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Abstract

Functional analysis of variance (ANOVA) modeling has been proved particularly
useful to investigate the dynamic changes of functional data according to certain cat-
egorical factors and their interactions. However, the current existing methods often
encounter difficulties when the functional data are high-dimensional, non-Gaussian,
and/or exhibit certain shape characteristics that vary with spatial locations. In this
paper, we investigate the functional two-way ANOVA models from a novel Bayesian
perspective. A class of highly flexible Gaussian Markov random fields (GMRF) are
taken as priors on the functions in the model, which allows us to model various types
of functional effects, such as (discrete or continuous) temporal effects and (point-level
or areal) spatial effects. The resulting posterior distributions are obtained by an effi-
cient computational tool based on integrated nested Laplace approximations (INLA)
(Rue et al., 2009). We then employ the excursion method introduced by Bolin and
Lindgren (2015) to build simultaneous credible intervals of functional effects and test
their significance from a Bayesian point of view. A simulation study and multiple real
data examples are presented to demonstrate the merits of our method.

Keywords: functional data; generalized ANOVA; Gaussian Markov random fields; inte-

grated nested Laplace approximations; simultaneous credible intervals; contour avoiding

functions.
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1 Introduction

Functional data analysis plays an important role in modern statistics. Being associated with

continuous time/space monitoring processes, functional data are usually a sample of curves

or surfaces and are often treated as realizations of underlying random functions. The basic

philosophy of functional data is to consider observed data functions as single entities, rather

than only as a sequence of individual observations. Functional data are becoming increasingly

common in a variety of scientific and medical areas. A considerable effort has been made

in statistical fields to adapt standard statistical methods to functional data. The general

ideas of functional data analysis were laid out by Ramsay and Dalzell (1991). Müller (2005)

developed some concepts for estimating functional principal component scores in the sparse

situation, and proposed an extension of the generalized functional linear models and func-

tional logistic discrimination for the classification of functional data. Functional modeling

methods have also become more and more popular in real applications. For instance, Wang

et al. (2009) applied a functional random-effects model to human brain electroencephalogram

(EEG) data. Comprehensive surveys of parametric and nonparametric techniques for ana-

lyzing functional data can be found in Ramsay and Silverman (2005) and Ferraty and Vieu

(2006). Bayesian approaches to functional data analysis have also drawn increasingly atten-

tions. Morris and Carroll (2006) proposed a Bayesian wavelet-based approach for functional

mixed models. Crainiceanu and Goldsmith (2010) presented functional linear regression and

functional principle component analysis using WinBUGS. Goldsmith et al. (2011) studied

functional regression via variational Bayes.

This paper focuses on the analysis of variance (ANOVA) models for functional data,

which have proven particularly useful when the functional data are expected to differ with

certain categorical factors (see e.g., Faraway, 1997; Brumback and Rice, 1998). Let us start

from a simple one-way functional ANOVA model, where there is only a single factor of

interest. We denote, yik(x), the kth functional observation in the ith group, then the model

can be expressed as

yik(x) = µ(x) + αi(x) + εik(x), x ∈ X ⊂ IRd, (1)

where µ(x) is the grand mean function, αi(x) is the ith group effect function, and εik(x)
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is the residual function with mean zero, for i = 1, . . . ,mA and k = 1, . . . , n. To be able

to identify them, we require the group effect functions to satisfy certain constraint, e.g.,

αmA(x) = 0 for all x. There are two main questions we need to address in functional

ANOVA: the first is “How do we estimate the functions in the model?” and the second is

“How do we test the functional effects of various factors, e.g., test H0 : α1(x) = · · · =

αmA(x) = 0 in model (1)?” To estimate the functions, Brumback and Rice (1998) used

the correspondence between penalized regression and mixed-effects models to extend the

smoothing spline model (Wahba, 1990) for individual curves. Ramsay and Silverman (2005)

suggested a penalized least squares approach with regularized basis expansions. The basis

functions that are commonly used are Fourier series or B-spline functions, which allow a

continuous control over smoothness while still permit as much high frequency detail in the

model as the functional data require. Regarding the hypothesis tests in functional ANOVA,

Faraway (1997) and Zhang and Chen (2007) proposed L2-norm-based test while Shen and

Faraway (2004) discussed F -type test. Cuevas et al. (2004) derived the random expression

of their test statistic for a L2-norm-based test, and used a parametric bootstrap method

to approximate the null distribution. Zhang and Liang (2014) proposed to globalize the

point-wise F -test suggested by Ramsay and Silverman (2005).

Compared to its frequentist peer, Bayesian functional ANOVA has been much less stud-

ied. Kaufman and Sain (2010) introduced a Gaussian process ANOVA modeling approach

under Bayesian framework, where Gaussian process distributions are assigned to each batch

of functional effects as priors, and Markov chain Monte Carlo (MCMC) algorithms are used

for posterior sampling. They emphasized graphical summaries based on the posterior distri-

bution of model-based analogues of traditional ANOVA decompositions of variance. In the

spirit of Kaufman and Sain, Kang and Cressie (2013) proposed a spatial ANOVA model,

where spatial priors are assigned for the functional effects, to analyze regional climate-change

projections. Both approaches, however, are only able to deal with Gaussian functional data,

and the MCMC algorithms are slow and not easy to be implemented for a different dataset.

In this work, we present a general and efficient Bayesian modeling approach to conducting

ANOVA for a variety of (both Gaussian and non-Gaussian) functional data. A class of highly

flexible Gaussian Markov random fields (GMRF) (see, e.g., Rue and Held, 2005) are assigned
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as priors for each batch of functional effects in the model. As shown in Section 6, the GMRF

priors allow for modeling various underlying functions, such as one-dimensional curves in the

example of diffusion tensor imaging (DTI), two-dimensional graphical regions in the example

of Apgar scores, and even the locations in a spherical coordinate system in the example of

global solar radiation. To the best of our knowledge, no functional ANOVA model has been

applied to analyze the functions of the spherical coordinates before.

In our approach, the resulting posterior distributions are obtained by an efficient compu-

tational tool based on integrated nested Laplace approximations (INLA) (Rue et al., 2009).

INLA provides accurate and fast approximations to the posterior marginals, and thus avoids

time-consuming MCMC sampling. INLA also allows for a broad range of distributions as-

sumed for the functional data. For instance, we use the beta distribution in the DTI example

and the binomial distribution in the Apgar score example. Actually, most distributions from

the exponential family can be specified. Our method is very flexible in the choice of likeli-

hoods as well as the distributions of functional effects.

