α1 and β1.

We also considered how the population parameters for dilution effects

influence the structure of the optimal designs. As the slope parameter

α1 becomes larger, x2 and xα tend to get smaller, while when the slope

parameter β1 becomes larger, xβ and x2 tend to get larger. These changes
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Table 2: DI
s -optimal designs for several scenarios in Example 3. (Here

α0 = 2.6 and β0 = 3.2)

Model α1 β1 x1 xβ x2 xα x3 w1 wβ w2 wα w3

(2.4) – – 1 – 10 – 81 .11 – .55 – .34

(4.3) .0 – 1 – 11 53 150 .04 – .27 .38 .31

.3 – 1 – 7 44 150 .08 – .30 .33 .29

.5 – 1 – 6 38 150 .10 – .31 .31 .28

(4.4) – .0 1 3 18 – 89 .07 .19 .44 – .30

– .3 1 3 20 – 91 .11 .25 .38 – .26

– .5 1 3 22 – 92 .15 .27 .34 – .24

(4.5) .0 .0 1 3 15 57 150 .05 .14 .29 .31 .21

.0 .3 1 3 17 58 150 .09 .20 .29 .26 .16

.0 .5 1 3 18 58 150 .13 .24 .27 .23 .13

.3 .0 1 2 13 51 150 .08 .17 .25 .29 .21

.3 .3 1 3 14 52 150 .09 .21 .27 .26 .17

.3 .5 1 3 15 53 150 .12 .24 .25 .24 .15

.5 .0 1 2 12 46 150 .08 .17 .24 .29 .22

.5 .3 1 3 13 47 150 .08 .21 .26 .27 .18

.5 .5 1 3 13 46 150 .12 .25 .25 .23 .15

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



Cost considerations for efficient group testing studies 22

may allow for improved estimation of the sensitivity or specificity curves,

but note that since we are using the Ds-criterion focusing on prevalence,

the changes are not large. �

In the example above, it seems that the upper bound xU is always

present in a DI
s -optimal design when the sensitivity is diluted. However,

xU is not necessarily present, especially when xU is sufficiently large. For

instance, under the same parameter setting as the example above, with α1 =

β1 = 0.5, and moving xU up to 1000, the DI
s -optimal design is supported

on {1, 3, 14, 51, 674}.

5. Design performance

In this section, we study the performance of the DI
s -optimal design

when the working parameter is moderately misspecified. We can see below

that its performance is relatively stable when the working parameter is

not too far from the true value. Following Examples 1-3, and focusing

on the most common setting where only the sensitivity is diluted, we let

[xL, xU ] ∩ N = {1, 2, . . . , 150} and q = 0.2, and let the working parameter

θ̃0 = (p̃0, α̃0, α̃1, p̃2)T = (0.07, 2.6, 0.3, 0.96)T. From Table 2 (Model (4.3),

α1 = 0.3), the DI
s -optimal design ξ̃ under θ̃ is supported on {1, 7, 44, 150}.

For studying how the misspecified working parameter affect the perfor-

mance of ξ̃, we consider that the true value of θ = {p0, α0, α1, p2}T comes
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Table 3: AEFF(ξ̃|θ) for selected θ ∈ Θ.

p0 = 0.05 p0 = 0.10

p1(x) = expit{α0 − α1 log(x)} p2 = 0.9 p2 = 1.0 p2 = 0.9 p2 = 1.0

α0 = 2 α1 = 0.0 0.363 0.393 0.908 0.902

α1 = 0.1 0.595 0.636 0.885 0.872

α1 = 0.5 0.974 0.925 0.613 0.591

α0 = 4 α1 = 0.0 0.197 0.223 0.920 0.945

α1 = 0.1 0.349 0.396 0.936 0.955

α1 = 0.5 0.761 0.826 0.892 0.881

from Θ = [0.05, 0.1]× [2, 4]× [0, 0.5]× [0.9, 1], which covers θ̃. The perfor-

mance of ξ̃ under the true value of θ ∈ Θ is measured by

AEFF(ξ̃|θ) = AMSE(ξ̃|θ)/AMSE(ξIθ |θ) ∈ [0, 1],

where ξIθ is the DI
s -optimal design under θ, and AMSE(ξ|θ) = M(ξ|θ)−1

11

is the (scaled) asymptotic mean square error (AMSE) of the prevalence

estimator under ξ, which is also its (scaled) asymptotic variance.

