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Abstract: Methods for estimating the probability density function are consid-

ered under the circumstance that the underlying measurements are interval-

censored. Density and distribution function estimators are proposed under

parametric and nonparametric assumptions on the censoring mechanism. Con-

ditions for identifiability and consistency of the estimates are established theo-

retically, and it is shown that under such conditions, the estimates converge to

the truth at a polynomial rate in the inverse sample size. An online supplement

contains the technical arguments as well as practical guidelines for numerical

implementation of the proposed methods. [The core of the theory in this paper

was originally drafted by Peter Hall in early 2010, following discussions at a

workshop on mismeasured data held in Canada in December, 2009 at which

Peter was the keynote speaker. The co-authors are grateful for the follow-up

conversations held with Peter by long distance over the years prior to his re-

gretful passing.]

Key words and phrases: Characteristic functions, kernel methods, density esti-

mation.
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PREAMBLE (by John Braun and Thierry Duchesne)

On December 10, 2009, Peter Hall arrived in Southern Ontario and expressed delight in

seeing snow for the first time in several decades. It was an auspicious start to a three-

day Fields Institute Workshop on indirectly or imprecisely observed data at which Peter

was the principal keynote speaker. At the workshop, Peter shared the latest developments

on Fourier deconvolution approaches to measurement error problems, and in discussions

during and after the workshop, he became quite interested in how these approaches might

be adapted to problems where the data were interval-censored. These discussions were

immensely appreciated by all involved. By the end of the workshop, Peter indicated in his

polite, but clear way, that he had quite seen enough of snow (it had been falling almost

continuously for the entire event), and he happily boarded an airplane bound for Hong

Kong.

Upon arrival in Hong Kong, Peter sent an email message to one of us (JB) containing

an attachment of a carefully typed 6-page draft manuscript encapsulating some of the

ideas discussed at the meeting. Much of that draft appears verbatim in Sections 2 and 3

of the present paper. Over the next few weeks, there were several emails back and forth

concerning implementation of the proposed Fourier approach, and by January 8, 2010,

Peter had completed most of the theory outlined in Sections 4 and 5.

Numerical issues continued to cause trouble over the ensuing months, seemingly con-

tradicting the theoretical results concerning the consistency of the new estimator. The

method seemed to require enormous sample sizes in order to work, so it did not appear to

be a practical contribution to the literature on interval-censored density estimation. The

work was abandoned, until TD was approached with questions about the consistency of a

competing estimator (Braun et al, 2005). Peter’s theoretical ideas were brought into these

discussions, and interest in implementing the Fourier method was rekindled. We had a few
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brief email conversations with Peter and discussed plans for the three of us to publish this

paper, but Peter’s illness brought those conversations to a close, and it was with sadness

that we learned of his passing.

In October, 2016, we made one more attempt at numerically implementing the method,

scanning Peter’s carefully constructed theoretical arguments for clues that might assist

us in practically implementing the method. Gradually, we began to see that our earlier

numerical efforts had been based on unnecessary simplifications, leading to horribly sub-

optimal solutions; full implementation of the technique was, in fact, not only possible, but

it also gave very good results. This paper sets out, then, to show that a Fourier method

for kernel density and distribution function estimation for interval-censored data can work,

both theoretically and practically.

Peter’s original outline included a plan for numerical implementation; we have chosen

instead to relegate that material as well as various extensions and the technical arguments

to the supplementary material, so that Peter’s voice can be heard in an almost continuous

stream from Sections 2 through 4. We are honoured to have been able to interact with

Peter on this problem, and we join the large chorus of other scientists who will miss him

tremendously.

