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Abstract

Inference on large-scale models is of great interest in modern science. Examples include
deterministic simulators of fluid dynamics to recover the source of a pollutant, or stochastic
agent-based simulators to infer features of consumer behaviour. When computational con-
straints prohibit model evaluation at all but a small ensemble of parameter settings, exact in-
ference becomes infeasible. In such cases, emulation of the simulator enables the interrogation
of a surrogate model at arbitrary parameter values. Combining emulators with observational
data to estimate parameters and predict a real-world process is known as computer model
calibration. The choice of the emulator model is a critical aspect of calibration. Existing
approaches treat the mathematical model as implemented on computer as an unknown but
deterministic response surface. However, in many cases the underlying mathematical model,
or the simulator approximating the mathematical model, are not determinsitic and in fact
have some uncertainty associated with their output. In this paper, we propose a Bayesian
statistical calibration model for stochastic simulators. The approach is motivated by two
applied problems: a deterministic mathematical model of intra-cellular signalling whose im-
plementation on computer nonetheless has discretization uncertainty, and a stochastic model
of river water temperature commonly used in hydrology. We show the proposed approach is
able to map the uncertainties of such non-deterministic simulators through to the resulting in-
ference while retaining computational feasibility. Supplementary computer code and datasets
are provided online.

Keywords: Computer Experiments, Uncertainty Quantification, Differential Equation, Stochastic
Simulation, Physical Statistical, Models
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1 Introduction

Models of complex processes allow scientists to gain a deeper understanding of system dynamics or

enable policy makers to make decisions based on future projections. These models, known as com-

puter simulators, may solve large-scale systems of differential equations or implement stochastic

simulations such as agent-based systems, that describe real-world processes. Of particular impor-

tance to decision makers is the task of appropriately quantifying and combining uncertainty from

all sources when performing inference.

More specifically, simulators can be said to describe the spatio-temporal evolution of one or

many system states, defined up to some unknown components called calibration parameters. These

may include physical constants, forcing functions, or initial or boundary conditions. For a given

computer model, interest lies in inferring unknown calibration parameters from noisy, often indi-

rect observations of the states at discrete spatio-temporal locations. An important challenge arises

when the states, and hence the likelihood of the data, are computationally expensive to evaluate.

Computer model calibration (Kennedy and O’Hagan, 2001; Higdon et al., 2004, 2008; Goldstein

and Rougier, 2006; Joseph and Melkote, 2009) performs inference in this situation by modeling,

or emulating, the simulated states conditional on a well-designed sample of the computationally

expensive simulator. The additional source of uncertainty associated with the emulation is propa-

gated through the inference, typically using a hierarchical Bayesian framework. Our work in this

paper is concerned with accounting for stochasticity in the state, a key source of uncertainty that

has so far mostly been ignored or at best inadequately represented in the statistical calibration

literature.

Existing methodology essentially treats simulators as deterministic black-box functions, where

the output is fixed for a given parameter input setting. That is, it is assumed that running the

simulator at the same inputs will always produce exactly the same output. However, it is widely

known that in a broad class of problems this assumption is unrealistic, and a given parameter input

setting will yield a sample of realizations, or ensembles, from an unknown distribution over the

states.

For instance, agent-based models aim to reconstruct the macroscopic behaviour of complex

systems by forward simulating a large number of “agent” models that describe the microscopic

behaviour of the system under study. Such models are used in analyzing the behaviour of the stock
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market and biological systems (Palmer et al., 1994; Tesfatsion, 2002; Gilbert, 2008; Auchincloss

and Roux, 2008). These stochastic simulation models also make available an ensemble of solution

realizations at given settings of the parameters. We will investigate a stochastic simulator of water

temperature (Cluis, 1972; Caissie et al., 1998), where river water temperature is simulated by

combining sparse observational water data with readily available air temperature data. The goal

is to calibrate scientifically meaningful air-to-water heat transfer coefficients.

Stochastic simulations also arise when, for a given input, the output states are deterministic

but uncertain. For example, a realistic simulator defined implicitly as a set of partial differential

equations (PDE) typically does not have a closed form solution. Instead, for a given parameter

setting, the states are discretized and approximated numerically using a deterministic technique.

It has been shown that choices related to this discretization can have a substantial effect on ap-

proximated system states (e.g., Kim et al., 2013; Arridge et al., 2006), so that a typical calibration

framework that ignores this error is likely to lead to biased estimates of the calibration parame-

ters and posterior under-coverage. This issue has led to the use of Bayesian ideas for modeling

uncertainty associated with discretization of an infinite-dimensional state as a stochastic process

(Chkrebtii et al., 2016). However, as with discretizing the PDE system, simulating realizations

from this probabilistic uncertainty model is typically computationally expensive. Instead, an en-

semble of solution realizations of the probabilistic solver of Chkrebtii et al. (2016) may be obtained

at a small, well-chosen collection of calibration parameter settings and used to perform efficient

inference in the approach we propose.

One example of an implicit model where the solution states have non-negligible discretiza-

tion uncertainty describes the temporal evolution of the concentration of four intracellular gene

transcription factors within the JAK-STAT signalling network pathway (Pellegrini and Dusanter-

Fourt, 1997; Swameye et al., 2003). It has been shown in Chkrebtii et al. (2016) that choices

related to discretization strongly shape posterior correlations among model states, motivating the

use of simulators that model this uncertainty. Not only are such simulators stochastic, but they

are computationally expensive, motivating further advances in computer model calibration.

Our work in this paper is concerned with developing a statistical approach to computer model

calibration experiments which can take into account the uncertainty in simulation models when

made available as a large ensemble of realizations. Our approach uses empirical orthogonal func-

tions to represent the functional uncertainty of the simulator by associating each ensemble member
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realized at a given setting of the calibration parameter with a single latent weight. These latent

weights are then modeled as points in a latent weight-space on which we place a Gaussian pro-

cess prior which we can then use to construct unobserved realizations of the simulation model at

unobserved settings of the parameters while retaining the desired uncertainty.

The reconstructed simulator realization at the unknown parameter corresponding to the obser-

vational data is linked through a hierarchical Bayesian model for the field observations. Included

in this observational data model are model discrepancy components which is also given Gaussian

process priors. The overall model specification is then completed by placing appropriate prior dis-

tributions on model parameters, and the model is fitted by a Markov chain Monte Carlo (MCMC)

algorithm.

Before introducing our proposed model in detail, we first begin by reviewing the concept of

calibration for computer experiments in the context of Bayesian hierarchical modeling. We then

describe the popular Kennedy-O’Hagan model which forms the basis of further developments.

1.1 Calibration Experiments

The problem of inference, or calibration, for computer models of a state x(s;θ) at spatial-temporal

locations si ∈ S and unknown calibration parameter setting θ ∈ Θ consists of recovering the

unknown calibration parameters θ ∈ Θ from partial or indirect observations, y(s), of the state. The

calibration parameters θ represent the setting of this parameter that “best” matches the computer

model to the observed data. They usually are themselves of considerable scientific interest when

these parameters have important scientific meaning, such as the viscosity of a modeled fluid or the

initial state of a dynamical system.

Because the simulator is often an inexact representation of reality, the notion of a systemic

discrepancy is introduced between the simulator and the true state of the observed process. Such

discrepancy may be additive, represented by δ(s), which allows for correcting an additive bias in

the simulated state as x(s;θ) + δ(s). Another popular correction is multiplicative discrepancy,

represented as κ and usually taken to be constant with respect to spatial-temporal location. This

discrepancy allows for correcting the scaling of the simulated state as κx(s;θ).