To see whether or not the functional effects are statistically significant, we in tradition

conduct a hypothesis test with, e.g., H0 : α1(x) = · · · = αmA(x) = 0 for all x ∈ X , and

correct the family-wise error rate. Unfortunately, it is difficult to transfer the same concept to

a Bayesian hierarchical modeling framework. We therefore resort to simultaneous credible

intervals and contour avoiding sets derived from the posteriors for finding the significant

functional effects. When the functions of interest are the curves as in the DTI example,

it is intuitive to use the simultaneous intervals, and conclude that the functional effect is

significant if any part of its interval does not contain 0. When the functions are of higher

dimensions as in the other examples, it is preferable to find the contour avoiding set, in which

the function is nonzero with a high probability for all x ∈ X . Both approaches, however,

require integrating the joint posterior distribution of [α(x1), . . . , α(xn)] given n observations

of x. It is a tough job to do, considering the integration is usually of a very high dimension

due to the large sample size of a typical functional dataset, as demonstrated in all our

examples. Fortunately, every posterior approximation given by INLA can be viewed as a

mixture of normals, and therefore the excursion method introduced by Bolin et al. (2015) can

be used to efficiently estimate the simultaneous credible intervals and the contour avoiding
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sets.

Unlike the existing MCMC based methods, the proposed functional ANOVA modeling

approach can be implemented by general users without a hitch. It is easy to use INLA

under Linux, Windows or Macintosh environment via R interface (R Core Team, 2017). A R

package, INLA, can be downloaded from www.r-inla.org for free. The excursion method for

calculating the simultaneous credible intervals and the contour avoiding sets are implemented

using the excursions package, which is available at cran.r-project.org/web/packages/

excursions.

In the rest of the paper, we shall address our methodology by focusing on a general-

ized two-way functional ANOVA model, which is probably the most commonly-used one

in practice. The method is readily extended to the cases with more factors. The general-

ized modeling framework is introduced in Section 2. The prior distributions taken on the

functional effects are specified in Section 3. The posterior inference and the construction of

simultaneous credible intervals and contour avoiding sets are addressed in Section 4. Simu-

lation studies are presented in Section 5, and three real case studies are discussed in Section

6, followed by closing remarks in Section 7. All the analysis software programs and the data

sets used in this paper are available in the Supplementary Material, and we hope they will

help the general users adapt the programs to their own functional ANOVA models.

2 Generalized Two-way Functional ANOVA Models

The one-way ANOVA model (1) can be easily extended to accommodate additional categor-

ical variables. Let us consider a two-way functional ANOVA model here. Assume that we

have a two-by-two factorial design: each level of the factor A (with mA levels) is crossed with

each level of the factor B (with mB levels). Let {yijk(x),x ∈ X ⊂ IRd} be a functional re-

sponse at ith level of A and jth level of B from kth subject, for i = 1, . . . ,mA, j = 1, . . . ,mB

and k = 1, . . . , nij. We assume that yijk(x) has a distribution from the exponential family

with the following density function

π(yijk(x)) = exp

[
yijk(x)θijk(x)− b(θijk(x))

a(ψijk(x))
+ c(yijk(x), ψijk(x))

]
,

where θijk(x) and ψijk(x) are canonical function and dispersion function, respectively. The
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mean and variance are given by µijk(x) = E(yijk(x)) = b′(θijk(x)) and Var(yijk(x)) =

b′′(θijk(x))a(ψijk(x)), where b′(θ) and b′′(θ) are the first two derivatives of b(θ) with respect

to θ. We further denote the grand mean function by µ, the main effect of A at ith level by

αi, the main effect of B at jth level by βj, and their interaction effect by γij. Then, the

mean response function µijk(x) is partitioned into

g(µijk(x)) = µ(x) + αi(x) + βj(x) + γij(x), (2)

where g is the link function used to associate the mean response with the two-way ANOVA

model. For identifiability, we choose to restrict the batches of functions αi, βj and γij as

follows

αmA(x) = 0, βmB(x) = 0, γmAj(x) = 0, γimB(x) = 0, (3)

for x ∈ X . The constraints in (3) make µ become the (transformed) mean response function

at mAth level of A and mBth level of B, and the main effect and interaction functions

represent the deviations of other levels from this ‘baseline’ level.

We here explicitly write out two generalized functional ANOVA models and take them

as example. Suppose the functions are observed at locations x1, . . . ,xn. We then adopt

the following notations: yijk = (yijk(x1), . . . , yijk(xn))′, µ = (µ(x1), . . . , µ(xn))′, αi =

(αi(x1), . . . , αi(xn))′, βj = (βj(x1), . . . , βj(xn))′ and γij = (γij(x1), . . . , γij(xn))′. When

each observation is assumed to follow a normal distribution, the two-way functional ANOVA

model is given by

yijk | µij,θε ∼ N (µij,Σθε) , µij = µ+αi + βj + γij, (4)

where yijk follows a multivariate normal distribution with mean vector µij and covariance

matrix Σθε that depends on a set of parameters θε. The link function in (2) is the identity

link in this Gaussian case. When each observation is binary and assumed to follow a Bernoulli

distribution, the functional ANOVA model can be written as

yijk(x`) | µij(x`) ∼ Bin(1, µij(x`)),

logit(µij(x`)) = µ(x`) + αi(x`) + βj(x`) + γij(x`), (5)
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for ` = 1, . . . , n, where Bin(n, µ) denotes the binomial distribution with n trials and mean

µ, and logit(µ) = log(µ/(1−µ)) is the link function used in this case. Note that both models

are subject to the linear constraints in (3).

In practice, there are at least three challenges to fit the generalized functional ANOVA

models, such as models (4) and (5), under Bayesian framework. First, we need to appro-

priately model functional effects, which means the priors taken on them should be able to

impose sufficient smoothness to remove noise while being flexible enough to work for a vari-

ety of X domains. The second challenge is computational. The functional data are often big

and there are many functions to estimate in the functional ANOVA models. For example,

in model (4) the sample size is nmAmB if it is a balanced design, and we need to estimate

totally (mA + mB + mAmB) functions. Those numbers can grow fast as we consider more

factors. Moreover, the computational issue becomes a lot worse when the functional response

is non-Gaussian as in model (5). The third challenge comes from making simultaneous in-

ference on the functional effects. It is often desirable to simultaneously test the functional

effects to see if they are significant or not. Such tests are difficult to be conducted from both

frequentist and Bayesian perspectives. In this work we attempt to address those challenges

by using a novel Bayesian modeling approach as described below.