1 INTRODUCTION

Methods to obtain smooth estimates of the probability density function of a random variable

when the latter is observed subject to interval censoring have received considerable attention

for many years. These methods are useful because in many applications the realized values

of the variable of interest are not known exactly but only up to an interval. A review of

methodologies for smooth estimation of the density, survival or hazard function given an

interval censored sample can be found in Sun (2007, chap. 3). To give a rough summary,

we mention the logspline method of Kooperberg and Stone (1992), the local EM method of
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Betensky et al (1999) or the kernel smoothing approach of Braun et al (2005). Most of the

aforementioned methods are connected with nonparametric maximum likelihood estimation

and do not explicitly model the censoring time process. But as we shall demonstrate such

modeling allows one to recast the problem of density estimation with interval-censored data

as a deconvolution problem, which paves the way to approach these estimation problems

with a new set of tools.

Density estimation based on deconvolution has been thoroughly studied in the literature,

including seminal work by Peter Hall. We cannot reasonably list all of Peter’s contributions

to this field here, but his important contributions include his paper with R. J. Carroll

(Carroll & Hall, 1988) on the optimal convergence rate for deconvolution density estimators

and his proposals of new approaches based on truncated Fourier inversion in 1993 (Diggle

& Hall, 1993) or on discrete Fourier transforms in 2005 (Hall & Qiu, 2005).

Peter has also investigated the use of deconvolution methods in measurement error prob-

lems (see for instance Delaigle et al, 2008). Though somewhat related, interval-censoring

and measurement error are generally not equivalent. One case where they do coincide is

when the variable of interest is measured with random uniform error. In this case, Groene-

boom and Jongbloed (2003) proposed a deconvolution method for density estimation. But

uniform measurement error is only a special case of interval censoring, and therefore de-

convolution methods for the general case do not seem to have been considered. Deconvo-

lution methods are not the only option to obtain estimators from a Fourier transform. As

Feuerverger & McDunnough (1981ab) have shown, estimating equations based on Fourier

transforms can form a basis for inference in many problems. In this paper, we propose such

a Fourier-based inference method for smooth nonparametric estimation of a density func-

tion when a parametric model for the process that generates the potential interval-censoring

times is available. The interval-censoring model considered is presented in Section 2. A

new density estimator is proposed in Section 3 and its convergence properties are discussed
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in Section 4. The supplementary material for the paper contains additional discussion,

including the technical arguments justifying the methodology, and it provides guidelines

for practical implementation of the method. References to equations and sections in the

supplementary material are prefixed with the letter ‘S’.

2 MODEL AND IDENTIFIABILITY

We wish to make inference about the common distribution of random variables X1, X2, . . .,

which are interval censored. Specifically, we have access only to a sample of random

intervals, I = {[L1, R1], [L2, R2], . . .}, often assumed to be generated as follows. For each

i, a potentially infinite, stationary point process Ti = {. . . . , Tij, Ti,j+1, . . . .} produces the

interval endpoints Li ≤ Ri defined by

Li = sup{Tij : Tij ≤ Xi}, Ri = inf{Tij : Tij ≥ Xi}. (2.1)

The pairs (X1, T1), (X2, T2), . . . are identically distributed, the quantities X1, X2, . . . and

T1, T2, . . . are all independent of one another, and the sequences Ti may or may not be ob-

served. This amounts to the independent inspection process model of Lawless & Babineau

(2006, Section 2) and to the case K interval censoring model (Sun, 2007, Section 1.3).

Given the first n intervals in the set I we wish to estimate the distribution, and more

particularly the probability density, of a generic value X of Xi.

Define Z1 = Xi − Li and Z2 = Ri − Xi, where we have suppressed the dependence of

Z1 and Z2 on i. By definition, P (Z1 ≥ 0) = P (Z2 ≥ 0) = 1. Since the processes Ti are

stationary, then the distribution of (Z1, Z2), conditional on Xi = x, does not depend on x,

and since the pairs (X1, T1), (X2, T2), . . . are identically distributed, then the distribution

also does not depend on i. Bearing this in mind, we define the joint distribution of Z1 and Z2

to be the distribution conditional on Xi. In this notation, if (L,R,X) has the distribution

of a generic triple (Li, Ri, Xi) then (L,R,X) is distributed as (X − Z1, X + Z2, X), where
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we take X to be independent of (Z1, Z2). Without loss of generality,

(L,R,X) = (X − Z1, X + Z2, X) where X ⊥ (Z1, Z2), (2.2)

with ⊥ denoting “is independent of.”

