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Texas A & M University1, University of Maryland Baltimore County2, University of Georgia3

Abstract: The problem of predicting a vector of ordered param-

eters or its part arises in the context of a variety of applications

in measurement error models, signal processing, data disclo-

sure and small area estimation. Often estimators of functions

of the ordered random effects are obtained under strong dis-

tributional assumptions, e.g., normality. We discuss a general-

ized simple shrinkage estimator for predicting ordered random

effects. The proposed approach is distribution free and has sig-

nificant advantage when there is model misspecification. One

of the main contributions is an expression and characterization

of the optimal shrinkage parameter. The expression involves

the Wasserstein distance between two model related distribu-

tions. We provide a framework for estimating the distance

and thereby estimating an empirical version of the oracle opti-

mal estimator. We also evaluate the relative efficiency gain by

comparing the risk for the optimal predictor to that of other

distribution free estimators. Extensive simulation results are

provided to support the theoretical results.

Key words and phrases: Empirical Bayes predictor, Shrinkage,

Order statistics, Linear predictor.

1 Introduction

A common model of interest is

yi = θi + ei, i = 1, 2, . . . ,m (1)
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where σ−1
i ei are assumed to be distributed independently and identically

as H(0, 1), a mean zero unit variance distribution where the constants σi

are assumed to be known. Independent of ei the quantities θi are assumed

to be distributed as G(·−µi), i.e., θi = µi+ui where ui are independently

and identically distributed (iid) as mean zero and finite variance random

variables with distribution G. This model finds wide-spread applications

ranging from measurement error models, signal processing, data disclo-

sure, small area estimation to name a few. In this paper, we develop

methodology for predicting the ordered random effects, θ(i), in the con-

text of model (1).

Model (1) is a special case of the Fay-Herriot model (Fay and Her-

riot; 1979) in small area estimation (SAE), given by where the area

means θi are further modeled using area specific covariate information

xi = (xi1, . . . , xip)
′ and area specific random effects ui as θi = x′iβ + ui.

Following SAE terminology we refer to θ = (θ1, . . . , θm)′ as the vector

of area means. While predicting η(θ) = θ is common, investigators have

also studied prediction of other functions; vector of ranks and empirical

distribution of the area means (Shen and Louis; 1998) , the range of area

means (Judkins and Liu; 2000). Here we are interested in predicting the

vector of order statistics η(θ) = θ() = (θ(1) ≤ θ(2) ≤ · · · ≤ θ(m)). Predic-

tion of the ordered means is significantly harder than prediction of the

linear function of the area means; Pfeffermann (2013). When G and H

are correctly specified, the posterior mean η̂ = E(η(θ)|y) minimizes the

prediction mean squared error (PMSE), R(η̂) = E[(η̂ − η(θ))′(η̂ − η(θ))]

where y = (y1, . . . , ym)′ is the data. When ei
iid∼ N(0, σ2) and θi

iid∼
N(µ, σ2

θ) the Bayes estimator of θ is θ̂B = y − (1− γ)(y − µ1) where

γ =
σ2
θ

σ2
θ + σ2

and 1 is a vector of ones. The empirical Bayes (EB) estimator is obtained

by replacing µ by ȳ θ̂EB = y − (1 − γ)(y − ȳ1), which is also the Best

Linear Unbiased Predictor (BLUP) in the class of all {(H,G)} with

finite second moments. Brown (1971), Brown and Greenshtein (2009)

have looked at Bayes/empirical Bayes estimation under general prior.
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The plugged-in version η(θ̂B) however is not the Bayes predictor and

may result in substantial bias in prediction. Wright, Stern and Cressie

(2003) considered a Bayesian scheme for predicting ordered means. How-

ever, the procedure is sensitive to prior choice and requires substantial

computation.

When G and H are partially specified up to lower order moments

Stein’s shrinkage estimators (Stein, 1956) can be used for a variety of

parametric functions. However, for the ordered parameters no suitable

predictors are available. When error variances are assumed to be equal,

Malinovsky and Rinott (2010) proposed a class of shrinkage estimators:

θ(i)(λ) = λy(i) + (1− λ)µ. (2)

They showed that the risk minimizing value of λ lies in the interval

[γ,
√
γ] and based on simulation evidence, conjectured the asymptotic

optimal value to be
√
γ. The weight

√
γ also appears in Louis (1984),

who proposed Bayes and empirical Bayes predictors that minimize an

expected distance function between the empirical cdf of predictors of θ

and empirical cdf of its true value.

We use similar simple shrinkage estimators under model (1) and derive

expressions for the optimal shrinkage parameter. The optimum estimator

is shown to have good finite sample performance with respect to mean

squared prediction error, even in comparison to the “best” estimator

when G and H are known to be normal. Thus, the main contribution of

the paper is to provide an estimator that can predict the order param-

eters with reasonable accuracy and does not make strong distributional

assumptions. For the equal error variance case we show that the opti-

mal choice of λ in (2) is not necessarily
√
γ and characterize the cases

when
√
γ is indeed the asymptotically optimal choice for λ. Based on

the derived expression for the optimal value of λ, we propose a new class

of predictors for the ordered parameters. We provide a framework for

estimation of the optimal predictor and illustrate its finite sample per-

formance via simulation.
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2 Prediction of ordered random effects

It is instructive to begin with a special case of model (1) in which the

design variances are all assumed to be equal. Under the assumed model,

constant error variance would imply that the errors are iid. Since we

later consider the case when the error variances are not equal, we do not

separately consider the case where the errors have equal variance but are

not necessarily identically distributed. We assume that θi arise following

some distribution G, with mean µ and variance σ2
θ , but we do not specify

the forms of G and H.

2.1 Prediction in the equal variance model

Assume model (1) with constant design variances, i.e., σ2
1 = · · · = σ2

m =

σ2. Let the marginal distribution of yi be denoted by F which under

the assumed model will have mean µ and variance σ2
y = var(yi) = σ2

θ +

σ2. For prediction of the ordered parameters, we consider the class of

shrinkage predictors (2). Under the squared error loss the PMSE for a

sample of size m is

Rm(λ) = m−1E

(
m∑
i=1

(θ(i) − λy(i) − (1− λ)µ)2

)
.

