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Abstract: Survival data with ultrahigh dimensional covariates such as genetic mark-

ers have been collected in medical studies and other fields. In this work, we propose

a feature screening procedure for the Cox model with ultrahigh dimensional covari-

ates. The proposed procedure is distinguished from the existing sure independence

screening (SIS) procedures (Fan, Feng and Wu, 2010, Zhao and Li, 2012) in that

the proposed procedure is based on joint likelihood of potential active predictors,

and therefore is not a marginal screening procedure. The proposed procedure can

effectively identify active predictors that are jointly dependent but marginally in-

dependent of the response without performing an iterative procedure. We develop

a computationally effective algorithm to carry out the proposed procedure and es-

tablish the ascent property of the proposed algorithm. We further prove that the

proposed procedure possesses the sure screening property. That is, with the proba-

bility tending to one, the selected variable set includes the actual active predictors.

We conduct Monte Carlo simulation to evaluate the finite sample performance of

the proposed procedure and further compare the proposed procedure and exist-

ing SIS procedures. The proposed methodology is also demonstrated through an

empirical analysis of a real data example.

Key words and phrases: Cox’s model, penalized likelihood, partial likelihood, ul-

trahigh dimensional survival data.

1. Introduction

Modeling high dimensional data has become the most important research

topic in literature. Variable selection is fundamental in analysis of high dimen-

sional data. Feature screening procedures that can effectively reduce ultrahigh

dimensionality become indispensable for ultrahigh dimensional data and have at-

tracted considerable attentions in recent literature. Fan and Lv (2008) proposed

a marginal screening procedure for ultrahigh dimensional Gaussian linear models,

and further demonstrated that the marginal screening procedure may possesses

a sure screening property under certain conditions. Such a marginal screening

procedure has been referred to as a sure independence screening (SIS) procedure.

The SIS procedure has been further developed for generalized linear models and

robust linear models in the presence of ultrahigh dimensional covariates (Fan,

Samworth and Wu, 2009; Li et al. 2012). The SIS procedure has also been pro-

posed for ultrahigh dimensional additive models (Fan, Feng and Song, 2011) and

ultrahigh dimensional varying coefficient models (Liu, Li and Wu, 2014, Fan, Ma
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2 G. Yang, Y. Yu, R. Li and A. Buu

and Dai, 2014). These authors showed that their procedures enjoy sure screening

property in the language of Fan and Lv (2008) under the settings in which the

sample consists of independently and identically distributed observations from a

population.

Analysis of survival data is inevitable since the primary outcomes or re-

sponses are subject to be censored in many scientific studies. The Cox model

(Cox, 1972) is the most commonly-used regression model for survival data, and

the partial likelihood method (Cox, 1975) has become a standard approach to

parameter estimation and statistical inference for the Cox model. The penalized

partial likelihood method has been proposed for variable selection in the Cox

model (Tibshirani, 1997; Fan and Li, 2002; Zhang and Lu, 2007; Zou, 2008).

Many studies collect survival data as well as a huge number of covariates such

as genetic markers. Thus, it is of great interest to develop new data analytic

tools for analysis of survival data with ultrahigh dimensional covariates. Bradic,

Fan and Jiang (2011) extended the penalized partial likelihood approach for the

Cox model with ultrahigh dimensional covariates. Huang, et al (2013) studied

the penalized partial likelihood with the L1-penalty for the Cox model with high

dimensional covariates. In theory, the penalized partial likelihood may be used

to select significant variables in ultrahigh dimensional Cox models. However,

in practice, the penalized partial likelihood may suffer from algorithm instabil-

ity, statistical inaccuracy and highly computational cost when the dimension of

covariate vector is much greater than the sample size. Feature screening may

play a fundamental role in analysis of ultrahigh dimensional survival data. Fan,

Feng and Wu (2010) proposed a SIS procedure for the Cox model by measuring

the importance of predictors based on marginal partial likelihood. Zhao and Li

(2012) further developed a principled Cox SIS procedure which essentially ranks

the importance of a covariate by its t-value of marginal partial likelihood estimate

and selects a cutoff to control the false discovery rate.

In this paper, we propose a new feature screening procedure for ultrahigh

dimensional Cox models. The proposed procedure is distinguished from the SIS

procedures (Fan, Feng and Wu, 2010; Zhao and Li, 2012) in that it is based on the

joint partial likelihood of potential important features rather than the marginal

partial likelihood of individual feature. Non-marginal screening procedures have

been demonstrated their advantage over the SIS procedures in the context of

generalized linear models. For example, Wang (2009) proposed a forward regres-

sion approach to feature screening in ultrahigh dimensional linear models. Xu

and Chen (2014) proposed a feature screening procedure for generalized linear

models via the sparsity-restricted maximum likelihood estimator. Both Wang

(2009) and Xu and Chen (2014) demonstrated their approaches can perform sig-

nificantly better than the SIS procedures under some scenarios. However, their
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methods are merely for linear and generalized linear models. In this paper, we

will show that the newly proposed procedure can outperform the sure indepen-

dence screening procedure for the Cox model. This work makes the following

major contribution to the literature.

(a) We propose a sure joint screening (SJS) procedure for ultrahigh dimensional

Cox model. We further propose an effective algorithm to carry out the

proposed screening procedure, and demonstrate the ascent property of the

proposed algorithm.

(b) We establish the screening property for the SJS procedure. This indeed is

challenging because the theoretical tools for penalized partial likelihood for

the ultrahigh dimensional Cox model cannot be utilized in our context. This

work is the first to employ Hoeffding inequality for a sequence of martingale

differences to establish concentration inequality for the score function of

partial likelihood.

We further conduct Monte Carlo simulation studies to assess the finite sample

performance of the proposed procedure and compare its performance with exist-

ing sure screening procedure for ultrahigh dimensional Cox models. Our numer-

ical results indicate that the proposed SJS procedure outperforms the existing

SIS procedures. We also demonstrate the proposed joint screening procedure by

an empirical analysis of a real data example.

The rest of this paper is organized as follows. In Section 2, we propose a new

feature screening for the Cox model, and further demonstrate the ascent property

of our proposed algorithm to carry out the proposed feature screening procedure.

We also study the sampling property of the proposed procedure and establish its

sure screening property. In Section 3, we present numerical comparisons and

an empirical analysis of a real data example. Some discussion and conclusion

remarks are given in Section 4. Technical proofs are given in the Appendix.

2. New feature screening procedure for Cox’s model

Let T and x be the survival time and its p-dimensional covariate vector,

respectively. Throughout this paper, we consider the following Cox proportional

hazard model:

h(t|x) = h0(t) exp(xTβ), (2.1)

where h0(t) is an unspecified baseline hazard functions and β is an unknown

parameter vector. In survival data analysis, the survival time may be censored

by the censoring time C. Denote the observed time by Z = min{T,C} and

the event indicator by δ = I(T ≤ C). We assume the censoring mechanism is

noninformative. That is, given x, T and C are conditionally independent.
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Suppose that {(xi, Zi, δi) : i = 1, · · · , n} is an independently and identically

distributed random sample from model (2.1). Let t01 < · · · < t0N be the ordered

observed failure times. Let (j) provide the label for the subject failing at t0j so

that the covariates associated with the N failures are x(1), · · · ,x(N). Denote the

risk set right before the time t0j by Rj :

Rj = {i : Zi ≥ t0j}.

