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Abstract: This paper proposes a single-index varying coefficient hazards model to

identify biomarkers for risk stratification and treatment selection for individual

patients. Our model accommodates multiple predictive biomarkers and allows for

flexible nonlinear interactions between the multiple biomarkers and the treatment.

We propose a global partial likelihood to estimate the varying-coefficient functions

and the regression coefficients. The proposed estimators are shown to be consistent,

asymptotically normal and semiparametrically efficient. The proposed approach is

applied to a clinical trial on multiple myeloma patients for risk stratification and to

investigate whether biomarkers would interact with treatment for each individual

patient.
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1. Introduction

Biomarkers have emerged as promising tools for risk assessment and strati-

fication of patients (e.g. stage or subtype) with chronic diseases, such as cancer

and cardiovascular disorders, which is essential in guiding the management and

treatment of disease in order to achieve the optimal clinical outcome. For exam-

ple, Sargent (2005) found that the effect of treatment on patient’s survival may

depend on the level of individual biomarkers, which cannot directly be detected

with the routinely used Cox proportional hazards model that ignores the inher-

ent nonlinear heterogeneities defined by biomarkers on the effect of treatment.

In a broader context, identifying nonlinear interactions between biomarkers and

treatment has become a topical area with the recent precision medicine initia-

tive (http://www.nih.gov/precisionmedicine/). Precision medicine seeks effec-

tive data-driven approaches for disease treatment and prevention that takes into
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account individual variability in personal characteristics, including biomarkers.

There is an urgent need for statistical models that can facilitate the identification

of biomarkers that affect patients response to treatment with an unknown form,

and acquire results that will be useful for further validations.

Such analyses were needed for a clinical trial conducted by the University

of Arkansas, where newly diagnosed multiple myeloma patients were random-

ized to receive two treatments, namely, total therapy II and total therapy III,

respectively (Shaughnessy et al., 2007). Several biomarkers, including patients’

serum beta2-microglobulin and albumin levels were collected to predict the dis-

ease status and response to treatment. The marginal effect of the treatment was

not significant as reported by the previous studies; however it was of substan-

tial interest to investigate whether the treatment would be effective for some

subset of patients as defined by these biomarkers, termed predictive biomarkers.

Several existing methods are available to assess the clinical utility of predic-

tive biomarkers. An ad hoc approach is to conduct survival comparisons across

two biomarker-based groups. As the method requires dichotomization of predic-

tive biomarkers, it does not adequately quantify the clinical utility of predictive

biomarkers. Freidlin and Simon (2005) proposed a design that combines prospec-

tive development of a gene expression-based classifier to select sensitive patients

with a properly powered test for overall effect, but again requires dichotomization

of the biomarker. Jiang et al. (2007) extended Freidlin and Simon’s design to

allow a continuous-scale biomarker by introducing a biomarker-adaptive thresh-

old.

There are two limitations of Freidlin and Simon (2005) and Jiang et al.

(2007). First, both methods assume that the effect of the interaction between

the biomarker and the treatment is a step-function with only one jump. How-

ever, when the biomarker is continuous, it is most likely that the interaction

continuously varies with the value of the biomarker. Second, both methods as-

sume that the effect of treatment depends on only one specific biomarker. In

practice, as in our motivating dataset, there may exist more than one biomarker

that provides information for risk stratification and treatment selection. If the

effect of the treatment does continuously depend on multiple biomarkers, then it

is crucial to know how to combine the multiple biomarkers and how the effect of
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treatment varies with the multiple biomarkers in order to predict the treatment

effect of a new subject with high accuracy.

To address these issues, we propose the following single-index varying coef-

ficients Cox model,

λ(t) = λ0(t) exp

{
d∑

k=1

βk(α′X)Zk

}
, (1.1)

where X denotes the multiple biomarker vector, Z = (Z1, · · · , Zd)′ is the exposure

variables, for example, treatment group indicator, β(·) = (β1(·), · · · , βd(·))′ are

unknown varying-coefficient functions and characterize how the effect varies with

the biomarkers, α is an unknown regression coefficient vector and is used to

combine the multiple biomarkers that potentially defines pathophysiology of

a chronic disease, for example, disease staging and subtyping. With the β(·)
functions being discrete, the proposal models how each stage or subtype of disease

interacts with the treatment. When β(·) is contiunous as in our formulation, it is

evaluating the impact of the disease stage or subtype on the efficacy of treatment

on a continuous scale, an extension from discretization to a continuous spectrum.

There are several additional advantages. First, α and β(·) can identify patients

who are more likely to benefit from a given treatment and hence provides a

personalized treatment strategy. Second, all of the unknown functions λ0(·) and

β(·) are one-dimensional, therefore, the difficulty associated with the so-called

curse of dimensionality is avoided. Finally, our model is general, encompassing

many well-known models as special cases. Specifically,

(i) when β is a constant or linear, the model (1.1) is the Cox proportional

hazards model (Cox, 1972);

(ii) when Z = 1 and X is one-dimensional, the model is simply a nonpara-

metric Cox model. Statistical methods, such as nearest neighbor, spline and

local polynomial smoothing methods have been developed for the nonparametric

Cox model; see Tibshirani and Hastie (1987), O’Sullivan (1988), Hastie and Tib-

shirani (1990), Gentleman and Crowley (1991), Kooperberg, Stone and Truong

(1995), Fan, Gijbels and King (1997), Chen and Zhou (2007) and Chen, Guo,

Sun and Wang (2010), among others;

(iii) when X is time, the model (1.1) is the time-varying Cox model. Pe-

nalized method, sieve method and local linear method have been proposed to
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estimate the time-varying Cox model; see Zucker and Karr (1990), Murphy and

Sen (1991), Gamerman (1991), Murphy (1993), Marzec and Marzec (1997), Mar-

tinussen et al. (2002), Valsecchi, Silvestri and Sasieni (1996), Cai and Sun (2003)

and Tian, Zucker and Wei (2005);

(iv) when X is one-dimensional covariate, the model (1.1) is reduced to the

model studied by Fan, Lin and Zhou (2006), and Chen, Lin and Zhou (2012);

(v) when Z1 = 1 and β2, · · · , βd are constants, the model is reduced to the

partially linear Cox model. Spline and local linear smoothing have been proposed

to estimate the partially linear Cox model; see Huang (1999) and Chen, Guo,

Sun and Wang (2010), among others.

As far as we know, there is no successful extension to the single-index varying

coefficients Cox model (1.1). The existing methods estimate either the unknown

functions β(·) or the index-vector α with the assumption that α or β(·) is known,

respectively. Particular, if β(·) is known, the index-vector α can be estimated

by maximizing the partial likelihood function (2.1) (Cox, 1972). If α is known,

the unknown functions β(·) in general can be estimated by three existing meth-

ods: regression spline, penalized and local polynomial methods. The spline and

penalized methods estimate simultaneously all of unknown functions. This opti-

mization problem can be rather complex due to a large number of parameters,

especially when the number of the nonparametric functions, d, is medium or

large. In addition, sampling properties of the spline and penalized methods are

still elusive. A useful alternative is the local polynomial technique. However,

a local partial likelihood method (Fan, Lin and Zhou, 2006) uses only local ob-

servations, incurring efficiency loss. In the paper, we propose a global partial

likelihood method to estimate the unknown functions and the regression coeffi-

cients. The proposed estimators are shown to be consistent and asymptotically

normal. The utility of the proposed method is further enhanced by its semipara-

metric efficiency for α and β(·).
The paper is organized as follows: Section 2 introduces the estimators of β(·)

and α, and Section 3 establishes the uniform consistency, asymptotic normality

and semiparametric efficiency. The procedure is extended to a mixed model with

fixed and varying coefficients in Section 4. Numerical simulation and examples

are given in Sections 5 and 6. Technical proofs are relegated to the Appendix.

Statistica Sinica: Newly accepted Paper 
(accepted version subject to English editing)



ESTIMATING SINGLE-INDEX VARYING COEFFICIENT COX MODEL 5

2. Partial likelihood estimation

Suppose that there is a random sample of size n from an underlying popula-

tion. For the i-th individual, let Ti denote the failure time, Ci the censoring time,

and Ti = min(Ti, Ci) the observed time, ∆i be an indicator that equals 1 if Ti is

a failure time and 0 otherwise. Assume that Ti and Ci are independent of each

other given covariates Zi and Xi. The covariates Zi = (Zi1, · · · , Zid)′ and Xi are

allowed to be time dependent. Following Fan, et al. (2006), for the ease of presen-

tation, we drop the dependence of covariates on time t, with the understanding

that the methods and proofs in this paper are applicable to time dependent

covariates. The observed data structure is {Ti,∆i,Zi,Xi} for i = 1, · · · , n.