Based on the theory of ordinary least squares estimators, it is immediate

that the optimal risk minimizing value of λ can be derived as

λ∗m =
m−1E

(∑m
i=1(y(i) − µ)(θ(i) − µ)

)
m−1E

(∑m
i=1(y(i) − µ)2

) . (3)

To investigate the limiting form of the optimal shrinkage coefficient (3)

as m → ∞ and to draw comparison and evaluate the relative efficiency

of the optimal shrinkage coefficient with respect to other predictors we

first define a few quantities. Let W (F,G) be defined as

W(F,G) =
{∫ 1

0
[F−1(t)−G−1(t)]

2
dt
}1/2

denote the L2 Wasserstein metric between the distributions F and G.

The distributions are assumed to have finite variance. We also consider
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the predictors

θ(i)(γ) = γy(i) + (1− γ)µ,

θ(i)(
√
γ) =

√
γy(i) + (1−√γ)µ.

Following the form of the BLUP for the unordered parameters, a nat-

ural choice for the predictor of the ordered quantities would be θ
(2)
() =

(θ(1)(γ) ≤ · · · ≤ θ(m)(γ))′, while the predictor θ
(1)
() = (θ(1)(

√
γ) ≤ · · · ≤

θ(m)(
√
γ))′ would be the form conjectured in Malinovsky and Rinott

(2010) to have the asymptotically optimum performance. The PMSE

associated with the predictors θ
(1)
() and θ

(2)
() are R

(1)
m = Rm(

√
γ) and

R
(2)
m = Rm(γ), respectively. For any estimator of the form θ(i)(λ) de-

fine the relative efficiency with respect to θ(i)(
√
γ) as RE

(1)
m (λ) = R

(1)
m

Rm(λ) .

Similarly, define the relative efficiency of θ(i)(λ) with respect to θ(i)(γ)

as RE
(2)
m (λ) = R

(2)
m

Rm(λ) .

Let the distribution of the standardized observations, yi−µσy
, be F ∗ and

that of the standardized parameters, θi−µ
σθ

, be G∗ where σ2
y = σ2

θ + σ2.

Suppose the following conditions are satisfied.

• (A1): The distributions F ∗ and G∗ have finite fourth moments.

• (A2): For all 0 < t < 1/2, F ∗(x) and G∗(x) have continuous

and positive derivative on x ∈ (F ∗−1(t), F ∗−1(1 − t)) and x ∈
(G∗−1(t), G∗−1(1− t)), respectively.

Then the following result holds.

Theorem 1. Under assumptions (A1-A2), as m→∞,

λ∗m → λ∗ =
√
γ(1−W 2(F ∗, G∗)/2),

Rm(λ∗) → R∗ = σ2
θ(W

2(F ∗, G∗)−W 4(F ∗, G∗)/4),

RE(1)
m (λ∗) → RE(1) = [1−W 2(F ∗, G∗)/4]−1,

RE(2)
m (λ∗) → RE(2) = 1 +

[(1−W 2(F ∗, G∗)/2)−√γ]2

[1− (1−W 2(F ∗, G∗)/2)2]
.
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The gain in PMSE at the optimal shrinkage value over that at
√
γ,

is [1 − W 2(F ∗, G∗)/4]−1. This improvement can be quite significant

if the Wasserstein distance between F ∗ and G∗ is large. Since 0 ≤
W 2(F ∗, G∗) ≤ 2, potentially there can be a two fold reduction in the

PMSE of the optimal predictor over that of θ(i)(
√
γ). However, given

that F ∗ and G∗ are related via the convolution equation, the maximum

value of W 2(F ∗, G∗) is possibly smaller than two, putting an upper bound

on the gain in efficiency of the optimal shrinkage predictor over that with

shrinkage coefficient
√
γ. We show in the simulation section that the gain

in efficiency from the optimal predictor can be substantial.

Remark 1. If F ∗ and G∗ are equal, then W (F ∗, G∗) = 0 and hence

λ∗ =
√
γ and the PMSE of the optimal predictor will go to zero as m goes

to infinity. Intuitively, given that the distribution of the centered yi is a

scaled version of that of the centered θi, a simple scaling of the observed

values provides the optimal prediction.

In the context of equal error variance Malinovsky and Rinott (2010)

conjectured the optimum value of λ in (2) to be
√
γ. Theorem 1 implies

that the result holds iff W (F ∗, G∗) = 0. As F ∗ and G∗ are distributions

of the standardized quantities, to derive the necessary and sufficient con-

dition for W (F ∗, G∗) = 0, without loss of generality, we assume µ = 0.

Theorem 2. Let the model (1) hold and let the errors ei be indepen-

dently and identically distributed as H with mean zero and variance σ2.

Then the Wasserstein distance metric W (F ∗, G∗) between the distribu-

tions of standardized θ and standardized y is zero if and only if θi has

the same distribution as that of
∑∞

k=1 c
kek where c =

√
γ = σθ

σy
.

Proof. If part : If θ =
∑∞

k=1 c
kek, then y =

∑∞
k=0 c

kek, where ek’s are i.i.d

for all k. Hence, cy has same distribution as θ and after standardization

u and y have the same distribution. Hence, W(F ∗, G∗) = 0.

Only if part : We can write cyi = cθi + cei. From W (F ∗, G∗) = 0

follows that y∗i = cyi has same distribution as θi. Iterating the procedure

we see that θ has the same distribution as
∑∞

k=1 c
kek. Because c < 1, the

series representation is valid in mean squared sense.
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Remark 2. Normal distributions on θ and e will give W (F ∗, G∗) = 0

and hence Gaussianity is a sufficient condition for Theorem 2 to hold.

However, as shown in Theorem 2, the class of distribution pairs (H,G)

that will give W (F ∗, G∗) = 0 is a much wider class containing the nor-

mal distribution. In such cases, F ∗ is a self-decomposable distribution

(Lukacs, 1970) and examples of such distribution could be found in Shanbhag

and Sreehari (1977).