The partial likelihood function (Cox, 1975) of the random sample is

`p(β) =
N∑
j=1

[xT(j)β − log{
∑
i∈Rj

exp(xTi β)}]. (2.2)

2.1 A new feature screening procedure

Suppose that the effect of x is sparse. Denote the true value of β by β∗.

The sparsity implies that ‖β∗‖0 is small, where ‖a‖0 stands for the L0-norm

of a (i.e. the number of nonzero elements of a). In the presence of ultrahigh

dimensional covariates, one may consider to reduce the ultrahigh dimensionality

to a moderate one by an effective feature screening method. In this section, we

propose screening features in the Cox model by the constrained partial likelihood

β̂m = arg max
β

`p(β) subject to ‖β‖0 ≤ m (2.3)

for a pre-specified m which is assumed to be greater than the number of nonzero

elements of β∗. For high dimensional problems, it becomes almost impossible

to solve the constrained maximization problem (2.3) directly. Alternatively, we

consider a proxy of the partial likelihood function. It follows by the Taylor

expansion for the partial likelihood function `p(γ) at β lying within a neighbor

of γ that

`p(γ) ≈ `p(β) + (γ − β)T `′p(β) +
1

2
(γ − β)T `′′p(β)(γ − β),

where `′p(β) = ∂`p(γ)/∂γ|γ=β and `′′p(β) = ∂2`p(γ)/∂γ∂γT |γ=β. When p < n

and `′′p(β) is invertible, the computational complexity of calculating the inverse

of `′′p(β) is O(p3). For the setting of large p and small n, `′′p(β) is not invertible.

Low computational costs are always desirable for feature screening. To deal with

singularity of the Hessian matrix and save computational costs, we propose to

use the following approximation for `′′p(γ)

g(γ|β) = `p(β) + (γ − β)T `′p(β)− u

2
(γ − β)TW (γ − β), (2.4)
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where u is a scaling constant to be specified andW is a diagonal matrix. Through-

out this paper, we use W = diag{−`′′p(β)}, the matrix consisting of the diagonal

elements of −`′′p(β). This implies that we approximate `′′p(β) by udiag{`′′p(β)}.

Remark. Xu and Chen (2014) proposed a feature screening procedure by it-

erative hard-thresholding algorithm (IHT) for generalized linear models with

independently and identically distributed (iid) observations. They approximated

the likelihood function `(γ) of the observed data by a linear approximation

`(β)+(γ−β)T `′(β), but they also introduced a regularization term −u‖γ−β‖2.
Thus, the g(γ|β) in Xu and Chen (2014) would coincide with the one in (2.4) if

one set W = Ip, the p × p identity matrix, but the motivation of our proposal

indeed is different from theirs, and the working matrix W is not set to be Ip
throughout this paper.

It can be seen that g(β|β) = `p(β), and under some conditions, g(γ|β) ≤
`p(β) for all γ. This ensures the ascent property. See Theorem 1 below for more

details. Since W is a diagonal matrix, g(γ|β) is an additive function of γj for

any given β. The additivity enables us to have a closed form solution for the

following maximization problem

max
γ

g(γ|β) subject to ‖γ‖0 ≤ m (2.5)

for given β and m. Note that the maximizer of g(γ|β) is γ̃ = β+u−1W−1`′p(β).

Denote rj = wj γ̃
2
j with wj being the j-th diagonal element of W for j = 1, · · · , p,

and sort rj so that |r(1)| ≥ |r(2)| ≥ · · · ≥ |r(p)|. The solution of maximization

problem (2.5) is the hard-thresholding rule defined below

γ̂j = γ̃jI{|rj | > |r(m+1)|}=̂H(γ̃j ;m). (2.6)

This enables us to effectively screen features by using the following algorithm:

Step 1. Set the initial value β(0) = 0.

Step 2. Set t = 0, 1, 2, · · · and iteratively conduct Step 2a and Step 2b below

until the algorithm converges.

Step 2a. Calculate γ̃(t) = (γ̃
(t)
1 , · · · , γ̃(t)p )T = β(t) +u−1t W−1(β(t))`′p(β

(t)),

and

β̃
(t)

= (H(γ̃
(t)
1 ;m), · · · , H(γ̃(t)p ;m))T =̂H(γ̃(t);m). (2.7)

Set St = {j : β̃
(t)
j 6= 0}, the nonzero index of β̃

(t)
.

Step 2b. Update β by β(t+1) = (β
(t+1)
1 , · · · , β(t+1)

p )T as follows. If j 6∈ St,
set β

(t+1)
j = 0; otherwise, set {β(t+1)

j : j ∈ St} be the maximum partial
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likelihood estimate of the submodel St.

Unlike the screening procedures based on marginal partial likelihood methods

proposed in Fan, Feng and Wu (2010) and further studied in Zhao and Li (2012),

our proposed procedure is to iteratively update β using Step 2. This enables the

proposed screening procedure to incorporate correlation information among the

predictors through updating `′p(β) and `′′p(β). Thus, the proposed procedure is

expected to perform better than the marginal screening procedures when there

are some predictors that are marginally independent of the survival time, but

not jointly independent of the survival time. Meanwhile, since each iteration in

Step 2 can avoid large-scale matrix inversion and, therefore, it can be carried

out with low computational costs. Based on our simulation study, the proposed

procedures can be implemented with less computing time than the marginal

screening procedure studied in Fan, Feng and Wu (2000) and Zhao and Li (2012)

in some scenarios (see Tables 3.2 and 3.3 for details). Theorem 1 below offers

convergence behavior of the proposed algorithm.

Theorem 1. Suppose that Conditions (D1)—(D4) in the Appendix hold. Denote

ρ(t) = sup
β

[
λmax{W−1/2(β(t)){−`′′p(β)}W−1/2(β(t))}

]
where λmax(A) stands for the maximal eigenvalue of a matrix A. If ut ≥ ρ(t),

then

`p(β
(t+1)) ≥ `p(β(t)),

where β(t+1) is defined in Step 2b in the above algorithm.

Theorem 1 claims the ascent property of the proposed algorithm if ut is

appropriately chosen. That is, the proposed algorithm may improve the current

estimate within the feasible region (i.e. ‖β‖0 ≤ m), and the resulting estimate

in the current step may serve as a refinement of the last step. This theorem

also provides us some insights about choosing ut in practical implementation. In

our numerical studies, this algorithm typically converges within six iterations. It

is worth noting that Theorem 1 does not implies that the proposed algorithm

converges to converge to the global optimizer.