Let x(θ) = (x(s1;θ), . . . , x(sn;θ))> represent the vector of state outputs at the spatial-temporal

grid locations s1, . . . , sn, let δ = (δ(s1), . . . , δ(sn))> represent the vector of the additive discrepancy

at spatial-temporal grid locations s1, . . . , sn and let Λf be an n×n precision matrix representing the
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uncertainty in our observations. Then the likelihood of the observations, y = (y(s1), . . . , y(sn))>,

observed at the n spatial-temporal locations conditional on the state outputs, calibration parame-

ters, discrepancies and precision parameters is

y | θ, δ, κ,Λf .

The simplest model (Higdon et al., 2004) assumes homoscedastic precision, Λf = λfIn and a

Gaussian likelihood, so that the conditional distribution is

y | θ, δ, κ, λf ∼ N (κx(θ) + δ, λfI) . (1)

If the simulator were computationally inexpensive, estimating the unknowns would be fairly

straightforward – specifying priors on the calibration parameter, π(θ), discrepancies, π(δ, κ) and

precision, π(λf ), one could sample from the posterior distribution,

θ, δ, κ, λf | y

using a Metropolis within Gibbs algorithm (Higdon et al., 2004), which requires evaluating the

simulator at a large number of proposed settings of the calibration parameter, θ.

However, due to the high computational cost of producing simulations of the state x(θ), only

a limited number, say m, of simulator evaluations, can be made. This feature of the simulator

immediately precludes the use of any inferential approach which requires large numbers of simulator

evaluations at settings of θ, such as the approach just described.

This computational limitation led to the introduction of an additional layer in the Bayesian

hierarchy representing uncertainty in the simulator x(θ), which is emulated rather than being eval-

uated. The emulator is a statistical model for the state given a small well-designed collection of m

simulator evaluations, x(θ1), . . . ,x(θm). This conditional distribution of the state at the calibra-

tion parameter setting θ given the m state outputs evaluated at parameter settings θ1, . . . ,θm is

expressed as

x(θ) | x(θ1), . . . ,x(θm),θ1, . . . ,θm,θ, ·,

which may depend on additional hyperparameters (here denoted by the ‘·’), the form of which

depends on the specific emulation model used. For instance, Kennedy and O’Hagan (2001) use a

Gaussian process (GP, Sacks et al. 1989) emulator, while Higdon et al. (2008) use basis functions

for dimension reduction in addition to a Gaussian process model. In any case, the introduction
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of this second layer of modeling allows one to construct predictions of the unobserved state for

arbitrary choices of calibration setting θ as well as propagating the uncertainty in the emulated

state through to the posterior inference for the calibration parameter and all other quantities of

interest.

1.2 The Kennedy-O’Hagan Model

The method proposed by Kennedy and O’Hagan (2001) is widely considered as the basis for

subsequent development of statistical computer model calibration, so let us elaborate further on

this model in relation to the general setup described thus far. The approach proposed by Kennedy

and O’Hagan (2001), and subsequently expanded into a fully Bayesian approach (Higdon et al.,

2004, 2008) makes extensive use of Gaussian process (GP) priors and Gaussian conjugacy. The

likelihood for the observations is specified as in Equation (1), while the state is modeled a priori

as a realization of a GP, x(θ)

x

 ∼ N

µ, λ−1x
 R0 R0,x

Rx,0 Rx

+ λ−1c In(m+1)

 ,

where x =
(
x(θ1)

T , . . . ,x(θm)T
)T
, µ =

(
µT0 ,µ

T
x

)T ∈ R(m+1)n is the mean of the states and λ−1x ∈ R

is the marginal process variance and λ−1c ∈ R represents small scale variability of the states,

sometimes called the “nugget” in the spatial statistics literature (Cressie, 1993). The correlation

matrix is typically modeled using the so-called Gaussian correlation function, which assumes the

states can be represented by a smooth, infinitely differentiable process, and is parameterized as,

[Rx]ij =

p∏
k=1

q∏
l=1

φ
(sik−sjk)2
k ρ

(θil−θjl)2
l ,

where φk ∈ (0, 1) are correlation parameters for all k = 1, . . . , p spatial-temporal covariate di-

mensions and ρl ∈ (0, 1) are correlation parameters for all l = 1, . . . , q calibration parameter

dimensions.

Similarly, the discrepancy is also modeled as a realization of a GP,

δ ∼ N(µδ, λ
−1
δ Rδ),

where µδ ∈ Rn, λδ ∈ R, and [Rδ]ij =
∏p

k=1 ψ
(sik−sjk)2
k , which models a smooth discrepancy between

the calibrated simulator and the observed process with correlation parameters ψk ∈ (0, 1), k =

1, . . . , p.
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Combining these priors with the likelihood, the joint model of Kennedy and O’Hagan (2001)

for the field observations and simulator outputs is, y

x

 ∼ N

 µ0 + µδ

µx

 , λ−1x

 R0 R0,x

Rx,0 Rx

+ λ−1δ

 Rδ 0

0 0

+

 λ−1f In 0

0 λ−1c Inm

 .

(2)

The calibration model (2) has been discussed at length in the computer experiments literature.

There are two assumptions of this model that do not satisfy our requirements. First, the term λ−1c ,

which represents simulator output uncertainty, has largely been dealt with in a cursory manner or

simply ignored. Primarily, the setting of this parameter has been driven by a desire to maintain

computational stability in manipulating the large covariance matrices of model (2) rather than a

concerted attempt to model and quantify possible uncertainties in simulator outputs. Furthermore,

a simple i.i.d. Normal error model is likely not justified to account for simulator error as most of

the simulation models calibrated in this framework exhibit smooth and continuously varying re-

sponse surfaces as functions of the simulator’s inputs (and hence the Gaussian correlation modeling

assumption). More realistic uncertainty is sometimes available when an ensemble of realizations

of a stochastic simulation model are available. Second, model (2) was proposed in the context of

calibrating a single state. However, in many applications, one may be interested in calibrating

multiple states simultaneously, some or all of which are observed in the field. Extending (2) to the

case of multiple states would seem difficult given the computational limitations of the model with

just a single state.

In the next section, we motivate the need for a statistical calibration methodology that can

account for simulator uncertainties, and potentially multiple states, with an application in water

temperature modeling and a PDE model of a biochemical system. We develop our model in Section

3, and demonstrate the proposed approach on the water temperature and JAK-STAT examples in

Sections 4 and 5. Finally, we conclude in Section 6.

2 Motivation

In this section, we introduce two motivating examples of calibrating simulators to observations

where simulator uncertainty need be accounted for in the statistical methodology. We are also

interested in calibrating multi-state stochastic simulators. Multi-state simulators are common
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in many applications. For instance, in climate modeling one may be interested in calibrating

two states of a climate simulator: the temperature field and the precipitation field. Our second

motivating example involves calibrating four states which are the time-evolutions of four chemical

concentrations involved in gene transcription.

2.1 Stochastic Water Temperature Model

The prediction of temperature fluctuations in inland bodies of water, such as rivers and streams,

is critical for ecological and conservation initiatives because of its effect on wildlife and the possi-

bility of monitoring thermal water pollution. Climate change has made such studies increasingly

important in order to understand and predict water quality and aquasystem dynamics under var-

ious climate change scenarios (Caissie et al., 2014). Deterministic models of water temperature

are based on physical principles and are forced by meteorological variables, but are limited by the

amount of data required for calibration and by the availability of appropriate models. Stochastic

models (Benyahya et al., 2007; Caissie et al., 1998, 2001; Cluis, 1972) are more flexible but may be

expensive to evaluate for a given parameter setting. Here we will focus on a simple stochastic model

of river water temperature to motivate the use of stochastic simulator calibration for estimating

parameters defining the temporal evolution of water temperature at a fixed spatial location.