3 Priors on Functional Effects

To make Bayesian inference on model (4), we need to specify prior distributions for the

functional effects µ, αi, βj and γij, and their hyperparameters. We assume each batch

of functions to be independent of the other batches and assign each batch its own set of

hyperparameters. The priors we choose for the functions are GMRFs, a class of flexible

Gaussian processes that have been extensively used in a variety of applications (e.g., Rue

and Held, 2005; Yue and Wang, 2014).

A GMRF is a Gaussian random vector f = (f1, . . . , fn)′ with Markov property: for some

i 6= j, fi and fj are independent conditional on other variables f−ij. It is defined over a set

of discrete indexed locations connected by a graph labelled by G. We say f is a GMRF with
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respect to G if its density function has the following form

π(f) ∝ |Qθ|1/2+ exp
(
− 1

2
f ′Qθf

)
, (6)

where Qθ is the precision matrix that depends on a set of parameters θ, and |Qθ|+ is the

product of non-zero eigenvalues of Qθ. The Markov property in f is conveniently encoded

in matrix Qθ: Qθ[i, j] = 0 if and only if fi and fj are conditionally independent. In most

cases only O(n) of the n2 entries of Qθ are not zeroes, making Qθ a highly sparse matrix.

This allows for a fast Cholesky decomposition of Qθ as LL′, where L is a lower triangular

matrix inheriting sparseness from Qθ. Therefore, only non-zero terms in L are computed

and the nodes can be reordered to decrease the number of the non-zero terms. The typical

cost of this decomposition is O(n) for one dimension, O(n3/2) for two dimensions and O(n2)

for three dimensions. Using the Cholesky triangle, it is easy to produce random samples

from a GMRF, and compute log-density of (6) and marginal variances. See Rue and Held

(2005) for more technical details. In the following sections, we briefly describe a few GMRF

models that are used to analyze the real functional datasets in this paper.

3.1 Random walk models

To estimate one-dimensional effect functions, we use so-called second-order random walk

(RW2) model. It is constructed by the following independent Gaussian increments:

fi − 2fi+1 + fi+2 ∼ N(0, τ−1),

where τ is the precision (inverse of variance) parameter. The resulting density of f can be

shown to have form (6) with Qθ = τR, where R is the sparse structure matrix reflecting the

Markov property of the model. Note that R has a rank of n− 2, so the RW2 model has an

improper Gaussian density. It can also be viewed as a discretized version of cubic smoothing

splines (e.g., Yue et al., 2012).

The RW2 model can be extended to estimating two-dimensional functions by defining G

on a regular lattice. The full conditional distributions for the nodes in the interior of the

lattice are Gaussian with mean and precision given by

E(fij | f−ij) =
1

20

(
8
◦ ◦ ◦ ◦ ◦
◦ ◦ • ◦ ◦
◦ • ◦ • ◦
◦ ◦ • ◦ ◦
◦ ◦ ◦ ◦ ◦

− 2
◦ ◦ ◦ ◦ ◦
◦ • ◦ • ◦
◦ ◦ ◦ ◦ ◦
◦ • ◦ • ◦
◦ ◦ ◦ ◦ ◦

− 1
◦ ◦ • ◦ ◦
◦ ◦ ◦ ◦ ◦
• ◦ ◦ ◦ •
◦ ◦ ◦ ◦ ◦
◦ ◦ • ◦ ◦

)
,

Prec (fij | f−ij) = 20τ, (7)
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where the locations denoted by ‘•’ represent the neighbors that fij depends on, and the

number in front of each grid denotes the weight given to the corresponding ‘•’ locations.

Note that we need to apply necessary boundary corrections to (7) to fix rank deficiency issue

(see Rue and Held, 2005, Sec. 3.4.2). It can be proved that this two-dimensional random

walk (RW2D) model has density of form (6) and its Qθ has a rank of n − 3. Yue and

Speckman (2010) showed that the RW2D model is closely related to the thin-plate spline

model (e.g., Wahba, 1990).

An important type of spatial data are so-called areal data, which are assumed to be the

realizations from a function of geographic regions (e.g., the states of the United States) with

adjacency information. For the areal data we often define region i and j are neighbors if they

share a common border, and consider their Gaussian increments fi − fj ∼ N (0, (wijτ)−1),

where wij are positive and symmetric weights. We can let wij = 1 if region i depends on

its neighbors equally. Otherwise, let wij be, for instance, the inverse Euclidean distance

between region centroids. The resulting full conditional distribution of fi is

fi | f−i, τ ∼ N

(∑
j∼iwijfj

wi+
,

1

τwi+

)
, (8)

where i ∼ j denotes the set of all unordered pairs of neighbors, and wi+ =
∑

j:j∼iwij is the

summation over neighbors of region i. We can prove that the density of f has form (6) with

Qθ[i, j] = τ


wi+ if i = j,

−wij if i ∼ j,

0 otherwise.

Since the sum of each row is zero, Qθ has rank of n− 1. We here term (8) as Besag model

because it is closely related to the intrinsic autoregressive model introduced by Besag and

Kooperberg (1995).

3.2 SPDE models

The random walk models are discrete indexed in nature and thus work best for the data on

regularly-spaced locations. For the observations measured at irregularly-spaced locations, a

good candidate is the class of Matérn Gaussian fields, which have been extensively used in
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spatial statistics due to its flexible covariance function between locations u,v ∈ IR2

Cov(u,v) =
σ2

2ν−1Γ(ν)
(κ‖u− v‖)νKν(κ‖u− v‖),

where Kν(·) is the modified Bessel function of the second kind with order ν > 0, Γ(·) is the

Gamma function, ν is the smoothness, κ > 0 is the spatial scale, and σ2 > 0 is the variance.

While a Matérn field is not computationally feasible for large data sets because its co-

variance matrix is completely dense and therefore difficult to invert, Lindgren et al. (2011)

derived an explicit GMRF representation for Matérn Gaussian fields by solving the stochastic

partial differential equation (SPDE) given by

(
κ2 −∆

)α/2
[τf(x)] =W(x), (9)

where ∆ =
∑d

i=1 ∂
2/∂x2i is the d-dimensional Laplacian operator, κ > 0 is the spatial scale,

α > 0 controls the smoothness of the realizations, τ > 0 controls the variance, and W is

the spatial Gaussian white noise. The link to the Matérn smoothness ν and variance σ2

is ν = α − d/2 and σ2 = Γ(ν)(Γ(α)(4π)d/2κ2ντ 2)−1. A measure of the spatial range can

be empirically derived as
√

8ν/κ. Spectral theory shows that an integer α must be chosen

to obtain a Markov field. We thus let α = 2, resulting in ν = 1 for the smoothness of

a two-dimensional field. Lindgren et al. solve (9) using finite element method: they first

approximate f(x) with piecewise linear basis expansion defined on a triangular mesh, and

then turn (9) into a system of linear equations to derive a GMRF solution with density

of form (6) based on equality in distribution criterion. Given a triangulation the resulting

SPDE model is the best piecewise linear approximation to the continuous solution to (9)

(Lindgren et al., 2011).