2.2 Sure screening property

For the convenience of presentation, we use s to denote an arbitrary subset

of {1, . . . , p}, which amounts to a submodel with covariates xs = {xj , j ∈ s} and

associated coefficients βs = {βj , j ∈ s}. Also, we use τ(s) to indicate the size of

model s. In particular, we denote the true model by s∗ = {j : β∗j 6= 0, 1 ≤ j ≤ pn}
with τ(s∗) = ‖β∗‖0 = q. The objective of feature selection is to obtain a subset

ŝ such that s∗ ⊂ ŝ with a very high probability.
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We now provide some theoretical justifications for the newly proposed feature

screening procedure. The sure screening property (Fan and Lv, 2008) is referred

to as

Pr(s∗ ⊂ ŝ) −→ 1, as n→∞, (2.8)

To establish this sure screening property for the proposed SJS, we introduce some

additional notations as follows. For any model s, let `′(βs) = ∂`(βs)/∂βs and

`′′(βs) = ∂2`(βs)/∂βs∂β
T
s be the score function and the Hessian matrix of `(·)

as a function of βs, respectively. Assume that a screening procedure retains m

out of p features such that τ(s∗) = q < m. So, we define

Sm+ = {s : s∗ ⊂ s; ‖s‖0 ≤ m} and Sm− = {s : s∗ 6⊂ s; ‖s‖0 ≤ m}

as the collections of the over-fitted models and the under-fitted models. We in-

vestigate the asymptotic properties of β̂m under the scenario where p, q, m and

β∗ are allowed to depend on the sample size n. We impose the following condi-

tions, some of which are purely technical and only serve to facilitate theoretical

understanding of the proposed feature screening procedure.

(C1) There exist w1, w2 > 0 and some non-negative constants τ1, τ2 such that

τ1 + τ2 < 1/2 and

min
j∈s∗
|β∗j | ≥ w1n

−τ1 and q < m ≤ w2n
τ2 .

(C2) log p = O(nκ) for some 0 ≤ κ < 1− 2(τ1 + τ2).

(C3) There exist constants c1 > 0, δ1 > 0, such that for sufficiently large n,

λmin[−n−1`′′p(βs)] ≥ c1

for βs ∈ {β : ‖βs − β∗s‖2 ≤ δ1} and s ∈ S2m
+ , where λmin[·] denotes the

smallest eigenvalue of a matrix.

Condition (C1) states a few requirements for establishing the sure screening prop-

erty of the proposed procedure. The first one is the sparsity of β∗ which makes

the sure screening possible with τ(ŝ) = m > q. Also, it requires that the minimal

component in β∗ does not degenerate too fast, so that the signal is detectable in

the asymptotic sequence. Meanwhile, together with (C3), it confines an appro-

priate order of m that guarantees the identifiability of s∗ over s for τ(s) ≤ m.

Condition (C2) assumes that p diverges with n at up to an exponential rate; it

implies that the number of covariates can be substantially larger than the sample

size. We establish the sure screening property of the quasi-likelihood estimation

by the following theorem.

Statistica Sinica: Newly accepted Paper 
(accepted version subject to English editing)



8 G. Yang, Y. Yu, R. Li and A. Buu

Theorem 2. Suppose that Conditions (C1)—(C3) and Conditions (D1)—(D7)

in the Appendix hold. Let ŝ be the model obtained by the (2.3) of size m. We

have

Pr(s∗ ⊂ ŝ)→ 1, as n→∞.

The proof is given in the Appendix. The sure screening property is an

appealing property of a screening procedure since it ensures that the true active

predictors are retained in the model selected by the screening procedure. One has

to specify the value of m in practical implementation. In the literature of feature

screening, it is typical to set m = [n/ log(n)] (Fan and Lv, 2008). Although it is

an ad hoc choice, it works reasonably well in our numerical examples. With this

choice of m, one is ready to further apply existing methods such as the penalized

partial likelihood method (See, for example, Tibshirani, 1997, Fan and Li, 2002)

to further remove inactive predictors. Thus, we set m = [n/ log(n)] throughout

the numerical studies of this paper. To be distinguished from the SIS procedure,

the proposed procedure is referred to as sure joint screening (SJS) procedure.

3. Numerical studies

In this section, we evaluate the finite sample performance of the proposed

feature screening procedure via Monte Carlo simulations. We further illustrate

the proposed procedure via an empirical analysis of a real data set. All simula-

tions were conducted by using R codes.

3.1 Simulation studies

The main purpose of our simulation studies is to compare the performance

of the SJS with the SIS procedure for the Cox model (Cox-SIS) proposed by

Fan, Feng and Wu (2010) and further studied by Zhao and Li (2012). To make

a fair comparison, we set the model size of Cox-SIS to be the same as that

of our new procedure. In our simulation, the predictor variable x is generated

from a p-dimensional normal distribution with mean zero and covariance matrix

Σ = (σij). Two commonly-used covariance structures are considered.

(S1) Σ is compound symmetric. That is, σij = ρ for i 6= j and equal 1 for i = j.

We take ρ = 0.25, 0.50 and 0.75.

(S2) Σ has autoregressive structure. That is, σij = ρ|i−j|. We also consider

ρ = 0.25, 0.5 and 0.75.

We generate the censoring time from an exponential distribution with mean

10, and the survival time from the Cox model with h0(t) = 10 and two sets of

βs listed below:

(b1) β1 = β2 = β3 = 5, β4 = −15ρ, and other βjs equal 0.
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(b2) βj = (−1)U (a + |Vj |) for j = 1, 2, 3 and 4, where a = 4 log n/
√
n, U ∼

Bernoulli(0.4) and Vj ∼ N (0, 1).

Under the setting (S1) and (b1), X4 is jointly dependent but marginally

independent of the survival time for all ρ 6= 0. Thus, this setting is designed to

challenge the marginal SIS procedures. The coefficients in (b2) was used in Fan

and Lv (2008), and here we adopt it for survival data.

In our simulation, we consider the sample size n = 100 and 200, and the

dimension p=2000 and 5000. For each combination, we conduct 1000 replicates

of Monte Carlo simulation. We compare the performance of feature screening

procedures using the following two criteria:

1. Ps: the proportion that an individual active predictor is selected for a given

model size m in the 1000 replications.

2. Pa: the proportion that all active predictors are selected for a given model

size m in the 1000 replications.

The sure screening property ensures that Ps and Pa are both close to one when the

estimated model size m is sufficiently large. We choose m = [n/ log n] throughout

our simulations, where [a] denotes the integer that a is rounded to.

It is expected that the performance of SJS depends on the following factors:

the structure of the covariance matrix, the values of β, the dimension of all can-

didate features and the sample size n. In survival data analysis, the performance

of a statistical procedure depends on the censoring rate. Table 3.1 depicts the

censoring rates for the 12 combinations of covariance structure, the values of ρ

and values of β. It can be seen from Table 3.1 that the censoring rate ranges from

13% to 35%, which lies in a reasonable range to carry out simulation studies.