When all the observations are independent, the partial likelihood for model

(1.1) is

L(β, α) =
n∏

i=1

[
exp{β(X′

iα)′Zi}∑
k∈R(Ti)

exp{β(X′
kα)′Zk}

]∆i

, (2.1)

where R(t) = {i : Ti ≥ t} is the set of the individuals at risk just prior to time t. If

the unknown functions β(·) are parameterized, the parameters can be estimated

by maximizing (2.1).

Since the forms of β(·) are not specified, we first consider the estimator of

β(·) given α. Suppose that each component of β(·) is smooth and admits

Taylor’s expansions: for each given v and w around v,

β(w) ≈ β(v) + β̇(v)′(w − v) ≡ δ1 + δ′2(w − v), (2.2)

where ḟ(v) = df(v)/dv for any function or vector of functions f(·). Given α, our

model (1.1) is reduced to the model proposed by Fan, Lin and Zhou (2006), hence,

we can estimate β(·) by the local partial likelihood method proposed by Fan, Lin

and Zhou (2006), that is, we estimate δ = (δ′1, δ
′
2)
′ by solving the following local

partial score function,

n∑

i=1

∆iKi(v)

{
Vi(v)−

∑
k∈R(Ti)

Kk(v) exp{Vk(v)′δ}Vk(v)∑
k∈R(Ti)

Kk(v) exp{Vk(v)′δ}

}
= 0, (2.3)

where Vi(v) = (Z′i,Z
′
i(X

′
iα − v))′, Ki(v) = Kh(X′

iα − v), Kh(x) = K(x/h)/h,

and K is a one-dimensional kernel density function, h represents the size of the

local neighborhood. The local partial score function (2.3) is a partial score based
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6 HUAZHEN LIN, MING T. TAN AND YI LI

on observations that X′
iα in a small neighborhood of v. The method is properly

motivated and rather simple to implement and analyze. However, the local-

ization of (2.3) suffers a loss of efficiency since the observations outside of the

neighborhood of v, which actually carry information about β(v), are not used.

Moreover, the intercept of β(v) cannot be directly estimated as it is cancelled

out of the local partial likelihood. Although the intercept can be estimated by

subsequently integrating the estimate of its derivative, the large sample property

of this estimate is not formally established and statistical inference is not im-

mediately available. Finally, the local partial likelihood approach cannot handle

discrete Xi.

We propose a global partial likelihood method to estimate β(·). The moti-

vation of global partial likelihood is quite straightforward. For every fixed v in

the range of X′α, suppose β(·) is known outside a neighborhood of v, denoted

by Bn(v). Then, the partial likelihood function (2.1) can be written as
n∏

i=1

{
Ii exp(ψi) + (1− Ii) exp(ψi)∑

j∈R(Ti)
{Ij exp(ψj) + (1− Ij) exp(ψj)}

}∆i

, (2.4)

where ψi = {δ1 + δ2(X′
iα− v)}′ Zi, ψi = β(X′

iα)′Zi and Ii equals 1 if X′
iα ∈

Bn(v) and equals 0 otherwise. Since the true β(·) outside of a neighborhood of

v is unknown, (2.4) is not directly useful. A key idea of the proposed method is

replacing β(·) outside of a neighborhood of v by the estimators from the previous

step, that is, using a iteration algorithm. With the refinement of local linear

smoothing and some slight variation for computational convenience, we derive

the following iteration algorithm. As β1(·) is identifiable up to a location shift

and α is identifiable up to a scale shift, we set β
(m)
1 (X′

nα) = 0 and α
(m)
1 = 1,

the first element of α, for all m ≥ 0 for identification as well as notational and

computational convenience. Then,

Step 0. Choose initial values of α(0) and function β(0)(v) for v = X′
1α

(0), · · · ,X′
n−1α

(0),

for example, the iterative method between the local partial likelihood estimate of

β(·) (Fan et al., 2006) and the partial likelihood estimate of α. Using the proof

of Fan et al. (2006) and the uniform law of large numbers (Pollard, 1990), it can

be shown that these initial estimators are consistent. More details are given in

Appendix.

The first step of Step m. For every given v = X′
1α

(m−1), · · · ,X′
n−1α

(m−1),
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maximizing (2.4) with respect to δ = (δ′1, δ
′
2)
′ and replacing Ii with a kernel

function Ki that decreases smoothly to zero, we obtain the equations for δ:

n∑

i=1

∆i

[
V(m−1)

i (v)K(m−1)
i (v)−

∑n
j=1 Yj(Ti)V

(m−1)
j (v)K(m−1)

j (v) exp{V(m−1)
j (v)′δ}∑n

j=1 Yj(Ti) exp{β(m−1)(X′
jα

(m−1))′Zj}

]

= 0, (2.5)

where V(m)
i (v) = (Z′i,Z

′
i(X

′
iα

(m) − v))′, K
(m)
i (v) = Kh(X′

iα
(m) − v), Yi(t) =

I(Ti ≥ t). Using the counting process notation, (2.5) can be expressed as

n∑

i=1

∫ τ

0

[
V(m−1)

i (v)K(m−1)
i (v)−

∑n
j=1 Yj(t)V

(m−1)
j (v)K(m−1)

j (v) exp{V(m−1)
j (v)′δ}∑n

j=1 Yj(t) exp{β(m−1)(X′
jα

(m−1))′Zj}

]

×dNi(t) = 0, (2.6)

where Ni(t) = I(Ti ≤ t, ∆i = 1). For technical development, τ is often assumed

to be finite in the literature to avoid the tail problem. Let δ̂1(v) and δ̂2(v)

be the solutions of δ1 and δ2. Then β(m)(v) = δ̂1(v) and β̇(m)(v) = δ̂2(v) for

v = X′
1α

(m−1), · · · ,X′
n−1α

(m−1).

The second step of Step m. For given β(m) and β̇(m), we estimate α by

solving the following partial score function,

n∑

i=1

∆i

[
Xiβ̇

(m)(X′
iα

(m−1))′Zi −
∑

k∈R(Ti)
Xkβ̇

(m)(X′
kα

(m−1))′Zk exp{β(m)(X′
kα)′Zk}∑

k∈R(Ti)
exp{β(m)(X′

kα)′Zk}

]

= 0. (2.7)

Repeat this iteration procedure until convergence. Comparing the proposed

partial likelihood score (2.5) and the local partial likelihood function (2.3), we can

see that the local partial likelihood method is based on the estimating equation

of (δ1 + δ2(X′
iα− v))′ Zi with local data, while the partial likelihood method is

based on the estimating equation of Vi(v)Ki(v) using all of the data. Moreover,

the denominator in (2.5) utilizes all the data. So does the estimate of β(v).

Hence, it is literally a global estimation, compared with the local estimation

in (2.3) which involves only the local data inside the neighborhood of v. The

semiparametric efficiency of the proposal is presented in Theorem 4 in Section

3.

3. Large sample properties
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In this Section, we establish the uniform consistency and asymptotic nor-

mality of the proposed estimators. Without loss of generality, we fix β̂1(0) =

β1(0) = 0, where β1 is the first element of β(·), and assume that the support

of X′α is [0, 1]. Additional regularity conditions are stated in Appendix. The

uniform consistency of α̂ and β̂(·) is presented in Theorem 1. The proofs of

Theorems 1–4 are given in Appendix.

Theorem 1 Under Conditions 1-7 stated in Appendix, we have

sup
v∈[0,1]

‖β̂(v)− β(v)‖ → 0 and ‖α̂− α0‖ → 0 in probability,

where α0 is the true value of α.

Theorem 2 Under Conditions 1-7 stated in Appendix, if nh4 → 0, we have
√

n (α̂− α0) → N(0,∆), (3.1)

where ∆ = D−1
1

∫ τ

0
E

[
ξ2
i (t)P (t|Zi,Xi) exp{β(X′

iα0)′Zi}
]
λ0(t)dt(D−1

1 )′,

ξi(t) =
∫ 1

0
g(v)

s10(t; v)
s00(t)

dv+
{∫ 1

0
g(v)D2(v)D−1

1 dv − I

}{
XiWi − r0(t)

s00(t)

}
−Zig(X′

iα0),

D1, D2, P (t|z,x), g(·), s10(·), s00(·), r0(·) are defined in Appendix, Wi =

β̇(X′
iα0)′Zi.

To estimate a parameter at the rate of n−1/2, one must undersmooth the

nonparametric part. Undersmoothing to obtain usual parametric rates of con-

vergences is standard in the kernel literature and has analogs in the spline litera-

ture (Carroll, Fan et al. 1997; Hastie and Tibshirani, 1990). This is achieved by

nh4 = o(1) and is required by Theorem 2 to estimate parameters α at the rate

n−1/2.