Stochastic simulators of water and air temperature are comprised of an annual trend component

and a short-term fluctuation component, or residual. The simulator requires nearby air temperature

data to capture the short-term fluctuations of observed water temperatures. The annual trend is

separated from the short term fluctuation by fitting a simple sinusoid to capture annual seasonal

variability while many model formulations have been proposed to capture the residual component,

such as Markov models and autoregressive processes (Caissie et al., 1998, 2001). The model is

expressed as (Caissie et al., 1998),

Tw(t) = Ta(t) +Rw(t), (3)

where the annual seasonal component is

Ta(t) = a1 + a2 sin

(
2π

365
(t− t0)

)
,

where t is the time index, while a simple formulation for the short-term component is related to

air temperature residuals as

Rw(t) = KRa(t) + ε,
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for ε
i.i.d.∼ N(0, σ2).

The calibration parameters θ = (a1, a2, t0, K, σ)T are the level, a1, and scaling, a2, of the

annual trend component, the offset term t0, and the thermal transfer coefficient, K, representing

heat transfer from the ambient air into the river water, and σ describes the spread of remaining

small-scale variability.

Our observations are temperatures of Alum Creek in Africa, OH (U.S. Geological Survey, 2015)

from July 18, 2012 through October 12, 2014. Meterological data is also available (The University

of Dayton, 2015), giving the required daily average air temperature data to generate realizations

from the stochastic water temperature simulator.

The goal of calibration for this simple water temperature model is to estimate the settings of

these calibration parameters and predict the state (temperature series) and any model discrepancy

between the simulator and observations. We will explore calibrating this model to the Alum Creek

dataset in Section 4.

2.2 JAK-STAT Model of Intracellular Signaling Pathway

Gene transcription is a complex mechanism that is critical for many biological processes. Under-

standing gene transcription in cells is therefore and important scientific goal. Here we describe

the JAK-STAT system, a transcription network that has been extensively studied in the literature

(Pellegrini and Dusanter-Fourt, 1997; Swameye et al., 2003; Timmer et al., 2004; Raue et al., 2009;

Horbelt et al., 2002). The process of cellular gene transcription begins with a stimulus that is

external to the cell. In the JAK-STAT system, the stimulus is the binding of a hormone called

Erythropoietin (EpoRA) to specialized receptors located on the surface of the cell. In response,

molecules called transcription factors (Janus kinases), located within the cytoplasm, begin a series

of biochemical reactions (phosphorylation) which cycle through an unknown number of reaction

states as they move towards the cell nucleus. Once in the nucleus, the transcription factors (now

called STATs) begin the process of gene transcription. Once completed, the reversible chemical

reactions described above return the chemical species to its original reaction state, allowing the

process to begin again. Current understanding of this biochemical reaction includes four reaction

states and the possibility of other unknown states proxied by a time delay. The concentrations

x1(s,θ), . . . , x4(s,θ) at time s of the states depend on unknown parameters θ ∈ R6 and are defined
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implicitly via the delay differential equation,

d
ds
x1(s,θ) = − θ1 x1(s,θ) EpoRA(s,θ) + 2 θ4 x4(s− θ5), s ∈ [0, 60],

d
ds
x2(s,θ) = θ1 x1(s,θ) EpoRA(s,θ)− θ2 x22(s,θ), s ∈ [0, 60],

d
ds
x3(s,θ) = − θ3 x3(s,θ) + 1

2
θ2 x2

2(s;θ), s ∈ [0, 60],

d
ds
x4(s,θ) = θ3 x3(s,θ)− θ4 x4(s− θ5,θ), s ∈ [0, 60],

x1(s;θ) = θ6, s ∈ [−θ5, 0],

xi(s;θ) = 0, i = 2, 3, 4, s ∈ [−θ5, 0],

(4)

where subscripts indicate component states. Measurements are made using a process called im-

munoblotting (Swameye et al., 2003), which recovers the following nonlinear transformations of

the explicit states contaminated with additive error,

y1(s) = κ1 (x2(s) + 2x3(s)) + ε1(s),

y2(s) = κ2 (x1(s) + x2(s) + 2x3(s)) + ε2(s),

y3(s) = x1(s) + ε3(s),

y4(s) = x3(s) (x2(s) + x3(s))
−1 + ε4(s),

where the constant multiplicative discrepancies κ = (κ1, κ2) reflect the unknown relative scales in

the measurement of y1 and y2. The errors, εj(s), 1 ≤ j ≤ 4, are modeled as independent Gaussian

random variables with zero mean and known variances, λf
−1 = (λ−1f,1, . . . , λ

−1
f,4). Experimental data

was obtained from Swameye et al. (2003) and two artificial observations were proposed in Raue et al.

(2009) to overcome the lack of identifiability associated with arbitrary units of concentration.The

forcing function EpoRA is modeled by a GP interpolation of its experimental measurements in

(Swameye et al., 2003).

An important goal is to try to recover the unknown model parameters and discrepancies, θ

and κ, based on the measured data y. Not only will the rates θ1, . . . , θ4 help us to understand

the phosphorylation reaction, but the delay parameter θ5 may give an idea of the number of

unmodelled states between the fourth state and the original STAT factor. This, in turn, may help

future efforts in model building for the JAK-STAT system. However, exact inference requires an

explicit representation of the concentration states x1, . . . , x4, called the solution of model (4). For a

system of this complexity a solution is not available in closed form. Numerical techniques for delay

differential equations suffer from low precision, which has motivated some researchers to replace

the above model with a surrogate ordinary differential equation system which was then solved
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numerically. Our goal here is to use the original model (4) while accounting for the uncertainty

in its numerical solution using the methods of Chkrebtii et al. (2016) but within a constrained

amount of computation time.

3 Model

We now outline the details of our proposed statistical calibration methodology for stochastic simu-

lators with single or multiple states. Due to the high-dimensional nature of our simulator outputs,

we will consistently use the following convention for indices:

• index i will refer to the ith output grid setting,

• index j will refer to the jth setting of the calibration parameter vector,

• index k will refer to the kth state output from our multi-state stochastic simulation model,

and,

• index u will refer to the uth realization of our multi-state stochastic simulation model.

In what follows, we assume for simplicity that field observations and simulator outputs are available

at the same output grid locations s ∈ S for each of the ns states. Each grid location si, i = 1, . . . , n,

is a p × 1 vector representing the setting of p covariate variables. In our applications the si are

usually spatial-temporal locations, but this need not be the case. The simulation model takes as

input an si and a calibration parameter setting θj resulting in a single realization of the simulator

for the kth state being xk(si,θj).

Our simulation model data consists of many such state realizations. This means that at any

fixed setting of the parameters θ, the computer code produces many realizations of the process.

We interpret these realizations as i.i.d. samples from some distribution representing uncertainty

in the simulation of the process. The stochastic simulators are treated as black-box random func-

tions in the sense that given inputs, we merely collect realizations from the simulators without

any knowledge of internal workings of the stochastic simulators. Our development assumes the

availability of N such realizations of the simulation model xk(si,θj) for each state k at each setting

of θj and spatial-temporal location si where N is the number of iterations we require to perform
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model calibration using our MCMC algorithm. Therefore, the uth realization of the stochastic

simulator xk(si,θj) will be identified as xukij where u = 1, . . . , N .