Table 3.1: Censoring Rates
ρ = 0.25 ρ = 0.50 ρ = 0.75

Σ β in (b1) β in (b2) β in (b1) β in (b2) β in (b1) β in (b2)
S1 0.329 0.163 0.317 0.148 0.293 0.239
S2 0.323 0.181 0.353 0.135 0.342 0.227

Table 3.2 reports Ps for the active predictors and Pa when the covariance

matrix of x is the compound symmetric (i.e., S1). Table 3.2 also depicts the

average computing time for each replication. Note that under the design of (S1)

with (b1), X4 is jointly dependent but marginally independent of the survival

time for all ρ 6= 0. This setting is designed to challenge all screening procedures,

in particularly the marginal screening procedures. As shown in Table 3.2, Cox-

SIS fails to identify X4 as an active predictor completely when β is set to be the
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Table 3.2: The proportions of Ps and Pa with Σ = (1− ρ)I + ρ11T

Cox-SIS SJS
Ps Pa Time Ps Pa Time

ρ β X1 X2 X3 X4 ALL (s) X1 X2 X3 X4 ALL (s)
n = 100 and p = 2000

.25 b1 .984 .991 .991 0 0 13.07 .999 .995 .997 .981 .975 7.54
b2 .826 .817 .826 .842 .437 12.94 .993 .992 .993 .997 .984 7.81

.50 b1 .951 .948 .937 .001 .001 13.07 .961 .962 .962 .983 .937 8.31
b2 .73 .707 .707 .734 .236 12.95 .981 .976 .977 .976 .936 8.47

.75 b1 .761 .783 .775 .008 .005 12.09 .954 .943 .942 .987 .898 8.36
b2 .611 .638 .619 .62 .134 9.22 .887 .891 .9 .898 .717 6.07

n = 100 and p = 5000
.25 b1 .977 .975 .981 0 0 32.00 0.988 0.981 0.984 0.925 0.912 26.00

b2 .739 .788 .763 .769 .317 27.76 .972 .974 .978 .975 .938 54.98
0.50 b1 .892 .9 .894 0 0 42.82 0.871 0.861 0.862 0.948 0.805 31.89

b2 .636 .619 .643 .629 .127 28.25 .919 .922 .934 .923 .812 59.68
.75 b1 .701 .696 .659 .008 .002 30.94 0.829 0.838 0.828 0.988 0.724 36.73

b2 .501 .501 .488 .472 .045 25.90 .78 .799 .784 .783 .486 49.65
n = 200 and p = 2000

.25 b1 1 1 1 0 0 15.90 1 1 1 1 1 16.32
b2 .977 .971 .979 .964 .897 6.99 1 1 1 1 1 5.94

.50 b1 .999 1 1 0 0 12.20 1 1 1 1 1 12.54
b2 .95 .946 .932 .942 .786 16.29 1 1 1 1 1 16.46

.75 b1 .989 .99 .994 .001 .001 15.79 1 1 1 1 1 17.70
b2 .887 .873 .883 .909 .597 18.34 1 .998 1 1 .998 20.33

n = 200 and p = 5000
.25 b1 1 1 1 0 0 34.32 1 1 1 1 1 160.33

b2 .952 .962 .949 .958 .825 42.47 1 1 1 1 1 211.99
.50 b1 .999 .998 1 0 0 32.71 1 1 1 1 1 181.90

b2 .904 .903 .892 .885 .637 30.38 1 1 1 1 1 152.62
.75 b1 .978 .976 .985 .004 .004 34.83 1 1 1 .999 .999 218.22

b2 .823 .832 .832 .812 .431 28.40 .998 .999 .997 .999 .993 146.69

one in (b1). This is expected. The newly proposed SJS procedure, on the other

hand, includes X4 with nearly every simulation. In addition, SJS has the value

of Pa very close to one for every case when β is set to be the one in (b1). There

is no doubt that SJS outperforms Cox-SIS easily in this setting.

We next discuss the performance of the Cox-SIS and the SJS when the

covariance matrix of x is compound symmetric and β is set to be the one in

(b2). In this setting, there is no predictor that is marginally independent of,

but jointly dependent with the response. Table 3.2 clearly shows that how the

performance of Cox-SIS and SJS is affected by the sample size, the dimension

of predictors and the value of ρ. Overall, the SJS outperforms the Cox-SIS in

all cases in terms of Ps and Pa. The improvement of SJS over Cox-SIS is quite

significant when the sample size is small (i.e., n = 100) or when ρ = 0.75. The

performance of SJS becomes better as the sample size increases. This is consistent

with our theoretical analysis since the SJS has the sure screening property.
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Table 3.3: The proportions of Ps and Pa with Σ = (ρ|i−j|)
Cox-SIS SJS

Ps Pa Time Ps Pa Time
ρ β X1 X2 X3 X4 ALL (s) X1 X2 X3 X4 ALL (s)

n = 100 and p = 2000
.25 b1 1 1 .997 .183 .182 10.46 1 1 1 .989 .989 5.84

b2 .989 1 .999 .983 .971 10.60 1 1 1 1 1 5.55
.50 b1 1 1 .941 .446 .394 10.61 .998 .997 .936 .97 .931 5.91

b2 1 1 1 .999 .999 12.29 1 1 1 1 1 6.31
.75 b1 1 1 .525 .364 .048 6.57 .985 .927 .641 .907 .615 3.77

b2 1 1 1 1 1 10.71 1 1 1 1 1 5.47
n = 100 and p = 5000

.25 b1 1 1 .991 .135 .131 32.23 1 1 1 .965 .965 59.62
b2 .981 .999 1 .975 .955 40.31 .999 1 1 .999 .999 74.80

0.50 b1 1 1 .888 .296 .214 38.82 .992 .981 .821 .896 .811 70.76
b2 .999 1 1 .999 .998 42.13 1 1 1 1 1 71.58

.75 b1 1 1 .439 .23 .019 29.09 .959 .82 .449 .783 .415 53.55
b2 1 1 1 1 1 31.05 1 1 1 1 1 52.37

n = 200 and p = 2000
.25 b1 1 1 1 .592 .592 12.93 1 1 1 1 1 11.62

b2 1 1 1 1 1 13.20 1 1 1 1 1 13.11
0.50 b1 1 1 .999 .869 .868 12.96 1 1 1 1 1 10.47

b2 1 1 1 1 1 12.78 1 1 1 1 1 11.39
.75 b1 1 1 .921 .757 .678 12.91 1 1 .999 .999 .998 11.17

b2 1 1 1 1 1 14.26 1 1 1 1 1 12.39
n = 200 and p = 5000

.25 b1 1 1 1 .45 .45 37.59 1 1 1 1 1 192.79
b2 1 1 1 1 1 35.63 1 1 1 1 1 166.09

.50 b1 1 1 1 .79 .79 38.47 1 1 1 1 1 166.29
b2 1 1 1 1 1 27.90 1 1 1 1 1 132.96

.75 b1 1 1 .88 .674 .554 47.62 1 1 .993 .997 .991 235.95
b2 1 1 1 1 1 34.52 1 1 1 1 1 163.85

Table 3.2 also indicates that the performance of Cox-SIS is better as the sam-

ple size increases, the feature dimension decreases or the value of ρ decreases.

However, these factors have less impacts on the performance of SJS. For ev-

ery case listed in Table 3.2, SJS outperforms Cox-SIS no matter whether there

presents marginally independent but jointly dependent predictors or not. In

terms of computing time, SJS and Cox-SIS are comparable. For p = 2000, SJS

needs slightly less computing time than Cox-SIS, while SJS needs more comput-

ing time for p = 5000.

Table 3.3 depicts the simulation results for the AR covariance structure (S2).