2.2 Optimal prediction with unequal design variances

A more general model is one where the variances, σ2
i , are different. With a

slight modification, a shrinkage predictor similar to (2) can be proposed

in the unequal variance case as well. In order to derive the limiting

form of the optimal estimator we have to make assumptions about the

convergence of the empirical distribution of the standardized responses.

Such assumptions automatically hold in the iid case considered in the

section 2.1. Let v2
i = var(yi) = σ2

θ + σ2
i and zi = yi−µ

vi
. Then we propose

a class of shrinkage predictors for the ordered area means as

θ(i)(λ) = λz(i) + µ. (4)

The PMSE at λ is defined as

Rm(λ) = m−1E

(
m∑
i=1

(θ(i) − λz(i) − µ)2

)
.

If σ2
i ’s are the same, the class of predictors in (4) reduces to the class

(2). Suppose γi =
σ2
θ

σ2
θ+σ2

i
. Then analogous to the equal variance case,

one could look at the predictors θ
(1)
() = (θ

(1)
(1) ≤ · · · ≤ θ

(1)
(m))

′ where θ
(1)
(i) =

σθz(i) + µ and θ
(2)
() = (θ

(2)
(1) ≤ · · · ≤ θ

(2)
(m))

′ where θ
(2)
i = γiyi + (1− γi)µ.

Unlike the equal variance case, the predictor θ
(2)
(i) does not belong to

the class (4) but rather it is the ordered version of the area specific BLUP

for the unordered area means. Let R
(1)
m and R

(2)
m denote the PMSE of θ

(1)
()

and θ
(2)
() , respectively. Also let RE

(1)
m (λ) = R

(1)
m

Rm(λ) and RE
(2)
m (λ) = R

(2)
m

Rm(λ)
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denote the relative efficiencies of the predictors θ(i)(λ) with respect to

θ
(1)
() and θ

(2)
() , respectively. Let wi = θi−µ

σθ
denote the standardized area

means. Then the shrinkage coefficient with minimum PMSE is given by

λ∗m = σθ
m−1E

(∑m
i=1w(i)z(i)

)
m−1E

(∑m
i=1 z

2
i

) . (5)

As before, we can establish a simpler limiting form for the optimal

shrinkage coefficient, thereby letting us propose a suitable predictor that

can be used once the unknown parameters have been substituted with

data estimates. Let F ∗m and K∗m denote the empirical distributions of

zi and
√
γizi, respectively. In order to establish a limiting value of the

shrinkage coefficient we assume:

• (A3) The sequence of distributions F ∗m and K∗m converge in dis-

tribution to mean zero distributions F ∗ and K∗ with finite fourth

moments, respectively. Moreover, F ∗m and K∗m are assumed to be

uniformly integrable. Let G∗ be the distribution of wi with finite

fourth moment.

Then the limit of λ∗m is given by

Theorem 3. Under assumptions (A3) and if (A2) holds for F ∗, G∗

and K∗, as m→∞

λ∗m → λ∗ = σθ

[
1− W 2(F ∗, G∗)

2

]
,

Rm(λ∗) → R∗ = σ2
θ

[
1−

(
1− W 2(F ∗, G∗)

2

)2
]
,

RE(1)
m (λ∗) → RE(1) = [1−W 2(F ∗, G∗)/4]−1,

RE(2)
m (λ∗) → RE(2) =

W 2(K∗, G∗)

[1− (1−W 2(F ∗, G∗)/2)2]
.

Based on the optimal value of the shrinkage coefficient, the proposed

predictor for the ordered θi would be θ∗() = (θ∗(1) ≤ · · · ≤ θ
∗
(m))

′ where

θ∗(i) = σθ

[
1− W 2(F ∗, G∗)

2

]
z(i) + µ. (6)
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Remark 3. The results of Section 2 and also, the approximation re-

sults following hold for more general loss function where different ordered

effects have different weights for their corresponding risks i.e the risk is of

the form Rm(λ) = m−1E
(∑m

i=1 ξi(θ(i) − λz(i) − µ)2
)

and ξi = ξ∗( i
m+1),

where ξ∗ is a positive integrable function on (0, 1). A more detailed ac-

count of this result is given in the supplementary document.

2.3 An application to small area estimation

The method of estimating ordered random effect can be extended to

SAE where a fixed area level effect is present and the mean value of

the ith area, θi = E(yi | θi), potentially depends on the characteristics of

the area and hence may be different for different areas. Specifically, let

θi = µi + ui and hence yi = µi + ui + ei. The µi are fixed effects and

the ui are random effects. Typically area specific covariate information,

xi are available and the area specific fixed effects are modeled as µi =

x′iβ. Often in SAE ui are iid N(0, σ2
θ) and ei are iid N(0, σ2

i ). Let the

standardized response be zi =
yi−x′iβ
vi

where v2
i = σ2

θ + σ2
i is the variance

of yi. Following the generalized shrinkage estimation development, we

can predict u(i) = σθz(i) . For predicting θ(i)’s we propose

θ∗i = σθzi + x′iβ. (7)

and let θ∗() = (θ∗(1) ≤ · · · ≤ θ
∗
(m))

′ be the ordered values of θ∗i .

Remark 4. Use of θ∗() in the equal variance case is justified because

maximum a posteriori order for the latent random effects is the same as

the order of the observed quantities (under mild distributional assump-

tions). More details are provided in the supplementary document. We

do not address the rank estimation issue directly. A short discussion on

the rank estimation is included in the supplementary materials, in the

context of model 1.
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3 Empirical version of the predictors

In practice, the unknown parameters in the expression for the optimal

shrinkage predictor have to be replaced with their estimators. Thus, in

order to use the optimal predictor (6) one has to plug in the estimated

values of µ, W (F ∗, G∗) and σθ.

3.1 Empirical Predictor

Unless otherwise mentioned we will use the sample mean ȳ to estimate µ

throughout. Other estimators such as the sample median can be consid-

ered. Estimation of σθ is straight-forward, but estimation of W is more

involved. A consistent method-of-moment estimator of σ2
θ is

σ̂2
θ = max{m−1

m∑
i=1

y2
i − ȳ2 −m−1

m∑
i=1

σ2
i , 0}.

