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Abstract

We address two important issues in Gaussian process (GP) modeling. One is how

to reduce the computational complexity in GP modeling and the other is how to simul-

taneous perform variable selection and estimation for the mean function of GP models.

Estimation is computationally intensive for GP models because it heavily involves ma-

nipulations of an n-by-n correlation matrix, where n is the sample size. Conventional

penalized likelihood approaches are widely used for variable selection. However the

computational cost of the penalized likelihood estimation (PMLE) or the correspond-

ing one-step sparse estimation (OSE) can be prohibitively high as the sample size

becomes large, especially for GP models. To address both issues, this article proposes

an efficient subsample aggregating (subagging) approach with an experimental design-

based subsampling scheme. The proposed method is computationally cheaper, yet it

can be shown that the resulting subagging estimators achieve the same efficiency as the

original PMLE and OSE asymptotically. The finite-sample performance is examined

through simulation studies. Application of the proposed methodology to a data center

thermal study reveals some interesting information, including identifying an efficient

cooling mechanism.

Keywords: Bagging, Computer experiment, Experimental design, Gaussian process, Latin

hypercube design, Model selection

1 Introduction

Gaussian process (GP) models, also known as kriging models, are widely used in many fields,

including geostatistics (Cressie 1993, Stein 1999), machine learning (Smola and Bartlett 2001,
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Snelson and Ghahramani 2006), and computer experiment modeling (Santner et al. 2003,

Fang et al. 2006). In this article, we focus on two important issues in GP modeling. One

is the study of simultaneous variable selection and estimation of GP models, for the mean

function in particular, and the other is how to alleviate the computational complexity in GP

modeling.

Various examples of variable selection in GP models can be found in the literature, such as

in geostatistics (Hoeting et al. 2006, Huang and Chen 2007, Chu et al. 2011) and computer

experiments (Welch et al. 1992, Linkletter et al. 2006, Joseph et al. 2008, Kaufman et

al. 2011). In this article, we mainly focus on identifying active effects through the mean

function. This is because it is reported in several empirical studies that by a proper selection

of important variables in the mean function, the prediction accuracy of GP models can be

significantly improved, especially when there are some strong trends (Joseph et al. 2008,

Hung 2011, Kaufman et al. 2011). Furthermore, comparing with nonlinear effects identified

from the covariance function (Linkletter et al. 2006), linear effects are relatively easier to

interpret and of scientific interest in many applications. Conventional approaches based on

penalized likelihood functions, such as the penalized likelihood estimators (PMLEs) and the

corresponding one-step sparse estimators (OSEs), are conceptually attractive. However, they

are computationally difficult in practice, especially with massive data observed on irregular

grid. This is because estimation and variable selection heavily involve manipulations of an

n× n correlation matrix that require O(n3) computations, where n is the sample size. The

calculation is computationally intensive and often intractable for massive data.

The computational issue is well recognized in the literature and various methods are pro-

posed. The proposed approaches may be characterized broadly as either changing the model

to one that is computationally convenient or approximating the likelihood for the original

data. Examples of the former includes Rue and Tjelmeland (2002), Rue and Held (2005),

Cressie and Johannesson (2008), Banerjee et al. (2008), Gramacy and Lee (2008), Wikle

(2010); while approximation approaches includes Nychka (2000), Smola and Bartlett (2001),

Nychka et al. (2002), Stein et al. (2004), Furrer et al. (2006), Snelson and Ghahramani

(2006), Fuentes (2007), Kaufman et al. (2008), Gramacy and Apley (2015). However, these
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methods focus mainly on estimation and prediction but not variable selection, and most of

them are developed for datasets collected from a regular grid under a low-dimensional set-

ting. Recent studies address the issues by imposing a sparsity constraint on the correlation

matrix, including covariance tapering and compactly support correlation functions (Kauf-

man et al. 2008, 2011, Chu et al. 2011, Nychka et al. 2015). However, it has been shown

that this method does not work well for purposes of parameter estimation (Stein 2013, Liang

et al. 2013), which is crucial in selecting important variables. In addition, the connection

between the degree of sparsity and computation time is nontrivial.

In this paper, we provide an alternative framework which alleviates the computational

difficulties in estimation and variable selection by utilizing the idea of subsample aggregating,

also known as subagging (Büchlmann and Yu 2002). This framework includes a subagging

estimator and a new subsampling scheme based on a special class of experimental designs

called Latin hypercube designs (LHDs), which is known to have a one-dimensional projection

property. By borrowing the inherited one-dimensional projection property of LHDs and a

block structure, the new subsampling scheme not only provides an efficient data reduction but

also takes into account the spatial dependency in GP models. The computational complexity

of the proposed subagging estimation is dramatically reduced, yet in the mean time, it is

shown that the subagging estimators achieve the same efficiency as the original PMLE and

OSE asymptotically.

The remainder of the paper is organized as follows. In Section 2, the conventional pe-

nalized likelihood approach is discussed. The new variable selection framework, including

the new subsampling scheme and the subagging estimators are introduced in Section 3.

Theoretical properties are derived in Section 4. In Section 5, finite-sample performance of

the proposed framework is investigated in simulation studies. A data center example is

illustrated in Section 6. Discussions are given in Section 7.
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2 Variable selection in Gaussian process models

For a domain of interest Γ in Rd, we consider a Gaussian process {Y (x) : x ∈ Rd} such that

Y (x) = xTβ + Z(x), (1)

where β is a vector of unknown mean function coefficients and Z(x) is a stationary Gaussian

process with mean 0 and covariance function σ2ψ. The covariance function is defined as

cov{Y (x + h), Y (x)} = σ2ψ(h;θ), where θ is a vector of correlation parameters for the

correlation function ψ(h;θ) and ψ(h;θ) is a positive semidefinite function with ψ(0;θ) = 1

and ψ(h;θ) = ψ(−h;θ).

Suppose n observations are collected denoted by

Dn = {
(
xt1 , y(xt1)

)
, . . . ,

(
xtn , y(xtn)

)
} = {(x1, y1), . . . , (xn, yn)}.

Let yn = (y1, . . . , yn)T , Xn = (x1, . . . ,xn)T , φ = (θT ,βT , σ2)T be the vector of all the

parameters, and Θ be the parameter space. Based on (1), the likelihood function can be

written as

f(yn,Xn;φ) =
|Rn(θ)|−1/2

(2πσ2)n/2
exp{− 1

2σ2
(yn −Xnβ)TR−1

n (θ)(yn −Xnβ)},

where Rn(θ) is an n × n correlation matrix with elements ψ(xi − xj;θ)]. Thus, the log-

likehood function, ignoring a constant, is

`(yn,Xn,φ) = − 1

2σ2
(yn −Xnβ)TR−1

n (θ)(yn −Xnβ)− 1

2
|Rn(θ)| − n

2
log(σ2), (2)

where β, θ, and σ are the unknown parameters.