In order to emulate stochastic simulators in an approach that is computationally feasible for at

least problems of moderate complexity and/or data size, we are motivated by dimension-reduction

ideas such as the empirical orthogonal functions (EOFs) (von Storch and Zwiers, 1999) approach to

calibration (e.g. Higdon et al., 2008). Yet in the case of stochastic simulators, the data dimensional-

ity is much higher, and it does not seem obvious how one should approach the dimension-reduction

problem. Our solution is motivated by a tensor representation of our high-dimensional data, which

we describe next.

3.1 Tensor Variate Representation of Stochastic Simulator Outputs

The statistical calibration framework we now outline aims to quantify the multiple sources of uncer-

tainty, including the stochastic nature of the simulators of interest. The key sources of uncertainty

are the variability across simulator realizations, the variability across states, the variability across

the spatial-temporal grid and the variability across calibration parameter settings. A natural way

to represent our high-dimensional data is as the m× ns × n×N multi-dimensional array χ, oth-

erwise known as a tensor (Ohlson et al., 2013). That is, we express our data as the 4-way tensor

χ ∈ Rm×ns×n×N . There are many possible ways of modeling our data using tensors, and using

the 4-way tensor representation described may be the first way one might like to try. With this

representation, the value at tensor entry u, k, i, j given by [χ]u,k,i,j = xukij.

Analyzing high-dimensional data structures from the tensor viewpoint has recently become pop-

ular, such as in computer vision (Vasilescu and Terzopoulos, 2003) and Magnetic Resonance Imag-

ing (MRI) applications (Basser and Pajevic, 2003). Thinking of our data as a tensor variable seems

appropriate in light of these recent developments. A key idea in representing high-dimensional data

using tensors is how one may decompose the signal in a manner that offers better interpretability.

For instance, a D-way tensor can be decomposed into 1-way tensors (vectors) in a procedure anal-

gous to Principal Components Analysis (PCA) performed on a matrix (Lu et al., 2008). Another

approach is the High-Order Singular Value Decomposition (HOSVD) which decomposes a D-way

tensor into 2-way tensors (matrices) in a procedure analagous to the SVD of a matrix (Lathauwer

et al., 2000a,b).

The HOSVD tensor decomposition is the more general approach, and is what we use to motivate
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our model. The HOSVD (Lathauwer et al., 2000a,b; Kolda and Bader, 2009) decomposes this high-

dimensional object into a sum of lower-rank objects,

[χ]u,k,i,j =

R1∑
r1

R2∑
r2

R3∑
r3

R4∑
r4

Er1,r2,r3,r4a(1)u,r1a
(2)
k,r2

a
(3)
i,r3
a
(4)
j,r4
, (5)

where R1, R2, R3, R4 denote the ranks of the approximation, E is known as the R1×R2×R3×R4

core tensor (analagous to the diagonal weight, or eigenvalue, matrix in the SVD), and a
(1)
u,r1 ∈ A(1) is

an entry in the N ×R1 factor matrix A(1), the analogue of an eigenvector in the SVD (similarly for

ns×R2 matrix A(2), n×R3 matrix A(3) and m×R4 matrix A(4)). Interestingly, if the entries of E

are Gaussian, then the resulting tensor χ can be viewed as a draw from a tensor-variate Gaussian

Process (Xu et al., 2012). As such, representing our data as a tensor is the high-dimensional

generalization of the GP approach of Kennedy and O’Hagan (2001) and exploiting dimension-

reduction techniques for tensors is the high-dimensional generalization of the EOF approach of

Higdon et al. (2008).

Equation (5) shows that the HOSVD decomposes our tensor object into separate effects aris-

ing from variability across simulator runs, variability across states, variability across the spatial-

temporal grid and variability across the stochastic realizations of the simulator. Exactly how the

HOSVD decomposition captures and decomposes the tensor’s variability in this way arises through

an operation called matricization. Matricization re-arranges any tensor into a matrix, and each

D-way tensor has D such matricizations. It turns out (Kolda and Bader, 2009) that the dth

matricization can be written as

X(d) = A(d)E (d)

(
A(D) ⊗ · · · ⊗A(d+1) ⊗A(d−1) ⊗ · · · ⊗A(1)

)T
where ⊗ represents Kronecker product and E (d) is the corresponding matricization of the core

tensor. In words, for a D-way tensor in RI1×···×ID , the dth matricization re-arranges a tensor into

a matrix with Id rows, stacking the remaining dimensions of the tensor column-wise. For instance,

X(4) matricizes our tensor into a matrix with m rows and N × ns × n columns. The solution to

A(4) in the HOSVD arises as the R4 left singular vectors from the SVD of X(4) (Kolda and Bader,

2009). We interpret these left singular vectors as arising from latent eigenfunctions that describe

the variability of the tensor across the m simulator runs, motivating the use of a Gaussian process

prior.

Our approach, then, is to reconstruct a missing entry in our tensor representation of simulator

outputs, namely the trajectory of the simulator at the unknown calibration parameter setting θ,
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by modeling the appropriate eigenvectors. To be clear, we assume that the other matricizations

of our tensor are not relevant to our modeling interests. That is, we assume there is no interest

in modeling an unobserved state given the observed states; we assume that our data will be on

the same grid as the simulator outputs and therefore there is no interest in modeling a state at an

off-grid location; and finally, we assume that we have access to all the MCMC realizations of the

stochastic simulator required so that modeling a new realization is also not required. Under these

assumptions, working with the particular matricization X(4) is all that is needed to reconstruct the

stochastic simulator at the unknown setting θ. In the next section, we outline the resulting model

arrived at using this idea of matricization of tensors.

3.2 Modeling Simulator Realizations

Our proposed emulator within the Bayesian hierarchy is constructed as follows. Let Φu, u =

1, . . . , N represent the uth (n · ns) × m matrix of simulator realizations of all model states with

columns representing the vectors of simulator outputs obtained at the m settings of calibration

parameters,

Φu =



xu111 xu112 . . . xu11m

xu121 xu122 . . . xu12m
...

...
...

...

xu1n1 xu1n2 . . . xu1nm
...

...
...

...

xunsn1 xunsn2 . . . xunsnm


.

The transpose of matricization X(4) corresponds to the (N · n · ns)×m matrix

XT
(4) =


Φ1

...

ΦN


(we work with the transpose only so that the matrix orientation follows the typical convention

of placing simulator outputs column-wise for each setting of calibration parameters).

Let XT
(4) = ǓĎV̌T represent the singular value decomposition (SVD) of XT

(4), where Ǔ is (N · n ·

ns)×m, Ď is m×m and V̌ is m×m. The low-rank approximation using nc EOFs from the SVD
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is U = (U1, . . . ,UN)T , where each submatrix Uu is defined to be the (n · ns)× nc matrix formed

as

Uu = ŨuD̃
1/2,

for u = 1, . . . , N where Ũu is the (n ·ns)×nc submatrix of Ǔu and D̃ is the nc×nc upper diagonal

submatrix of Ď. Similarly, let V be the m× nc matrix formed as

V = ṼD̃1/2,

where Ṽ is the m× nc submatrix of V̌.

The statistical emulator for each model output is constructed using the nc < m EOFs as,

xukij ≈
nc∑
l=1

vl(θj)Uukil

where vl(θj) = [V]jl and where the number of bases to use in the approximation, nc, can be

determined by cross-validation as outlined in the Supplementary Materials.

This formulation captures some important properties of the chosen EOFs that facilitate the sta-

tistical model. Primarily, note that at different realizations of the simulation model the variation

amongst these realizations across states and spatial-temporal locations is completely captured in

the left eigenvectors, Uu, while the weights, vl(θj), do not vary across realizations. This reflects the

fact that θj is a fixed, known quantity when the simulator is run at the setting θj. Subsequently, it

is sensible that the latent weight vl(θj) should also be treated as fixed conditional on the parameter

setting.