Theorem 3 Under Conditions 1-7 stated in the Appendix, if nh5 = O(1), for

v ∈ (0, 1),

(nh)1/2

{
β̂(v)− β(v)− 1

2
h2µ2(I −A)−1(β̈)(v)

}
D→ N(0,V(v)), (3.2)

where I is the identity operator and A is the linear operator satisfying A(φ)(v) =

Σ−1(v)
∫
w Ψ(w; v)φ(w)dw for any function φ, Σ(v) and Ψ(w; v) are defined in the

Appendix, β̈(v) = d2β(v)/dv2, V(v) = ν0[(I−A)−1(Σ−1/2)(v)][(I−A)−1(Σ−1/2)(v)]′

and ν0 =
∫
v K2(v)dv.
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Theorem 3 implies β̂(v) − β(v) is asymptotically normal, the order of the

asymptotic bias of β̂(v)− β(v) is h2 and the order of the asymptotic covariance

is (nh)−1. As a consequence, the theoretical optimal bandwidth O(n−1/5) in the

nonparametric method can be taken.

When α is known, our model reduces to the varying-coefficient Cox model

considered by Fan, Lin and Zhou (2006) and Chen, Lin and Zhou (2012) and

Theorem 3 reduces to that in Theorem 2 of Chen et al. (2012). The difference

between the proposed single-index varying coefficient Cox proportional model

and the varying coefficient Cox model by Chen et al. (2012) is the same as

that between the single-index model and the simple nonparametric regression

model. The proposed single-index varying coefficient Cox model is a key tool to

handle with the multiple predictive biomarkers and allows the exposure variable

to interact nonlinearly with multiple covariates. However, due to the presence

of α, we need to investigate the asymptotic relationship between α̂ and β̂(·)
when establishing asymptotic properties, which is not trivial when the asymptotic

expansion of β̂(·) is expressed as an integral equation and is not a closed form.

Theorem 2 shows that α̂ is a n1/2−consistent and asymptotically normal

estimator of α. Theorem 4 below shows that α̂ also is an efficient estimator of α.

For any function φ(w) = (φ′1, φ2(w)′)′, which has a continuous second derivative

on (0, 1), let φ′1α̂ +
∫ 1
0 φ′2(w)β̂(w)dw be an estimator of φ′1α0 +

∫ 1
0 φ′2(w)β(w)dw,

we have the following efficient result for the proposed estimators.

Theorem 4 Under the conditions of Theorem 1, if nh4 → 0 and nh2 →∞, then

φ′1α̂ +
∫ 1

0
φ′2(w)β̂(w)dw is an efficient estimator of φ′1α0 +

∫ 1

0
φ′2(w)β(w)dw.

Hence, by taking φ2(t) = 0, we know that α̂ is an efficient estimator of α0; By

taking φ1(t) = 0, then
∫ τ
0 φ′2(t)β̂(t)dt is an efficient estimator of

∫ τ
0 φ′2(t)β(t)dt.

With estimators of β and α, we can use kernel smoothing (Fan et al., 2006)

to estimate the baseline hazard function by λ̂0(t) =
∫

Kb(t− u)dΛ̂0(u), where b

is a given bandwidth and

Λ̂0(t) =
1
n

n∑

i=1

∫ t

0

dNi(u)

n−1
∑n

j=1 Yj(u) exp{β̂(α̂′Xj)′Zj}
. (3.3)

Using Theorem 2 and Corollary 1 and the proof of Fan, et al. (2006), we can

show that λ̂0(t) and Λ̂0(t) are uniformly consistent on (0, τ).
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Though the estimators of the variances of α̂ and β̂(v) are available, the

computation involves the unknown functions s00(t), s10(t; v), s20(t; v), r0(t) and

g(·), which are related to the unknown function β(·) and its derivative, whose

estimates are difficult to obtain. In addition, g(·) does not have a closed-form

and is defined by the integral equation: D3(w) = g(w)Σ(w)− ∫ 1
0 g(v)Ψ(w; v)dv,

making its computation of g(·) even more difficult. An effective remedy is to

leverage a resampling scheme, e.g. a bootstrap method, to approximate the

variances or covariance matrices. Simulations have indicated good performance

of this approach.

4. Estimation of the fixed and varying regression coefficients

As the effects of some covariates may be constant, a mixed model with both

fixed and varying coefficients is desirable. The mixed model is less restrictive than

the standard proportional hazards model and simpler than model (1.1). More-

over, it is possible to obtain a n1/2-consistent estimator for the fixed coefficient

in the mixed model. Martinussen et al. (2002), Tian et al. (2005) and Chen,

Lin and Zhou (2012) examined a mixed model in the setting of the traditional

varying coefficient Cox model where β(·) is a function of the time t or a exposure

variable, and McKeague & Sasieni (1994) studied a similar mixed model in the

setting of an additive hazard model. We consider a mixed model

λ(t) = λ0(t) exp{θ′Z1 + β(X′α)′Z2}. (4.1)

Again, for identifiability, we set β
(m)
1 (X′

nα) = 0 and α
(m)
1 = 1 for all m ≥ 0.

Based on the idea of the global partial likelihood, we estimate θ, α and β(·)
using the following iterative algorithm.

Step 0. Choose initial values of θ(0), α(0) and β(0)(w) for w = X′
1α

(0), . . . ,X′
n−1α

(0).

The first step of Step m. For every given v = X′
1α

(m−1), · · · ,X′
n−1α

(m−1),

we obtain the following equations for δ = (δ′1, δ
′
2)
′:

n∑

i=1

∆i

[
V(m−1)

i (v)K(m−1)
i (v)

−
∑n

j=1 Yj(Ti)V
(m−1)
j (v)K(m−1)

j (v) exp{θ(m−1)′Z1j + V(m−1)
j (v)′δ}∑n

j=1 Yj(Ti) exp{θ(m−1)′Z1j + β(m−1)(X′
jα

(m−1))′Z2j}

]
= 0,(4.2)

where V(m)
i (v) = (Z′2i,Z

′
2i(X

′
iα

(m) − v))′, K
(m)
i (v) = Kh(X′

iα
(m) − v), Yi(t) =
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ESTIMATING SINGLE-INDEX VARYING COEFFICIENT COX MODEL 11

I(Ti ≥ t). Let δ̂1(v) and δ̂2(v) be the solutions of δ1 and δ2. Then β(m)(v) = δ̂1(v)

and β̇(m)(v) = δ̂2(v) for v = X′
1α

(m−1), · · · ,X′
n−1α

(m−1).

The second step of Step m. For given β(m) and β̇(m), we estimate θ and α

by solving the following partial score function,

n∑

i=1

∆i

[
Xiβ̇

(m)(X′
iα

(m−1))′Z2i

−
∑

k∈R(Ti)
Xkβ̇

(m)(X′
kα

(m−1))′Z2k exp{θ(m−1)′Z1k + β(m)(X′
kα)′Z2k}∑

k∈R(Ti)
exp{θ(m−1)′Z1k + β(m)(X′

kα)′Z2k}

]
= 0.

n∑

i=1

∆i

[
Z1i −

∑
k∈R(Ti)

Z1k exp{θ′Z1k + β(m)(X′
kα

(m−1))′Z2k}∑
k∈R(Ti)

exp{θ′Z1k + β(m)(X′
kα

(m−1))′Z2k}

]
= 0. (4.3)

Repeat the above steps for m = 1, 2, . . . till θ(m), α(m) and β(m)(X′
iα

(m))

(i = 1, . . . , n) converge. Following similar arguments to those for Theorems 1–4,

we can establish the uniform consistency, asymptotic normality and semipara-

metric efficiency of the resulting estimators for θ, α and β(·), which are displayed

in Theorems 5–8 of Supplementary Material. The proofs of Theorem 5–8 are

analogous to those of Theorems 1–4 and ignored in this paper.

5. Simulation studies

In this section, we investigate the performance of the proposed global partial

likelihood estimator (GPLE). The performance of the estimator β̂(·) is assessed

via the weighted mean squared errors, WMSE = n−1
g

∑p
j=1

∑ng

k=1 aj{β̂j(wk) −
βj(wk)}2, where aj is reciprocal to the sample variance of βj(wk), wk (k =

1, . . . , ng) are the grid points at which the functions β(·) are estimated. We assess

α̂ by bias, standard deviation (SD) and the root of mean square errors (RMSE).

In the following examples, the Epanechnikov kernel will be used, ng = 60.