To achieve simultaneous variable selection and parameter estimation, we focus on pe-

nalized likelihood approaches, which are becoming increasingly popular in recent years. A

penalized log-likelihood function for GP models can be written as

`p(yn,Xn,φ) = `(yn,Xn,φ)− n
p∑
j=1

pλ(|βj|), (3)

where pλ(·) is a pre-specified penalty function with a tuning parameter λ. There are various

choices of penalty functions such as LASSO (Donoho and Johnstone 1994, Tibshirani 1996),
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the adaptive LASSO (Zou 2006), and the minimax concave penalty (Zhang 2010). In this

article, we focus on the smoothly clipped absolute deviation (SCAD) penalty (Fan and Li

2001) defined by

pλ(|β|) =


λ|β| if |β| > λ,

λ2 + (a− 1)−1(aλ|β| − β2/2− aλ2 + λ2/2) ifλ < |β| ≤ aλ,

(a+ 1)λ2/2 if |β| > aλ,

for some a > 2. By maximizing (3), the penalized maximum likelihood estimators (PLMEs)

of φ can be obtained by φ̂n = arg maxφ `p(yn,Xn,φ).

To compute PMLEs under the SCAD penalty, Zou and Li (2008) develop a unified al-

gorithm to improve computational efficiency by locally linear approximation (LLA) of the

penalty function. They propose an one-step LLA estimation that approximates the solu-

tion after just one iteration in a Newton-Raphson-type algorithm starting at the maximum

likelihood estimates (MLEs). Chu et al. (2011) extend the one-step LLA estimation to

approximate the PMLEs for the spatial linear models and the resulting estimate is called

the one-step sparse estimate (OSE).

Following the idea of Chu et al. (2011), the OSE of β in GP models, denoted by β̂OSE,

is obtained by maximizing

Q(β) = − 1

2σ̂2
(0)

(yn −Xnβ)TR−1
n (θ̂

(0)
)(yn −Xnβ)− n

p∑
j=1

p′λ(|β̂
(0)
j |)|βj|, (4)

where β̂
(0)

, θ̂
(0)

and σ̂2
(0)

are the MLEs obtained from (2). We also update θ and σ2 by

maximizing (4) evaluated at β̂OSE with respect to θ and σ2. The resulting OSE of θ and σ2

is denoted as θ̂OSE and σ̂2
OSE. We fix the tuning parameter a = 3.7 as recommended by Fan

and Li (2001). To determine λ, a Bayesian information criterion(BIC) proposed by Chu et

al. (2011) in incorporated.

The implementation of the penalized likelihood approach, including the calculation of

PMLEs and OSEs is computationally demanding. This is because it relies heavily on the

calculation of R−1
n (θ) and |Rn(θ)|, which is computationally intensive and often intractable

due to numerical issues. It is particularly difficult for massive data collected on irregular
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grids, because no Kronecker product techniques can be utilized for computational simplifi-

cation (Bayarri et al. 2007, 2009, Rougier 2008). A similar issue has also been recognized in

calculating the MLEs in GP models.

3 Variable selection for GP via subagging

3.1 A new block bootstrap subsampling scheme

Subagging, modified based upon bagging (bootstrap aggregating), is one of the most effec-

tive and computationally efficient procedure to improve on unstable estimators (Efron and

Tibshirani 1993, Breiman 1996, Büchlmann and Yu 2002). Although it is originally proposed

to reduce variance in estimations and predictions, the idea of subsampling is attractive in

many applications to achieve computational reduction. It is particularly appealing to GP

modeling because of its high computational demand in estimating PMLEs and OSEs. How-

ever, direct application of subagging with random bootstrap subsamples is not efficient in

estimation and variable selection of GP because the data are assumed to be dependent. This

is not surprising because similar issues occur in the conventional bootstrap when the data

are dependent such as in time series and spatial data, and various block bootstrap tech-

niques are introduced (Künsch 1989, Liu and Singh 1992, Lahiri 1995, 1999, 2003, Politis

and Romano 1994). Therefore, as an analogous result to the conventional block bootstrap,

a new subsample scheme for dependent data based on blocks is called for.

We introduce a new block bootstrap subsampling method based on Latin hypercube de-

signs (LHDs). It is called LHD-based block bootstrap. LHD is a class of experimental designs

which is known to have a one-dimensional projection property, i.e, the projection of an LHD

onto any dimension has exactly one observation for each level and therefore the resulting

design can spread out more uniformly over the space. An m-run LHD in a d-dimensional

space, denoted by LHD(m, d) can be easily constructed by permuting (0, 1, ...,m − 1) for

each dimension. Given the sample size, there are (m!)d−1 LHDs. Two randomly generated

LHD(6,2) are illustrated in Figure 1. It is clear that the projection onto either dimension has

exactly one observation for each level. After decomposing the complete data into disjoint
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Figure 1: Two examples of LHDs

equally spaced hypercubes/blocks, a LHD-based block bootstrap subsample can be obtained

by collecting blocks according to the structure of a randomly generated LHD. One example

of a LHD-based block bootstrap subsample using the LHD in Figure 1(a) is given in Figure

2, where the circles are the observations, gray areas are the LHD-based blocks, and the red

dots are the resulting subsamples. Formal definitions are given in the next section.

The LHD-based block bootstrap has the following advantages. First, the block structure

takes into account the spatial dependency and therefore improves the estimation accuracy

for correlation parameters in GP models. Second, because of the one-dimensional balance

properties inherited from LHDs, the block bootstrap subsamples can be spread out more

uniformly over the complete data and therefore the resulting subsamples can represent the

complete data effectively. Third, it is shown that LHD can result in variance reduction in es-

timation compared with simple random samples (Mckay et al. 1979, Stein 1987). Therefore,

the subagging estimates calculated by the proposed LHD-based subsamples are expected to

outperform those calculated by the naive simple random subsamples in terms of estimation

variance. This result is verified empirically by simulations in Section 5.2.
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Figure 2: An example of LHD-based block bootstrap constructed from Figure 1(a)

3.2 Variable selection using LHD-based block subagging

The procedure can be described in three steps:

Step 1: Divide each dimension of the interested region Γ ∈ [0, l]d into m equally spaced intervals

so that Γ consists of md disjoint hypercubes/blocks. Define each block by mapping i to

a d-dimensional hypercube

Bn(i) = {x ∈ Rd : bij ≤ xj ≤ b(ij + 1) and j = 1, ..., d},

where i = (i1, ...id), ij ∈ (0, ...,m− 1), represents the index of each block and b = l/m

is the edge length of the hypercube. Let |Bn(i)| be the number of observations in the

ith hypercube/block. For simplicity, assume the data points are equally distributed over

the blocks, i.e. |Bn(i)| = n/md.

Step 2: Select m blocks according to a randomly generated LHD(m, d). Each column of the LHD

is a random permutation of {0, . . . ,m − 1}, denoted by πi = (πi(1), . . . , πi(m))T for
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1 ≤ i ≤ d. So an m-run LHD is denoted by i∗j = (π1(j), . . . , πd(j)), j = 1, . . . ,m, and

the corresponding selected blocks are denoted by Bn(i∗1), . . . ,Bn(i∗m). The bootstrapped

subsamples, denoted by y∗1(x∗1), . . . , y∗N(x∗N), are the observations in the selected blocks,

where N =
∑m

i=1 |Bn(i∗i )|. Based on the subsamples, φ̂
∗
N and its OSE φ̂

∗
N,OSE is ob-

tained by maximizing (3) and (4) respectively.

Step 3: Repeat Step 2 K times to obtain PMLEs φ̂
∗
N(j) and the corresponding OSEs φ̂

∗
N,OSE(j),

where j = 1, ..., K. The subagging estimators are defined by φ̂N = 1
K

∑K
i=1 φ̂

∗
N(i) and

φ̂N,OSE = 1
K

∑K
i=1 φ̂

∗
N,OSE(i).