The SPDE models are ideal for functional ANOVA when the data can be taken as the

realizations of a spatial function. They provide fast computation and accurate estimation for

a variety of spatial functions, whose locations can be either regularly spaced or irregularly

spaced, and domains are in one-dimensional, two-dimensional, or even three-dimensional

spherical spaces. They are also equipped with the flexibility of being extended for the

functions that are non-stationary (Yue et al., 2014; Bolin and Lindgren, 2011), multivariate

(Hu et al., 2013) and spatial-temporal (Cameletti et al., 2013).
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3.3 Hyperpriors

For the random walk models there is only one hyperparameter τ , which is the precision pa-

rameter of the Gaussian increments used to build the models. The prior on τ is often selected

in an ad-hoc and subjective manner, i.e., a diffuse gamma prior, and the same hyperprior

is often taken for different random walk models assigned for different effect functions in one

functional ANOVA model. This is a rather important and delicate issue because the value

of τ controls the smoothness of the effect function and a fixed hyperprior on τ does not have

the same interpretation for different effect functions. Sørbye and Rue (2014) proposed to

scale the models in a way that the τs in different models have a similar interpretation, mak-

ing it more reasonable to take the same prior on τ across those models. More specifically,

they consider marginal variances of f given by the diagonal entries of the generalized inverse

matrix Q− = τ−1R−, denoted by σ2(fi)/τ for i = 1, . . . , n. To characterize the level of the

marginal variances, the generalized variance of f is defined to be the geometric mean

σ2
GV (f) = exp

(
1

n

n∑
i=1

log
(
σ2(fi)

))
.

Then, the random walk models are scaled such that σ2
GV (f) = 1, which implies that the

precision parameters of different models have similar interpretation. The hyperpriors for

scaled models will also be invariant to the shape and size of the graph for a specific model

and to different scalings of covariates (Sørbye and Rue, 2014).

For SPDE models, there are two hyperparameters κ (spatial scale) and τ (precision).

Since both parameters influence the marginal variances of the resulting field, it is more

reasonable to model the parameters using the standard deviation σ and range ρ. Specifically,

we let log δ = log δ0 + θ1 and log ρ = log ρ0 + θ2, where δ0 and ρ0 are baseline standard

deviation and range values. Based on the explicit mapping between (τ, κ) and (σ, ρ), we

may have the parameterization log τ = log τ0 − θ1 + νθ2 and log κ = log κ0 − θ2, where

log κ0 = log(8ν)/2− log ρ0

log τ0 =
1

2
log

(
Γ(ν)

Γ(α)(4π)d/2

)
− log σ0 − ν log κ0,

and θ1 and θ2 are assigned a joint normal prior distribution. The hyperparameters are chosen

heuristically to suit the specific situation. See Lindgren and Rue (2015) for more details.
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4 Posterior Inference

Let’s continue to take model (4) for example. The joint posterior distribution of this gener-

alized two-way functional ANOVA model is given by

π(µ,αi,βj,γij,θ | y) ∝
∏
ijk

π(yijk | µ,αi,βj,γij,θε)

π(µ | θµ)
∏
i

π(αi | θα)
∏
j

π(βj | θβ)
∏
ij

π(γij | θγ)

π(θε)π(θµ)π(θα)π(θβ)π(θγ), (10)

subject to the linear constraints defined in (3). Here π(yijk|·) is the likelihood function from

exponential family; π(µ|·), π(αi|·), π(βj|·) and π(γij|·) are the GMRF priors taken on the

effect functions; the remaining π(·) functions denote the hyperpriors. The standard MCMC

approach has been proposed by Kaufman and Sain (2010) to fit a similar model but using

Gaussian process priors on the effect functions. However, due to the model complexity and

large data size, the MCMC simulation procedure is slow and often has mixing problems.

We here use an approximate Bayesian inference tool based on integrated nested Laplace

approximations (INLA) introduced by Rue et al. (2009). The main benefit of using INLA

is computational: where MCMC algorithms need hours or days to run, the approximations

provide more precise estimates in seconds or minutes. It can be used to fit a large class of

latent Gaussian models, of which model (10) is a special case. The asymptotic properties

of INLA are given in Section 4 of Rue et al. (2009). Below we briefly describe how we use

INLA to approximate the posterior distributions of the functional ANOVA model in (10).

4.1 INLA methodology

Let y = (y′111, . . . ,y
′
11n11

, . . . ,y′mAmBnmAmB )′ denote a ny dimensional vector of the response

values, f = (µ′,α′1, . . . ,α
′
mA
,β′1, . . . ,β

′
mB
,γ ′11, . . . ,γ

′
mAmB

)′ a nf dimensional vector of the

functional effect parameters, and θ = (θ′ε,θ
′
µ,θ

′
α,θ

′
β,θ

′
γ)
′ a nθ dimensional vector of the

hyperparameters. Since the GMRF priors are taken on all the effect functions, f becomes

another GMRF of form (6) with precision matrix Qθ. This Qθ is a large but sparse block

diagonal matrix, in which the diagonal elements are the precision matrices of all effect
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functions. Then, the joint posterior distribution in (10) can be written as

π(f ,θ | y) ∝ π(θ) π(f | θ)

ny∏
i=1

π(yi | fi,θ)

∝ π(θ)|Qθ|
nf/2
+ exp

[
−1

2
f ′Qθf +

ny∑
i=1

log π(yi | fi,θ)

]
,

and the posterior marginals of interest can be derived by

π(fi | y) =

∫
π(fi | θ,y) π(θ | y)dθ, i = 1, . . . , nf ,

π(θj | y) =

∫
π(θ | y)dθ−j, j = 1, . . . , nθ. (11)

There are three stages in the implementation of INLA method: firstly propose an approxi-

mation π̃(θ | y) to the joint posterior of the hyperparameters π(θ | y); secondly propose an

approximation π̃(fi | θ,y) to the marginals of the conditional distribution of fi given the

data and the hyperparameters π(fi | θ,y); finally explore π̃(θ | y) on a grid and use it to

numerically integrate out θ in (11).