Based on the estimated σθ, we can replace vi by v̂i =
√
σ̂2
θ + σ2

i . We

will also use ẑi = yi−ȳ
v̂i

as the observed standardized response in order to

compute the Wasserstein distance.

If the family of distributionsG(0, σ2
θ) is known up to σθ, thenW (F ∗, G∗)

can be estimated empirically once F ∗ is estimated based on σ̂2
θ . In cases

where G is unknown we can proceed in the following manner.

We will assume that the error distribution is a known finite location-

scale mixture of normal distributions (a good approximation to H(0, σ2
i ))

and that each mixture component is independent of the unobserved θ.

We will also use a finite normal location scale mixture representation for

the distribution of θ, thereby invoking a similar representation for the

distribution of y. Suppose,

ei ∼
L∑
l=1

pe,l,iN(µe,l,i, σ
2
e,l,i), (8)

where pe,l,i, µe,l,i and σ2
e,l,i are all known. Also assume that

θi ∼ G =

K∑
k=1

pθ,kN(µθ,k, σ
2
θ,k). (9)
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Then

yi ∼ Fi =
K∑
k=1

L∑
l=1

pk,l,iN(µk,l,i, σ
2
k,l,i),

where pk,l,i = pθ,kpe,l,i, µk,l,i = µθ,k + µe,l,i and σ2
k,l,i = σ2

θ,k + σ2
e,l,i. One

can then use the EM algorithm to estimate the distributions and hence

estimate the Wasserstein distance based on the estimated distributions.

Let the estimated Wasserstein distance be Ŵ (F ∗, G∗).

For computation and implementation, it is more efficient to use the

finite sample version of the Wasserstein metric (associated with the finite

sample version of the optimal shrinkage) and estimate that to plug-in into

the predictor. Define, W 2
m(F,G) = 1

m

∑m
i=1(F−1( i

m+1)−G−1( i
m+1))

2
and

W̃ 2
m(F,G) = E( 1

m

∑m
i=1(F−1

m ( i
m+1) −G−1

m ( i
m+1))2). Given the normal

location scale mixture representation ofG we can generatem independent

observations from the distribution of θ and generate a copy of observed y’s

using the known error distribution. Then, W̃m(F,G) is estimated by its

Monte-Carlo estimator. Let, F ∗m,j and G∗m,j be the empirical distribution

for standardized θ and y in j th replication. We estimate

̂̃
W

2

m(F ∗, G∗) =
1

R

R∑
j=1

(
1

m

m∑
i=1

(F ∗−1
m,j(

i

m+ 1
)−G∗−1

m,j(
i

m+ 1
))2)

where R is the number of replications.

Let λ̂∗ be the value of the optimal shrinkage coefficient when both σθ

and W̃ (F ∗, G∗) have been replaced by their estimators σ̂θ and
̂̃
W (F ∗, G∗),

respectively. Then the estimated optimal predictor (6) for the ordered

area means will be θ̂
∗
() = (θ̂∗(1) ≤ · · · ≤ θ̂

∗
(m))

′ where

θ̂∗(i) = σ̂θ

1−
̂̃
W

2

m(F ∗, G∗)

2

 ẑ(i) + ȳ.

3.2 Accuracy of the empirical predictor

The empirical estimator is a plug-in version of the optimal predictor. The

natural question in terms of performance of the empirical predictor is how

well does the plug-in version fare with respect to the oracle predictor. To
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judge the accuracy we derive asymptotic expression for the PMSE of the

empirical predictor. We make the following assumptions that are needed

to establish the asymptotic rates.

• (A4): For all 0 < t < 1/2, F ∗(x) and G∗(x) have continuous

and positive derivative on x ∈ (F ∗−1(t), F ∗−1(1 − t)) and x ∈
(G∗−1(t), G∗−1 (1− t)), respectively.

• (A5): Let, S∗F = {x : 0 < F ∗(x) < 1} and S∗G = {x : 0 < G∗(x) < 1}
be the open supports of F ∗ and G∗, respectively. F ∗ and G∗ are

twice differentiable on their open supports and their corresponding

densities, f∗ and g∗ are strictly positive on their respective open

supports.

• (A6): Assume
∫ 1

0
t(1−t)

f∗(F ∗−1(t))
2dt <∞ and

∫ 1
0

t(1−t)
g∗(G∗−1(t))

2dt <∞.

• (A7): Assume sup0<t<1
t(1−t)|f∗′(F ∗−1(t))|

f∗(F ∗−1(t))
2 <∞ and sup0<t<1

t(1−t)|g∗′(G∗−1(t))|
g∗(G∗−1(t))

2 <∞.

• (A8): The densities f(x) and g(y) are monotone for x /∈ (F ∗−1(t),

F ∗−1(1− t)) and y /∈ (G∗−1(t), G∗−1(1− t)) for some 0 < t < 1/2.

• (A9): There exists c > 0, such that infiσ
2
i > c, and

∫
σ̂−2
θ,m1σ̂θ,m>0 <

K for all m > m0 for some m0 and K, where σ̂θ,m is the estimate

of σθ based on m observations.

• (A10): Assume that
√
m consistent estimators ofW 2

m(, ) and W̃ 2
m(, ),

given by Ŵ 2
m(, ) and

̂̃
W

2

m(, ), respectively are available.

Assumptions (A4-A8) can be found in Barrio et al.(2005) in the con-

text of convergence of integrated quantile differences. Assumption (A9)

is needed for the case when σθ is being estimated. We also assume the

existence of
√
m consistent estimators of W 2

m(, ) and W̃ 2
m(, ), given by

Ŵ 2
m(, ) and

̂̃
W

2

m(, ), respectively. This assumption is reasonable if the

assumed location scale representation is correct, as in that case the MLE

of the parameters in the mixture model will be
√
m consistent for the

true value and Wm(, ) is a continuous function of the parameters.
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Proposition 1. Under (A1)-(A2),(A10) for equal error variance case

(3), σθ
σy

(
1−

̂̃
W

2

m(F ∗,G∗)
2

)
= λ∗m +OP (m−

1
2 ). In addition if (A4-A8) and

(A10) hold then, σθ
σy

(
1− Ŵ 2

m(F ∗,G∗)
2

)
= λ∗m +OP (m−

1
2 ).