For the nc latent weight spaces, we treat the fixed, known vl(θj)s and the corresponding un-

observed weight vl(θ) for the unobserved state(s) as realizations of a Gaussian process indexed by

the calibration parameter settings,

vl(θ1), . . . , vl(θm), vl(θ)|λvl ,ρl,θ1, . . . ,θm,θ ∼ N(0, λ−1vl Rvl), (6)

where the correlation matrix Rvl is formed by applying the Gaussian correlation formula,

[Rvl ]j,j′ =

q∏
t=1

ρ
(θt,j−θt,j′)2
l,t ,

for correlation parameters ρl = (ρl,1, . . . , ρl,q) ∈ (0, 1)q.
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3.3 Modeling Observations

The field observations are modeled as in (1). Given the vector of unobserved weights v(θ) =

(v1(θ), . . . , vnc(θ))>, the additve discrepancies for each state, δ = (δ>1 , . . . , δ
>
ns)
> and multiplicative

discrepancies for each state, κ = (κ1, . . . , κns)
>, then the likelihood for each state is,

yk|Uuk,v(θ), δk, κk ∼ N(κkUukv(θ) + δk, λ
−1
f,kIn), k = 1, . . . , ns,

where λ−1f,k corresponds to measurement error variance of the observational data for state k.

3.4 Prior on Discrepancies

Statistical calibration typically accounts for model discrepancy through additive and multiplica-

tive misspecification of the simulator (Kennedy and O’Hagan, 2001; Brynjarsdóttir and O’Hagan,

2014), although more general forms have been investigated (Kleiber et al., 2014). For the additive

discrepancy, δ is modeled using independent GPs for each state variable,

δk ∼ N
(
µδk , λ

−1
δk

Rδk

)
,

for k = 1, . . . , ns where,

λδk ∼ Gamma(αδk , βδk),

and,

[Rδk ]jj′ =

p∏
t=1

ψ
(st,j−st,j′ )2

k,t ,

for j, j′ = 1, . . . , n. For the multiplicative discrepancies, we also use independent normal conjugate

priors for each state, where,

κk ∼ N(µκk , λ
−1
κk

),

for k = 1, . . . , ns.

Calibrating these discrepancy priors has received much attention. For example, additive dis-

crepancy priors have been discussed in the literature to a reasonable extent (Kennedy and O’Hagan,

2001; Higdon et al., 2008; Vernon et al., 2010; Brynjarsdóttir and O’Hagan, 2014) while multiplica-

tive discrepancies are less common. Theoretical aspects of calibration in the presence of model

discrepancy has also recently been explored (Tuo and Wu, 2015a,b).
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3.5 Prior on calibration parameters, θt

Assuming calibration parameters have been rescaled to [0, 1], uninformative independent uniform

priors are placed on each parameter,

θt ∼ Unif(0, 1).

When a priori knowledge of the parameters is available, these priors can be adjusted accordingly,

as we do in the JAK-STAT example in Section 5.

3.6 Other Prior Distributions

In addition to the main model components – the emulator of Section 3.2, the likelihood of Section

3.3 and the discrepancy priors of Section 3.4 – we need also specify the prior distributions for all the

remaining unknowns. Generally, specification of these priors is simpler as the model is less sensitive

to these parameters unless specified otherwise. We summarize these priors in the Supplementary

Materials.

With all the priors specified as described above, the posterior distribution,

[{θt}qt=1, {vl(θ)}ncl=1, δ,κ, {λvl}
nc
l=1, {ρ}

nc
l=1, {λf,k}

ns
k=1, {λδk}

ns
k=1{ψk}nsk=1|y,Uu,V] (7)

∝ [y|Uu,v(θ), δ,κ]
nc∏
l=1

([vl(θ)|vl, λvl ,ρl,θ] [vl|λvl ,ρl,θ])
ns∏
k=1

[δk|µδk , λδk ,ψk]

×
nc∏
l=1

([λvl ] [ρl])
ns∏
k=1

[λf,k]
ns∏
k=1

([λδk ] [ψk])

q∏
t=1

[θt]

is sampled via an MCMC algorithm as outlined in the Supplementary Materials.

3.7 Accounting for Simulator Uncertainty

In the proposed framework, simulator uncertainty is propagated through to the statistical calibra-

tion by directly sampling from the simulator at the fixed parameter settings θ1, . . . ,θm. At each

parameter setting θj, the corresponding realization is represented by the column vector Φuj for

u = 1, . . . , N, which we think of as samples from some distribution conditional on the calibration

parameter setting θj. Each of the N steps in the MCMC algorithm of our proposed model will

then require a sample (or, in practice, an approximate sample when nc < m) from this distribu-

tion using the basis representation, which is obtained using the Uu’s, u = 1, . . . , N and vl(θj)’s,
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l = 1, . . . , nc, j = 1, . . . ,m, from which the uncertainty of the stochastic simulator is propagated

through to the statistical calibration.

The approach is similar to the EOF-based calibration methods that are popular. In those

methods, all inference is conditional on the recovered eigenvectors that are discretely observed over

the continuous domain S, the truncation of the spectrum of EOF’s to a small number of such

eigenvectors, and to the particular set of discrete spatial-temporal locations used in observing an

otherwise continuous field over S. Such Bayesian models are approximate in that sense, and the

approximation improves if the number of spatial-temporal locations goes to infinity (so-called infill

asymptotics) and the number of eigenvectors retained goes to infinity. Analogously, inference for the

approach outlined is conditional on all of the above as well as the additional discrete sampling of N

simulator realizations at each of θ1, . . . ,θm. These samples discretely approximate the continuous

sample space of the conditional distribution of simulator model outputs, and this approximation

can be improved by increasing N .

4 Calibrating the Stochastic Water Temperature Model

The water temperature model (3) is a fairly simple stochastic model with which we can demonstrate

the proposed methodology. As outlined in Section 2.1, the model is formed from two components:

a seasonal effect component, Ta(t), and a short-term fluctuation component, Rw(t). The functional

form of the seasonal component is fairly standard in the literature, however many model forms have

been proposed to capture the short-term fluctuation component. The model we use is the simplest

possible form, suggesting that some small-scale discrepancy may be present in our calibration.

Plausible ranges for the calibration parameters were chosen by performing an exploratory data

analysis, and uniform priors were assigned to each parameter as summarized in Table 1. A set of

m = 30 calibration parameter settings were chosen using a space-fillling design (Johnson et al.,

1990) and N realizations of the simulator were sampled at each of these settings. Arranging these

N realizations column-wise for each setting of the calibration parameters results in our simulator

output matrix, Φu, u = 1, . . . , N. Prior distributions for the remaining parameters were chosen

according to the default approach described in Sections 3.4 and 3.6. Of particular importance are

setting the priors for the discrepancies and λf . The water temperature modeling literature suggests

that a multiplicative discrepancy is not appropriate as the more complex models for Rw(t) are
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additive in nature. Therefore, we assume only additive discrepancies and fix κ = 1. Furthermore,

since the additive discrepancy is expected to account for non-smooth small-scale behaviour, we

center the prior mean at µδ = 0 and use the exponential correlation model (Cressie, 1993) for the

discrepancy correlation matrix Rδ(ψ).

θ Symbol Description Prior

1 a1 Overall temperature level Unif(10,20)

2 a2 Seasonal component scale Unif(10,20)

3 K Thermal diffusivity Unif(0,1)

4 t0 Seasonal component offset Unif(50,80)

5 σ Short-term fluctuation deviation Unif(0,1)

Table 1: Prior distributions on the calibration parameters for the stochastic water temperature

model.