Figure 2 is an example with experimental region Γ ∈ [0, 24]2, i.e., d = 2, l = 24. A

common practice is that the data are collected by normalizing the experimental region to

a unit cube. In such a case, we have l = 1. The circles represent the settings in which the

experiments are performed and the total sample size is n = 216. The design, LHD(6, 2),

implemented here is denoted by i∗1 = (0, 4), i∗2 = (1, 0), i∗3 = (2, 2), i∗4 = (3, 5), i∗5 = (4, 1),

i∗6 = (5, 3) and m = 6. According to this design, the LHD-based blocks are presented by

the gray areas with b = 4 and |Bn(i)| = 6. The red dots are the resulting LHD-based block

subsamples with size N = 36.

Based on this procedure, the complexity is O(n3/m3(d−1)) for each subsample, which is

computationally cheaper than O(n3) using the complete data especially for large d. Note

that, we assume data points are equally distributed over blocks in order to simplify the

notation in the proof and the results still hold as long as the number of observations in

each block is in the same order, i.e. |Bn(i∗i )| = O(n/md). For example, if the original data

is collected by an orthogonal array-based Latin hypercube design (Tang 1993), which is

common in computer experiments, the proposed procedure can be successfully implemented.

In practice, based on our empirical experience, as long as each bootstrap subsample contains

a small amount of empty blocks, we can still have an efficient representation of the original

data. Empty blocks often occur when the original design has only few levels for some

particular variables, such as qualitative variables. This issue can be addressed by modifying

the LHDs by space-filling designs for quantitative and qualitative factors (Qian and Wu 2009,

Deng et al. 2015) and as a result, empty blocks can be avoided. Given the total sample
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size n, we have 1 ≤ m ≤ n
1

d−1 . This is because each bootstrap subsample has their size

N in the order of O(n/md−1). If N = n/md−1, then we have m ≤ n
1

d−1 to ensure N ≥ 1.

Clearly, m = 1 provides no computational reduction because the full data is utilized. As m

increases, the subsample size N decreases and therefore a larger K is affordable given the

same computational constraints.

It is also worth noting that, instead of selecting subsamples based on all the variables,

this procedure can be modified to be based on a subset of variables. To do this, we can

first select a subset of variables with dimension d̃, where d̃ < d. This subset can be chosen

randomly or according to some prior knowledge, such as some variables are of particular

interest or the design of the variables spreads out more uniformly. Next, replace LHD(m, d)

in step 2 by LHD(m, d̃) and select the subsamples only according to the d̃ variables. This

is practically useful when d is large (e.g., the data center example, Section 6, we have d = 9)

because the size of each subsample, n/md−1, can be relatively small and it creases to n/md̃−1

by applying to a subset variables. Moreover, the proposed framework is constructed based

on rectangular or hypercubic regions which is common in many applications. It can be easily

extended to regions with irregular shape by replacing the LHD in step 2 by other space filling

designs constructed for nonrectangular regions, such as Draguljić et al. (2012) and Hung et

al. (2012).

4 Theoretical properties

To understand the asymptotic properties of the subagging estimators, there are two dis-

tinct frameworks: increasing domain (Cressie 1993, Mardia and Marshall 1984) asymptotics,

where more and more data are collected in increasing domains while the sampling density

stays constant, and fixed-domain asymptotics (Stein 1999, Liang et al. 2013), where data

are collected by sampling more and more densely in a fixed domain. The results in this

research focus on the increasing domain asymptotics. For some applications, such as some

examples in computer experiments, studies under fixed-domain asymptotics are more ap-

propriate. However, not surprisingly, the results under fixed-domain asymptotics are more

difficult to derive in general and rely on stronger assumptions as discussed in the literature
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(Ying 1993, Zhang 2004). It is shown by Zhang and Zimmerman (2005) that, given quite

different behavior under the two frameworks in a general setting, their approximation quality

performs about equally well for the exponential correlation function under certain assump-

tions. Therefore, although results given here are based on increasing domain asymptotics,

they provide some insights about the subagging estimators in both frameworks. In ongoing

work, we are exploring the theoretical properties under fixed domain asymptotics. More

discussions are given in Section 7. Assumptions and the proofs are given in the Appendix

and Supplemental material.

In the following theorem, we show that the subagging estimator φ̂N converges to the

original PMLE φ̂n in probability. For any LHD-based block bootstrapped statistic T̂ ∗N , we

write T̂ ∗N → 0 if for any ε > 0 and any δ > 0, limn→∞ P{P ∗N,ω(|T̂ ∗N > ε| > δ)} = 0.

Theorem 1. Under the assumptions (A.1)- (A.6), if m = o(n−1/d) and m→∞, then

φ̂N − φ̂n → 0.

Next we study the distributional consistency of the subagging estimators. Assume

β0 = (βT10,β
T
20)T to be the true regression coefficients, where, without loss of generality, β10

is an s×1 vector of nonzero regression coefficients and β20 = 0 is a (p−s)×1 zero vector. Let

γ0 = (θ0, σ0) denote the vector of true covariance parameters, φ̂
∗
N = (β̂

∗
N,1, β̂

∗
N,2, γ̂

∗
N), φ̂N =

(β̂N,1, β̂N,2, γ̂N), and φ̂n = (β̂n,1, β̂n,2, γ̂n). When the OSE approach is applied, we denote

φ̂
∗
N,OSE = (β̂

∗
N,1,OSE, β̂

∗
N,2,OSE, γ̂

∗
N,OSE), φ̂N = (β̂N,1,OSE, β̂N,2,OSE, γ̂N,OSE), and φ̂n,OSE =

(β̂n,1,OSE, β̂n,2,OSE, γ̂n,OSE). Furthermore, we define an = maxj{p′λn(|βj|) : βj 6= 0} and bn =

maxj{p′′λn(|βj|) : βj 6= 0}. Also, let g(φ) = (p
′

λ(φ)) with g(β) = (p
′

λ(|β1|sgn(β1)), ..., p
′

λ(|βp|sgn(βp)))

and g(γ) = 0. Let G(φ) = diag(p
′′

λ(φ). Particularly G(β) = diag(p
′′

λ(|β1|), ..., p
′′

λ(|βp|)) and

G(β) = 0.

The next theorem shows that, given an efficient computational reduction, this framework

guarantees the asymptotic consistency of the subbagging estimators to the PMLE using the

complete data.

Theorem 2. Under assumptions (A.1)-(A.15), if m = o(n−1/d) and m→∞, then

(i) Sparsity: β̂N,2 = 0 with probability tending to 1.
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(ii) Asymptotic normality:

For the mean function coefficients, we have√
Kn/md−1(J(β10) + G(β10))(β̂N,1 − β̂n,1)→ N(0,J(β10)),

For the correlation parameters, we have√
Kn/md−1(γ̂N − γ̂n)→ N(0,J(γ0)−1).

In Theorem 3, it shows that when the OSE algorithm is applied, the resulting subagging

estimators are asymptotic consistency to the original OSEs using the complete data.

Theorem 3. Under assumptions (A.1)-(A.15), if m = o(n−1/d) and m→∞, then

(i) Sparsity: β̂N,2,OSE = 0 with probability tending to 1.

(ii) Asymptotic normality:

For the mean function coefficients, we have√
Kn/md−1(β̂N,1,OSE − β̂n,1,OSE)→ N(0,J(β10)−1),

For the correlation parameters, we have√
Kn/md−1(γ̂N,OSE − γ̂n,OSE)→ N(0,J(γ−1

0 )).