Table 3 shows AEFF(ξ|θ) for some selected θ ∈ Θ, and Figure 3 shows

AEFF(ξ|θ) for some θ randomly drawn from Θ. Under this parameter

setting, we observe that the accuracies of the prespecified p0 and α1 are

important factors within this range of parameters. Figure 4 further shows
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(d) AEFF against p2

Figure 3: The AEFF(ξ̃|θ) under different θ for 1000 draws.

how the true values of p0 and α1 affect the performance of ξ̃. We observe

that when p̃0 and α̃1 are misspecified on the same direction, especially when

they are both over-specified, AEFF drops rapidly. Roughly speaking, when

the true value of θ ∈ Θ falls between the two dashed lines on Figure 4, ξ̃

performs well with its AEFF close to or greater than 80%.

6. Conclusion and discussion

In this work, we develop efficient group testing designs that accommo-

date real-world complexities including differential subject and assay costs,
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Figure 4: The AEFF(ξ̃|θ) vs. different true values of p0 and α1 (·: AEFF ≥

80%; ◦: AEFF ∈ [50%, 80%); ×: AEFF < 50%), where p̃0 = 0.07 and

α̃1 = 0.3.

and uncertain sensitivity and specificity that may have dilution effects. We

characterize these designs and present an algorithm that is guaranteed to

yield an optimal design on a discrete design space, as is encountered in

practice. We found that accounting for subject costs yields designs with

a smaller maximum group size compared to previously-published optimal

designs in which the subjects were considered to be cost-free (Huang et

al., 2017). Our results reveal that as the ratio of subject to assay costs

increases even moderately, the largest group size of the resulting design

and its proportion of trials drop rapidly, but its proportion of budget still

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



Cost considerations for efficient group testing studies 26

increases.

As a practical illustration, we provide examples addressing optimal allo-

cation, with integer-valued trials at the optimal group sizes. Although the

locally optimal designs depend on working parameters, our results based

on a real-world setting show that the proposed designs are robust against

misspecification of the working parameters and have good asymptotic effi-

ciencies. When there are major concerns about possible misspecification of

the working parameters, our optimal designs can be utilized with a multi-

stage adaptive approach (Hughes-Oliver and Swallow, 1994). In the first

stage, the working parameters may be specified using domain knowledge,

and in subsequent stages, they are estimated from the previous stages. Al-

ternatively, a Bayesian or minimax optimal design approach (Dette et al.,

2014) can be adopted. These approaches seek designs either maximizing

the Ds-optimality criterion (2.5) averaged over the parameters with respect

to a prior distribution, or minimizing the largest possible variance of the

prevalence estimator, respectively.

The most flexible model for group testing would allow the sensitivity

and specificity to be estimated from the data, and potentially to vary with

group size. However, the sensitivity and specificity parameters are nuisance

parameters in practice, and are non-orthogonal to the primary parameter
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of interest which is the prevalence. As a result, estimating these nuisance

parameters increases the variance of the prevalence estimate, but eliminates

any bias that would result from misspecifying them in a “plug-in” approach.

The increase in variance is large for small numbers of trials, therefore it is

unlikely to be favorable to estimate the sensitivity and specificity parame-

ters in practice if the budget is small. However, if the budget is sufficiently

large, the risk of bias due to misspecification dominates the increase in

variance due to the additional parameter estimation. Our results therefore

provide guidance to practitioners, suggesting that for smaller-scale research,

a plug-in approach may be suitable, but researchers conducting larger stud-

ies should consider allowing the sensitivity and specificity parameters to be

estimated from the data.

Increased interest in near real-time safety monitoring for disease epi-

demics, terror attacks, food safety, and environmental risks may provide

new opportunities for group testing in the future. If cost considerations dif-

fer from the disease prevalence estimation that has dominated group testing

to date, larger pools or larger total sample sizes may be practical, which

could provide a setting where the marginal cost of estimating dilution effects

along with prevalence would be modest. Our results may also be applied

for evaluating the feasibility of such a procedure.
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testing designs under cost considerations are also provided.