The prior on ψ was chosen to emphasize short-range correlation, taking ψ ∼ Beta(αψ = 1, βψ =

100). The scale of the discrepancy was selected to match the 95th percentile (i.e. ± 2 s.d.) of the

range of observed residuals between the observations y and the first m = 30 simulator realizations,

Φ1. Empirically, the variance of this residual was around 100. Choosing a shape parameter of

αδ = 10, we match the inverse of the prior mean of λδ by re-arranging
(
αδ
βδ

)−1
= 100, leading to

the prior distribution Gamma(αδ = 10, βδ = 1000).

Finally, the prior on the observational error, λf , was selected to match a small percentage,

say 10%, of the residual variance calculated above. From this estimate, we arrive at the prior

distribution λf ∼ Gamma(αf = 10, βf = 100).

The number of components, nc, retained in the bases expansion was investigated using the

leave-one-out cross-validation approach described in the Supplementary Materials. The cross-

validated MSPE for predicting the held-out mean simulator and the mean squared error (MSE)

of the posterior mean calibration parameter estimates (scaled to unit interval) are summarized in

Table 2. The results of this cross-validation study suggest nc = 4 bases is a good compromise

between accuracy and computational cost.

The results of calibrating the water temperature simulator to the Africa, OH dataset are shown

in Figures 1 and 2. The emulator (black lines) in Figure 1 fits the data well, demonstrating good

coverage of the observed data (red dots), yet there is clear evidence of a small-scale discrepancy
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nc = 2 nc = 3 nc = 4 nc = 5 nc = 6 nc = 8 nc = 10

MSPE 2.74 2.71 0.044 0.018 0.067 0.048 0.051

MSE(θ) 0.118 0.097 0.047 0.065 0.076 0.072 0.058

Table 2: Effect of varying the number of bases, nc, used in the model on the cross-validated MSPE

of the mean held-out state and MSE of the estimated calibration parameters.

Figure 1: 25,000 posterior samples of the calibrated stochastic simulator and uncertainties. The

grey lines represent the prior realizations of the stochastic simulator, while the black lines represent

the 95% credible intervals for the calibrated discrepancy-corrected simulator and the pink lines

represent 95% credible intervals for the observed process. The blue lines are 95% credible intervals

for the additive discrepancy component, which is at the level of zero (dashed line) but does exhibit

small-scale structure as expected.

(blue lines). The presence of this discrepancy, which appears discontinuous and autocorrelated, is

in agreement with the assumptions found in more advanced models of Rw(t) in the literature, such

as AR(1) and AR(2) models (Caissie et al., 1998).

The MCMC algorithm for the proposed calibration model was iterated for N = 50, 000 steps,

with the first 25, 000 being discarded as burn-in. The posterior densities for the calibration parame-
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Figure 2: Kernel density estimates for the calibration parameters of the water temperature stochas-

tic simulator based on 25,000 posterior samples. Calibration paramerers a1 (solid) and a2 (dashed)

shown in the left pane, t0 shown in center pane, K (solid) and σ (dashed) shown in right pane.

ters shown in Figure 2 indicates that most parameters are well determined despite the stochasticity

of the simulator. However, the thermal diffusivity coefficient, K, is less well determined than the

annual model component parameters a1, a2 and t0. This is not suprising given the presence of

discrepancy and underparameterized form of Rw(t) employed. With a more flexible model of the

small-scale structure for Rw(t), the diffusivity coefficient might be better resolved.

In comparison, fitting the model using a single realization of the simulator – i.e., performing

calibration in the deterministic framework as in Higdon et al. (2008) – showed notable differences,

particularly in the assessment of uncertainties. For instance, the standard deviations of the poste-

rior distributions of the calibration parameters as summarized in Table 3 were consistently smaller

when accounting for simulator uncertainty as compared to deterministic calibration. This suggests

that accounting for simulator uncertainty can actually remove uncertainty that might otherwise be

mapped to parameter estimates when performing deterministic calibration.

In addition, the correlations of the estimated parameters shown in Table 4 are not captured

when assuming the simulator is deterministic. This can be important information for interpreting

the simulator or performing variable selection. Moreover, this suggests that the joint distribution of

the calibration parameters is better determined when the stochasticity of the simulator is accounted

for as compared to a deterministic analysis.
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a1 a2 K t0 σ

Stochastic Calibration 0.045 0.062 0.218 0.025 0.291

Deterministic Calibration 0.056 0.109 0.263 0.032 0.286

Table 3: Sample standard deviations of posterior calibration parameter realizations using stochastic

versus deterministic calibration mdels.

a1 a2 K t0 σ

a1 1.00 -0.72 (-0.13) 0.17 (-0.13) 0.23 (0.02) -0.02 (-0.01)

a2 -0.72 (-0.13) 1.00 -0.26 (-0.09) -0.32 (-0.13) -0.01 (0.01)

K 0.17 (-0.13) -0.26 (-0.09) 1.00 0.15 (0.28) 0.01 (0.00)

t0 0.23 (0.02) -0.32 (-0.13) 0.15 (0.28) 1.00 -0.02 (0.08)

σ -0.02 (-0.01) -0.01 (0.01) 0.01 (0.00) -0.02 (0.08) 1.00

Table 4: Pearson correlations of parameters estimated using the stochastic versus deterministic (in

brackets) calibration models.

While the predictions of both models are good (as one would expect since both models include

discrepancies), the second order properties again show some differences. For instance, the standard

deviations of the posterior distributions for the predicted process are similar for both models,

however the standard deviation for the discrepancy when accounting for simulator uncertainty

(0.776) was about 10% smaller than when performing deterministic calibration (0.862). Similarly,

the standard deviation of the posterior emulated state when accounting for simulator uncertainty

(0.607) was about 17% smaller than when performing deterministic calibration (0.732). Taken all

together, these results demonstrate that accounting for uncertainty in stochastic simulators can

lead to more efficient uncertainty quantification in the resulting calibration.

5 Calibrating the JAK-STAT Model

An important contribution of the present work is to enable calibration of probabilistic differential

equation solvers which capture state discretization uncertainty as part of the probabilistic solu-

tion. We study the JAK-STAT system described in Section 2.2. Because the delay differential

equation system (4) has no closed form solution, Chkrebtii et al. (2016) perform exact inference by
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directly modeling uncertainty associated with discretization of the states within the inverse prob-

lem. However, as with numerical differential equation solvers, the drawback of this approach is the

computational expense incurred when the model must be evaluated at a large number of parameter

regimes within the MCMC algorithm to obtain approximate posterior samples. A computer model

calibration approach could significantly reduce the computational cost, but must account for the

stochastic nature of the probabilistic solver. The approach proposed in the present work overcomes

this difficulty, making calibration for probabilistic solution simulators feasible.

Our goal is to infer calibration parameters θ ∈ R8 where θ1 through θ4 represent reaction rates

in model (4), θ5 is the time required for the process of gene transcription to begin and for the

reaction states to return to the original state, θ6 is the initial concentration for the first reaction

state, and θ7 and θ8 are unknown hyperparameters associated with the probabilistic solver. Prior

distributions on the calibration parameters are provided in Table 5. For a given parameter regime,

the model of discretization uncertainty of (4) produces posterior draws based on an equally spaced

time discretization grid of size 500. The emulator is constructed from a random design with

m = 100 calibration parameter settings drawn from the prior distributions in Table 5. For this

application, we expect that fine scale structure in the state may not be captured by using a small

number of parameter settings to construct the emulator, therefore an additive model discrepancy,

δ, is introduced on the observation process as described in Section 3.4. It is assigned a Gaussian

process prior with stationary squared exponential covariance structure and zero prior mean µδ.