5 Numerical studies

In this section, two sets of simulations are conducted to study the finite-sample performance

of the proposed method. One is to demonstrate the performance of the subagging approach

compared with the original approach using all the data. The other is to illustrate the

advantages of the proposed experimental design-based subsampling scheme by comparing

with a naive simple random sampling. The performance is evaluated in two aspects: the

accuracy of variable selection and the parameter estimation, including the mean function

coefficients and the correlation parameters using one-step sparse estimation as described in

(4). The accuracy of variable selection is measured by two scores. One is the average number
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of the nonzero regression coefficients correctly identified in the repeated simulations, denoted

by AC, and the other is the average number of the zero regression coefficients misspecified,

denoted by AM. All the simulations are conducted by a 2.7GHz, 16G RAM workstation.

Hereafter, we omit the subscript OSE for notation convenience.

5.1 Subagging vs. the estimation using all data

Three sample sizes, n = 1000, n = 2000 and n = 3000, are considered and the data are

generated from a regular grid in a four-dimensional space, [0, 1]4. Note that the proposed

method is particularly useful for data collected from irregular grids. The reason to generate

the simulations from a regular grid in this simulation is that the original PMLE calculation

using full data can be further speed up by Kronecker product techniques and some matrix

singularity can be avoided (Rougier 2008). These techniques are only applicable to data

sets collected from a regular grid, therefore, a favorable comparison of the proposed method

would make an even stronger case for the proposed procedure.

Simulations are generated from a Gaussian process with the mean function coefficients

β = (1, 0.5, 0, 0). Choose the correlation function to be

ψ(x1,x2) = exp(−
4∑
i=1

θi|x1i − x2i|)

where θ1 = θ2 = θ3 = θ4 = 1 and σ = 0.1. For each choice of sample size, a total of 50

data sets are simulated. For each simulated data set, K=10, that is 10 LHD-based block

bootstrap samples are collected with m = 4. Due to the long computation time with the

complete data, the tuning parameter λ = 0.1 is fixed for all simulations.

In Table 1, the parameter estimation and the computing time are reported. Standard

deviations are given in parenthesis. The rows AC/2 and AM/2 represent the correct iden-

tification rate and the variable misspecification rate respectively. The results in Table 1

demonstrate that the estimated parameters using LHD-based subagging are consistent with

those obtained using complete data. The variable selection performance is also compatible

with the one using complete data. In terms of computing time, the proposed subagging

is much faster to compute compared with the conventional approach especially when the
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Table 1: Comparisons with all data

n = 1000 n = 2000 n = 3000

LHD AllData LHD AllData LHD AllData

θ1 1.91 (0.55) 1.14 (0.05) 1.38 (0.35) 1.02 (0.02) 1.10(0.10) 0.97(0.02)

θ2 1.94 (1.20) 1.08 (0.07) 1.16 (0.14) 1.00 (0.03) 1.17(0.08) 1.03(0.03)

θ3 1.70 (0.68) 1.03 (0.04) 1.14 (0.20) 0.92 (0.03) 1.15(0.07) 1.06(0.02)

θ4 1.77 (0.83) 1.04 (0.04) 1.37 (0.45) 1.02 (0.04) 1.10(0.03) 1.00(0.03)

β1 1.00(3.2× 10−3) 1.02(3.6× 10−3) 0.99(4.2× 10−3) 0.99(7.9× 10−3) 1.01(3.4× 10−3) 1.00(3.7× 10−3)

β2 0.46(1.7× 10−2) 0.43(3.6× 10−2) 0.51(3.3× 10−3) 0.50(6.1× 10−3) 0.49(5.5× 10−3) 0.50(3.7× 10−3)

AC/2 1 0.93 1 1 1 1

AM/2 0 0 0 0 0 0

time 243 464 990 2402 2524 8623

sample size of the complete data is large. For example when n = 3000, subagging provides

more than 70% saving in computational time.

5.2 LHD-based block subsampling vs. random subsampling

One important feature of the proposed subsampling scheme is to borrow the idea of space-

filling design to achieve an efficient data reduction. To demonstrate the advantage of this

subsampling scheme, we compare its performance, denoted by LHD, with two naive alter-

natives, simple random sampling denoted by SRS and random blocks sampling denoted by

RBS, with the same sample size. We first compare the performance of LHD with SRS in

two different settings of subsampling scheme: m = 4 and m = 6.

The data are generated from a six-dimensional space, [0, 1]6 with sample size n = 3600.

We consider the same type of correlation function as before with the mean function coef-

ficients set to be β = (1, 0.5, 0.3, 0, 0, 0), which indicates three non-zero coefficients with

different signal strength and three zero coefficients. Results are summarized based on 100

simulations and K=20, which means 20 LHD-based block bootstrap samples are collected

for each simulation. To focus on the capability of selecting active factors, the proposed sub-

sampling is performed on the first three variables and the resulting sample sizes for m = 4
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and m = 6 are approximate 225 and 100 respectively.

In Table 2, the estimated parameters, the correct identification rates and the variable

misspecification rates are reported. In terms of parameter estimation, LHD performs similar

to SRS in estimating the mean function coefficients. For estimating the correlation param-

eters, LHD outperforms SRS with a much smaller estimation variance, especially when the

subsample size becomes smaller (m = 6). In general, it appears that the proposed subsam-

pling based on LHDs provides an effective variance reduction in parameter estimation, which

is consistent with the theoretical justifications in experimental design literature (Mckay et

al. 1979, Stein 1987). In terms of variable selection, the correct identification rate for the

LHD-based subsampling is 21% higher than SRS when m = 4 and 13% higher when m = 6.

Both methods perform equally well with zero misspecification rate. To further assess the

variable selection accuracy, the frequencies of individual variables identified from 100 sim-

ulations are reported in the last three rows of the table, denoted by Fre(β1), Fre(β2) and

Fre(β3). The identification frequencies for β3 decrease as expected due to its weak signal.

But the proposed subsampling can still identify such a weak signal with at least 66% higher

frequency compared with simple random subsamples.

In the next simulation, the proposed sampling scheme is compared with RBS in which

blocks are selected randomly without the one-dimensional projection property. The data are

generated from a 4-dimensional space with n = 2000. We consider the same type of correla-

tion function as before with the mean function coefficients set to be β = (1, 0.5, 0.1, 0), which

indicates three non-zero coefficients with different signal strength and one zero coefficients.