Proposition 2. Under(A2)-(A3),(A10) for the unequal error vari-

ance case, from equation(5), σθ

(
1−

̂̃
W

2

m(F ∗,G∗)
2

)
= λ∗m+Op(m

− 1
2 ). Un-

der (A2)-(A8) and (A10), σθ

(
1− Ŵ 2

m(F ∗,G∗)
2

)
= λ∗m +Op(m

− 1
2 ).

Most often we need to estimate σθ by the estimate σ̂θ. The following

results generalize Proposition 1-2 in the case when the optimal shrinkage

predictor is based on plugged-in estimators for Wm, σθ and µ.

Theorem 4. Suppose assumptions (A1)-(A10) hold. For the equal

variance case of equation (3),

σ̂θ
σ̂y

1−
̂̃
W

2

m(F ∗, G∗)

2

 = λ∗m +Op(m
− 1

2 ),

σ̂θ
σ̂y

(
1− Ŵ 2

m(F ∗, G∗)

2

)
= λ∗m +Op(m

− 1
2 ).

If W (F ∗, G∗) > 0,

[1−
̂̃
W

2

m(F ∗, G∗)

4
]−1 = RE(1)

m (λ∗m) +Op(m
− 1

2 ),

̂̃
W

2

m(K∗, G∗)

[1− (1− ̂̃W 2

m(F ∗, G∗)/2)2]

= RE(2)
m (λ∗m) +Op(m

− 1
2 ).

Theorem 5. Suppose assumptions (A2)- (A10) hold. Then for the

unequal design variance case (5),

σ̂θ

1−
̂̃
W

2

m(F ∗, G∗)

2

 = λ∗m +OP (m−
1
2 ),

σ̂θ

(
1− Ŵ 2

m(F ∗, G∗)

2

)
= λ∗m +OP (m−

1
2 ).
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If W (F ∗, G∗) > 0,

[1−
̂̃
W

2

m(F ∗, G∗)

4
]−1 = RE(1)

m (λ∗m) +Op(m
− 1

2 ),

̂̃
W

2

m(K∗, G∗)

[1− (1− ̂̃W 2

m(F ∗, G∗)/2)2]

= RE(2)
m (λ∗m) +Op(m

− 1
2 ).

Theorem 4-5 provide approximation to the relative efficiency of the es-

timated version of the optimal shrinkage predictor. In terms of PMSE the

proposed optimum shrinkage estimator performs better than the BLUP

type estimator in equal error variance case. But for the unequal variances

this may not happen as the BLUP type estimator does not belong to the

class of estimators represented by (4). In our model based approach to

estimating W (F ∗, G∗), once the normal location-scale mixture model for

θ is estimated we can estimate W (K∗, G∗) as well. Thus, the relative

efficiency of the BLUP type estimator compared to the proposed opti-

mum estimator can be estimated and the estimator with lower value of

estimated asymptotic PMSE can be used.

4 Simulation Study

In this section, we investigate the finite sample performance of the opti-

mal shrinkage predictor via a limited simulation study. First we consider

the case without covariates under different distributional assumptions on

the errors and the area means. Then we consider a typical SAE scenario

with covariates in the Fay-Herriot model with normally distributed errors

and area means.

4.1 Optimum shrinkage and Wasserstein correction

We consider three examples. The sample sizes considered are m = 2000

and m = 10000. The larger sample size is chosen to evaluate the accu-

racy of the estimation of the Wasserstein distance and compare with the
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theoretical asymptotic value. Each reported Monte Carlo value is based

on 500 replications.

Example 1: The first experimental scenario is designed to evaluate

the effect of the Wasserstein distance on the performance of the different

predictors. The area mean distributions are chosen to be two component

normal scale mixtures parameterized by a single parameter:

θi ∼ a−1N(0, a− 1) + (1− a−1)N(0, (a− 1)−1).

The parameterization gives E(θ) = 0 and V ar(θ) = 1 and W (F ∗, G∗) as

an increasing function of a ∈ [2,∞) with W = 0 for a = 2. The error

distribution is fixed as standard normal. For the simulation we look at

a ∈ {2, 5, 10, 100, 1000}. The scale mixture models for different values of

a are denoted by Nmix(a).

Example 2: In addition we look at two possible distributions for the

area means, a Double Exponential distribution to reflect possible heavy

tail in the distribution and also a two component location mixture of nor-

mal to account for possible multimodality in the area mean distribution.

The specific distribution considered are

θi ∼ 0.5N(4, 1) + 0.5N(−4, 1), and θi ∼ DE(
√

2),

where in each case the errors are generated independently using ei ∼
N(0, σ2

i ). For the normal mixture case, we consider two cases, one where

the error variances are constant, σ2
i = 16, and another where σ2

i ’s are gen-

erated from Uniform(0, 16). For the double exponential, we consider a

constant error variance scenario with σ2
i = 1 and an unequal error vari-

ance situation where σ2
i ’s are generated from Uniform(0, 1). The double

exponential models and normal location mixture models with equal and

unequal variances are denoted by DEE , DEU , NmixE and NmixU , re-

spectively.

The optimum shrinkage coefficient is used in each example. We con-

sider the shrinkage predictors discussed earlier, namely θ∗(),θ
(1)
() and θ

(2)
() .
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For prediction we use the estimated version of the predictors where σ2
θ

and W are obtained following the procedure described in section 3 and

plugged into the expression of the predictors. The value K = 6 has been

used.