It is worth noting that with the AR covariance structure and β being set to

the one in (b1) or (b2), none of the active predictors X1, · · · , X4 is marginally

independent of the survival time. Thus, one would expect that the Cox-SIS

works well for both cases (b1) and (b2). Table 3.3 indicates that both Cox-SIS

and SJS perform very well when β is set to be the one in (b2). On the other
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Table 3.4: Comparison with Cox-ISIS
Cox-ISIS SJS

Ps Pa Time Ps Pa Time
p ρ X1 X2 X3 X4 ALL (s) X1 X2 X3 X4 ALL (s)

τ = 1
2000 .25 .998 .998 .999 1 .996 23.34 .999 .996 .995 .979 .975 5.75

.5 .898 .894 .897 1 .708 21.47 .97 .968 .975 .983 .952 6.05
.75 .697 .696 .694 1 .303 19.03 .952 .949 .953 .993 .903 5.72

5000 .25 .998 .994 .999 .992 .983 36.47 .988 .981 .984 .925 .912 26.00
.5 .819 .833 .853 1 .562 37.81 .871 .861 .862 .948 .805 31.89
.75 .579 .583 .611 1 .177 38.81 .829 .838 .828 .988 .724 36.73

τ = 0.75
2000 .25 1 .997 1 .999 .996 14.19 .999 .998 1 .98 .978 3.85

.5 .896 .899 .904 1 .712 14.10 .97 .969 .97 .987 .952 4.47
.75 .709 .687 .724 1 .334 22.99 .936 .938 .942 .99 .882 7.33

5000 .25 .991 .996 .99 .99 .972 42.64 .983 .985 .988 .931 .914 52.50
.5 .84 .823 .844 1 .563 44.85 .895 .89 .896 .956 .848 43.96
.75 .566 .584 .555 1 .167 50.80 .832 .819 .836 .985 .7 55.27

τ = 0.5
2000 .25 .997 .997 .999 1 .994 14.45 1 .997 .998 .981 .978 3.99

.5 .891 .888 .899 1 .702 26.78 .957 .962 .963 .987 .943 8.81
.75 .672 .678 .665 1 .273 13.95 .883 .889 .889 .99 .772 4.79

5000 .25 .993 .995 .99 .993 .975 41.41 .977 .983 .989 .912 .897 34.82
.5 .806 .847 .805 1 .527 56.10 .874 .867 .855 .946 .803 57.31
.75 .56 .574 .544 1 .161 40.54 .738 .761 .746 .975 .564 61.49

τ = 0.25
2000 .25 .97 .972 .976 .973 .902 14.40 .971 .971 .981 .853 .824 3.72

.5 .822 .806 .819 1 .534 14.45 .866 .845 .833 .966 .748 5.00
.75 .528 .536 .526 1 .126 14.48 .552 .566 .564 .952 .238 4.72

5000 .25 .941 .936 .934 .949 .805 43.85 .901 .914 .897 .675 .592 59.46
.5 .731 .736 .709 .999 .366 45.25 .664 .671 .645 .86 .475 50.66
.75 .466 .432 .419 1 .067 49.79 .427 .389 .372 .958 .1 118.30

hand, the Cox-SIS has very low Pa when n = 100 and β is set to be the one in

(b1), although Pa becomes much higher when the sample size increases from 100

to 200. In summary, SJS outperform Cox-SIS in all cases considered in Table 3.3,

in particular, when β is set to be the one in (b1). In terms of computing time,

the pattern is similar to that in Table 3.2.

We next compare SJS with the iterative Cox-SIS. Table 3.2 indicates that

Cox-SIS fails to identify the active predictor X4 under the compound symmetric

covariance (S1) when β is set to be the one in (b1) because this setting leads

X4 to be jointly dependent but marginally independent of the survival time.

Fan, Feng and Wu (2010) proposed iterative SIS for Cox model (abbreviated

as Cox-ISIS). Thus, it is of interest to compare the newly proposed procedure

with the Cox-ISIS. To this end, we conduct simulation under the settings with

S1, b1 and n = 100. In this simulation study, we also investigate the impact

of signal strength to the performance of the proposed procedure by considering
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β1 = β2 = β3 = 5τ , β4 = −15τρ, and other βjs equal 0. We take τ = 1,

0.75, 0.5 and 0.25. To make a fair comparison, the Cox-ISIS is implemented

by iterating Cox-SIS twice (each with the size m/2) so that the number of the

included predictors equals m = [n/ log(n)] = 22 for both Cox-SIS and the SJS.

The simulation results are summarized in Table 3.4. In addition to the two

criteria Ps and Pa, we report the computing time consumed by both procedures

due to their iterative essence. Table 3.4 indicates that when ρ = 0.25 is small,

both Cox-ISIS and SJS work quite well while SJS takes less time than ISIS.

When ρ = 0.5 and 0.75, SJS can significantly outperform Cox-ISIS in terms of

Ps and Pa. SJS has less computing time than Cox-ISIS when p = 2000, and is

comparable in computing time to Cox-ISIS when p = 5000.

3.2 An application As an illustration, we apply the proposed feature screening

procedure for an empirical analysis of microarray diffuse large-B-cell lymphoma

(DLBCL) data (Rosenwald et al., 2002). Given that DLBCL is the most common

type of lymphoma in adults and has a survival rate of only about 35 to 40

percent after the standard chemotherapy, there has been continuous interest to

understand the genetic markers that may have impacts on the survival outcome.

Table 3.5: Four-three Gene IDs selected by Cox-SJS, Cox-ISIS and Cox-SIS
SJS Cox-ISIS Cox-SIS

Gene 269 3811 6156 427 2108 4548 1072 1841 5027
IDs 807 3818 6517 655 2109 4721 1188 2437 5054

1023 3819 6607 1188 2244 4723 1439 2579 5055
1191 3820 6758 1456 2246 5034 1456 2672 5297
1662 3821 6844 1579 2361 5055 1660 3799 5301
1664 3824 6908 1662 2579 5301 1662 3810 5614
1682 3825 6956 1671 3799 5614 1663 3811 5950
1825 3826 7068 1681 3811 5649 1664 3812 5953
2115 4025 7070 1682 3813 5950 1671 3813 6365
3332 4216 7175 1825 3822 6956 1672 3820 6519
3372 4317 7343 1878 3824 7098 1678 3821 7096
3373 4401 7357 1996 3825 7343 1680 3822 7343
3497 4545 7380 2064 4131 7357 1681 3824 7357
3791 4595 2106 4317 1682 3825
3810 5668 2107 4448 1825 4131

This data set consists of the survival time of n = 240 DLBCL patients after

chemotherapy, and p = 7399 cDNA microarray expressions of each individual

patient as predictors. Given such a large number of predictors and the small

sample size, feature screening seems to be a necessary initial step as a prelude to

sophisticated statistical modeling procedure that cannot deal with high dimen-
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sional survival data. All predictors are standardized so that they have mean zero

and variance one.

There are five patients with survival time being close to 0. After removing

them from our analysis, our empirical analysis in this example is based on the

sample of 235 patients. As a simple comparison, Cox-SIS, Cox-ISIS, and SJS

are all applied to this data and obtain the reduced model with [235/ log(235)] =

43 genes. The IDs of genes selected by the three screening procedures are listed

in Table 3.5. The maximum of partial likelihood function of three correspond-

ing models obtained by SJS, Cox-ISIS and Cox-SIS procedures are −536.9838,

−561.8795, and −600.0885, respectively. This implies that both SJS and Cox-

ISIS performs much better than Cox-SIS with SJS performing the best.