The characteristic functions fFtLR, fFtX , and fFtZ1,Z2
of the distributions of (L,R), X and

(Z1, Z2), respectively, satisfy

fFtLR(s, t) = E{exp(isL+ itR)} = E[exp{is(X − Z1) + it(X + Z2)}]

= E[exp{i(s+ t)X − isZ1 + itZ2}] = fFtX (s+ t)fFtZ1,Z2
(−s, t),

where on this occasion i =
√
−1 rather than denoting an index, and more generally, i has

this interpretation in the expressions is and it. (The notation fFtLR represents the Fourier

transform, hence the superscript Ft, of the probability density fLR of (L,R).) In summary,

fFtLR(s, t) = fFtX (s+ t)fFtZ1,Z2
(−s, t). (2.3)

If (Z1, Z2) denotes a pair of nonnegative random variables for which (2.2) holds then,

in general, neither the distribution of X nor that of (Z1, Z2) is identifiable from data

on (L,R) alone. To appreciate why, let U, V,W,X be independent random variables for

which U, V,W ≥ 0, and put (Z1, Z2) = (U − V,W + V ). (Nonnegativity of (Z1, Z2) can

be ensured under a side condition, for example by asking that, for a constant c > 0,

P (U ≥ c) = P (W ≥ 0) = P (0 ≤ V ≤ c) = 1.) Then,

(L,R) = (X − Z1, X + Z2) = (X ′ − Z ′1, X ′ + Z ′2),

where X ′ = X +V, Z ′1 = U and Z ′2 = W . Moreover, the pair (Z ′1, Z
′
2) is independent of X ′,

and Z ′1 and Z ′2 are nonnegative. However, unless V is identically zero, the distributions of

X and X ′ differ, as too do those of (Z1, Z2) and (Z ′1, Z
′
2). Therefore, in the model at (2.2),
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even with the additional constraint that Z1 and Z2 are nonnegative, the distributions of X

and (Z1, Z2) are not nonparametrically identifiable from data on (L,R) alone.

This lack of identifiability implies that, in a general interval-censoring problem, it is

not possible to estimate either fX or fZ1,Z2 nonparametrically using only data on (L,R).

As is well documented in the interval-censoring literature (see Sun (2007, chapter 3) and

references therein), data on (L,R) contain no information about fX over so-called inner-

most intervals and the nonparametric maximum likelihood estimator of the corresponding

cumulative distribution function is undefined over these intervals. In cases where L and R

are defined more narrowly in terms of stationary point processes, as at (2.2), the ambiguity

is less, since the class of possible distributions of (Z1, Z2) is restricted by that definition.

However, if it is considered that in practice the assumption of stationarity of the point

processes Ti can be invalid (for example, because the point processes have not been run

long enough before measurements are made), or that other assumptions are compromised,

then inference is still vulnerable to problems caused by non-indentifiability.

Therefore, although the methods that we shall give in section 3.1 can be modified so

that, under the specific assumption of identifiability, they give consistent estimators of the

density of X without using a model for the distribution of (Z1, Z2), and employing only

interval data, we shall instead discuss inference in cases where either:

(a) We have a parametric model for (Z1, Z2), for example derived when the point pro-

cesses Ti are Poisson or, more generally, renewal processes; or

(b) The distribution of (Z1, Z2) is estimated nonparametrically from observations of the

Tis.

These approaches alleviate the identifiability problem by either, in case (a), greatly reduc-

ing the variety of options that are available for the distribution of (Z1, Z2) when using a
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parametric model, or, in case (b), specifying the distribution of (Z1, Z2) in terms of a consis-

tent, nonparametric estimator of the true distribution. See also Lawless & Babineau (2006,

Section 5) who discuss the estimation of the parameters of the inspection time process and

propose a simulation-based inference method.