We adopt a similar setting as Fan et al. (2006) and consider a varying-

coefficient model, λ(t) = 4t3 exp[b{Z1(t), Z2,W}], with b{Z1(t), Z2,W} = 0.5W (1.5−
W )Z1(t) + sin(2W )Z2 + 0.5{exp(W − 1.5) − exp(−1.5)}, where the covariate

Z1(t) = Z1I(t ≤ 1)/4 + Z1I(t > 1) is time-dependent, and Z1 and Z2 are

jointly normal with correlation 0.5, each with mean 0 and standard deviation

5; W = X′α, X = (X1, X2, X3)′ and α = (1, 1, 1)′, X1, X2 and X3 are in-

dependent, both X1 and X2 are binary covariates that take the value 1 for

one half of the subjects and 0 for the other half, X3 is a random variable uni-
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formly distributed on [0, 1]. The censoring variable C given (Z1, Z2,W ) is dis-

tributed uniformly on [0, a(Z1, Z2,W )], where a(Z1, Z2,W ) = c1I(b(Z1, Z2,W ) >

b0)+ c2I(b(Z1, Z2,W ) ≤ b0) with b0 the mean function of b(Z1, Z2,W ). The con-

stants c1 = 0.8 and c2 = 20 are chosen so that about 30%-40% of the data are

censored in each region of the function a(·). We conducted 200 simulations with

a sample size of 400. To investigate the efficiency of the proposed method, we

also examine its performance in comparison with the local partial likelihood

estimator (LPLE), in which the varying-coefficient functions are estimated by

maximizing the local partial likelihood function (2.3).

Figure 5.1 depicts the distribution of the weighted mean squared errors over

the 200 replications, using the proposed global partial likelihood estimator with

the optimal bandwidth h = 0.3 and the local partial likelihood estimator with

its optimal bandwidth h = 0.6.

GPLE LPLE

0.0
0.5

1.0
1.5

2.0
2.5

Performance comparisons for GPLE and LPLE

Figure 5.1: Boxplots of the weighted mean squared errors over 200 replications using the
global partial likelihood estimator (GPLE) with the optimal bandwidth h = 0.3, and the
local partial likelihood estimator (LPLE) with the optimal bandwidth h = 0.6.

The minimum weighted mean squared error of the GPLE likelihood estimator

is smaller than that of the LPLE. The optimal bandwidth for the GPLE is smaller

than that for the LPLE, because the amount of data used by the GPLE is more
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than that used by the LPLE with the same bandwith, the local partial likelihood

estimator needs to compensate for its lower data usage by enlarging the included

range of data. In support of this conclusion, Table 5.1 presents the empirical

standard deviations of 200 estimated values of β̂1(w), β̂2(w) and β̂3(w) using the

global partial likelihood estimator and the local partial likelihood estimator with

h = 0.5. We take w = 0.3, 0.75, 1.5, 2.25 and 2.7, corresponding to the 10th,

25th, 50th, 75th and 90th percentiles of the distribution of W . Table 5.1 reveals

that the estimated variance of the GPLE is smaller than that of the LPLE in all

cases.

Table 5.1: Standard deviations of the global partial likelihood estimator (GPLE) and
the local partial likelihood estimator (LPLE) with bandwidth 0.5.

Function Method w =0.3 0.75 1.5 2.25 2.70
β1 GPLE 0.0854 0.1030 0.1481 0.1934 0.2347

LPLE 0.1462 0.1557 0.4348 0.6590 0.7331
β2 GPLE 0.0530 0.0478 0.0310 0.1147 0.1958

LPLE 0.0825 0.0969 0.0773 0.2856 0.5375
β3 GPLE 0.0639 0.0942 0.0377 0.0926 0.0895

LPLE 0.1821 0.2427 0.2085 0.2233 0.2487

Table 5.2: The GPLE and LPLE for the regression coefficients.

GPLE LPLE
h = 0.2 h = 0.3 h = 0.5 h = 0.5 h = 0.6 h = 0.7 h = 0.9

α2 Bias -0.0047 -0.0027 -0.0026 -0.0035 -0.0064 -0.0119 -0.0239
SD 0.0224 0.0198 0.0204 0.0458 0.0423 0.0392 0.0417

RMSE 0.0229 0.0200 0.0205 0.0459 0.0428 0.0410 0.0481
α3 Bias 0.0281 0.0285 0.0387 -0.0015 -0.0057 -0.0268 -0.0849

SD 0.0577 0.0478 0.0410 0.1250 0.0729 0.0937 0.0839
RMSE 0.0641 0.0556 0.0564 0.1251 0.0731 0.0974 0.1194

To estimate the regression coefficient α, we take the bandwidth 0.8h, where

h is the bandwidth to estimate the coefficient functions. Table 5.2 presents bias,

SD and RMSE over the 200 replications, using the proposed global partial likeli-
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hood estimator with bandwidth h = 0.2, 0.3, 0.5 and the local partial likelihood

estimator with bandwidth h = 0.5, 0.6, 0.7, 0.9. Table 5.2 shows that the GPLE

for the regression coefficient is not sensitive to the selection of the bandwidth,

while the LPLE of the regression coefficient is moderately sensitive to the selec-

tion of the bandwidth. Hence the LPLE may require an accurate estimator of the

bandwidth to estimate the regression coefficients. In addition, both the RMSE

and the SD of the global partial likelihood estimator are smaller than those of the

local partial likelihood estimator in all of the presented cases, suggesting that the

global partial likelihood estimator for the regression coefficient is indeed better.

We also noted that the GPLE method has discrepancy between SD and RMSE,

especially when h is large, suggesting that the bandwidth to estimate α3 at rate

n−1/2 may be less than 0.3.

6. Analysis of A Multiple Myeloma Trial

We apply the proposed method to analyze a clinical trial on newly diagnosed

multiple myeloma patients who were randomized to receive two treatments, to-

tal therapy II and total therapy III, respectively (Shaughnessy et al., 2007).

Survival times were collected for 307 patients in the total therapy II (tt2) arm

(Z = 1), where 189 deaths were observed (38.4% censoring) with a median

follow-up time of 56 months, and for 170 patients in the total therapy III (tt3)

arm (Z = 0), where 136 deaths were observed (20% censoring) with a median

follow-up time of 37 months. A number of clinical and laboratory features that

may provide prognostic information, including beta2-microglobulin (b2m), albu-

min (alb), hemoglobin level (hgb), antigen-presenting cells (apcs), bone marrow

plasma cells (bmpc), magnetic resonance imaging (mri) and cytokines (cyto),

were collected in the study. The goals of the analysis were to investigate whether

these biomarkers would be predictive of patients’ survival and how the effect of

the treatment varies with the biomarkers if it does. The results may provide

some clinical guidance for treatment selection as in general tt3 is more intensive

than tt2 and could incur more toxicities.

In order to evaluate the prognostic significance of biomarkers, we set X =

(b2m, alb, hgb, aspc, bmpc, mri, cyto) in patients treated with tt2 and tt3, and

fit the model

λ(t) = λ0(t) exp{β1(α′X) + β2(α′X)Z}. (6.1)
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We assume the same index α′X for different therapies in the model (6.1). To

check the reasonableness of the assumption, we consider the model

λ(t) = λ0(t) exp{β1(α′1X) + β2(α′2X)Z}. (6.2)

We approximate βk(·), k = 1, 2 by B−spline and then estimate αk and βk(·)
by maximizing the partial likelihood function. If the given model (6.1) fits the

data, α1 and α2 should agree well. Perhaps due to the relatively large number

of parameters to estimate, we did not obtain convergent estimates based on the

model (6.2) even when β1(·) and β2(·) were approximated by B-spline with few

knots. As a remedy, we reduced the dimension of X by the principle component

analysis. As the standard deviations of the 7 principle components for X are

32.87, 14.54, 13.50, 4.80, 1.53, 0.52, 0.46, we took the first three components as the

covariates in the model (6.2). We then use the B-spline of order 3 and 8 equally

spaced knots along the direction of α′1X [for estimating β1(·) ]and α′2X [for β2(·)].
The resulting estimates for α1 and α2 are displayed in Table 6.3. Table 6.3 shows

that α1 and α2 basically agree, hinting that the model (6.1). Developing a formal

test is out of the scope of this project; we plan to report it elsewhere.

Table 6.3: The estimators of α1 and α2 in the model (6.2) when X is the first three
principle components(PC) for Multiple Myeloma data. ‖α1‖ = 1 and ‖α2‖ = 1 for the
identification of the model (6.2).

X = first three PCs
α1 0.1847 -0.9705 -0.1550
α2 0.2577 -0.9554 -0.1445

We estimate the regression coefficients and functions using the proposed

method with bandwidth h = 3.5. The bandwidth h = 3.5 was chosen by K-fold

cross-validation (Tian et al., 2005; Fan et al., 2006) to minimize the predic-

tion error PE(h) =
∫ τ
0

[
Ni(t)− Ê{Ni(t)}

]2
d{∑n

k=1 Nk(t)}, where Ê{Ni(t)} =
∫ t
0 Yi(u) exp{β̂(α̂′Xi)′Zi}dΛ̂0(u) is the estimate of the expected number of fail-

ures up to time t. We used K = 30. To find the optimal bandwidth, we first

specified a sequence of points of h, and at each point we then computed PE(h).