Results are summarized in Table 3 based on 100 simulations and K = 20. The results of SRS

with the same subsample size are also listed for comparison. In general, LHD outperforms

the other two sampling and RBS performs slightly better than SRS. Comparing with RBS,

the proposed method has a lower misspecification rate, i.e., a higher frequency of identifying

the nonactive variable: 0.95 vs. 0.85. Moreover, LHD has less bias and a smaller variance

in parameter estimation. These two observations empirically demonstrates the advantage

of the one-dimensional balance property of LHD and consistent with the results derived by

McKay et al. (1979) and Stein (1987).
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Table 2: Comparisons with simple random subsampling

m = 4 m = 6

LHD SRS LHD SRS

θ1 1.91 (0.60) 1.89 (4.11) 2.63 (1.63) 2.61 (9.93)

θ2 2.24 (1.71) 1.90 (3.73) 2.64 (2.01) 2.95 (10.56)

θ3 1.96 (0.79) 1.99 (2.66) 2.49 (1.14) 3.18 (10.97)

θ4 1.93 (0.58) 1.92 (4.11) 2.69 (1.74) 2.90 (12.78)

θ5 1.78 (0.35) 1.72 (1.91) 2.58 (0.84) 2.50 (12.55)

θ6 1.89 (0.48) 1.94 (3.84) 2.74 (1.78) 1.80 (8.65)

β1 1.01(1.5× 10−3) 0.99(3.3× 10−3) 1.03(1.6× 10−3) 0.99(1.5× 10−3)

β2 0.52(3.2× 10−3) 0.52(2.9× 10−3) 0.53(4.4× 10−3) 0.55(6.7× 10−3)

β3 0.14(1.2× 10−2) 0.10(2.1× 10−2) 0.15(1.1× 10−2) 0.15(2.5× 10−2)

AC/3 0.98 0.81 1 0.87

AM/3 0 0 0 0

Fre(β1) 1 1 1 1

Fre(β2) 1 1 1 1

Fre(β3) 0.93 0.40 1 0.60

Table 3: Comparisons with simple random sampling of blocks

m=4 θ1 θ2 θ3 θ4

LHD 1.21(0.26) 1.29(0.38) 1.27(0.32) 1.34(0.17)

RBS 1.44(0.30) 1.50(0.34) 1.43(0.37) 1.50(0.33)

SRS 1.77(0.88) 1.59(0.38) 1.55(0.72) 1.53(1.34)

β1 β2 β3 AC/3 Freq(β4 = 0)

LHD 1.00(1.9× 10−6) 0.50(2.3× 10−6) 0.09(1.8× 10−6) 1.0 0.95

RBS 1.00(7.5× 10−6) 0.51(3.0× 10−6) 0.08(3.1× 10−6) 1.0 0.85

SRS 1.00(3.7× 10−6) 0.51(1.1× 10−6) 0.09(1.2× 10−6) 1.0 0.63
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6 Data center thermal management

A data center is a computing infrastructure facility that houses large amounts of information

technology equipment used to process, store, and transmit digital information. Data center

facilities constantly generate large amounts of heat to the room, which must be maintained at

an acceptable temperature for reliable operation of the equipment. A significant fraction of

the total power consumption in a data center is for heat removal; therefore, determining the

most efficient cooling mechanism has become a major challenge. Since the thermal process

in a data center is complex and depending on many factors, a crucial step is to model

the thermal distribution at different experimental settings and in the mean time identify

important factors that have significant impacts on the thermal distribution (Hung et al.

2012).

For a data center thermal study, physical experiments are not always feasible because

some settings are highly dangerous and expensive to perform. Therefore, simulations based

on computational fluid dynamics (CFD) are widely used. This type of simulations using

complex mathematical models is often called computer experiments (Santner et al. 2003,

Fang et al. 2006). In this example, CFD simulations are conducted at IBM T. J. Watson

Research Center based on a real data center layout. Detailed discussions about the CFD

simulations can be found in (Lopez and Hamann 2011). There are 27,000 temperature

outputs generated from the CFD simulator based on an irregular grid over an 9-dimensional

space. The nine variables are listed in Table 4, including four computer room air conditioning

(CRAC) units with different flow rates (x1, ..., x4), the overall room temperature setting (x5),

the perforated floor tiles with different percentage of open areas (x6), and spatial location

in the data center (x7 to x9).

Gaussian process models are widely used for the analysis of computer experiments because

it provides a flexible interpolator for the deterministic simulation outputs (Santner et al.

2003). However, in this example, it is computationally prohibitive to build a GP model

based on the complete CFD data. So we implement the proposed LHD-based subagging

approach with m = 3 for the first seven variables.

The fitted GP model is reported in the last two columns of Table 4, where β̂ represents the
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estimated mean function coefficients and θ̂ represents the correlation parameters estimated

using exponential covariance function. From the fitted model, it appears that seven out of

the nine variables have significant effects to the mean function. The main effects plot based

on the fitted GP model is given in Figure 3. It also appears that the two variables, x5 and

x6, which are identified as nonactive have relatively small impacts on cooling. This result

provides an important information regarding the efficiency of different cooling methods,

because the variables are associated with two cooling mechanisms, a conventional cooling

approach and a chilled water based cooling system. Among the active variables, the height

(x9) has a relatively large positive effect, which agrees with the general understanding of

thermal dynamics that temperature increases significantly with height in a data center.

The results also indicate that, among the four CRAC units in different locations of a data

center, the first two CRAC units have significant effects on reducing the room temperature.

This reveals important information that can help engineer locating the CRAC units more

effectively and improve the efficiency of the cooling mechanism.

Variable β̂ θ̂

x1 CRAC unit 1 flow rate -7.5 5.3

x2 CRAC unit 2 flow rate -13.1 1.3

x3 CRAC unit 3 flow rate -2.7 0.3

x4 CRAC unit 4 flow rate -7.1 13.2

x5 Room temperature setting 0 0.9

x6 Tile open area percentage 0 0.6

x7 Location in x-axis -11.3 21.44

x8 Location in y-axis 2.1 9.5

x9 Height 17.8 0.8

Table 4: Analysis for the data center example
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Figure 3: Main effect plot

7 Discussion

We propose a new framework to tackle computational difficulties in estimation and variable

selection in GP models. This framework includes a subagging estimator and an efficient

subsampling scheme that borrows the strength of experimental designs, particularly Latin

hypercube designs in which the one-dimensional projection property is guaranted. The

subagging estimation is computationally cheaper, yet it can be shown that the subagging

estimators achieved the same efficiency as the original estimators using full data. Although

one major focus of this framework is on simultaneous variable selection and estimation, the

computational reduction introduced by the proposed framework remains effective for GP

modeling in general. For example, for the conventional GP modeling, the proposed approach

can be easily applied to alleviate the computational complexity and the theoretical results

hold with a straightforward modification. Application of the proposed method to a data

center thermal management study reveals important information for determining the most

efficient cooling mechanism.

Future work will be explored in the following directions. First, extensions of the proposed
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procedure to optimal designs with better space-filling properties are appealing. For example,

it is known that randomly generated LHDs can contain some structure. To further enhance

desirable space-filling properties, various modifications are proposed. Numerical comparisons

and theoretical developments of the generalization to different types of optimal space-filling

designs will be carefully studied. Second, an interesting and important issue of the LHD-

based block bootstrap is to determine the optimal block size. This topic has been discussed

for conventional block bootstrap methods (Nordman et al. 2007), however the solutions

therein are not directly applicable to GP models. We plan to study the optimal block

size for the propose procedure based on a new criterion defined for GP. Third, theoretical

development under fixed-domain asymptotics will be explored by extending the results of

Ying (1993) and Hung (2011), and subagging predictors will also be developed. As pointed

out by the referees, another interesting extension of the proposed work is to perform variable

selection not only in the mean function but also in the correlation function. We are currently

developing an extension to address this issue so that identification of linear effects in the

mean function and nonlinear effects in the covariance function can be both achievable.
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Appendix A: Assumptions

(A.1) n
mdCov{(ȳi − µ)2, (ȳj − µ)2} = O(1), i = (i1, . . . , id) 6= j = (j1, . . . , jd).

(A.2) |τ 2
n| = O(1).

(A.3) limn→∞ supθ λmax(En(θ)) = 0 when the block space b = l/m→∞.