3 ESTIMATORS

3.1 General methodology.

We either assume a parametric model for the distribution of (Z1, Z2), where the charac-

teristic function is fFtZ1,Z2
(s, t|θ), say, and θ is a finite vector of unknown parameters; or we

estimate the distribution of (Z1, Z2) from point process data. These are the respectively

cases (a) and (b) discussed in section 2. In case (b), and conditional on Xi = x, the values

of Li and Ri are given by:

Li(x) = sup{Tij : Tij ≤ x}, Ri(x) = inf{Tij : Tij ≥ x};

compare (2.1). Therefore a nonparametric estimator of g(s, t) = fFtZ1,Z2
(s, t) has the form:

ĝ(s, t) =
1

n(b− a)
=

n∑
i=1

∫ b

a

exp [is{x− Li(x)}+ it{Ri(x)− x}] dx, (3.4)

where (a, b) denotes an interval a little shorter than the domain of the point processes Ti.

In each of cases (a) and (b) our methodology for estimating the distribution FX of X

is based on approximating the density fX = F ′X by a histogram,

fX(x|B, ω) =
m∑
j=1

ωjI(x ∈ Bj), (3.5)

where B = {B1, . . . ,Bm} denotes a sequence of adjacent a histogram bins Bj of width

h > 0, the nonnegative weights ωj satisfy h
∑

j ωj = 1, and ω = (ω1, . . . , ωm) is the

vector of unknown parameters that we wish to estimate. The class of all distributions

with densities of this type is dense in the class of all distributions, and so constructing a
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histogram density as at (3.5) should be seen as a method for general distribution estimation,

not density estimation. See section 3.2 for details. In section 3.3 we suggest smoothing

the resulting distribution estimator to obtain a density estimator, and discuss choice of the

smoothing parameter.

In case (a), a common parametric model for (Z1, Z2) is that where the point processes Ti

are Poisson with intensity λ−1. Here Z1 and Z2 are independent and identically distributed

with density λ exp(−λz), for z > 0. Thus, θ = λ is a scalar, and

fFtZ1,Z2
(s, t|λ) = (1− λ−1is)−1(1− λ−1it)−1 (3.6)

Section S2.2 in the online supplementary material will discuss generalisations of this

model when the processes Ti are renewal processes. More generally in case (a), the param-

eter vectors θ and ω can be estimated by least squares, minimising

Sq(θ,B, ω) =

{∫ ∫ ∣∣∣fFtLR(s, t)− fFtX (s+ t|B, ω)fFtZ1,Z2
(−s, t|θ)

∣∣∣q w(s, t)qdsdt

}1/q

(3.7)

where q ≥ 1,

f̂FtLR(s, t) =
1

n

n∑
j=1

exp(isLj + itRj)

is a conventional nonparametric, unbiased estimator of the characteristic function of (L,R),

fFtX (|B, ω) denotes the characteristic function of the distribution with histogram density

fFtX (|B, ω), defined at (3.5), and w in (3.7) is an integrable, nonnegative weight function.

The criterion function Sq(θ,B, ω) is motivated by (2.3). One may be tempted to compute

f̂FtX (s, t) = f̂FtLR(s, t)/f̂FtZ1,Z2
(−s, t) and then invert f̂FtX (s, t) to obtain an estimate of fX ,

but f̂FtX (s, t) does not depend on (s, t) only through s+ t for finite samples, except in very

specific cases; this issue is avoided when minimizing (3.7).
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3.2 Distribution estimation.

In numerical practice we suggest choosing the histogram to minimise the distance from the

empirical characteristic function f̂FtLR to our model for this characteristic function, differing

somewhat in cases (a) and (b).

In case (a) we take (θ̂, B̂, ω̂) to minimise Sq(θ,B, ω) at (3.7) (or to minimise a similar

quantity such as that at (S2.4)— these approaches are both part of case (a)), and in case (b)

we take (B̂, ω̂) to minimise Sq(B, ω) at (S2.5). Importantly, in both settings the minimum

is taken over h,m and choices of ω1, . . . , ωm, not just over the latter. We could also take

it over choices of the bin centres, although this is generally not necessary. The result is a

histogram,

f̂X(x) ≡ fX(x|B̂, ω̂) =
m∑
j=1

ω̂jI(x ∈ B̂j),

that is generally too rough to be a useful estimator of fX , but its integral is appropriate as

an estimator F̂X = F (·|B, ω̂) of the distribution FX with density fX .