Figure 6.2(a) shows the plot of PE vs h. With h = 3.5, we then obtain regres-
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sion coefficients, coefficient functions and their 95% confidence bands as shown

in Table 6.4 and Figure 6.2, respectively, where the calculation of the standard

errors is carried out using 300 bootstrap resampled datasets, in which each sub-

ject is treated as a resampling unit in order to preserve the inherent features of

the data. The choice of 300 was determined by monitoring the stability of the

standard errors.

Table 6.4: The regression coefficients estimators for Multiple Myeloma data.

Estimated SD p−value
b2m 0.1143 0.0299 0.0001
alb -0.4866 0.1591 0.0022
hgb 0.0228 0.0564 0.6860
aspc 0.0020 0.0065 0.7583
bmpc 0.0014 0.0056 0.8026
mri 0.0167 0.0081 0.0392
cyto 0.8657 0.1015 0.0000

The results can be summarized as follows. First, Figure 6.2(c) shows that

β2(·) is not significantly different from zero function, suggesting that the two

treatments, tt2 and tt3, are not significantly different from each other, and,

hence, the selected biomarkers do not interact with the treatment significantly.

This is an important finding as it reveals that, with the given biomarkers, the

more intensive and potentially more toxic therapy (tt3) may not necessarily offer

survival advantages compared to the less intensive therapy (tt2). To confirm the

conclusion, we also analyze the data using the standard Cox proportional hazard

model with only treatment covariate and without any interaction, the resulting

coefficient estimate is 0.241 with SE= 0.204 and p−value 0.24.

Second, the estimates of hgb, aspc, bmpc are not significant, suggesting that

they may not be predictive biomarkers. The positive estimates of the coefficients

of b2m, mri and cyto and the negative estimate of the coefficient of alb in Table

6.4, along with the monotone increasing function of β1(·) across zero at around

W = 0 as depicted in Figure 6.2(b), show that the biomarkers b2m, alb, mri

and cyto are significantly related to patients’ survival. Specifically, larger values

of b2m, mri, cyto and lower values of alb increase the risk of death, while lower
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Figure 6.2: The estimated curves and their 95% pointwise confidence bands with h = 3.5.

values of b2m, mri, cyto and larger values of alb reduce the risk of death. The

results have confirmed the hypotheses proposed in Shaughnessy et al. (2007),

and could lead to more precise risk classifications.

7. Final Remarks

To properly identify biomarkers for risk stratification and treatment selection

for individual patients, we have proposed a single-index varying coefficients haz-

ards model. Our model accommodates multiple predictive biomarkers and allows

nonparametric interactions between the multiple biomarkers and the treatment.

To increase efficiency, we have proposed to apply a global partial likelihood

for inference, and have obtained appealing statistical properties, including con-

sistency, asymptotic normality and semiparametric efficiency. Simulation studies

have verified the finite sample performance; we have applied the proposed method

to study a clinical trial on multiple myeloma and have gained some biological in-

sight. In our numerical experiments, we used the LPLE estimates as the initial

values for the Newton-Raphson algorithm and the convergence was often achieved

within 3-5 step. The added computational burden is relatively small.

There are, however, several opportunities for future research. First, we have
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focused on only a small number of biomarkers and did not discuss the case with

thousands of genomic expression profiles in the dataset. Including genomic infor-

mation in the construct of predictive biomarkers could potentially be useful for

personalized medicine and efficient for risk stratification. However, major effort

is needed to extend our proposed work to high dimensional settings with with

treatment and biomarker interactions. Second, the proposed model requires the

same single index to be included in all of the regression coefficient function. It

would be necessary to extend our work to accommodate multiple indices, espe-

cially in the presence of high-dimensional markers. The sliced inverse regression

(SIR) could potentially be a useful approach and we are currently investigating

its usage in our setting.
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Appendix: Notations, Conditions and Proofs for Theorems 1-4

Let C0 = {δ(v) = (δ1(v), · · · , δp(v)) : v ∈ [0, 1], δ1(0) = 0, δ(v) is continuous on [0, 1]},
Θ be support of α and f(v;α) be the conditional density function of X′α. Denote

W (α, δ2) = δ2(X′α)′Z, µi =
∫

xiK(x)dx, νi =
∫

xiK2(x)dx,

P (t | z,x) = Pr(T ≥ t | Z = z,X = x),

Γ(z,x) =
∫ τ
0 P (t | z,x)λ0(t)dt, s00(t;α, δ1) = E [P (t | Z,X) exp{δ1(X′α)′Z}] ,

s10(t;α, δ1, v) = E [ZP (t | Z,X) exp{δ1(v)′Z} | X′α = v] f(v;α),

s20(t;α, δ1, v) = E [ZZ′P (t | Z,X) exp{δ1(v)′Z} | X′α = v] f(v;α),

s11(t;α, δ1, v) = E [ZX′P (t | Z,X) exp{δ1(v)′Z} | X′α = v] f(v;α),

r0(t; α1, α2, δ1, δ2) = E [P (t | Z,X)XW (α1, δ2) exp{δ1(X′α2)′Z}] ,
r1(t;α1, α2, δ1, δ2, v) = E [P (t | Z,X)XW (α1, δ2) exp{δ1(v)′Z}Z′ | X′α2 = v] f(v;α2),

m1(t) = E
[
P (t | Z,X) exp{β(X′α0)′Z}β̇(X′α0)′ZX

]
,

m2(t) = E
[
P (t | Z,X)XX′ exp{β(X′α0)′Z}{β̇(X′α0)′Z}2

]
,

κ(t, v) = E
[
P (t | Z,X)ZX′ exp{Z′β(v)}Z′β̇(v) | X′α0 = v

]
f(v;α0),

D1 =
∫ τ
0

{
r0(t)m1(t)′

s00(t) −m2(t)
}

λ0(t)dt, D2(v) =
∫ τ
0

{
s10(t;v)m1(t)′

s00(t) − κ(t, v)
}

λ0(t)dt,

D3(v) =
∫ τ
0

{
r0(t)s10(t;v)′

s00(t) − r1(t; v)
}

λ0(t)dt, Σ(v) =
∫ τ
0 s20(t; v)λ0(t)dt,

Ψ(w; v) =
∫ τ
0

[
s10(t;v)s10(t;w)′

s00(t) −D2(v)D−1
1

{
r0(t)s10(t;w)′

s00(t) − r1(t;w)
}]

λ0(t)dt,

r0(t) = r0(t;α0, α0, β, β̇), r1(t; v) = r1(t;α0, α0, β, β̇, v), s00(t) = s00(t; α0, β),

s10(t; v) = s10(t;α0, β, v), s20(t; v) = s20(t; α0, β, v) and s11(t; v) = s11(t; α0, β, v).

Let g satisfy the following integral equation in C0: D3(w) = g(w)Σ(w) −∫ 1
0 g(v)Ψ(w; v)dv.

Conditions:

(C1) The kernel function K(x) is a symmetric density function with compact

support [−1, 1] and continuous derivative.

(C2) τ is finite, Pr(T > τ) > 0 and Pr(C = τ) > 0.
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(C3) Z and X are bounded with compact support; and P (C = 0 | Z =

z,X = x) < 1;

(C4) α ∈ Θ, where Θ is a bounded compact set.

(C5) The density function f(x;α) of X′α is bounded away from zero and

has a continuous second-order derivative for any α ∈ Θ. The function β(v),

s00(t; α, δ1), s10(t; α, δ1, v), s11(t;α, δ1, v), s20(t;α, δ1, v), r0(t;α, α, δ1, δ2), r1(t;α, α, δ1, δ2, v)

and κ(t, v) are twice continuously differentiable of v ∈ [0, τ ] for any t ∈ [0, τ ],

α ∈ Θ, δ1 ∈ C0 and bounded δ2.

(C6) There exists a unique root (α, δ1) to
∫ τ

0
r0(t; α, α0, β, δ2)λ0(t)dt−

∫ τ

0
r0(t;α, α, δ1, δ2)

s00(t)
s00(t; α, δ1)

λ0(t)dt = 0,

∫ τ

0
s10(t; v)λ0(t)dt−

∫ τ

0
s10(t;α, δ1, v)

s00(t)
s00(t; α, δ1)

λ0(t)dt = 0,

in δ1 ∈ C0 and α ∈ Θ for any bounded δ2.

(C7) h2 log(n) → 0 and nh3 →∞.

The regularity condition (C5) requires the density function of X′α to be

bounded away from zero and has a continuous second-order derivative for any

α. Therefore, the proposed framework cannot deal with the situation when all

components of X are discrete.

Proof of Theorem 1.