Table 3.6: IDs of Selected Genes by SCAD and Lasso
Gene IDs

SJS-SCAD
1023 1662 1664 1682 1825 2115 3332 3373 3497 3791 3810
3811 3818 3819 3820 3821 3824 4317 4545 4595 5668 6156
6517 6607 6758 6844 6908 7343 7357 7380

SJS-Lasso

269 807 1023 1191 1664 1682 1825 2115 3332 3373 3497
3791 3810 3811 3819 3820 3821 4025 4216 4317 4401 4545
4595 5668 6156 6517 6607 6758 6844 6908 7068 7070 7157
7343 7357 7380

ISIS-SCAD
1188 1456 1662 1681 1682 1825 1878 2108 3811 3812 3813
3822 3824 3825 4317 4448 4548 4723 5034 5055 5649 5950
6956 7098 7343 7357

ISIS-Lasso
427 655 1188 1456 1579 1662 1671 1681 1825 1878 2106
2107 2108 2109 2246 2361 3813 3822 3825 4131 4317 4448
4548 4723 5034 5055 5301 5614 5649 5950 6956 7098 7343
7357

SIS-SCAD 1671 1672 1825 3799 3810 3822 3824 7069 7357

SIS-Lasso
1188 1456 1664 1671 1825 2437 3821 4131 5027 5297 6519
7069 7343 7357

Table 3.7: Likelihood, DF, AIC and BIC of Resulting Models.
Likelihood df BIC AIC

SJS-SCAD -546.1902 30 1256.168 1152.380
SJS-Lasso -542.9862 36 1282.518 1157.972

ISIS-SCAD -575.7148 26 1293.379 1203.430
ISIS-Lasso -567.6035 34 1320.833 1203.207
SIS-SCAD -622.5386 9 1294.213 1263.077
SIS-Lasso -610.6605 14 1297.755 1249.321

We first apply penalized partial likelihood with the L1 penalty (Tibshirani,

1997) and with the SCAD penalty (Fan and Li, 2002) for the models obtained
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from the screening stage. We refer to these two variable selection procedures as

Lasso and SCAD for simplicity. The tuning parameter in the SCAD and the

Lasso was selected by the BIC tuning parameter selector, a direct extension of

Wang, Li and Tsai (2007). The IDs of genes selected by the SCAD and the Lasso

are listed in Table 3.6. The likelihood, the degree of freedom (df), the BIC score

and the AIC score of the resulting models are listed in Table 3.7, from which SJS-

SCAD results in the best fit model in terms of the AIC and BIC. The partial

likelihood ratio test for comparing the model selected by SJS-SCAD and SJS

without SCAD is 18.41286 with df=13. This leads to the P-value of this partial

likelihood ratio test to be 0.142. This implies the model selected by SJS-SCAD

is in favor, compared with the one obtained in the screening stage. The resulting

estimates and standard errors of the model selected by SJS-SCAD are depicted in

Table 3.8, which indicates that most selected genes have significant impact on the

survival time. We further compare Tables 3.5 and 3.8, and find that Gene 4317

was selected by both SJS and Cox-ISIS, but not by Cox-SIS. From Tables 3.6,

this gene is also included in models selected by SJS-SCAD, SJS-Lasso, Cox-ISIS-

SCAD and Cox-ISIS-Lasso. This motivates further investigation of this variable.

Table 3.9 presents likelihoods and AIC/BIC scores for models with and without

Gene 4317. The P-values of the likelihood ratio tests indicate that Gene 4317

should be included in the models. This clearly indicates that Cox-SIS fails to

identify this significant gene.

Table 3.8: Estimates and Standard Errors (SE) based on SJS-SCAD
Gene ID Estimate(SE) P-value Gene ID Estimate(SE) P-value

1023 0.4690(0.1289) 2.74e-04 3821 -0.8668(0.5901) 0.142
1662 -0.7950(0.3388) 1.90e-02 3824 0.2176(0.0791) 5.97e-03
1664 1.3437(0.3227) 3.14e-05 4317 0.4471( 0.1153) 1.05e-04
1682 0.3468(0.1464) 1.79e-02 4545 0.04761(0.0181) 8.23e-03
1825 0.7459( 0.1306) 1.13e-08 4595 0.4751(0.0977) 1.16e-06
2115 -0.5097(0.1168) 1.29e-05 5668 -0.6518(0.1314) 6.99e-07
3332 -0.4340(0.1100) 8.00e-05 6156 -0.4751(0.1142) 3.19e-05
3373 0.1713( 0.0608) 4.84e-03 6517 -0.0156(0.0068) 2.15e-02
3497 0.4417( 0.1076) 4.06e-05 6607 0.6265( 0.1196) 1.64e-07
3791 0.1260( 0.0454) 5.59e-03 6758 -0.5383(0.1075) 5.64e-07
3810 1.2120(0.3697) 1.05e-03 6844 0.7052(0.1171) 1.72e-9
3811 -0.9292(0.3262) 4.39e-03 6908 -0.3667(0.1221) 2.68e-03
3818 0.7600( 0.4598) 0.098 7343 -0.3411( 0.1143) 2.84e-03
3819 1.1895(0.3824) 1.87e-03 7357 -0.8760(0.1152) 2.88e-14
3820 -2.0650( 0.4843) 2.01e-05 7380 0.3791(0.1031) 2.37e-04

4. Discussions

In this paper, we propose a sure joint screening (SJS) procedure for feature

Statistica Sinica: Newly accepted Paper 
(accepted version subject to English editing)



16 G. Yang, Y. Yu, R. Li and A. Buu

Table 3.9: Likelihood, AIC and BIC of Models with and without Gene 4317.
SJS SJS-SCAD SJS-Lasso ISIS ISIS-SCAD ISIS-Lasso

LKHD with Gene4317 -536.9838 -546.1902 -542.9862 -561.8795 -575.7148 -567.6035
LKHD w/o Gene4317 -544.1571 -549.4587 -547.8609 -568.8975 -580.2026 -572.1035

df 1 1 1 1 1 1
BIC w/o Gene4317 1317.617 1257.245 1286.807 1367.098 1296.895 1324.373
AIC w/o Gene4317 1172.314 1156.917 1165.722 1221.795 1210.405 1210.207

p-value of LRT 1.50e-04 0.0106 0.0018 1.70e-04 0.0027 0.0027

screening in the Cox model with ultrahigh dimensional covariates. The proposed

SJS is distinguished from the existing Cox-SIS and Cox-ISIS in that SJS is based

on joint likelihood of potential candidate features. We propose an effective algo-

rithm to carry out the feature screening procedure, and show that the proposed

algorithm possesses ascent property. We study the sampling property of SJS, and

establish the sure screening property for SJS. We conduct Monte Carlo simulation

to evaluate the finite sample performance of SJS and compare it with Cox-SIS

and Cox-ISIS. Our numerical comparison indicates that SJS outperforms Cox-SIS

and Cox-ISIS, and SJS can effectively screen out inactive covariates and retain

truly active covariates. We further illustrate the proposed procedure using a real

data example.