In theoretical terms, F̂X can be taken to be any weak limit of any sequence of histogram

distributions with densities fX(|B, ω) along which the minimum of (3.7) in case (a), or of

(S2.5) in case (b), is obtained. (Any sequence of distributions, here a sequence of histogram

distributions, has a convergent subsequence.) In numerical terms, F̂X is constructed to be

the member of a sequence of histogram distributions, defined iteratively, that results when

the algorithm for minimising either (3.7) or (S2.5) terminates.

3.3 Density estimation.

We can smooth F̂X to an estimator f̃X of fX in many ways. For example, if we favour

kernel methods then we can define
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f̃X(x) =

∫ ∞
−∞

K

(
x− y
h

)
dF̂X(y) =

∫ ∞
−∞

K(y)dF̂X(x− hy) =
1

h

m∑
j=1

ω̂j

∫
Bj
K

(
x− y
h

)
dy

(3.8)

where h is a bandwidth and K a kernel function.

4 CONVERGENCE PROPERTIES

In Theorem 1, below, we state conditions that are sufficient for the estimator FX(|B̂, ω̂) of

the distribution function FX of X to converge to FX at a polynomial rate in n−1. Theorem

2 observes that those assumptions, together with a minor smoothness constraint on the

density fX = F ′X , are also sufficient for the kernel density estimator based on FX(|B̂, ω̂) to

converge uniformly to fX . It is convenient here to work with criterion functions Sq where

q =∞, although convergence rates can also be derived in the case of finite q.

It is convenient to treat separately the cases (a) and (b) introduced in section 2, rep-

resenting parametric and nonparametric settings respectively. In case (a) we have a model

fZ1,Z2(|θ) for the joint density of (Z1, Z2), and it is helpful to define

s(θ,B, ω) = sup
−∞<s,t<∞

|fFtX (s+t)fFtZ1,Z2
(−s, t|θ0)−fFtX (s+t|B, ω)fFtZ1,Z2

(−s, t|θ)w(s, t), (4.9)

where θ0 denotes the true value of θ. We quantify the identifiability of both fX and the

finite parameter vector θ by assuming that for constants C1, C2 > 0, for all values of θ

in some neighbourhood of θ0, and for all values of (B, ω) for which the supremum on the

right-hand side of (4.10) below does not exceed some given positive number,

s(θ,B, ω) ≥ C1

{
||θ − θ0||+ sup

−∞<s,t<∞
|fFtX (s+ t)− fFtX (s+ t|B, ω)|w1(s, t)

}C2

, (4.10)

where w1 is a nonnegative weight function and |||| is the usual Euclidean norm. The

inequality (4.10) is readily shown to be satisfied with C2 = 1 in many cases of practical

interest, for example where fFtZ1,Z2
(·|θ) is a differentiable function of θ.
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In addition we ask that:

(i) for a constant C3 > 0, E|L|C3 + E|R|C3 + E|X|C3 + EZC3
1 + EZC3

2 <∞;

(ii) the infimum in the definition (θ̂, B̂, ω̂) = arginf(θ,B,ω)S∞(θ,B, ω) is,

for each fixed θ, taken over all distributions having density fX(·|B, ω)

and satisfying

∫
|x|C3fX(x|B, ω)dx ≤ C4, where C4 > 0 also has the

property E|X|C3 < C4; (iii) for constants C5, C6 > 0, inf
|s|,|t|≤u

|fFtZ1,Z2
(s, t)| (4.11)

≥ C5(1 + |u|)−C6 for all u > 0; (iv) the true density fX of X is uniformly

bounded; (v) for all real s and t, w(s, t) = w(t, s) = w(−s, t); and (vi) for

constants C7, . . . , C10 > 0 and all real s and t, C7(1 + |s|)−C8(1 + |t|)−C8

≤ min{w1(s, t), w(s, t)} ≤ max{w1(s, t), w(s, t)} ≤ C9(1 + |s|)−C10

× (1 + |t|)−C10 .