For any vector functions δ1(v) and δ2(v), set

Un(α, δ1, δ2; v) = {Un1(α, δ1, δ2)′, Un2(α, δ1, δ2, v)′}′,
where Un1(α, δ1, δ2) = n−1

∑n
i=1

∫ τ
0

[
XiWi(α, δ2)− Rn0(t;α,δ1,δ2)

Sn0(t;α,δ1)

]
dNi(t),

Un2(α, δ1, δ2, v) = n−1
∑n

i=1

∫ τ
0

[
Vi(v;α)Ki(v;α)− Sn1(t;α,δ,v)

Sn0(t;α,δ1)

]
dNi(t),

Wi(α, δ2) = δ2(X′
iα)′Zi, Vi(v;α) = (Z′i,Z

′
i(X

′
iα−v)/h)′, Ki(v;α) = Kh(X′

iα−v),

δ = (δ′1, hδ′2)
′, Sn0(t;α, δ1) = n−1

∑n
j=1 Yj(t) exp{δ1(X′

jα)′Zj},
Sn1(t;α, δ, v) = n−1

∑n
j=1 Yj(t)Vj(v;α)Kj(v;α) exp{Vj(v;α)′δ(v)},

Rn0(t;α, δ1, δ2) = n−1
∑n

j=1 Yj(t)XjWj(α, δ2) exp{δ1(X′
jα)′Zj}.

Under the varying coefficient Cox model (1.1), we have

Un(α, δ1, δ2; v) = u(α, δ1, δ2; v) + op(1) ≡ {u1(α, δ1, δ2)′, u2(α, δ1, v)′, 0}′ + op(1),

where u1(α, δ1, δ2) =
∫ τ
0 r0(t;α, α0, β, δ2)λ0(t)dt−∫ τ

0 r0(t;α, α, δ1, δ2)
s00(t)

s00(t;α,δ1)λ0(t)dt,
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u2(α, δ1, v) =
∫ τ
0 s10(t; v)λ0(t)dt− ∫ τ

0 s10(t;α, δ1, v) s00(t)
s00(t;α,δ1)λ0(t)dt.

It follows that Un(α̂, β̂,
̂̇
β; v) = 0 and u(α0, β, δ2; v) = 0 for any bounded

function δ2. By Condition (C6), (α0, β) is a unique root to u(α, δ1, δ2; v) = 0 in

δ1 ∈ C0 and α ∈ Θ for any bounded δ2.

Define Bn = {δ1 : ‖δ1‖ ≤ D, ‖δ1(v1)− δ1(v2)‖ ≤ d[|v1 − v2|+ bn], v1, v2 ∈ [0, 1]}
for some constants D > 0 and d > 0, where bn = h2 + (nh)−1/2(log n)1/2. To

show the uniform consistency of β̂ and α̂, it suffices to prove (i)-(iii):

(i) For each continuous function vector δ1 and any bounded function vector δ2,

sup0≤v≤1 ‖Un(α, δ1, δ2; v)− u(α, δ1, δ2; v)‖ = op(1).

(ii) sup0≤v≤1,α∈Θ,δ1∈Bn,δ2∈R ‖Un(α, δ1, δ2; v)−u(α, δ1, δ2; v)‖ = op(1), where R is

the set of functions on [0, 1], which are bounded uniformly.

(iii) P{β̂ ∈ Bn} → 1.

Once (i)-(iii) are established, using an idea similar to the Arzela-Ascoli theo-

rem, we can show that, for any subsequence of {(α̂, β̂)}, there exists a further con-

vergent subsequence {(α̂n, β̂n)} such that β̂n(v) → β∗(v) in probability uniformly

over [0, 1] and α̂n → α∗. It is seen that β∗ ∈ C0. Observe that u(α∗, β∗, ̂̇β; v) =

Un(α̂, β̂,
̂̇
β; v)−{Un(α̂, β̂,

̂̇
β; v)−u(α̂, β̂,

̂̇
β; v)}−{u(α̂, β̂,

̂̇
β; v)−u(α∗, β∗, ̂̇β; v)} and

Un(α̂, β̂,
̂̇
β; v) = 0, where ̂̇

β(·) is the estimator of β̇(·), the derivative of β(·). It

follows from (ii) and (iii) that u(α∗, β∗, ̂̇β; v) = 0. Since for any bounded function

δ2, u(α, δ1, δ2; v) = 0 has a unique root at (α0, β), we have α∗ = α0 and β∗ = β.

The uniform consistency of (α̂, β̂) is proved.

Proofs of (i) and (ii). Observe that Z and X are bounded. The proofs of (i)

and (ii) can be obtained by using kernel theory (Fan and Gijbels, 1996; Fan, Lin

and Zhou,2006) and following the arguments in Chen et al. (2010).

Proof of (iii). Let p be the dimension of Z. Denote Ŝn1(t; v) = Sn1(t; α̂, β̂, h
̂̇
β, v),

Ŝn1,1 and Un2,1 to be the first p-elements of Ŝn1 and Un2, respectively. Given any

v1 ∈ [0, 1] and v2 ∈ [0, 1] with |v1 − v2| < h, since Un2(α̂, β̂,
̂̇
β; v1) = 0 and

Un2(α̂, β̂,
̂̇
β; v2) = 0, we have

0 = Un2,1(α̂, β̂,
̂̇
β; v1)− Un2,1(α̂, β̂,

̂̇
β; v2)

= d1(v1)− d1(v2)−
∫ τ

0

Ŝn1,1(t; v1)− Ŝn1,1(t; v2)

Sn0(t; α̂, β̂)
dN(t) + Op(bn), (8.1)

where d1(v) = E [ZΓ(Z,X) exp{β(X′α0)′Z} | X′α̂ = v] f(v; α̂) and N(t) = n−1
∑n

i=1 Ni(t).

Statistica Sinica: Newly accepted Paper 
(accepted version subject to English editing)



24 HUAZHEN LIN, MING T. TAN AND YI LI

Using Taylor expansion and the kernel theory (Horowitz, 1996), we have

Ŝn1,1(t; v1)− Ŝn1,1(t; v2) = n−1
n∑

i=1

ZiKi(v1; α̂)Yi(t) exp{β̂(v1)′Zi}Z′i
[
β̂(v1)− β̂(v2)

]

+n−1
n∑

i=1

Zi
K̇ {(X′

iα̂− v1)/h}
h2

Yi(t) exp{β̂(v1)′Zi}(v2 − v1) + Op(bn + (v2 − v1)2)

= s20(t; α̂, β̂, v1)
{

β̂(v1)− β̂(v2)
}
− ∂s10(t; α̂, β̂, v1)

∂v
(v2 − v1) + Op(bn + (v2 − v1)2),(8.2)

uniformly in t ∈ [0, τ ] and v1, v2 ∈ [0, 1] such that |v1 − v2| < h. Substituting

(8.2) into (8.1) and using Un2(α̂, β̂, h
̂̇
β; v1)− Un2(α̂, β̂, h

̂̇
β; v2) = 0, we have

∫ τ

0
s20(t; α̂, β̂, v1)

s00(t)

s00(t; α̂, β̂)
λ0(t)dt

{
β̂(v1)− β̂(v2)

}
= d1(v1)− d1(v2)

+
∫ τ

0

∂s10(t; α̂, β̂, v1)
∂v

s00(t)

s00(t; α̂, β̂)
λ0(t)dt(v2 − v1) + Op(bn + (v2 − v1)2).

Then, (iii) holds by the conditions on Z, X, s10(t;α, δ1, v) and f(v;α).

Proofs of Theorems 2 and 3.

Denote an = ‖α̂−α0‖, cn = supv∈[0,1] ‖β̂(v)−β(v)‖, dn = supv∈[0,1] ‖ĥ̇
β(v)−

hβ̇(v)‖ and en = h2+(nh)−1/2. Let Mi(t) = Ni(t)−
∫ t
0 P (t | Zi,Xi) exp{β(X′

iα0)′Zi}λ0(t)dt.

The proof consists of the following four steps.