To approximate π(θ | y), we use the following Laplace approximation

π̃(θ | y) ∝ π(f ,θ,y)

π̃G(f | θ,y)

∣∣∣∣
f=f∗(θ)

, (12)

where π̃G(f | θ,y) is the Gaussian approximation to π(f | θ,y), obtained by matching the

modal configuration and the curvature at the mode f ∗(θ). Note that expression (12) yields

the exact posterior of θ if the likelihood is Gaussian. Since π̃(θ | y) is only used to integrate

out uncertainty in θ when approximating π(fi | y), there is no need of a detailed exploration

of this density, as long as we are able to select good evaluation points for the numerical

integration. Rue et al. (2009) propose two different exploration schemes depending on the

number of hyperparameters. For simplicity we assume that θ = (θ1, . . . , θnθ) ∈ IRnθ and

reparameterize θ-space to make the density more regular as follows. First, find the mode θ∗

of π̃(θ | y) and compute the negative Hessian matrix H at the modal configuration. Then,

we standardize θ to obtain a new variable z = (V Λ1/2)−1(θ−θ∗), whereH−1 = V ΛV ′ being

the eigen-decomposition. When the dimension of θ is small (nθ ≤ 5), the z-parametrization

is used to build a grid covering the bulk of the probability mass of π̃(θ | y). When nθ

is a moderate number, a so-called CCD integration is used, where some ‘points’ in the
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nθ-dimensional space are found to approximate the unknown function with a second order

surface. It requires much less computation and is still able to capture variability in θ space

if our purpose is to make inference on π(fi | y) only.

To approximate π(θj | y) we use the density points that have already been evaluated in

the grid exploration of π̃(θ | y) to construct an interpolation, based on which the marginals

are computed with numerical integration. The so-called asymmetric Gaussian interpolation

is used to correct the Gaussian approximation for possible skewness in π(θj | y). However, the

multi-dimensional numerical integration becomes unstable when fitting models with higher

number of hyperparameters, resulting in approximated posterior marginals densities with

undesirable spikes. To relieve this issue, Martins et al. (2013) proposed a new integration-free

algorithm, where π̃(θj | y) is directly approximated by a mixture of Gaussian distributions.

It gives sensible results with almost no extra computation time.

The simplest way to approximate π(fi | θ,y) is by using the Gaussian approximation

π̃G(fi | θ,y), which can be easily obtained from π̃G(f | θ,y) that has already been computed

in evaluating (12). This approximation, however, could yield errors due to the lack of

skewness. It can be largely improved by doing a Laplace approximation again

πLA(fi | θ,y) ∝ π(f ,θ,y)

π̃GG(f−i | fi,θ,y)

∣∣∣∣
f−i=f∗

−i(fi,θ)

, (13)

where π̃GG is the Gaussian approximation to the full conditional of f−i and f ∗−i(fi,θ) is

the modal configuration. Unfortunately, π̃GG must be recomputed for each fi, making this

approximation too expensive. Rue et al. (2009), therefore, propose two modifications to

expression (13) for making it computationally feasible. A third option is called simplified

Laplace approximation, which is achieved by doing a third-order Taylor expansion on the nu-

merator and denominator of (13), and thus corrects the Gaussian approximation for location

and skewness with a much lower cost (see Rue et al., 2009, for details)

4.2 Identification of significant functional effects

4.2.1 Contour avoiding set

Let h(x), x ∈ X ⊂ IRd, denote certain effect function in a functional ANOVA model. It is

of great interest to test the hypothesis H0 : h(x) 6= 0 for all x ∈ X , in order to find out
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whether or not the functional effect is statistically significant. From a Bayesian point of

view, we need to find a set of x such that h(x) 6= 0 with a posterior probability 1−α for all

x in that set. To define this set, we need a few definitions regarding excursion and contour

uncertainty as given by Bolin and Lindgren (2015). The positive excursion set of h(x) is

defined by A+(h) = {x ∈ X ;h(x) > 0}. The negative excursion set is similarly defined by

A−(h) = {x ∈ X ;h(x) < 0}. We then define the pair of joint contour excursion sets with

probability 1− α to be(
M+

α (h),M−
α (h)

)
= arg max

(D+,D−)
{|D− ∩D+| : P

(
D− ⊆ A−(h), D+ ⊆ A+(h)

)
≥ 1− α},

where the sets (D+, D−) are open. The union of these two sets Eα(h) = M+
α (h) ∪M−

α (h)

is termed as level-zero contour avoiding set, which is the largest set such that for all x in

that set the effect function h(x) is different from zero with probability 1−α. Unfortunately,

we will not be able to see other smaller sets satisfying the requirement if only Eα(h) is

reported. Also, the set Eα(h) does not provide any information about the locations not

contained in the set. We hence introduce a level-zero contour avoiding function defined as

F (x) = sup{1 − α; x ∈ Eα}. It is a graphical tool that is similar to p-values, i.e., the

marginal probabilities of exceeding the level, but can be interpreted simultaneously.

We now briefly describe the procedures of computing the contour avoiding set, and refer

readers to Bolin and Lindgren (2015) for details. There are two main problems in the compu-

tations. The first is integration: we must calculate probability P (D− ⊆ A−(h), D+ ⊆ A+(h))

for the pair of sets (D+, D−). The second is shape optimization: find the largest region satis-

fying the required probability constraint. In practice the integration will be computationally

intensive when the dimension of h = (h(x1), . . . , h(xn))′ is large (which is usually the case

in functional ANOVA). Therefore, we use a method based on a parametric family for the

contour sets in combination with a sequential integration for calculating the probabilities.

Assume that h is Gaussian and D(ρ) is a parametric family for the possible excursion sets

such that D(ρ1) ⊃ D(ρ2) if ρ1 < ρ2. The following strategy is then used to calculate Eα(h).

First, find the reordering given by the order that the nodes are added to D(ρ) when ρ

is increased. Second, sequentially add nodes to D according to the ordering given above

and update probability P (D− ⊆ A−(h), D+ ⊆ A+(h)) in each step. Third, stop as soon as

the probability falls below 1 − α, and then Eα(h) is given by the last set D for which the
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probability is greater than equal 1 − α. We obtain F (x) by letting α = 1 and saving the

probabilities in each step. The parametric families are based on the marginal quantiles of

h(x), which can be easily calculated using the marginal posterior distributions. The sequen-

tial integration is greatly facilitated by the fact that h is a sparse GMRF and can be viewed

as a non-homogeneous auto-regressive process defined backwards in the indices of h (Rue

and Held, 2005).