Theorem 1 ensures the ascent property of the proposed algorithm under

certain conditions. However, it does not implies that the proposed algorithm

converges to the global optimizer. If the proposed algorithm converges to a global

maximizer of (2.3), then Theorem 2 shows that such a solution enjoys the sure

screen property. In this paper, we simply set m = [n/ log(n)] in our numerical

study. It may be of interest to derive a data-driven method to determine m and

reduce false positive rate in the screening stage. This would be a good topic for

future research.
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Appendix

We need the following notation to present the regularity conditions for the
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partial likelihood and the Cox model. Most notations are adapted from Andersen

and Gill (1982), in which counting processes were introduced for the Cox model

and the consistency and asymptotic normality of the partial likelihood estimate

were established. Denote N i(t) = I{Ti ≤ t, Ti ≤ Ci} and Ri(t) = {Ti ≥ t, Ci ≥
t}. Assume that there are no two component processes Ni(t) jumping at the

same time. For simplicity, we shall work on the finite interval [0, τ ]. In Cox’s

model, properties of stochastic processes, such as being a local martingale or

a predictable process, are relative to a right-continuous nondecreasing family

(Ft : t ∈ [0, τ ]) of sub σ-algebras on a sample space (Ω,F ,P); Ft represents

everything that happens up to time t. Throughout this section, we define Λ0(t) =∫ t
0 h0(u) du.

By stating that N i(t) has intensity process hi(t)=̂h(t|xi), we mean that the

processes Mi(t) defined by

Mi(t) = N i(t)−
∫ t

0
hi(u)du, i = 1, . . . , n,

are local martingales on the time interval [0, τ ].

Define

A(k)(β, t) =
1

n

n∑
i=1

Ri(t) exp{xTi β}x⊗ki , a(k)(β, t) = E[A(k)(β, t)] for k = 0, 1, 2,

and

E(β, t) =
A(1)(β, t)

A(0)(β, t)
, V (β, t) =

A(2)(β, t)

A(0)(β, t)
− E(β, t)⊗2.

where x⊗0i = 1, x⊗1i = xi and x⊗2i = xix
T
i . Note that A(0)(β, t) is a scalar,

A(1)(β, t) and E(β, t) are p-vector, and A(2)(β, t) and V (β, t) are p×p matrices.

Define

Qj =
n∑
i=1

∫ tj

0

[
xi −

∑
i∈Rj

xi exp(xTi β)∑
i∈Rj

exp(xTi β)

]
dMi.

Here, E[Qj |Fj−1] = Qj−1 i.e. E[Qj −Qj−1|Fj−1] = 0. Let bj = Qj −Qj−1, then

(bj)j=1,2,... is a sequence of bounded martingale differences on (Ω,F , P ). That is,

bj is bounded almost surely (a.s.) and E[bj |Fj−1] = 0 a.s. for j = 1, 2, . . ..

(D1) (Finite interval). Λ0(τ) =
∫ τ
0 h0(t)dt <∞

(D2) (Asymptotic stability). There exists a neighborhood B of β∗ and scalar,

vector and matrix functions a(0),a(1) and a(2) defined on B× [0, τ ] such that
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for k = 0, 1, 2

sup
t∈[0,τ ],β∈B

‖A(k)(β, t)− a(k)(β, t)‖ p→ 0.

(D3) (Lindeberg condition). There exists δ > 0 such that

n−1/2 sup
i,t
|xi|Ri(t)I{β′0xi > −δ|xi|}

p→ 0,

(D4) (Asymptotic regularity conditions). Let B, a(0), a(1) and a(2) be as in

Condition (D2) and define e = a(1)/a(0) and v = a(2)/a(0) − e⊗2. For all

β ∈ B,t ∈ [0, τ ];

a(1)(β, t) =
∂

∂β
a(0)(β, t), a(2)(β, t) =

∂2

∂β2a
(0)(β, t),

a(0)(·, t), a(1)(·, t) and a(2)(·, t) are continuous functions of β ∈ B, uniformly

in t ∈ [0, τ ], a(0), a(1) and a(2) are bounded on B × [0, τ ]; a(0) is bounded

away from zero on B × [0, τ ], and the matrix

A =

∫ τ

0
v(β0, t)a

(0)(β0, t)h0(t)dt

is positive definite.

(D5) The function A(0)(β∗, t) and a(0)(β∗, t) are bounded away from 0 on [0, τ ].

(D6) There exist constants C1, C2 > 0, such that maxij |xij | < C1 and maxi |xTi β
∗| <

C2.

(D7) {bj} is a sequence of martingale differences and there exit nonnegative con-

stants cj such that for every real number t,

E{exp(tbj)|Fj−1} ≤ exp(c2j t
2/2) a.s. (j = 1, 2, . . . , N)

For each j, the minimum of those cj is denoted by η(bj).

|bj | ≤ Kj a.s. for j = 1, 2, . . . , N

and E{bj1 , bj2 , . . . , bjk} = 0 for bj1 < bj2 < · · · < bjk ;k = 1, 2, . . ..

Note that the partial derivative conditions on a(0), a(1) and a(2) are satisfied by

A(0), A(1) and A(2); and that A is automatically positive semidefinite. Further-

more the interval [0, τ ] in the conditions may everywhere be replaced by the set

{t : h0(t) > 0}.
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Condition (D1)—(D5) is a standard condition for the proportional hazards

model (Anderson and Gill, 1982), which is weaker than the one required by

Bradic et al (2011) and A(k)(β0, t) converges uniformly to a(k)(β0, t). Condition

(D6) is a routine one, which is needed to apply the concentration inequality for

general empirical processes. For example, the bounded covariate assumption is

used by Huang et al. (2013) for discussing the Lasso estimator of proportional

hazards models. Condition (D7) is needed for the asymptotic behavior of the

score function `′p(β) of partial likelihood because the score function cannot be

represented as a sum of independent random vectors, but it can be represented

as sum of a sequence of martingale differences.

Proof of Theorem 1. Applying the Taylor expansion to `p(γ) at γ = β, it

follows that

`p(γ) = `p(β) + `′p(β)(γ − β) +
1

2
(γ − β)T `′′p(β̃)(γ − β),

where β̃ lies between γ and β.

(γ−β)T {−`′′p(β̃)}(γ−β) ≤ (γ−β)TW (β)(γ−β)λmax[W−1/2(β){−`′′p(β̃)}W−1/2(β)]

Thus, if u > λmax[W−1/2(β){−`′′p(β̃)}W−1/2(β)] ≥ 0 since−`′′p(β) is non-negative

definite, then

`p(γ) ≥ `p(β) + `′p(β)(γ − β)− u

2
(γ − β)TW (β)(γ − β)

Thus it follows that `p(γ) ≥ g(γ|β) and `p(β) = g(β|β) by definition of g(γ,β).

Hence, under the conditions of Theorem 1, it follows that

`p(β
(t+1)
∗ ) ≥ g(β

(t+1)
∗ |β(t)) ≥ g(β(t)|β(t)) = `(β(t)).

The second inequality is due to the fact that ‖β(t+1)
∗ ‖0 = ‖β(t)‖0 = m, and

β
(t+1)
∗ = arg maxγ g(γ|β(t)) subject to ‖γ‖0 ≤ m. By definition of β(t+1),

`p(β
(t+1)) ≥ `p(β(t+1)

∗ ) and ‖β(t+1)‖0 = m. This proves Theorem 1.