Step (i). Giving the asymptotic expression:

Un1(α̂, β̂,
̂̇
β)− Un1(α0, β, β̇) = D1 (α̂− α0) +

∫ 1

0
D3(w)

{
β̂(w)− β(w)

}
dw

+Op((an + cn + dn/h)(an + cn)) + op(n−1/2). (8.3)

Denote Ŵj = Wj(α̂,
̂̇
β), Wj = Wj(α0, β̇), R̂n0(t; α, δ1) = 1

n

∑n
j=1 Yj(t)XjŴj exp{δ1(X′

jα)′Zj}
and Rn0(t;α, δ1) = n−1

∑n
j=1 Yj(t)XjWj exp{δ1(X′

jα)′Zj}, we have

Un1(α̂, β̂,
̂̇
β)− Un1(α0, β, β̇)

= n−1
n∑

i=1

∫ τ

0

[
XiŴi −XiWi − R̂n0(t;α0, β)

Sn0(t; α0, β)
+

Rn0(t;α0, β)
Sn0(t;α0, β)

]
dMi(t)

+
∫ τ

0

r0(t)
s00(t)

{
Sn0(t; α̂, β̂)− Sn0(t;α0, β)

}
λ0(t)dt

−
∫ τ

0

{
R̂n0(t; α̂, β̂)− R̂n0(t;α0, β)

}
λ0(t)dt + Op((an + cn)2). (8.4)
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By large number theory, kernel theory and Taylor series expansion,

Sn0(t; α̂, β̂)− Sn0(t; α0, β) = m1(t)′ (α̂− α0)

+
∫ 1

0
s10(t;w)′

[
β̂(w)− β(w)

]
dw + Op((an + cn)2),

R̂n0(t; α̂, β̂)− R̂n0(t;α0, β) = m2(t) (α̂− α0)

+
∫ 1

0
r1(t;w)′

[
β̂(w)− β(w)

]
dw + Op{(an + cn)(an + cn + dn/h)}.(8.5)

Furthermore, similar to the proof of Theorem 1, we can show that supw∈(0,1) ‖̂̇β(w)−
β̇(w)‖ → 0. Together with ‖α̂− α0‖ → 0, (8.5) and (8.4), we get (8.3).

Step (ii). Denote ζn(v) = [β̂(v)′−β(v)′, h{̂̇β(v)− β̇(v)}′]′. Giving expression:

Un2(α̂, β̂,
̂̇
β, v)− Un2(α0, β, β̇, v) = D2(v) (α̂− α0) (1, 0)′ −

(
Σ(v) 0

0 µ2Σ(v)

)
ζn(v)

+
∫ 1

0

∫ τ

0

s10(t; v)s10(t; w)′

s00(t)
λ0(t)dt

[
β̂(w)− β(w)

]
dw(1, 0)′

+Op(a2
n/h + c2

n + d2
n + ancn/h + andn/h + cndn + anen/h + cnbn + dnbn). (8.6)

By large number theory, kernel theory and Taylor series expansion, we get,

Un2(α̂, β̂,
̂̇
β, v)− Un2(α0, β, β̇, v) = −

∫ τ

0

∂s11(t; v)
∂v

λ0(t)dt (α̂− α0) (1, 0)′

+
∫ τ

0
s10(t; v)

[
Sn0(t; α̂, β̂)− Sn0(t;α0, β)

s00(t)

]
λ0(t)dt(1, 0)′

−
∫ τ

0

[
Sn1(t; α̂, β̂, h

̂̇
β, v)− Sn1(t; α0, β, hβ̇, v)

]
λ0(t)dt

+Op

[
(an + h2)

{
an + cn + dn + h + (nh3)−1/2

}]
+ Op

{
(an + cn + dn)n−1/2

}
,

(8.7)

where

Sn1(t; α̂, β̂, h
̂̇
β, v)− Sn1(t;α0, β, hβ̇, v) =

{
κ(t, v)− ∂s11(t; v)

∂v

}
(α̂− α0)(1, 0)′

+

(
s20(t; v) 0

0 µ2s20(t; v)

)
ζn(v) + Op{an(an + cn + dn + en)/h}

+Op {(cn + dn)(bn + cn + dn)} . (8.8)

Substituting (8.8) and (8.5) into (8.7), we get (8.6).
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Step (iii). Giving asymptotic expressions of Un1(α0, β, β̇) and Un2,1(α0, β, β̇, v).

Obviously,

Un1(α0, β, β̇) = n−1
n∑

i=1

∫ τ

0

[
XiWi − r0(t)

s00(t)

]
dMi(t) + op(n−1/2), (8.9)

Un2,1(α0, β, β̇, v) = An(v) + Vn(v), (8.10)

where An(v) = n−1
∑n

i=1

∫ τ
0

[
ZiKi(v;α0)− Sn1,1(t;α0,β,hβ̇,v)

Sn0(t;α0,β)

]
dMi(t),

Vn(v) = n−1
∑n

i=1

∫ τ
0

[
ZiKi(v;α0)− Sn1,1(t;α0,β,hβ̇,v)

Sn0(t;α0,β)

]
Yi(t) exp{Z′iβ(X′

iα0)}λ0(t)dt.

Observe Vn(v) = n−1
∑n

i=1

∫ τ
0 ZiKi(v;α0)Yi(t) [exp{Z′iβ(X′

iα0)}
− exp{Z′iβ(v) + Z′iβ̇(v)(X′

iα0 − v)}
]
λ0(t)dt, it can be shown that,

Vn(v) =
1
2
h2µ2Σ(v)β̈(v) + op(h2), (8.11)

and

(nh)1/2An(v) = n−1/2h1/2
n∑

i=1

∫ τ

0

[
ZiKi(v;α0)− s10(t; v)

s00(t)

]
dMi(t) + op(en).(8.12)

The martingale central limit theorem implies that (nh)1/2An(w) is asymptotically

normal with mean zero and covariance matrix ν0Σ(v).

Step (iv). Giving asymptotic expressions of

D1 (α̂− α0) = n−1
n∑

i=1

∫ τ

0
ξi(t)dMi(t) + op(n−1/2), (8.13)

where ξi(t) =
∫ 1
0 g(v) s10(t;v)

s00(t) dv +
{∫ 1

0 g(v)D2(v)D−1
1 dv − I

}{
XiWi − r0(t)

s00(t)

}
−

Zig(X′
iα0).

By (8.3), (8.9) and Un1(α̂, β̂,
̂̇
β) = 0, we get

α̂− α0 = −D−1
1 n−1

n∑

i=1

∫ τ

0

[
XiWi − r0(t)

s00(t)

]
dMi(t)−D−1

1

∫ 1

0
D3(w)

{
β̂(w)− β(w)

}
dw

+Op((an + cn + dn/h)(an + cn)) + op(n−1/2). (8.14)
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Substituting this into (8.6), by Un2,1(α̂, β̂,
̂̇
β; v) = 0 and (8.10), we have

n−1
n∑

i=1

∫ τ

0

[{
ZiKi(v;α0)− s10(t; v)

s00(t)

}
−D2(v)D−1

1

{
XiWi − r0(t)

s00(t)

}]
dMi(t)

= −
∫ 1

0
Ψ(w; v)

{
β̂(w)− β(w)

}
dw + Σ(v)

{
β̂(v)− β(v)

}
− 1

2
h2µ2Σ(v)β̈(v)

+op(n−1/2 + h2) + Op(a2
n/h + c2

n + d2
n + ancn/h + andn/h + cndn + anen/h + cnbn + dnbn).

(8.15)

By (8.15), we have,

cn = sup
v∈[0,1]

‖β̂(v)− β(v)‖ = Op{(nh)−1/2 + h2 + a2
n/h + ancn/h + andn/h + anen/h}.

(8.16)

Similarly,

sup
v∈[0,1]

h‖̂̇β(v)− β̇(v)‖ = Op{(nh)−1/2 + a2
n/h + ancn/h + andn/h + anen/h}+ op(h2).(8.17)

Further using (8.15), we get

∫ 1

0
D3(w)

{
β̂(w)− β(w)

}
dw =

1
2
h2µ2

∫ 1

0
g(v)Σ(v)β̈(v)dv

+n−1
n∑

i=1

∫ τ

0

∫ 1

0
g(v)

[{
ZiKi(v;α0)− s10(t; v)

s00(t)

}
−D2(v)D−1

1

{
XiWi − r0(t)

s00(t)

}]
dvdMi(t)

+op(n−1/2 + h2) + Op(a2
n/h + c2

n + d2
n + ancn/h + andn/h + cndn + anen/h + cnbn + dnbn).(8.18)

Substituting (8.18) into (8.14), noting that
∫ 1
0 g(v)ZiKi(v;α0)dv = Zig(X′

iα0) +

Op(h2), the condition nh4 → 0, (8.16) and (8.17), we obtain (8.13). Hence, the

proof of Theorem 2 is completed. Note that

n−1
n∑

i=1

∫ τ

0

[{
−s10(t; v)

s00(t)

}
−D2(v)D−1

1

{
XiWi − r0(t)

s00(t)

}]
dMi(t) = Op(n−1/2),

the proof of Theorem 3 is finished by (8.15), (8.16) and (8.17).

Proof of Theorem 4.