The algorithm mentioned above is in Gaussian setting, and can be extended to the latent

Gaussian setting with posterior π(h|y) =
∫
π(h|y,θ)π(θ|y)dθ, where the full conditional

π(h|y,θ) can be non-Gaussian if the likelihood is non-Gaussian. The basic idea to estimate

the non-Gaussian posterior distributions is to use Gaussian approximations of either the

posterior π(h|y) or the conditional posterior π(h|y,θ), which can be provided by INLA

method introduced in the previous section. Given estimates of the posterior distributions,

we can then compute the excursion probabilities by one of the five different methods proposed

by Bolin and Lindgren (2015).

4.2.2 Simultaneous credible interval

When h(x) is in one dimension (i.e., X ⊂ IR), it is useful to construct the credible interval to

visualize the uncertainty of the estimated function. Given an x a point-wise credible interval

of h(x) is given by
[
qρ/2(x), q1−ρ/2(x)

]
, where qρ(x) denotes the ρth-quantile of the marginal

posterior distribution of f(x). The quantiles can be easily computed by INLA because the

marginal posterior distributions are approximated as one-dimensional Gaussian mixtures.

However, to identify the significance of this functional effect we need a simultaneous credible

interval, inside which f(x) is with probability 1−ρ for all x. It can be constructed by finding

a value of η such that P (qη(x) < h(x) < q1−η(x),x ∈ X | y) = 1 − ρ. Finding such an η

requires to integrate the joint posterior distribution of h given n observations of x, which

is often computationally intensive. Fortunately, one can find this simultaneous credible

interval using the method of estimating credible intervals for Gaussian mixtures in Bolin

et al. (2015). It is based on the sequential integration method for Gaussian integrals that is

described above. We therefor skip the description of the method here.
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5 Simulation

We conduct a simulation study to evaluate the proposed method. We consider an one-way

generalized ANOVA framework, where the mean response function is given by

µik(x) = g−1[µ(x) + αi(x)], x ∈ X , (14)

for i = 1, . . . ,mA and k = 1, . . . , n. For simplicity we let the main effect have only two levels,

i.e., mA = 2. Therefore α2(x) = −α1(x) for any x, and model (14) becomes a generalized

additive model (see, e.g. Wood, 2006). Both normal and binary data are simulated. For

normal data, we let error standard deviation σ = 0.5. Regarding binary data, we use logistic

link function to compute ‘success’ probability as P (yik = 1 | x) = 1/[1 + exp(−µik(x))],

based on which the data are simulated from independent Bernoulli distributions. There are

500 data sets generated for each type of response variables.

We consider two scenarios with regard to the effect functions. In Scenario I, the effect

functions are smooth curves given by

µ(x`) = sin(x`), α1(x`) = sin(2x`)/2

for ` = 1, . . . , 100, where x`s are equally spaced within [0, 6]. At each level of the main effect

we simulate n = 100 such curves. The RW2 priors are taken on µ and α1 functions. In

Scenario II, we consider two-dimensional effect functions given by

µ(x1, x2) =
0.75

πσx1σx2
exp

[
− 1

σ2
x1

(x1 − 0.2)2 − 1

σ2
x2

(x2 − 0.3)2
]

+
0.45

πσx1σx2
exp

[
− 1

σ2
x1

(x1 − 0.7)2 − 1

σ2
x2

(x2 − 0.8)2
]

α1(x1, x2) =
0.75

πσx1σx2
exp

[
− 1

σ2
x1

(x1 − 0.5)2 − 1

σ2
x2

(x2 − 0.5)2
]

where σx1 = 0.3 and σx2 = 0.4. Both x1 and x2 have 40 equally-spaced realizations within

[0, 1], therefore the effect functions are built on 40× 40 grid. At each level of the main effect

we simulate n = 10 such surfaces. The RW2D priors are taken on µ and α1 functions.

As mentioned, model (14) can be formulated as a generalized additive model (GAM). A

GAM, from a frequentist point of view, is usually fitted by penalized likelihood maximization,

where the model likelihood is modified by the addition of a penalty for each smooth function
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to prevent it from being overfitted. A smoothing parameter is used for each penalty to

balance the fidelity to data against the smoothness of fit. In mgcv R package (Wood, 2006),

the smooth functions in a GAM are represented using penalized regression splines (e.g. Wood,

2003) with the basis functions designed to be optimal for these splines. The smoothing

parameter is estimated by the generalized cross validation (GCV) (e.g. Wahba, 1990). For

comparison purpose, we also use mgcv to fit model (14) for both scenarios, and compare it to

our method using mean squared error (MSE) of each estimated function for each simulated

data set as defined below

MSE =
m∑
`=1

[
f(x`)− f̂(x`)

]2
/m,

where f and f̂ denote the true function and its estimator (posterior mean), respectively.

The figures of the distributions of log(MSEs) provided by INLA and mgcv methods for

normal and binary simulated data are given in the supplementary materials of this paper.

The INLA method apparently outperforms mgcv by yielding overall smaller MSEs for both

effect functions in every simulated situation. It is noteworthy that the MSEs of mgcv have

more variability than those of INLA. Also, the outperformance of INLA is more significant

when it is more difficult to estimate the effect function. For example, in Scenario II it

is harder to estimate the grand mean function than the main effect function, and therefore

INLA outperforms mgcv more in estimating the former than the latter. We believe the reason

that mgcv is outperformed by INLA in the simulation study is that the penalized regression

splines tend to provide too smooth fits because they use low-rank spline basis functions,

which are not able to capture the varying features that may exist in the true functions.

6 Examples

In this section we present three real data examples to demonstrate how to do functional

ANOVA using the proposed method. The functional data in the examples differ with respect

to their response distributions (normal and non-normal), the dimensions of function domain

(1D, 2D and 3D), and the number of potential factors (one-way and two-way). It shows

how versatile and flexible our method is. The R code with illustration of those examples is

provided in the supplementary document of this paper.
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6.1 Diffusion tensor imaging

Our first example is a study of functional quantitative imaging metrics of multiple sclerosis

(MS) patients over multiple clinical visits (Goldsmith et al., 2012). The MS is a common

chronic demyelinating disease in white matter tracts, which is often investigated by diffusion

tensor imaging (DTI) methods. The DTI is a popular quantitative magnetic resonance imag-

ing technique that measures the three-dimensional diffusion of water molecules within tissue

through the application of multiple diffusion gradients. Because water diffuses anisotropi-

cally in the white matter and isotropically elsewhere, the DTI is used to generate images

of the white matter specifically. It allows us to quantitatively measure tissue integrity and

thus provide information about damage to the parts of nervous system.

The data in this study consist of 100 subjects, aged between 21 and 70 years at first visit.