The prior model on the precision parameters λδ,λf is described in Sections 3.4 and 3.6.

Symbol Description Prior

θi, i = 1, . . . , 4 Reaction rates of first for states χ2
1

θ5 Time delay χ2
6

θ6 Initial concentration of the first state N
(
y(3)(0), 402

)
θ7 Prior precision of the probabilistic solver 100 + Log-N (10, 1)

θ8 Length-scale of the probabilistic solver 0.12 + Exp (0.1)

Table 5: Prior distributions on the calibration parameters for the JAK-STAT system.

Our analysis is based on 20,000 posterior samples. The marginal posteriors over the observation

processes are superimposed on the data in Figure 8, and fit well overall without fully capturing all

the small scale structure, as expected. The discrepancy captures structure that is not contained in
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Figure 3: Kernel density estimates of the marginal stochastically calibrated posterior (gray) with

m = 100 model runs, and exact posterior (black, Chkrebtii et al. (2016)) for the JAK-STAT system.

Marginal prior densities are shown as dotted lines.

the emulated model space, including any misspecification in the original delay differential equation

model for the system itself. We find that the discrepancy captures very little structure, and is rather

diffuse and essentially stationary. Interestingly, increasing the number, m, of sampled parameter

settings from 20 and 50 (shown in the Supplementary Materials) to 100 had little effect on the fit

of the model to the data and structure of the discrepancy although with a noticeable decrease in

uncertainty. This suggests that parameter regions of very high posterior probability may be small

relative to scale of parameter sampling regions, as expected for such highly nonlinear problems.

Increasing the number of model runs does, however, push the posterior density of several rate

parameters further from the prior (posterior density plots for m = 20, 50 computer model runs are

provided in the Supplementary Materials). Estimated marginal posterior densities for the calibra-

tion parameters are shown in Figure 3. Based on observed differences from the marginal priors, we

conclude that the data is informative for all the parameters except for the initial concentration, θ6,

of the first state, which depends on the scaling of the concentration units and is not identifiable

given the experimental data (e.g., Raue et al., 2009). Further, the marginal posterior distributions
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of the calibrated model are more diffuse than their exact counterparts in Chkrebtii et al. (2016) due

to the contribution of uncertainty from emulating the exact model based on a finite number, m, of

model evaluations. Despite this, the posterior modes align well with their exact analogues while

computational gain is dramatic. Indeed, performing the calibration using the proposed method

requires about 30 minutes on a modern notebook computer for 20,000 samples of the posterior,

while the same number of samples using the full solution method of Chkrebtii et al. (2016) requires

over a day.

6 Discussion

In this paper we have presented an approach for calibration stochastic simulators in a computation-

ally efficient manner while allowing for the uncertainty in the simulator outupts to be propagated

through to the calibration parameter estimates as well as the state and discrepancy predicitons. Our

method also allows for multiple states to be calibrated simultanenously within the same framework.

The proposed model can thus be viewed as a higher-dimensional generalization of the deterministic,

single-state EOF-based approach to calibration first described in Higdon et al. (2008).

Applying the methodology to our two motivating examples suggests that accounting for the

non-determinism in some simulators can be important. In the water temperature example, a simple

stochastic simulator of water temperature captures seasonal variability through a functional form

and small-scale structure through a thermal diffusivity model that connects ambient air temper-

ature data to the water temperature. The proposed method provided plausible estimates of the

model parameters while capturing expected discrepancy in the model for diffusivity due to the

underparameterized form of the small-scale structure used. The discrepancy found is in agreement

with more complex models of thermal diffusivity found in the river water temperature modeling

literature. In comparison, deterministic calibration underestimated pairwise correlations of cali-

bration parameters and had wider uncertainties for most estimated quantities. This suggests that

accounting for the stochasticity of the simulator more accurately captures the full joint distribution

of parameters.

In the second example, the proposed methodology enables emulation of Bayesian probability

models of discretization uncertainty in the solution of differential equations. We have demonstrated

its feasibility and computational efficiency on the complex JAK-STAT gene trancription network.
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The resulting posterior parameter distributions as well as state and discrepancy estimates are

largely in close agreement with the exact method found in the literature. Yet, the computational

cost is vastly reduced. This result is a promising step forward in extending the scope of discretiza-

tion uncertainty modeling to possibly large-scale systems, such as those used in oceanography and

atmospheric sciences, where small perturbations in the state, such as those due to discretization

as well as model discrepancy, can have a substantial impact.

One limitation of the model described is the possibility of additional inputs, z, which can be

controlled both in the simulation model and in the real-world. A common example of this situation

are settings of temperature and pressure in engineering applications. When outputs and observa-

tions are available on the same spatial-temporal grid for each setting of the joint input parameters

(θ, z), our approach can easily accomodate this situation by including the additional variables

z1, . . . , zm and z in the GP emulation model in Equation (6), recognizing that the setting of these

parameters for the field data, z, is fixed, known. More generally, our model cannot accomodate

spatial-temporal inputs that are not crossed with the input settings (θ, z). Although beyond the

scope of this paper, the conceptual framework of tensors and matricization introduced in Section

3.1 suggests the possibility of modeling more than one matricization in order to emulate the desired

outputs in such a scenario. Another possible extension would be the case of multiple simulation

models which is often addressed by Bayesian Model Averaging techniques (Raftery et al., 2005;

Hoeting et al., 1999). Combining all three sources of uncertainty - multiple simulators, simula-

tor emulation and stochastic simulators - would be a challenging but potentially very interesting

endeavor.

In conclusion, we have developed a Bayesian model for calibrating complex multi-state non-

deterministic simulators. Our treatment of simulator stochasticity is more honest than assuming a

simple i.i.d. error (nugget) model, yet the approach only relies on samples of the simulator being

available rather than knowledge of its full distribution in closed-form, which is typically unavailable.

The method is implemented in R (R Core Team, 2012) and will shortly be available as package

cmce on CRAN.
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Figure 4: 200 samples from the marginal calibrated posterior with m = 100 model runs (top

row), discrepancies δ1 and δ2 (middle row), and exact posterior for comparison (bottom row,

Chkrebtii et al. (2016)) over the first two observation processes of the JAK-STAT system, for

which experimental data is available. Experimental data locations are shown as red circles with

error bars representing twice the experimental error standard deviation.
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Supplementary Materials

Selecting nc via Cross-Validation

We employ a leave-one-out cross-validation approach for selecting nc. For an ensemble of m sim-

ulator outputs, remove the jth output from the ensemble and take the observation y to be the

mean (over the N stochastic simulator samples) of the jth output. Next, run the calibration model

with the remaining m− 1 simulator outputs to predict the mean of the held-out (jth) output and

the corresponding calibration parameters settings of the jth output. Repeat for j = 1, . . . ,m, and

then calculate appropriate criteria of interest. Repeat this entire process for a judicious range of

nc values, and then compare the criteria to select the number of bases to use in the approximation

for calibrating the real data.