(A.4) ∀ φ1, φ2 ∈ Θ, |qs(·,φ1)− qs(·,φ2)| ≤ Ls|φ1−φ2|a.s.P, where Ls is Lipschitz constant

and supn{n−1
∑n

s=1ELs} = O(1).

(A.5) Θ is compact.
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(A.6) The functions qs(ω,φ) and rn(ω,φ) are such that qs(·,φ) and rn(·,φ) are measurable

for all φ ∈ Θ, a compact subset of Rp. In addition, qs(ω, ·) : Θ −→ R and rn(ω, ·) :

Θ −→ R are continuous on Θ a.s.-P , s = 1, · · · , n.

(A.7) Qn(ω, ·) : Θ→ R is continuously differentiable of order 2 on Θ a.s. P .

(A.8) There exists a sequence Jn(φ) : Θ → Rp×p such that ∇2Qn(·,φ) − Jn(φ)
P−→ 0 as

n→∞ uniformly on Θ.

(A.9) Jn(φ0) is O(1) and uniformly non-singular, i.e. limn→∞ J
−1
n (φ0) = 0.

(A.10) Q∗N(λ, ω, ·) : Θ→ R are continuously differentiable of order 2 on Θ a.s. P . Also, func-

tion ∇2Qn(ω,φ) is such that ∇2Qn(·,φ) is measurable for all φ ∈ Θ and ∇2Qn(ω, ·) :

Θ→ R is continuous on Θ a.s.-P .

(A.11) ∀ φ1, φ2 ∈ Θ,|∇2Qn(·,φ1)−∇2Qn(·,φ2)| ≤ Ms|φ1 − φ2|a.s.P, where Ms is Lipschitz

constant and supn{n−1
∑n

s=1EMs} = O(1).

(A.12) an = O(n−
1
2 ) and bn → 0 as n→∞

(A.13) There exit positive constants c1 and c2 such that when β1, β2 > c1λn, |p′′λn(β1) −

p′′λn(β2)| ≤ c2|β1 − β2|.

(A.14) λn → 0, n
1
2λn →∞ as n→∞.

(A.15) lim infn→∞ lim infβ→0+ λ
−1
n p′λn(β) > 0.

Assumption (A.3) controls the correlation between bootstrapped blocks. (A.4) and (A.5)

are required in order to achieve uniform convergency of the bootstrapped likelihood func-

tion. (A.6) ensures the existence of the estimators. (A.7)-(A.9) are regularity conditions

for standard MLE consistency in GP models, which is analogue to the conditions in Mardia

and Marshall (1984). (A.10) ensures the existence of covariance matrix. (A.11) is the global

Lipschitz condition for ∇2Qn(ω, ·) which guarantees the convergence of the covariance ma-

trix calculated based on the LHD-based block bootstrap. (A.12)-(A.15) are mild regularity

conditions regarding the penalty function.
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Appendix B: Consistency of the LHD-based block bootstrap mean

Before studying the asymptotic performance of MLEs, we first focus on understanding

properties of the LHD-based block bootstrap mean, which is an important foundation to the

theoretical development of φ̂
∗
N later.

The LHD-based block bootstrap can be formulated mathematically as follows. Given

the underlying probability space (Ω,F , P ) of a Gaussian process, a sample of size n with

settings x1(ω), ...,xn(ω) and responses y(x)’s are observed from a given realization ω ∈ Ω.

Let (Λ,G) be a measurable space on the realization. For each ω ∈ Ω, denote P ∗N,ω as

the probability measure induced by the m-run LHD-based block bootstrap on (Λ,G). The

proposed bootstrap is a method to generate new dataset on (Λ,G, P ∗N,ω) conditional on the

n original observations. Let τt : Λ → {1, ..., n} denote a random index generated by the

LHD-based block bootstrap. So, τt is the tth index in the intersect index of observations

and {Bn(i∗1), ...,Bn(i∗m)}, where (i∗1, ..., i
∗
m) is a randomly generated m-run LHD. Therefore,

for (λ, ω) ∈ Λ× Ω, we have the tth bootstrap sample: x∗t (λ, ω) ≡ xτt(λ)(ω).

Suppose {Y (xt), t ∈ R} follows a GP with mean µ. Given n observations, the sample

estimation of mean µ is

ȳn =
1

n

n∑
s=1

ys,

and the LHD-based block bootstrap mean with N samples is given by

ȳ∗N =
1

N

N∑
s=1

y∗s .

With a slight abuse of notation, we replace the notation of random variable Y by its realiza-

tion y unless otherwise specified. The following theorem shows the asymptotic consistency

of the LHD-based block bootstrap mean.

Theorem 4. Under (A.1)-(A.2), if m→∞ and m = o(n1/d), then

sup
x
|P ∗N,ω(

√
n/md−1(ȳ∗N − ȳn)/τn ≤ x)− P (

√
n(ȳn − µ)/τn ≤ x)| P−→ 0,

when n −→∞.
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The proof consists of several Lemmas that culminate in the final proof. To save space, the

proof for the Lemmas are given in the supplemental material. Note that E(·) and Cov(·, ·)

denote the expectation and variance under P while E∗N,ω(·) and Cov∗N,ω(·, ·) denote the

expectation and variance under P ∗N,ω.

Lemma 1. LHD-based block bootstrap mean is unbiased, i.e.,

E∗N,ω(ȳ∗N) = ȳn.

Lemma 2. Let ȳi = 1
Bn(i)

∑
xs∈Bn(i) ys, ∀i = (i1, . . . , id). Assuming (A.1), (A.2) and m =

o(n1/d), we have
n

m2d

∑
i1,...,id

(ȳi1,...,id − µ)2 − τ 2
n

P−→ 0,

where τ 2
n = 1

n

∑n
s,t=1Cov(Ys(xs), Yt(xt)).

Lemma 3. Assume (A.1)- (A.2), then

nτ ∗N
2/md−1 − τ 2

n
P−→ 0,

where τ ∗N
2 = Cov∗N,ω(ȳ∗N , ȳ

∗
N).

Proof of Theorem 4: It suffices to show that (1)E∗N,ω(ȳ∗N) = ȳn; (2) nτ ∗N
2/md−1−τ 2

n
P−→ 0;

and (3) supx |P ∗N,ω((ȳ∗N − E∗N,ω(ȳ∗N))/τ ∗N ≤ x) − Φ(x)| P−→ 0, where Φ(· ) denotes standard

normal distribution function and τ ∗N
2 = Cov∗N,ω(ȳ∗N , ȳ

∗
N).

Lemmas 1 and 3 imply the results in (1) and (2). Note that ȳ∗N = 1
m

∑m
j=1 ȳi∗j and

(ȳi∗1 , . . . , ȳi∗m) follows Latin Hypercube sampling distribution. According to Loh (1996), we

have the Berry-Essen type of bound for Latin Hypercube sampling

sup
x
|P ∗N,ω((ȳ∗N − ȳn)/τ ∗N ≤ x)− Φ(x)| ≤ c∗m−1/2,

where c∗ is a constant that depends only on d, given E∗N,ω‖ȳi∗1‖
3 < ∞. So we only need

to show that E∗N,ω‖ȳi∗1‖
3 is bounded uniformly in probability under P . Since E∗N,ω‖ȳi1‖3 =

1
md

∑
i ȳ

3
i and according to Minkowski’s inequality, it follows that

1

md

∑
i

E{ȳ3
i} ≤

1

md

∑
i

1

|Bn(i)|3
{
∑

xs∈Bn(i)

E(ys)}3 <∞.