Table 1: Relative performance of the different shrinkage predictors

θ∗() vs θ
(1)
() θ∗() vs θ

(2)
()

Model W Ŵ RE2000 RE10000 RE∞ RE2000 RE10000 RE∞

Nmix(a)

a = 2 0 .02 1.00 1.00 1.00 40.4 199 ∞
a = 5 .25 .24 1.01 1.01 1.01 2.19 2.12 2.15

a = 10 .41 .40 1.04 1.05 1.05 1.25 1.24 1.26

a = 20 .53 .47 1.07 1.08 1.08 1.09 1.08 1.07

a = 50 .62 .52 1.09 1.09 1.10 1.02 1.02 1.02

a = 100 .67 .61 1.10 1.12 1.13 1.00 1.01 1.01

DEE .14 .13 1.00 1.00 1.00 4.84 5.13 5.13

DEU .11 .10 1.00 1.00 1.00 3.67 3.94 3.94

NmixE .37 .32 1.03 1.03 1.04 1.33 1.35 1.35

NmixU .29 .28 1.02 1.02 1.03 1.18 1.18 1.18

Table 1 gives the values of relative efficiency (ratio of PMSE) of the

optimal predictors compared with the other predictors at the two dif-

ferent sample sizes. Column 2 gives the value of the true Wasserstein

distance and column 3 gives the estimate of W averaged over the Monte

Carlo replications. Columns 4-6 give the relative efficiency of the optimal

shrinkage estimator θ∗() compared to the estimator θ
(1)
() at sample sizes

m = 2000, 10000 and m = ∞, respectively. The value at m = ∞ is the

theoretical value given in the Theorem 1. Similarly, columns 7-9 give

the relative efficiency value of the optimal estimator compared to θ
(2)
() at

m = 2000, 10000 and m =∞, respectively.

In the normal scale mixture models, for smaller values of the Wasser-

stein distance, the optimal shrinkage predictor θ∗() and the one ignoring

the Wasserstein correction, θ
(1)
() are nearly identical. This is expected

since for values of W close to zero, the correction factor is close to one

and the two predictors essentially coincide. However, as obvious from the
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relative efficiency values given in Theorem 1, the BLUP-type estimator,

θ
(2)
() is much inferior to the other estimators in the small W scenario.

For cases when W is large, the optimal estimator is considerably better

than θ
(1)
() because ignoring the Wasserstein correction has a significant

effect on the predictor. In such situation the BLUP-type estimator θ
(2)
()

is nearly identical to the optimal predictor. For moderate values W , the

optimal shrinkage provide substantial gains over both θ
(1)
() and θ

(2)
() .

In normal mean-mixture example for unequal and equal variance cases

θ∗() and θ
(1)
() perform better than the θ

(2)
() and with Wasserstein correc-

tion θ∗() performs better than θ
(1)
() in equal variance case with relatively

higher value of W . For double exponential scenario the θ∗() and θ
(1)
() per-

form much better than the θ
(2)
() , because of the small value of W and the

Wasserstein correction is unnecessary for all practical purposes.

Example 3: In this example, we investigate the effect of skewness

in the area mean distribution. We construct θi ∼ Gamma(1.5, 1.5) −
1, which gives an asymmetric distribution for the random effect part

around mean zero and with support (−1,∞). Error terms follow normal

distribution with error structure given as follows. We assume σ2
i = b(α+

(1− α)ci), with ci = |1− 2( i
m)|, b = 3 and 0 ≤ α ≤ 1. Changing α from

0 to 1 we can have equal and non equal variance scenarios where α = 1

boils down to the equal variance case. We consider three cases α = 0, .5

and 1.

Relative efficiency of θ∗() with respect to θ1
() and θ2

() is given in the

Table 2 for m = 500 with the data estimate of the relative efficiencies

given by R̂E, where the number of replication is 100.

Table 2: Relative performance of the different shrinkage predictors

θ∗() vs θ
(1)
() θ∗() vs θ

(2)
()

α W Ŵ RE500 R̂E RE∞ RE500 R̂E RE∞

α = 0 .30 .27 1.02 1.02 1.02 2.40 2.70 2.64

α = 0.5 .33 .31 1.02 1.02 1.03 2.82 3.31 3.03

α = 1 .34 .33 1.02 1.03 1.03 2.97 3.72 3.38

17

Statistica Sinica: Newly accepted Paper 
(accepted version subject to English editing)



For all the examples we looked at how the well the proposed mixture

model approach is able to estimate G. Figure 1 shows the estimated den-

sity in two different cases. In all cases the proposed estimator provided

reasonable approximation to G.

Figure 1: Plot for nonpaparanetric fit for density of G. Left hand panel shows

a typical fit for shifted Gamma distrbition for skewed G. Right hand panel is

a typical fit for example 1 with a = 10. Solid line shows the fitted and dashed

line shows the true target density.

4.2 Small area estimation

For the SAE model, we only consider normal distribution because it is

the most popular choice in the small area literature. Thus, θi and ei are

both assumed to be normally distributed. By Theorem 2, the Wasser-

stein distance between the standardized distributions of the area means

and the responses is zero. Thus, by Theorem 3, the optimal shrinkage

estimator θ∗() is identical to θ
(1)
() . We consider two cases.

Case 1: In this case m = 100, 300 and 500 small areas are consid-

ered. We consider the case with a single covariate. For the i th area we

observe yi = α+βxi +ui + ei where xi is the observed covariate for the i

th area. We assume ui ∼ N(0, 16) and assume α = 1, β = 2. We generate

xi ∼ N(0, 1) and ei ∼ N(0, σ2
i ). The error variance values are generated

as σ2
i ∼ U(0, c). We choose c from c = 1, 3, 5. The simulation results
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Table 3: Relative efficiency of the proposed predictor to BLUP-type predictor

c m = 100 m = 300 m = 500

1 1.02 1.08 1.09

3 1.08 1.26 1.44

5 1.18 1.62 1.87

are reported for 500 Monte Carlo replications. The proposed estimator

θ∗() is compared with the BLUP-type predictor θ
(2)
() . The relative effi-

ciency values for the optimal predictor compared to the other predictor

is reported in Table 3.

The proposed predictor outperforms the BLUP-type predictor in pre-

dicting the ordered area means. The difference is significantly higher

when γi are further away from one, that is when c is 3 or 5. Also for

large m the percentage of improvement is generally greater with the op-

timal predictor providing 10-50% gain in efficiency of prediction.

Case 2: The gain in the performance of the optimal predictor is

due to better prediction of the order statistics of the random effects ui.