Two simple criteria we use to perform this cross-validation is the Mean Squared Prediction

Error (MSPE) for the held-out mean simulator, and the Mean Squared Error (MSE) for the held-

out calibration parameter setting using the posterior mean calibration parameter estimates from

the cross-validation runs. That is,

MPSE =
m∑
j=1

n∑
i=1

(yi − xi(θj))
2

where xi(θj) is the posterior mean state(s) from running the calibration model at the jth step

of the cross-validation, and

MSE(θ) =
m∑
j=1

q∑
l=1

(θ̄jl − θjl)2

where θ̄jl is the posterior mean of the lth calibration parameter from running the calibration

model at the jth step of the cross-validation (in actuality we re-scale these so that the squared

errors are comparable for the q different calibration parameters).
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Specifying the Additional Prior Distributions

Prior on weight-space precision, λvl

We specify independent gamma priors on the inverse variance of the GP model for each latent

weight space,

λvl ∼ Gamma(αvl , βvl),

by choosing a shape, αvl , and rate, βvl . Usually a shape αvl ≥ 1 is chosen and then the rate is

selected so that the mean of the prior,
αvl
βvl
, is on the order of the empirical state variability.

Prior on weight-space correlations, ρl,t

The correlations are specified independent beta prior distributions,

ρl,t ∼ Beta(αρl,t , βρl,t),

where αρl,t and βρl,t are usually chosen to favour a smooth response, which places more weight

towards a correlation of 1. Our default choice for this prior, which generally works well, is αρl,t =

5, βρl,t = 1.

Prior on observation precision, λf

The prior for λf is

λf ∼ Gamma(αf , βf ),

where the shape parameter is again usually selected as αf ≥ 1. If prior information on the

obervational error is known, this can be used to calibrate the prior. Otherwise, selecting βf so

that the inverse of the mean,
(
αf
βf

)−1
, is on the order of the expected observational error variance

is reasonable. In some cases, we have observed that calibration can be senstive to this parameter,

so a careful consideration of the interplay between additive discrepancy, multiplicative discrepancy

and observational error variance may be warranted.
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Prior on discrepancy correlations, ψk,t

The correlations are specified independent beta prior distributions,

ψk,t ∼ Beta(αψk,t , βψk,t),

where αψk,t and βψk,t are usually chosen to favour a smooth response, but also recognizing that the

discrepancy is often modeling smaller-scale variability in the unobserved state unaccounted for by

the emulated simulator. Our default choice for this prior is αψk,t = 2, βψk,t = 10.

MCMC Algorithm

The MCMC algorithm for sampling the posterior distribution (7) proceeds according to the fol-

lowing steps:

1. Draw ρl,t|· for l = 1, . . . , nc and t = 1, . . . , q (MH step)

2. Draw λvl|· for l = 1, . . . , nc (Gibbs step)

3. Draw θt, v1(θt), . . . , vnc(θt) by proposing a new θ′t and

(a) Draw v′l(θ
′
t,θ−t) from vl(θ

′
t,θ−t)|Vl, θ

′
t,θ−t for l = 1, . . . , nc (Gibbs step)

(b) Calculate the acceptance probability

α =
π(y|Uu,v

′(θ′t,θ−t),µδ,λf ,λδ,ψ,µκ,λκ)π(θ′t)

π(y|Uu,v(θt,θ−t),µδ,λf ,λδ,ψ,µκ,λκ)π(θt)

where π(y|Uu,v(θt,θ−t),µδ,λf ,λδ,ψ,µκ,λκ) =
∫
κ

∫
δ
π(y|Uu,v(θ), δ,κ)dπ(δ)dπ(κ)

(c) Accept θ′t, v1(θ
′
t,θ−t), . . . , vnc(θ

′
t,θ−t) with probability α.

Repeat 3(a)-3(c) for t = 1, . . . , q (MH steps).

4. Draw δk|Uu,k,v(θ),yk, λf,k, λδk ,ψk for k = 1, . . . , ns (Gibbs step)

5. Draw ψk,t|· for t = 1, . . . , p and k = 1, . . . , ns (MH step)

6. Draw λδk |· for k = 1, . . . , ns (Gibbs step)

7. Draw κk|· for k = 1, . . . , ns (Gibbs step)
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8. Draw λf,k|· for k = 1, . . . , ns (Gibbs step).

The MCMC algorithm’s steps can be implemented as follows.

In step 1,

• Draw a proposed ρ′l,t from q(ρ′l,t|ρl,t)

• Calculate α =
π(Vl|ρ′l,t,·)π(ρ

′
l,t)q(ρl,t|ρ

′
l,t)

π(Vl|ρl,t,·)π(ρl,t)q(ρ′l,t|ρl,t)

• Accept ρ′l,t with probability α.

In step 2, draw λvl from Gamma(αvl + m
2
, βvl + 1

2
VTR−1vl V).

In step 3,

y|Uu,k,v(θt,θ−t), µδk , λf,k, λδk , ψk, µκk , λκk ∼ N (µδk + µκkUu,kv(θt,θ−t),Σ) ,

where Σ = 1
λf,k

In + 1
λδk

Rδk(ψk) + 1
λκk

(Uu,kv(θt,θ−t)) (Uu,kv(θt,θ−t))
T for k = 1, . . . , ns.

In step 4,

δk|Uu,k,v(θ),yk, λf,k, λδk ,ψk ∼ N
(
Σδk(λf,kIn(yk − κkUu,kv(θ)) + λδkInRδk(ψk)

−1µδk),Σδk

)
where Σ−1δk = λf,kIn + λδkRδk(ψk)

−1 for k = 1, . . . , ns.

In step 5,

• Draw a proposed ψ′k,t from q(ψ′k,t|ψk,t)

• Calculate α =
π(δk|ψ′

k,t,·)π(ψ
′
k,t)q(ψk,t|ψ

′
k,t)

π(δk|ψk,t,·)π(ψk,t)q(ψ′
k,t|ψk,t)

• Accept ψ′k,t with probability α.

In step 6, draw λδk from

Gamma

(
αδk +

n

2
, βδk +

1

2
(δk − µδk)

TR−1δk (δk − µδk)
)

for k = 1, . . . , ns.
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In step 7, draw κk from

N
(
σκk(λf,k(yk − δk)T (Uu,kv(θ)) + λκkµκk), σκk

)
where σ−1κk = λf,k(Uu,kv(θ))T (Uu,kv(θ)) + λκk for k = 1, . . . , ns.

In step 8, draw λf,k from

Gamma

(
αf,k +

n

2
, βf,k +

1

2
(yk − κkUu,kv(θ)− δk)T (yk − κkUu,kv(θ)− δk)

)
for k = 1, . . . , ns.

Additional Figures for the JAK-STAT Example
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Figure 5: Kernel density estimates of the marginal calibrated posterior (gray) with m = 50 model

runs, and exact posterior (black, Chkrebtii et al. (2016)) for the JAK-STAT system. Marginal

prior densities are shown as dotted lines.
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Figure 6: 200 samples from the marginal calibrated model posterior with m = 50 model runs

(top row), discrepancies δ1 and δ2 (middle row), and exact posterior for comparison (bottom row,

Chkrebtii et al. (2016)) over the first two observation processes of the JAK-STAT system, for which

experimental data is available. Experimental data locations are shown as red circles with error bars

representing twice the experimental error standard deviation.
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Figure 7: Kernel density estimates of the marginal stochastically calibrated posterior (gray) with

m = 20 model runs, and exact posterior (black, Chkrebtii et al. (2016)) for the JAK-STAT system.

Marginal prior densities are shown as dotted lines.
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Figure 8: 200 samples from the marginal calibrated model posterior with m = 20 model runs

(top row), discrepancies δ1 and δ2 (middle row), and exact posterior for comparison (bottom row,

Chkrebtii et al. (2016)) over the first two observation processes of the JAK-STAT system, for which

experimental data is available. Experimental data locations are shown as red circles with error bars

representing twice the experimental error standard deviation.
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