2
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Appendix C: Proof of Theorem 1

To investigate the asymptotic properties of the estimators from LHD-based block boot-

strap, we decompose the likelihood function into blocks. For each block, denote yi =

(ys(xs),xs ∈ Bn(i)), Xi = (xs,xs ∈ Bn(i))T , Ri,j(θ)=
[
ψ(y(xs), y(xt);θ), xs ∈ Bn(i),xt ∈

Bn(j)
]

and zi = R
−1/2
i,i (θ)(yi −Xiβ). Then, we can rewrite the penalized log-likelihood

function n−1`(Xn,yn,φ) as

Qn(Xn,yn,φ) = −(2nσ2)−1
∑n

s=1 z
2
s − (2n)−1

∑n
s=1 log(λs)

−(2n)−1
∑n

s=1 log(σ2) + n−1rn(Xn,yn,φ)

−
∑p

s=1 pλ(|βs|)

= n−1
∑n

s=1 qs(ω,φ) + n−1rn(ω,φ)−
∑p

s=1 pλ(|βs|)

(5)

where {λs, s = 1, . . . , n} = {eigenvalues of |Ri,i(θ)|, i = (i1, . . . , id)} with (i1, . . . , id) in

lexicographical order and eigenvalues from the largest to the smallest. Note that rn(ω,φ) =

`(Xn,yn,φ)−
∑n

s=1 qs(zs,φ) contains all terms involving the off block-diagonal terms. Define

Dn(θ) = diag(Ri,i(θ)) and En(θ) = Rn(θ) −Dn(θ). Assuming that En(θ) = Un(θ)UT
n (θ),

we have

rn(ω,φ) =
1

2σ2(1 + g)
(yn −Xnβ)TD−1

n (θ)En(θ)D−1
n (θ)(yn −Xnβ)

+
1

2
log |In + UT

n (θ)D−1
n (θ)Un(θ)|,

where g = trace(En(θ)D−1
n (θ)).

The maximum likelihood estimator is obtained by φ̂n = arg maxφQn(Xn,yn,φ). Ana-

logue to the decomposition for Qn(Xn,yn,φ), the log-likelihood function for LHD-based

block bootstrap samples can be written as

Q∗N(X∗N ,y
∗
N ,φ) = N−1

N∑
s=1

q∗s(·, ω,φ) +N−1r∗N(·, ω,φ)−
p∑
s=1

pλ(|βs|) (6)

where r∗N(·, ω,φ) contains all terms involving the off block-diagonal terms with bootstrapped

samples. Specifically,

r∗N(·, ω,φ) =
1

2σ2(1 + g∗)
(y∗N −X∗Nβ)TD∗N

−1(θ)E∗N(θ)D∗N
−1(θ)(y∗N −X∗Nβ)

+
1

2
log |IN + U∗N

T (θ)D∗N
−1(θ)U∗N(θ)|,
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where D∗N(θ) = diag(Ri∗j ,i∗j (θ), j = 1, . . . ,m) and E∗N(θ) = R∗N(θ) − D∗N(θ) with E∗N(θ) =

U∗N(θ)U∗N
T (θ); g∗ = trace(E∗N(θ)D∗N

−1(θ)). The bootstrapped version of φ̂n is φ̂
∗
N =

arg maxφQ
∗
N(X∗N ,y

∗
N ,φ). Theoretical properties of the LHD-based block bootstrap like-

lihood function (6) are established in the following two lemmas, which leads to a proof of

convergence properties of the bootstrap estimator φ̂
∗
N . Lemma 4 below first established the

pointwise weak law of large numbers for the LHD-based block bootstrap likelihood functions.

Lemma 4. Under (A.1)-(A.3), for each φ ∈ Θ,

lim
n→∞

P

[
P ∗N,ω

(
|N−1

N∑
s=1

q∗s(·, ω,φ) +N−1r∗N(·, ω,φ)− n−1

n∑
s=1

qs(ω,φ)− n−1rn(ω,φ)| > δ
)
> ξ

]
= 0.

The next lemma further extends Lemma 4 to the uniform weak law of large numbers for

the LHD-based block bootstrap likelihood functions.

Lemma 5. (Uniform Weak Law of Large Numbers) Under (A.1)-(A.5), ∀ δ, ξ > 0,

lim
n→∞

P

[
P ∗N,ω(sup

φ∈Θ
|N−1

N∑
s=1

q∗s(·, ω,φ) +N−1r∗N (·, ω,φ)

−n−1
n∑
s=1

qs(ω,φ)− n−1rn(ω,φ)| > δ) > ξ

]
= 0.

Proof of Theorem 1: Based on Lemma 5, we have

lim
n→∞

P [P ∗N,w(sup
φ∈Θ
|Qn −Q∗N | > δ) > ξ] = 0,

where Qn and Q∗N are given in (5) and (6). With the full preparation of the likelihood con-

vergence developed in Lemmas 4 and 5, the convergence of bootstrap parameter estimation

follows immediately given the existence of φ̂n and φ̂
∗
N .

Denote q̄∗N(·, ω,φ) = N−1
∑N

i=1 q
∗
i (·, ω,φ) and q̄n(ω,φ) = n−1

∑n
i=1 qi(ω,φ). By (A.6),

q∗s(·, ω, ·) : Λ × Θ → R and r∗N(·, ω, ·) : Λ × Θ → R are measurable-G for each φ ∈ Θ. In

addition, q∗s(λ, ω, ·) and r∗N(λ, ω, ·) are continuous on Θ for all λ. Thus, we have φ̂
∗
N(·, ω)

exists as a measurable-G function by Jennrich (1969).

Following the procedure in Goncalves and White (2004), for any subsequence {n′}, given

that φ̂n′ is identifiable and unique, there exists a further subsequence {n′′} such that φ̂n′′ is

identifiably unique with respect to {Qn′′} for all ω ∈ F in some F ∈ F with P (F ) = 1. By
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condition (A.6), there exists G ∈ F with P (G) = 1 such that for all ω ∈ G, {Q∗N ′′(·, ω,φ)}

(N ′′ is corresponding bootstrapped sample size of n′′) is a sequence of random function on

(Λ,G, P ∗N,ω) continuous on Θ for all λ ∈ Λ. Hence, by White (1996), for fixed ω ∈ G, there

exists φ̂
∗
N ′′(·, ω) : Λ → Θ measurable-G and φ̂

∗
N ′′(·, ω) = arg maxφQ

∗
N ′′(·, ω,φ). By the

uniform weak law of large numbers for Q∗N(X∗N ,y
∗
N ,φ) obtained from Lemma 5, we have

Q∗N ′′(·, ω,φ)−Qn′′(ω,φ)→ 0 as n′′ →∞ prob−P ∗N,ω prob−P uniformly on Θ, where we write

Q̂∗N → 0 prob−P ∗N,ω, prob−P if, for any ε > 0 and δ > 0, limn→∞ P{P ∗N,ω(|Q̂∗N > ε| > δ)} = 0

and omit prob−P ∗N,ω, prob−P in the text for notation simplicity. Hence, there exists a further

subsequence {n′′′} such that Q∗N ′′′(·, ω,φ)−Qn′′′(ω,φ)→ 0 as n′′ →∞ prob−P ∗N,ω prob−P

for all ω in some H ∈ F with P (H) = 1. Choose ω ∈ F ∩G∩H, by White (1996), we have