The number of visits per subject ranged from 2 to 8; a total of 340 visits were recorded. Since

we are interested in the visit effect of MS patients, we restrict our attention to the 18 subjects,

who had completed 4 visits within approximately one year. For each visit the DTI scans

were obtained and used to create tract profiles. The derived outcome is known as fractional

anisotropy (FA), which is computed from the diffusion tensor’s eigenvalues in the image

processing. It is a measure describing the degree of anisotropy of a diffusion process in a brain

and has been routinely used as an index of white matter integrity. The region of our interest

is the right cortico-spinal tract (RCST), which is an anatomical structure that connects the

motor cortex to the brain stem. The damage to the structure may be linked with a decline in

cognitive performance in MS patients (Goldsmith et al., 2012). The data set is available in

refund package in R (http://cran.r-project.org/web/packages/refund/index.html).

Let yij(x) denote the FA measure at trace location x for jth subject in ith visit. Because

it is bounded between 0 and 1, yij(x) is assumed to follow a beta distribution, which is

capable of flexibly modeling this type of data (Wang and Li, 2014). Being interested in the

visit effect on FA profiles in the RCST region, we consider the following one-way functional

ANOVA model:

yij(x) | µ, αi, λ ∼ Beta(pij(x), λ),

logit(pij(x)) = µ(x) + αi(x),
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Figure 1: Results of DTI example: The posterior means (solid), point-wise credible bands (dashed)

and simultaneous credible bands (solid) of main effect functions (left), and the level-zero contour

avoiding functions (solid), marginal probabilities (dashed) and contour avoiding set (grey) of main

effect functions (right), for Visit #1 (top), Visit #2 (middle) and Visit #3 (bottom).
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for x ∈ X ⊂ IR, where Beta(µ, λ) denotes the beta distribution with mean µ and variance

µ(1 − µ)/(1 + λ). The function µ is the grand mean tract profile and αi is the main effect

function of ith visit. They are associated with pij via logit link. For identifiability we let

α4(x) = 0 for any x. The independent RW2 priors are taken on µ and αi for all i. A diffuse

gamma prior is taken on λ.

In Figure 1 we present the results. In the left panel we show the posterior mean, point-

wise credible band as well as simultaneous credible band for the main effect function of each

visit. We can see that the effect function becomes flatter as the patients pay more visits. It

makes sense because the last visit is modeled as baseline. In terms of its dynamic change,

the main effect is more significant at the locations in the middle than those at two ends. It

indicates that for MS patients the middle part of RCST may be damaged more quickly than

the two end parts. In the right panel we show the joint and marginal probabilities that each

main effect function is non-zero. Each gray region shows the set of locations such that the

main effect function is not zero with at least 0.95 probability for all locations in that region.

As we can see, the region keeps shrinking as the patients pay more visits, and the three visits

have the common region between 10 and 40. It concludes that the functional effect of ‘visit’

is statistically significant.

6.2 Apgar score

There is a study on mortality and live births occurred in Brazil (http://tabnet.datasus.

gov.br/cgi/sinasc/dados/nov_indice.htm#docs). It is intended to produce indicators

and analysis that do not only support the planning and evaluation of actions, programs and

health services, but also strengthen the use of epidemiological evidence for decision-making.

The information of newborns was recorded and the data were published for the period from

1996 to 2012 by the Ministry of Health in Brazil. We here select the dataset of Paraná state

in 2012 for demonstration purpose.

The response variable of our interest is the Apgar score, invented by Virginia Apgar in

1952, which is often used as a method to quickly summarize the health of newborn children. It

is determined by evaluating the newborn on five simple criteria (appearance, pulse, grimace,

activity, respiration) on a scale from 0 to 2, then summing up the five values thus obtained.
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Scores 7 and above are generally normal, 4 to 6 fairly low, and 3 and below are regarded as

critically low. To identify health status of each newborn, we use a binary response variable

y = 1 if the score is less than 7 and y = 0 otherwise. In addition, we associate each score with

mother’s municipality of residence to make it a functional response with a spatial domain.
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Figure 2: Apgar scores of newborns: Level-zero contour avoiding functions of (a) main effect of

consultation; (b) main effect of mother education level; (c) effect of interaction; and 95% level-zero

avoiding set of (d) main effect of mother education level.

The explanatory variables that have potential impact on the Apgar score are weight of

the newborn, gestation duration, mother education level, and number of consultations during

gestation. The latter three are categorical variables with more than two categories. As for

factors, we use the education level and the number of consultations. Instead of using their

original categories, we make the education level a binary variable with 1 = higher education

22

Statistica Sinica: Newly accepted Paper 
(accepted version subject to English editing) 



and 0 otherwise, and the number of consultations with 1 = full consultations (# = 4) and

0 otherwise, for easy interpretation. Then the functional binary response is decomposed

according to the main effects of these two factors and their interaction. The weight and

gestation duration are taken as linear effects.

As a result, we use the following two-way functional ANOVA model

yijk(x) | pijk ∼ Bin(1, pijk(x)), x ∈ X ⊂ IR2

logit(pijk(x)) = φ0 + z1ijkφ1 + z′2ijkφ2 + µij(x)

µij(x) = µ(x) + αi(x) + βj(x) + γij(x), (15)

for i = 1, 2, j = 1, 2, k = 1, . . . , ni, where Bin(n, p) denotes the binomial distribution with

n trials and success probability p for each trial, logit(p) = log(p/(1− p)), φ0 is the intercept,

and φ1 and φ2 are linear effects of weight and gestation duration, respectively. Regarding the

ANOVA structure, αi is the main effect function of the ith consultation level, βj is the main

effect function of jth education level, and γij is their interaction. Because there are only two

levels per factor, we let i = 1 represent the complete consultations, i = −1 the incomplete

consultations, j = 1 the higher education, and j = −1 otherwise. Then, we have αi = iα,

βj = jβ and γij = ijγ. This reparameterization simplifies the model as well as satisfies the

constraints for identifiability. With respect to the priors we assume (independent) diffuse

normal distributions on the linear effects, and the Besag models on the effect functions.