Statistica Sinica: Newly accepted Paper 
(accepted version subject to English editing)



28 HUAZHEN LIN, MING T. TAN AND YI LI

Let Ki(v) = Ki(v;α0) and η(v) = (η′1, η2(v)′)′ satisfy the following integral

equation in η2 ∈ C0:

φ′1 = η′1D1 +
∫ 1
0 η2(w)′D2(w)dw,

φ2(w)′ = η′1D3(w) +
∫ τ
0

∫ 1
0 η2(v)′s10(t;v)dvs10(t;w)′

s00(t) λ0(t)dt− η2(w)′Σ(w).(8.19)

Obviously,

η′1Un1(α0, β, β̇) = n−1
n∑

i=1

∫ τ

0
η′1

[
XiWi − r0(t)

s00(t)

]
dMi(t) + op(n−1/2), and

∫ 1

0
η2(w)′Un2,1(α0, β, β̇, w)dw =

1
n

n∑

i=1

∫ τ

0

[
η2(X′

iα0)′Zi − Sη2(t)
Sn0(t;α0, β)

]
dMi(t) + Op(h2),

where Sη2(t) = 1
n

∑n
i=1 η2(X′

iα0)′ZiYi(t) exp{β(X′
iα0)′Zi}. Denote Υ(α, δ1, δ2, v) =

(Un1(α, δ1, δ2)′, Un2,1(α, δ1, δ2, v)′)′. Using the martingale central limit theorem,

we have that

n1/2

∫ 1

0
η(w)′Υ(α0, β, β̇, w)dw → N(0, σ2), (8.20)

where σ2 = E

{∫ τ
0

[
η′1

{
XW − r0(t)

s00(t)

}
+ {η2(X′α0)′Z− η2(t)}

]2
P (t|X,Z)

× exp(β(X′α0)′Z)λ0(t)dt} and η2(t) =
E

{
P (t|X,Z)η2(X′

α0)′Z exp{β(X′
α0)′Z}

}

s00(t) . On

the other hand, by (8.3), (8.6) and the condition nh4 → 0, we have

η′1
(
Un1(α̂, β̂,

̂̇
β)− Un1(α0, β, β̇)

)

= η′1D1 (α̂− α0) +
∫ 1

0
η′1D3(w)

{
β̂(w)− β(w)

}
dw + op(n−1/2),

∫ 1

0
η2(w)′

(
Un2,1(α̂, β̂,

̂̇
β, w)− Un2,1(α0, β, β̇, w)

)
dw

=
∫ 1

0

{∫ τ

0

∫ 1
0 η2(v)′s10(t; v)dvs10(t; w)′

s00(t)
λ0(t)dt− η2(w)′Σ(w)

}[
β̂(w)− β(w)

]
dw

+
∫ 1

0
η2(w)′D2(w)dw (α̂− α0) + op(n−1/2).

Then by (8.19), we have,
∫ 1

0
η(w)′

[
Υ(α̂, β̂,

̂̇
β, w)−Υ(α0, β, β̇, w)

]
dw

= φ′1 (α̂− α0) +
∫ 1

0
φ2(w)′

{
β̂(w)− β(w)

}
dw + op(n−1/2).
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Note that

−
∫ 1

0
η(w)′Υ(α0, β, β̇, w)dw =

∫ 1

0
η(w)′

[
Υ(α̂, β̂,

̂̇
β, w)−Υ(α0, β, β̇, w)

]
dw,

by (8.20), we have

n1/2

[
φ′1 (α̂− α0) +

∫ 1

0
φ2(w)′

{
β̂(w)− β(w)

}
dw

]
→ N(0, σ2). (8.21)

We now consider a parametric sub-model

α = α0 + %η1 and β(w; %) = β(w) + %η2(w), (8.22)

where % is an unknown parameter, and α0, β(w), η1 and η2(w) are fixed parame-

ters or functions. The parameter % can be consistently estimated by the solution

%̂ to the following Cox’s partial likelihood score function

n−1
n∑

i=1

∫ τ

0

[
ςi(%)−

∑n
j=1 Yj(t)ςj(%) exp{$j(%)}∑n

j=1 Yj(t) exp{$j(%)}

]
dNi(t) = 0,

where $j(%) = β(X′
jα0 + %X′

jη1)′Zj + %η2(X′
jα0 + %X′

jη1)′Zj , and

ςi(%) = X′
iη1

{
β̇(X′

iα0 + %X′
iη1) + %η̇2(X′

iα0 + %X′
iη1)

}′
Zi+η2(X′

iα0+%X′
iη1)′Zi.

Obviously, %0 = 0 be the true value of %. It follows from Anderson and Gill

(1982) that

%̂− %0 = σ−2n−1
n∑

i=1

∫ τ

0

[
X′

iη1β̇(X′
iα0)′Zi + η2(X′

iα0)′Zi

−
∑n

j=1 Yj(t)
{
X′

jη1β̇(X′
jα0)′Zj + η2(X′

jα0)′Zj

}
exp{β(X′

jα0)′Zj}∑n
j=1 Yj(t) exp{β(X′

jα0)′Zj}


 dMi(t) + op(n−1/2).

Under the model (8.22), we have that

φ′1 (α̂− α0)+
∫ 1

0
φ2(w)′ {β(w; %̂)− β(w; %0)} dw = (%̂−%0)

[
φ′1η1 +

∫ 1

0
φ2(w)′η2(w)dw

]
,

and using (8.19), we get

φ′1η1 +
∫ 1

0
φ2(w)′η2(w)dw

=
∫ τ

0

{
(E [P (t | Z,X) exp{β(X′α0)′Z} {Wη′1X + η2(X′α0)′Z}])2

s00(t; α0, β)

−E
[
P (t | Z,X) exp{β(X′α0)′Z}

(
η′1XW + η2(X′α0)′Z

)2
]}

λ0(t)dt = −σ2.
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Thus

φ′1 (α̂− α0) +
∫ 1

0
φ2(w)′ {β(w; %̂)− β(w; %0)} dw

= −n−1
n∑

i=1

∫ τ

0

[
X′

iη1β̇(X′
iα0)′Zi + η2(X′

iα0)′Zi

−
∑n

j=1 Yj(t)
{
X′

jη1β̇(X′
jα0)′Zj + η2(X′

jα0)′Zj

}
exp{β(X′

jα0)′Zj}∑n
j=1 Yj(t) exp{β(X′

jα0)′Zj}


 dMi(t) + op(n−1/2)

This gives

n1/2φ′1 (α̂− α0) +
∫ 1

0
φ2(w)′ {β(w; %̂)− β(w; %0)} dw → N(0, σ2),

which is the same as that of n1/2
[
φ′1 (α̂− α0) +

∫ 1
0 φ2(w)′

{
β̂(w)− β(w)

}
dw

]
by

(8.21). As explained by Bickel et al. (1993), φ′1α̂+
∫ 1
0 φ2(w)′β̂(w)dw is an efficient

estimator of φ′1α +
∫ 1
0 φ2(w)′β(w)dw. The proof of Theorem 4 is completed.

The skeleton to prove the consistency of the initial estimators for α

and β(·).

Firstly, for given α ∈ Θ, the model (1.2) is reduced to the model proposed

by Fan et al. (2006). We hence can estimate β(·) and β̇(·) by Fan et al. (2006),

denoted by β̂(·|α) and ̂̇
β(·|α), respectively. To estimate α, we use the partial score

Un(α), which is (2.7) with β(·) and β̇(·) replaced by their estimators β̂(·|α) and
̂̇
β(·|α). Denote the solution of Un(α) = 0 to be α̂. By Fan et al. (2006) and the

uniform law of large numbers (Pollard, 1990), for any given α ∈ Θ, we can show

that β̂(v|α) and ̂̇
β(v|α) converge in probability to nonrandom functions β(v|α)

and β̇(v|α) with β(v|α0) = β(v) and β̇(v|α0) = β̇(v) uniformly in v ∈ [0, 1] and

α ∈ Θ. Furthermore, we also can show that Σn(α) = ∂Un(α)/∂α converges in

probability to a nonrandom function Σ(α) uniformly in α ∈ Θ and obtain Σ(α)

is continuous at α ∈ Θ. Coupling with the assumption of positive definite matrix

Σ(α0), we can conclude that there exists a small neighborhood of α0 inside of

which the eigenvalues of Σn(α) are bounded away from zero for large n and α ∈ Θ.

Note that by the uniform law of large numbers, Un(α0) → 0 in probability. Then

by the inverse function theorem, we have that inside a small neighborhood of α0,
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there exists a unique solution α̂ to Un(α) = 0 for all sufficiently large n. This

also implies that α̂ is consistent and β̂(v|α̂) → β(v|α0) = β(v).

Center of Statistical Research, School of Statistics, Southwestern University of

Finance and Economics, Chengdu, Sichuan, China

E-mail: linhz@swufe.edu.cn; Tel: 86-28-87092330

Department of Biostatistics, Bioinformatics & Biomathematics, Georgetown Uni-

versity, USA

E-mail: mtt34@georgetown.edu

Department of Biostatistics, University of Michigan, USA

E-mail: yili@med.umich.edu

Statistica Sinica: Newly accepted Paper 
(accepted version subject to English editing)