Assumption (4.11)(i) asks only that the random variables under consideration have

a moment of some positive order, and, since C3 can be arbitrarily small, is particularly

weak; and (4.11)(ii) asserts that the approximating distribution is constructed so that it

also enjoys the condition (4.11)(i), which in practice is readily imposed by constraining

the locations and the number, m, of histogram blocks. Condition (4.11)(iii) asks that

the tails of the characteristic function of the bivariate error distribution do not decay at

a faster a rate than the inverse of a polynomial in s and t, and is commonly imposed in

deconvolution problems, for example using an exponential model; such a model is suggested

in the present setting by (3.6). (The converse case, where the rate of decrease of the

tails of the characteristic function is exponentially fast, is termed “supersmooth” in the

context of deconvolution problems, and results in convergence rates that are slower than

any polynomial in n−1.) Assumption (4.11)(iv) requires only that fX be bounded; and
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(4.11)(v) and (4.12)(vi) are weak conditions on the weight function w1.

In case (b) there there is no model for the joint distribution of (Z1, Z2), and we estimate

g = fFtZ1,Z2
using g, defined at (3.4). We define S∞(B, ω) as at (S2.6), and impose the

following analogue of (4.11):

assumptions (i) and (iii)–(v) is as in (4.11); (vi) is as in (4.11) but with the

function w1 dropped; and (ii) is replaced by the property: (ii) the infimum

in the definition (B̂, ω̂) = arginf(B,ω)S∞(B,ω) is taken over all distributions (4.12)

having density fX(·|B, ω) and satisfying

∫
|x|C3fX(x|B, ω)dx ≤ C4,where

C4 > 0 also has the property E|X|C3 < C4.

Throughout we use the objective function S∞, defined at (S2.3) in case (a) and at

(S2.6) in case (b), to define estimators. Parts (a) and (b) of the theorem below refer to

these respective cases.

Theorem 4.1 (a) In the parametric case, if (4.10) and (4.11) hold then there exists ε > 0

such that

||θ̂ − θ0|| = Op(n
−ε), sup

−∞<x<∞
|FX(x|B̂, ω̂)− FX(x)| = Op(n

−ε). (4.13)

(b) In the nonparametric case, if (4.12) holds then there exists ε > 0 such that

sup
−∞<x<∞

|FX(x|B̂, ω̂)− FX(x)| = Op(n
−ε). (4.14)

A kernel density estimator, f̃X , of fX , derived from the distribution estimator FX(x|B̂, ω̂)

and based on a kernel K and bandwidth h, is given by (3.8). We permit h to decrease to

zero as n increases; the performance of f̃X depends on choice of h, which was discussed

in section 3.3 . To apply Theorem 1 to the problem of convergence of f̃X we impose a
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conventional Hölder smoothness condition on fX :

for constants C11, δ > 0, sup
−∞<u,x<∞

|u|−δ |fX(x+ u)− fX(x)| ≤ C11. (4.15)

We ask that K satisfy:∫
(1 + |u|)δ|K(u)|du <∞,

∫
K = 1,

∫
|K ′| <∞, (4.16)

where δ > 0 is as in (4.15).

Theorem 4.2 Assume (4.15) and (4.16), and that either (4.10) and (4.11) in the para-

metric case (a), or (4.12) in the nonparametric case (b), hold. Let ε > 0 be as at (4.13)

or (4.14) in those two respective cases. Then

sup
−∞<x<∞

|f̃X(x)− fX(x)| = Op(n
−εh−1 + hδ). (4.17)

An immediate corollary of (4.17) is that if h = h(n)→ 0 sufficiently slowly to ensure that

nεh→∞ then the density estimator f̃X is uniformly consistent for fX .
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