φ̂
∗
N ′′′ − φ̂n′′′ → 0 as n′′′ →∞ prob− P ∗N,ω prob− P . Since this is true for any subsequence

{n′}, we have P (F ∩ G ∩ H) = 1. Thus, φ̂
∗
N − φ̂n → 0 prob − P ∗N,ω, prob − P . Then

φ̂N = 1
K

∑K
i=1 φ̂

∗
N(i)− φ̂n → 0 prob− P ∗N,ω, prob− P . 2

Appendix D: Proof of Theorem 2

Proof. DefineB = V ar{n−1/2
∑n

s=1∇qs(·, ω,φ0)}. We first show that
√
n/md−1B−1/2∇Q∗N(·, ω, φ̂n)→

N(0, I). Denote h̄∗N(φ) = N−1
∑N

s=1∇q∗s(z∗s ,φ) and h̄n(φ) = n−1
∑n

s=1∇qs(zs,φ). We have

√
n/md−1[h̄∗N(φ̂n)− h̄n(φ̂n)] = +

√
n/md−1[h̄∗N(φ̂n)− h̄∗N(φ0)] +

√
n/md−1[h̄∗N(φ0)− h̄n(φ0)]

+
√
n/md−1[h̄n(φ0)− h̄n(φ̂n)

= J1 + J2 + J3.

Since h̄n and h̄∗N are functions whose secondary derivative are continuous, J1 + J3 → 0 as

φ̂n − φ0 → 0 by Theorem 3.1 in Chu (2011). Moreover, the two terms in J2 are both

evaluated at φ0 which is a fixed value, then by Theorem 4, we have B−1/2J2 → N(0, I).

By condition (A.10) and follow a similar proof as Lemma 5, we have

∇2Q∗N(·, ω,φ)−∇2Qn(ω,φ)→ 0 prob− P ∗N,ω, prob− P.

Let Ĥn(ω) = ∇2Qn(ω, φ̂n). According to White (1996), given the result φ̂
∗
N − φ̂n → 0
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prob− P ∗N,ω, prob− P and assumption (A.8), we have

√
N(φ̂

∗
N − φ̂n) = −Ĥ−1

n (ω)
√
N∇Q∗N(·, ω, φ̂n) + oP ∗N,ω

(1)

= −Hn(φ0)−1(ω)
√
N∇Q∗N(·ω, φ̂n) + oP ∗N,ω

(1).

Given the fact that√
n/md−1B−1/2∇Q∗N(·, ω, φ̂n)→ N(0, I) prob− P ∗N,ω, prob− P.

we have

B−1/2Hn(φ0)
√
N(φ̂

∗
N − φ̂n)→ N(0, I).

For β10, B and H can be written as J(β10) and J(β10) + G(β10). For β̂
∗
N,1, we have

√
N [J(β10) + G(β10)]{β̂

∗
N,1 − β̂n,1} → N(0, J(β10)).

For sub-bagging estimator β̂N,1 =
∑K

i=1 β̂
∗
N,1(i), we have

√
KN [J(β10) + G(β10)]{β̂N,1 − β̂n,1} → N(0, J(β10)),

then the result follows.

Appendix E: Proof of Theorem 3

Using the same technique before, we decompose the log-likelihood by blocks and rewrite

the likelihood of β based on the OSE approach as follows:

Qn(β) = n−1

n∑
s=1

qs(ω,β, θ̂
(0)

n , σ̂2
n

(0)
) + n−1rn(ω,β, θ̂

(0)

n σ̂2
n

(0)
)−

p∑
j=1

p′λ(|β̂
(0)
j |)|βj|.

The likelihood based on subsampled data can be written as:

Q∗N(β) = N−1

N∑
s=1

q∗s(ω,β, θ̂
∗(0)

N , σ̂2
N

∗(0)
) +N−1r∗N(ω,β, θ̂

∗(0)

N , σ̂2
N

∗(0)
)−

p∑
j=1

p′λ(β̂
∗(0)
j |)|βj|.

By the fact that φ̂
∗
N − φ̂n → 0 and the results in Lemma 2, Lemma 3 and Theorem 4

still hold, we have φ̂
∗
N,OSE − φ̂n,OSE → 0. Then follows the same technique in the proof of

Theorem 2, the result follows.
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Draguljić, D., Dean, A. M., and Santner, T. J. (2012). Noncollapsing space-filling designs

for bounded nonrectangular regions. Technometrics, 54, 169–178.

Efron, B. and Tibshirani, R. (1993). An introduction to the bootstrap, Chapman and

Hall/CRC press, New York.

Fan, J. and Li, R. (2001). Variable selection via nonconcave penalized likelihood and its

oracle properties, Journal of the American Statistical Association, 96:13481360.

Fang, K.-T., Li, R. and Sudjianto, A. (2006). Design and modeling for computer experi-

ments, Chapman and Hall/CRC press, New York.

28

Statistica Sinica: Newly accepted Paper 
(accepted version subject to English editing)



Fuentes, M. (2007). Approximate likelihood for large irregularly spaced spatial data. Jour-

nal of the American Statistical Association, 102, 321–331.

Furrer, R., Genton,M. G. and Nychka, D. (2006). Covariance tapering for interpolation of

large spatial datasets. Journal of Computational and Graphical Statistics, 15, 502–523.

Goncalves, S. and White, H. (2004). Maximum likelihood and the bootstrap for nonlinear

dynamic models. Journal of Econometrics, 119, 199–219.

Gramacy, R. B. and Apley, D. W. (2015). Local Gaussian process approximation for large

computer experiments. Journal of Computational and Graphical Statistics, 24, 561–

578.

Gramacy, R. B. and Lee, H. K. (2008). Bayesian treed Gaussian process models with an

application to computer modeling. Journal of the American Statistical Association,

103, 1119–1130.

Hoeting, J., Davis, R., Merton, A. and Thompson, S. (2006). Model Selection For Geosta-

tistical Models. Ecological Applications, 16:8798

Huang, H. and Chen, C. (2007). Optimal Geostatistical Model Selection. Journal of the

American Statistical Association, 102, 1009-1024.

Hung, Y., Qian, P. Z. G., and Wu, C. F. J. (2012). Statistical design and analysis methods

for data center thermal management. In Energy efficient thermal management of data

centers (J. Yogendra and K. Pramod eds.), Springer, New York.

Hung, Y. (2011). Penalized Blind Kriging in Computer Experiments. Statistica Sinica, 21,

1171-1190

Jennrich, R. I. (1969). Asymptotic properties of non-linear least squares estimators. The

Annals of Mathematical Statistics, 40, 633–643.

Joseph, V., Hung, Y. and Sudjianto, A. (2008), Blind Kriging: A New Method for Devel-

oping Metamodels. Journal of Mechanical Design, 130(3), 031102

29

Statistica Sinica: Newly accepted Paper 
(accepted version subject to English editing)



Kaufman, C. G., Schervish, M. J. and Nychka, D. W. (2008). Covariance tapering for

likelihood-based estimation in large spatial data sets. Journal of the American Statis-

tical Association, 103, 1545–1555.

Kaufman, C. G., Bingham, D., Habib, S., Heitmann, K. and Frieman, J. A (2011). Efficient

emulators of computer experiments using compactly supported correlation functions,

with an application to cosmology. The Annals of Applied Statistics, 5, 2470–2492.
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