When the observed values are highly influenced by the fixed effects, then

the BLUP-type predictor is expected to perform comparably with the

optimal predictor since the main reduction in risk will be achieved by

accurate prediction of the fixed effect part. To evaluate the effect of the

correlation of the responses with the fixed effect on the performance of the

optimal predictor we consider a more general case with different value of

β. With higher β the fixed effect α+βxi will dominate and the response yi

will be higher and this will effect the performance of shrinkage estimator.

We use the same model as before (Case 1), with α = 1, β = 2 ∗ i, where

i = 1, 2, . . . , 15. Also, we vary the number of small areas as m = 100j2

with j = 1, 2, 3, 4, 5. The area specific variances are generated as U(0, c),

with c = 1, 3, 5, 8. The relative efficiencies of the BLUP-type predictor

θ
(2)
() compared to the optimal predictor θ

(1)
() are given in Figure 2. The

lower the relative efficiency, the better the performance of the proposed

predictor is in predicting the order statistics.
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The proposed predictor has significantly smaller PMSE for a variety

of cases where the correlation between the fixed effect and the response is

moderate to small. For larger values of β the responses essentially become

like the fixed effect, and the relative efficiency approaches one. Since the

optimal predictor is being replaced by its plug-in version, the relative

efficiency of the BLUP-type estimator is actually slightly bigger than

one for cases when the area means are essentially of the same magnitude

as that of the fixed part α+ βxi, i.e, ui is much smaller than α+ βxi in

magnitude.

4.3 Comparison with the full Bayesian estimator

If the distributions G and H are known, Bayesian computation can be

used to generate the posterior samples of θi and estimate the poste-

rior expectation of the ordered means by taking the mean of the or-

dered posterior samples. Because we are actually minimizing the Bayes

risk, the posterior means is the best estimator in terms of PMSE. It

will be interesting to compare the Bayesian method to our distribution

free approach. However, we also study the sensitivity of the Bayesian

estimator to model misspecification, especially in the model for the ran-

dom effects parameter θ. We consider Students − t distribution with

various degrees of freedom for G and assume it to be misspecified as

normal distribution. Also a mixture normal distribution is considered

for θ with G ∼ .5N(1.5, 1) + .5N(−1.5, 1). For error variances, σ2
i ,

two cases are considered, equal variances (E) σ2
i = 1 and unequal vari-

ances (U) σ2
i ∼ U(0, 1). In the Bayesian methodology we assume the

prior on θ, G, to be N(µ, σ2) and assume the following non-informative

priorsΠ(µ, σ2) ∝ 1. The ratio of the square root of the PMSE’s for the

shrinkage and the Bayesian methods are reported in Table 4. If the model

is truly specified then the ratio should be greater than one.

Under model misspecification the shrinkage generally performs bet-

ter than the Bayesian method and for the correctly specified case the

Bayesian is better as expected. However, even in the correctly specified
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model, the model free estimator continues to have reasonable perfor-

mance. The error due to model misspecification may be more than the

MSE for the shrinkage and in that case the shrinkage estimator can per-

form better. Unimodal distributions on θ, such as Students− t distribu-

tion, may be misspecified as normal. Normal mixtures, if the means are

not far apart, convoluted with error can result in a unimodal distribution

and model misspecification can easily occur in such situations.
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Figure 2: From left to right the figures correspond to c = 1, 3, 5, 8, respectively.

X axis denotes i = 1, . . . , 30. Here m = 100j2 and j = 1, 2, 3, 4, 5 are denoted

by •, ◦,�, � and 4, respectively.

5 Conclusion

We propose an optimal estimator of ordered random effect in the class of

simple shrinkage estimators. The main attraction of the proposed esti-

mator is that it is distribution free. It is very robust to model misspecifi-

cation and as evident from the simulation the distribution free estimator

Table 4: Relative efficiency of the optimal shrinkage and Bayes predictor

G m=100 m=400 m=900

U E U E U E

T2.2 .87 .81 .71 .68 .66 .63

T3 .92 .87 .77 .73 .69 .68

T4 1.00 .93 .82 .79 .75 .72

T6 1.02 1.04 .92 .92 .82 .81

N(0, 1) 1.19 1.22 1.23 1..22 1.23 1.21

Mixture 1.04 .98 .86 .85 .77 .78
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is reasonably efficient with respect to the best (Bayesian) estimator in

a correctly specified normal model. The estimator provides an easy and

direct way for predicting ordered random effects under both equal and

unequal error variances. From simulations, in many setups we see signif-

icant relative gain in efficiency for the optimal shrinkage estimator over

other shrinkage estimators in the same class. We also derive limiting

form of the risk of the estimator and proposed a method for estimating

the risk. The estimator depends on the Wasserstein distance between

two standardized distributions and a method based on the observed yis

is also given for estimating the Wasserstein distance. The optimal es-

timator based on the estimated Wasserstein distance is shown to have

reasonable asymptotic properties. We also address the situation when

area specific covariate information is available.

Other alternative classes of estimators could involve linear shrinkage

estimators with different shrinkage for the different order statistics or

alternative classes of shrinkage estimators that directly account for the

joint dependence among the order statistics. Inference in such classes

may be more difficult and is an interesting area for further exploration.

Generalization to classes of estimators that can effectively account for

area specific covariates while having the advantage of being distribution

free is a topic of future research. Nevertheless, the proposed estimator

gives a good starting point and a preliminary framework for more general

classes of distribution free estimators.

Supplementary materials

We have added a supplementary document. It includes four sections. The

details about Remark 3 (generalized loss function) are given in section

1 of the supplementary materials. The justification and proof of result

related to small area model from Remark 4 are given in section 2. In

the third section, we prove some results from the text and in the fourth

section, we discuss briefly about the rank estimation issue.
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Appendix

Proof of Theorem 1

From (3)

λ∗m =
m−1E

(∑m
i=1(y(i) − µ)(θ(i) − µ)

)
m−1E

(∑m
i=1(y(i) − µ)2

) .