The figure of the posterior means of the grand mean function, main effect function of

consultation, main effect function of education level, and their interaction function is given

in the supplementary materials of this paper. Both consultation and interaction effects are

spatially smoother but with smaller scale than the education level effect. Figure 2 presents

the level-zero avoiding functions for the two main effects and interaction, and the 95% level-

zero avoiding set of education level effect. As we can see, there are five cities identified to

have the significant effects of education level on the Apgar score. Therefore the mother with

higher education tends to give birth to a normal baby in those cities. Note that neither the

consultation effect nor the interaction was detected to be significant in any city.
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6.3 Global solar radiation

Global irradiance data are used to investigate the possible exploitation of solar energy in

different areas of the planet. The data were collected at a global spatial lattice, where

the longitude ranges from -180 to 179 and the latitude from -90 to 89 (negative values are

south and west; positive values are north and east), yielding totally 64,800 observations

of regional averages for each month. The detailed data description can be found at NASA

website (https://eosweb.larc.nasa.gov/sse/). We focus on monthly averaged insolation

incident over a 22-year period (July 1983 - June 2005). Insolation is a measure of solar

radiation energy received on a given surface area in a given time. It is often expressed as

average irradiance in kilowatt-hours per square meter per day (kWh/(m2day)). We consider

direct insolation, which is measured by a surface element perpendicular to the sunbeams at

a given location on earth.

We are interested in finding areas that are suitable for installing solar thermal collectors.

Because they employ only direct sunlight, the collectors should be positioned in the area,

where the direct insolation is constantly high through the whole year and has no strong

seasonal pattern. The direct insolation is equal to the solar constant minus the atmospheric

losses due to absorption and scattering. The solar constant varies with the earth-sun distance

and solar cycles, while the losses depend on the cloud cover and other impurities. We

therefore consider the following model

yij(x) | µi, φi, σ2 ∼ N
(
µi(x) + φi(z), σ2

)
µi(x) = µ(x) + αi(x), x ⊂ IR3, z ⊂ IR, (16)

for i = 1, 2, 3, 4 and j = 1, 2, 3. Here yij denotes the direct insulation in jth month of ith

season, φi(z) denotes the effect of latitude z for each season, µ(x) and αi(x) denote the

grand mean function and the main effect function of ith season, respectively, at the three-

dimensional location x on the surface of the earth. We expect φi to capture the seasonal

pattern in solar constant while αi in atmospheric loss. The seasons are indexed as 1 =

winter , 2 = spring, 3 = summer, and 4 = fall. For identifiability we let α4(x) = 0 for any x,

making µ(x) become the mean function of the fall season, and αi(x) (i = 1, 2, 3) represents

the difference between ith season and the fall season. We construct SPDE priors in sphere
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Figure 3: Global solar radiation: level-zero contour avoiding functions (a - c) and the functions

thresholded at 95% level (d - f). The seasons are winter (a and d), spring (b and e), and summer

(c and f).
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space, and take them on µ and αi functions. The RW2 priors are assigned for φi functions.

The figure of the posterior means of baseline mean function and the main effect function

for each season is given in the supplementary materials of this paper. Not surprisingly, the

seasonal pattern of direct insolation is more significant in winter and summer than in spring

and fall, because the radiation should be the same during spring and fall. It seems that

Southwest China, India, Central Africa and the west coast of South America tend to receive

more direct insolation in winter, while North Africa, South Arica and Brazil in summer.

Figure 3 presents the contour avoiding function and the largest region where the main effect

function is not zero jointly with probability .95. This region, which includes Southwest

China, North India, Midwest Brazil and a few areas in Africa, is identified with significant

seasonal pattern. These plots show how atmospheric losses, which are closely related to

the cloud cover, change over the seasons. After comparing the cloud maps produced by the

MODIS sensors on NASA’s Terra and Aqua satellites (http://modis.gsfc.nasa.gov/), we

find that over the areas in the identified region the cloud cover shows a clear seasonal pattern

that is similar to the one found in our direct insolation data. Based on the results shown

above, south Pacific ocean, Sahara desert, southwestern US and western Australia appear to

have constantly high direct insolation and can be used for installing solar thermal collectors.

7 Closing Remarks

Functional ANOVA is a powerful tool to investigate how the underlying dynamic patterns

in functional data are influenced by categorical factors and their interactions. A variety

of approaches for functional ANOVA have been proposed in the past decades. Bayesian

analysis with MCMC samplers, have been successfully applied for a few real case studies.

However, their application has never become part of standard analyses, due to a wide range

of problems in terms of convergence and computational time. Moreover, the implementation

to non-Gaussian functional data or the functional data with (point-level or areal) spatial

effects requires careful algorithm construction. It might often be problematic, especially, for

end users who might not be experts in programming.

The aim of this paper is to illustrate how generalized functional ANOVA models can be

solved using the recently proposed INLA framework, which gives fast and accurate approxi-
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mations instead of sampling. The approach allows us to analyze various types of functional

data (both Gaussian and non-Gaussian) with (discrete or continuous) temporal effects or

(point-level or areal) spatial effects easily. Both point-wise and simultaneous credible inter-

vals for functional effects can be obtained using the excursion method with a fairly fast and

accurate computation. We are able to quantitatively analyze the contribution of each factor

over various regions of the functional domain by finding contour avoiding functions at those

regions. The provided R code should make such models accessible to a broader audience. In

addition, the INLA library provides a much larger number of likelihood functions and latent

models than we illustrate here, and thus adds its flexibility to model even more complex

functional data.

Although only one-way and two-way ANOVA models are shown in the paper, the pro-

posed methodology, however, is readily extended to the case where three or more factors are

of interest. For example, let’s consider three factors denoted by A, B and C, and let yijk`(x)

denote the `th function at ith level of A, jth level of B and kth level of C. Assuming yijk`(x)

(given x ∈ X ⊂ IRd) follows a distribution from the exponential family with mean µijk(x)

and link function g, a three-way generalized functional ANOVA model can be written as

g(µijk`(x)) = µ(x) + αi(x) + βj(x) + γk(x) +

αβij(x) + αγik(x) + βγjk(x) + αβγijk(x).

Here µ is the grand mean function; αi, βj, and γk are the main effect functions; αβij, αγik, and

βγjk are the pairwise interaction functions; αβγijk is the three-factor interaction function.

To estimate such a model, only minor modifications are needed for the current procedures,

e.g., adding more function components and linear constraints to the INLA formula.

The main disadvantage of applying the INLA approach to functional ANOVA, like in

other types of latent Gaussian models, is that its computational cost increases exponentially

with the number of hyperparameters. It will take INLA a relatively long time to fit a model

with moderate number (e.g., 15) of hyperparameters, due to the expensive cost of evaluating

the joint density of those hyperparameters. It will be our future work to make INLA feasible

for the higher-order functional ANOVA models with quite a few hyperparameters.
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Supplementary Materials

In the supplementary document posted online, we demonstrate how to use R INLA package

to perform functional ANOVA step-by-step in the real data examples given in the paper.

We also present an extra example that was originally studied in Kaufman and Sain (2010),

and show the additional figures that are referred to but not shown in the paper.
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