References

Atkinson, A. C., Donev, A. N. and Tobias, R.D. (2007). Optimum experimental designs, with

SAS. Oxford University Press, Oxford.

Dette, H., Kiss, C., Benda, N. and Bretz, F. (2014). Optimal designs for dose finding studies

with an active control. J. Roy. Statist. Soc. Ser. B 76, 265–295.

Dorfman, R. (1943). The detection of defective members of large populations. Ann. Math.

Statist. 14, 436–440.

Gastwirth, J.L. (2000). The efficiency of pooling in the detection of rare mutations. Amer. J.

Hum. Genet. 67, 1036–1039.

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



REFERENCES29

Hughes-Oliver, J. M. and Swallow, W. H. (1994). A two-stage adaptive group-testing procedure

for estimating small proportions. J. Amer. Statist. Assoc. 89, 982–993.

Huang, S.-H., Huang, M.-N. L., Shedden, K. and Wong, W. K. (2017). Optimal group testing

designs for estimating prevalence with uncertain testing errors. J. Roy. Statist. Soc. Ser.

B, 79, 1547–1563.

Kiefer, J. (1974). General equivalence theory for optimum designs (approximate theory). Ann.

Statist. 2, 849–879.

Liu, A., Liu, C., Zhang, Z. and Albert, P. S. (2012). Optimality of group testing in the presence

of misclassification. Biometrika 99, 245–251.

Liu, S.-C., Chiang, K.-S., Lin, C.-H., Chung, W.C., Lin, S.-H. and Yang, T.C. (2011). Cost

analysis in choosing group size when group testing for Potato virus Y in the presence of

classification errors. Ann. Appl. Biol. 159, 491–502.

McMahan, C. S., Tebbs, J.M. and Bilder, C. R. (2012). Informative Dorfman Screening. Bio-

metrics 68, 287–296.

McMahan, C. S., Tebbs, J.M. and Bilder, C. R. (2013). Regression models for group testing

data with pool dilution effects. Biostatistics 14, 284–298.

Pilcher, C., Fiscus, S., Nguyen, T., Foust, E., Wolf, L., Williams, D., Ashby, R., O’Dowd, J.,

McPherson, J., Stalzer, B., Hightow, L., Miller, W., Eron, J., Cohen, M. and Leone, P.

(2005). Detection of acute infections during HIV testing in North Carolina. N. Engl. J.

Med. 352, 1873–1883.

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



REFERENCES30

Pukelsheim, F. (2006). Optimal design of experiments. SIAM, Philadelphia.

Turner, D.W., Stamey, J.D. and Young, D.M. (2009). Classic group testing with cost for group-

ing and testing. Comput. Math. Appl. 58, 1930–1935.

Tu, X. M., Litvak, E., Pagano, M. (1995). On the informativeness and accuracy of pooled testing

in estimating prevalence of a rare disease: Application to HIV screening. Biometrika 82,

287–297.

Xie, M., Tatsuoka, K., Sacks, J. and Young, S. S. (2001). Group testing with blockers and

synergism. J. Amer. Statist. Assoc. 96, 92–102.

Zenios, S.A. and Wein, L. M. (1998). Pooled testing for HIV prevalence estimation: Exploiting

the dilution effect. Statist. Med. 17, 1447–1467.

Zhang, Z, Liu, C, Kim, S and Liu, A. (2014). Prevalence estimation subject to misclassification:

the mis-substitution bias and some remedies. Statist. Med. 33, 4482–4500.

Institute of Statistical Science, Academia Sinica, Nankang, Taipei 11529, Taiwan

E-mail: shhuang@stat.sinica.edu.tw

Department of Applied Math., National Sun Yat-sen University, Kaohsiung 80424, Taiwan

E-mail: lomn@math.nsysu.edu.tw

Department of Statistics, University of Michigan, Ann Arbor, MI 48109, USA.

E-mail: kshedden@umich.edu

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)