Proof of Theorem 2. Let β̂s be the partial likelihood estimate of βs based on

model s. The theorem is implied if Pr{ŝ ∈ Sm+ } → 1. Thus, it suffices to show

that

Pr

{
max
s∈Sm

−
`p(β̂s) ≥ min

s∈Sm
+

`p(β̂s)

}
→ 0,

as n→∞.

For any s ∈ Sm− , define s′ = s∪s∗ ∈ S2m
+ . Under (C1) condition, we consider
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βs′ close to β∗s′ such that ‖βs′ − β∗s′‖ = w1n
−τ1 for some w1, τ1 > 0. Clearly,

when n is sufficiently large, βs′ falls into a small neighborhood of β∗s′ , so that

Condition (C3) becomes applicable. Thus, it follows Condition (C3) and the

Cauchy-Schwarz inequality that

`p(βs′)− `p(β∗s′) = [βs′ − β∗s′ ]
T `′p(β

∗
s′) + (1/2)[βs′ − β∗s′ ]

T `′′p(β̃s′)[βs′ − β∗s′ ]

≤ [βs′ − β∗s′ ]
T `′p(β

∗
s′)− (c1/2)n‖βs′ − β∗s′‖22

≤ w1n
−τ1‖`′p(β∗s′)‖2 − (c1/2)w2

1n
1−2τ1 , (A.1)

where β̃s′ is an intermediate value between βs′ and β∗s′ . Thus, we have

Pr{`p(βs′)− `p(β∗s′) ≥ 0} ≤ Pr{‖`′p(β∗s′)‖2 ≥ (c1w1/2)n1−τ1}

= Pr

∑
j∈s′

[`′j(β
∗
s′)]

2 ≥ (c1w1/2)2n2−2τ1


≤

∑
j∈s′

Pr{[`′j(β∗s′)]2 ≥ (2m)−1(c1w1/2)2n2−2τ1}

Also, by (C1), we have m ≤ w2n
τ2 , and also the following probability inequality

Pr{`′j(β∗s′) ≥ (2m)−1/2(c1w1/2)n1−τ1} ≤ Pr{`′j(β∗s′) ≥ (2w2n
τ2)−1/2(c1w1/2)n1−τ1}

= Pr
{
`′j(β

∗
s′) ≥ cn1−τ1−0.5τ2

}
= Pr

{
`′j(β

∗
s′) ≥ ncn−τ1−0.5τ2

}
(A.2)

where c = c1w1/(2
√

2w2) denotes some generic positive constant. Recall (2.2),

by differentiation and rearrangement of terms, it can be shown as in Andersen

and Gill (1982) that the gradient of `p(β) is

`′p(β) ≡ ∂`p(β)

∂β
=

1

n

n∑
i=1

∫ ∞
0

[xi − x̄n(β, t)] dN i(t). (A.3)

where x̄n(β, t) =
∑

i∈Rj
xi exp(xTi β)/

∑
i∈Rj

exp(xTi β). As a result, the partial

score function `′p(β) no longer has a martingale structure, and the large deviation

results for continuous time martingale in Bradic et al (2011) and Huang et al

(2013) are not directly applicable. The martingale process associated with N i(t)

is given by Mi(t) = N i(t)−
∫ t
0 Ri(s) exp(xTβ∗)dΛ0(u).

Let tj be the time of the jth jump of the process
∑n

i=1

∫∞
0 Ri(t)dN i(t),
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j = 1, . . . , N and t0 = 0. Then, tj are stopping times. For j = 0, 1, . . . , N , define

Qj =

n∑
i=1

∫ tj

0
bi(u)dN i(u) =

n∑
i=1

∫ tj

0
bi(u)dMi(u) (A.4)

where bi(u) = xi−x̄n(β, u), i = 1, . . . , n are predictable, under no two component

processes jumping at the same time and (D6), and satisfy |bi(u)| ≤ 1.

Since Mi(u) are martingales and bi(u) are predictable, {Qj , j = 0, 1, . . .}
is a martingale with the difference |Qj − Qj−1| ≤ maxu,i |bi(u)| ≤ 1. Recall

definition of N in Section 2, we define C2
0n ≤ N , where C0 is a constant. So,

by the martingale version of the Hoeffding’s inequality (Azuma, 1967) and under

Condition (D7), we have

Pr(|QN | > nC0x) ≤ 2 exp{−n2C2
0x

2/(2N)} ≤ 2 exp(−nx2/2) (A.5)

By (A.4), QN = n`′p(β) if and only if
∑n

i=1

∫∞
0 Ri(t)dN i(t) ≤ N . Thus, the

left-hand side of (3.15) in Lemma 3.3 of Huang et al (2013) is no greater than

Pr(|QN | > nC0x) ≤ 2 exp(−nx2/2).

So, (A.2) can be rewritten as follows.

Pr
{
`′j(β

∗
s′) ≥ ncn−τ1−0.5τ2

}
≤ exp{−0.5nn−2τ1−τ2} = exp{−0.5n1−2τ1−τ2}

(A.6)

Also, by the same arguments, we have

Pr{`′j(β∗s′) ≤ −m−1/2(c1w1/2)n1−τ1} ≤ exp{−0.5n1−2τ1−τ2} (A.7)

The inequalities (A.6) and (A.7) imply that,

Pr{`p(βs′) ≥ `p(β∗s′)} ≤ 4m exp{−0.5n1−2τ1−τ2}

Consequently, by Bonferroni inequality and under conditions (C1) and (C2), we

have

Pr

{
max
s∈Sm

−
`p(βs′) ≥ `p(β∗s′)

}
≤

∑
s∈Sm

−

Pr{`p(βs′) ≥ `p(β∗s′)}

≤ 4mpm exp{−0.5n1−2τ1−τ2}
= 4 exp{logm+m log p− 0.5n1−2τ1−τ2}
≤ 4 exp{logw2 + τ2 log n+ w2n

τ2 c̃nκ − 0.5n1−2τ1−τ2}
= 4w2 exp{τ2 log n+ w2c̃n

τ2+κ − 0.5n1−2τ1−τ2}
= a1 exp{τ2 log n+ a2n

τ2+κ − 0.5n1−2τ1−τ2}
= o(1) as n→∞ (A.8)
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for some generic positive constants a1 = 4w2 and a2 = w2c̃. By Condition (C3),

`p(βs′) is concave in βs′ , (A.8) holds for any βs′ such that ‖βs′ −β∗s′‖ ≥ w1n
−τ1 .

For any s ∈ Sm− , let β̆s′ be β̂s augmented with zeros corresponding to the

elements in s′/s∗ (i.e. s′ = {s ∪ (s∗/s)} ∪ (s′/s∗)). By Condition (C1), it is

seen that ‖β̆s′ − β∗s′‖2 = ‖β̆s∗∪(s′/s∗) − β∗s∗∪(s′/s∗)‖2 = ‖β̆s∗∪(s′/s∗) − β∗s∗‖2 ≥
‖β∗s∗∪(s′/s∗) − β∗s∗‖2 ≥ ‖β∗s′/s∗‖2 ≥ w1n

−τ1 . Consequently,

Pr

{
max
s∈Sm

−
`p(β̂s) ≥ min

s∈Sm
+

`p(β̂s)

}
≤ Pr

{
max
s∈Sm

−
`p(β̆s′) ≥ `p(β∗s′)

}
= o(1)

The theorem is proved.
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