Hence,

λ∗m =
m−1 σθ

σy
E
(∑m

i=1
(y(i)−µ)

σy

(θ(i)−µ)

σθ

)
m−1E

(∑m
i=1(

y(i)−µ
σy

)2
) =

σθ
σy
E(S∗(m)),

where

S∗(m) =
1

2
{ 1

m

m∑
i=1

zi
2 +

1

m

m∑
i=1

wi
2 − 1

m

m∑
i=1

(z(i) − w(i))
2}.

Because E( 1
m

∑m
i=1 z

2
i ) = 1 and E( 1

m

∑m
i=1w

2
i ) = 1 we have

S∗(m) =
1

2
{ 1

m

m∑
i=1

zi
2 +

1

m

m∑
i=1

wi
2 − T1}

where T1 = 1
m

∑m
i=1 (F ∗m

−1( i
m+1)−G∗m−1( i

m+1))
2}. Then,

T1 = dm(F ∗m, F
∗) + dm(G∗m, G

∗) + dm(F ∗, G∗) + C1 + C2 + C3 (10)

where

dm(F ∗m, F
∗) =

1

m

m∑
i=1

(F ∗m
−1(

i

m+ 1
)− F ∗−1(

i

m+ 1
))

2

,

dm(G∗m, G
∗) =

1

m

m∑
i=1

(G∗m
−1(

i

m+ 1
)−G∗−1(

i

m+ 1
))

2

,

dm(F ∗, G∗) =
1

m

m∑
i=1

(F ∗−1(
i

m+ 1
)−G∗−1(

i

m+ 1
))

2

,
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C1 =
2

m

m∑
i=1

(F ∗m
−1(

i

m+ 1
)− F ∗−1(

i

m+ 1
))(G∗m

−1(
i

m+ 1
)−G∗−1(

i

m+ 1
)),

C2 =
2

m

m∑
i=1

(F ∗−1(
i

m+ 1
)−G∗−1(

i

m+ 1
))(G∗m

−1(
i

m+ 1
)−G∗−1(

i

m+ 1
)),

C3 =
2

m

m∑
i=1

(F ∗m
−1(

i

m+ 1
)− F ∗−1(

i

m+ 1
))(F ∗−1(

i

m+ 1
)−G∗−1(

i

m+ 1
)).

From Lemma 1, we have E(dm(F ∗m, F
∗)) → 0 , E(dm(G∗m, G

∗)) → 0

and dm(F ∗, G∗)→W2(F∗,G∗). We state and prove Lemma 1 later.

For C1,

E(C2
1 ) ≤ E(

2

m

m∑
i=1

(F ∗m
−1(

i

m+ 1
)− F ∗−1(

i

m+ 1
))2)

×E(
2

m

m∑
i=1

(G∗m
−1(

i

m+ 1
)−G∗−1(

i

m+ 1
))2). (11)

From Lemma (1) E(C1)→ 0. Similarly E(C2), E(C3)→ 0.

From (10), Lemma 1 and the conclusion of equation (11) we have

E(
1

m

m∑
i=1

(F ∗m
−1(

i

m+ 1
)−G∗m

−1(
i

m+ 1
))

2

})→W 2(F ∗, G∗).

Then, λ∗m → λ∗ =
√
γ(1−W 2(F ∗, G∗) /2) and thus,

R(1)
m =

m∑
i=1

(θ(i)−µ−
√
γ(y(i)−µ))2 = σ2

θ

m∑
i=1

(w(i)−z(i))
2 → σ2

θW
2(F ∗, G∗).

Also,
√
γ − λ∗m = σθ

σy

W 2(F ∗,G∗)
2 . Hence, Rm(λ) → R

(1)
m − σ2

θ
W 4(F ∗,G∗)

4 =

R∗.

To find a direct expression for R
(2)
m (γ) we proceed as follows:

R(2)
m (γ) = σ2

θm
−1E(

m∑
i=1

(w(i)−
√
γz(i))

2) = σ2
θ(1+γ−2

√
γm−1E(

m∑
i=1

z(i)w(i))).

We have shown thatm−1E(
∑m

i=1 z(i)w(i)))→ (1−W 2(F ∗, G∗)/2). Hence,

R(2)
m (γ)→ σ2

θ

(
1 + (

√
γ − (1− W 2(F ∗, G∗)

2
))2 − (1− W 2(F ∗, G∗)

2
)2

)
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= R∗ + σ2
θ

(√
γ − (1− W 2(F ∗,G∗)

2 )
)2
.

We now give a lemma needed for the proof of Theorem 1.

Lemma 1. Under the assumption of A1, A2 as m goes to infin-

ity, dm(F ∗, G∗)→W2(F∗,G∗) and E(dm(F ∗m, F
∗)), E(dm(G∗m, G

∗)) con-

verges to zero.

proof : See supplementary materials.

Proof of Theorem 3

Proof. Let,

S∗(m) =
1

2
{ 1

m

m∑
i=1

zi
2 +

1

m

m∑
i=1

wi
2 − 1

m

m∑
i=1

(z(i) − w(i))
2}

=
1

2
{ 1

m

m∑
i=1

zi
2 +

1

m

m∑
i=1

wi
2 − 1

m

m∑
i=1

(F ∗m
−1(

i

m+ 1
)−G∗m

−1(
i

m+ 1
))

2

}.

(12)

E( 1
m

∑m
i=1 z

2
i ) = 1 and E( 1

m

∑m
i=1w

2
i ) = 1. The last part, 1

m

∑m
i=1(F ∗−1

m

( i
m+1)−G∗−1

m ( i
m+1))

2
, converges to W 2(F ∗, G∗) by Lemma 1 similar to

Theorem 1.

Hence, we have, R
(1)
m =

∑m
i=1(θ(i) − µ − z(i))

2 = σ2
θ

∑m
i=1(w(i) −

z(i))
2 → σ2

θW
2(F ∗, G∗). Similarly, R

(2)
m → σ2

θW
2(K∗, G∗). Also, σθ −

λ∗ = σθ
W 2(F ∗,G∗)

2 . Hence, Rm(λ)→ σ2
θW

2(F ∗, G∗)− σ2
θ
W 4(F ∗,G∗)

4 .
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