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ON SOME EXACT DISTRIBUTION-FREE ONE-SAMPLE

TESTS FOR HIGH DIMENSION LOW SAMPLE SIZE DATA

Munmun Biswas, Minerva Mukhopadhyay and Anil K. Ghosh

Indian Statistical Institute, Kolkata

Abstract: Several rank based tests for the multivariate one-sample problem are

available in the literature. But, unlike univariate rank based tests, most of these

multivariate tests are not distribution-free. Moreover, many of them are not ap-

plicable when the dimension of the data exceeds the sample size. In this article,

we develop and investigate some distribution-free tests for the one-sample loca-

tion problem, which can be conveniently used in high dimension low sample size

(HDLSS) situations. Under some appropriate regularity conditions, we prove the

consistency of these tests when the sample size remains fixed and the dimension

grows to infinity. Some simulated and real data sets are analyzed to compare their

performance with some popular one-sample tests.

Key words and phrases: HDLSS data, linear rank tests, run tests, shortest covering

path, weak law of large numbers.

1. Introduction

Suppose that x1, . . . ,xn are n independent realizations of a d-dimensional

random vector X having a continuous distribution F symmetric about θ ∈ R
d

(i.e., X − θ
d
= θ − X). In the one-sample problem, we test the null hypothesis

H0 : θ = θ0 against the alternative H1 : θ 6= θ0, where θ0 is a pre-specified

point in R
d. This problem is well investigated in the literature, especially when

d = 1. If F is assumed to be normal, one uses the student’s t-statistic to per-

form the test. In general univariate set up, we use nonparametric tests like those

based on linear rank statistics (see e.g., Gibbons and Chakraborty, 2003). These

tests are distribution-free, and they outperform the t-test for a wide variety of

non-Gaussian distributions. Several attempts have been made to generalize these

rank based tests for multivariate data. Puri and Sen (1971) proposed tests based

coordinate-wise signs and ranks. Randles (1989, 2000) developed one-sample lo-

cation tests based on the idea of interdirections. Chaudhuri and Sengupta (1993)
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generalized Hodges’ (1955) bivariate sign test to higher dimension. Other non-

parametric tests for the multivariate one-sample problem include Bickel (1965),

Hettmansperger et al. (1994), Mottonen et al. (1997), Hettmansperger et al.

(1997), Chakraborty et al. (1998) and Hallin and Paindaveine (2002). Some of

these multivariate nonparametric tests are distribution-free under some specific

types of symmetry conditions on F (e.g., the sign test of Puri and Sen (1971)

is distribution-free under coordinate-wise sign symmetry, the sign tests of Ran-

dles (1989, 2000) and Chaudhuri and Sengupta (1999) are distribution-free under

elliptic symmetry), but none of them are distribution-free when F is centrally

symmetric (i.e., X− θ
d
= θ −X for some θ∈ R

d). In such cases, one either uses

the test based on the large sample distribution of the test statistic or the con-

ditional test based on the permutation principle. Moreover, most of these tests

become computationally prohibitive even for moderately high dimensional data,

and they usually yield poor performance in high dimensional problems. None of

these tests can be used when the dimension exceeds the sample size.

In the recent past, several one-sample tests have been proposed for high

dimension low sample size (HDLSS) data (see e.g., Bai and Saranadasa, 1996;

Srivastava and Du, 2008; Srivastava, 2009; Chen and Qin, 2010; Park and Ayyala,

2013). However, these tests are concerned with the mean vector of a high di-

mensional distribution, and none of them are distribution-free in finite sample

situations. These tests are based on the asymptotic distribution of the test statis-

tic, where the dimension increases with the sample size.

In this article, we develop a general method for multivariate generalizations

of univariate rank based one-sample tests retaining their distribution-free prop-

erty. These tests are fairly simple and computationally efficient. They can be

conveniently used even when the dimension of the data exceeds the sample size.

2. Construction of distribution-free tests for multivariate data

LetX1, . . . ,Xn be independent and identically distributed univariate random

variables with a distribution F , which is continuous and symmetric about some

θ0 ∈ R. If we define Yi = sign(Xi − θ0) and Ri as the rank of |Xi − θ0| in

{|X1 − θ0|, . . . , |Xn − θ0|} for all i = 1, 2, . . . , n, it is easy to check that
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(a) P{(Y1, . . . , Yn) = (y1, . . . , yn)} = 2−n for all (y1, . . . , yn) ∈ {−1, 1}n,

(b) P{(R1, . . . , Rn) = (r1, . . . , rn)} = 1/n! for all permutations (r1, . . . , rn)

of {1, . . . , n},

(c) (Y1, . . . , Yn) and (R1, . . . , Rn) are independent.

So, if the test statistic is a function of (Y1, . . . , Yn) and (R1, . . . , Rn) (e.g., linear

rank statistic), the resulting test will be distribution-free in finite sample situa-

tions. To construct distribution-free one-sample tests for multivariate data, we

extend the notions of signs Y1, . . . , Yn and ranks R1, . . . , Rn in such a way that

the results (a)-(c) hold under H0.

For testing H0 : θ = θ0 (θ0 ∈ Rd) against H1 : θ 6= θ0 based on n inde-

pendent multivariate observations x1, . . . ,xn from F , we define x∗
i = 2θ0 − xi

for i = 1, . . . , n. Note that under H0, x1, . . . ,xn and x∗
1, . . . ,x

∗
n have the same

distribution, while under H1 they differ in their locations. Now, consider a com-

plete graph K2n on 2n vertices z1, . . . , z2n, where zi = xi and zn+i = x∗
i for

i = 1, . . . , n. Also, assume that each edge of K2n has a cost associated with it.

For instance, the Euclidean distance between the two vertices of an edge can be

considered as its cost. Now, consider a path P of length n−1 in K2n such that for

every i = 1, . . . , n, P covers either xi or x
∗
i . Clearly, there are 2

nn! such paths in

K2n. However, for every path, there is another path in the reverse order. Again,

for any path and its reverse path, two other equivalent paths can be obtained if

we replace all zi’s by zn+i (or zi−n if i > n). For these four paths, the total cost

of the n−1 edges remains the same. If we consider these four equivalent paths as

the same path, the number of distinct covering paths (i.e., the paths that cover

either xi or x
∗
i for all i = 1, . . . , n) reduces to 2n−2n!. For each of these distinct

covering paths, the sum of the costs corresponding to its n − 1 edges is defined

as its cost. Among these distinct paths, we choose the one having the minimum

cost, and we call it the shortest covering path P0. This shortest covering path

may not be unique, but if the costs corresponding to different edges come from

continuous distributions, it becomes unique with probability one.

Figure 1 shows a complete graph on 2n = 6 vertices in two-dimension along

with the costs corresponding to different edges. There are 12 distinct covering

paths in this graph, where the path z1 → z3 → z5 (or z5 → z3 → z1, or

equivalently, z4 → z6 → z2 or z2 → z6 → z4) is the shortest covering path.
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Figure 1: A complete graph on 2n = 6 vertices and the shortest covering path.

We define Y1, . . . , Yn and R1, . . . , Rn along P0. For each i = 1, . . . , n, Yi

takes the value 1 (or −1, respectively) if xi (or x∗
i , respectively) appears on

P0, and Ri is defined as the position of xi (or x∗
i ) along P0. Between the two

terminal nodes of P0, as a starting point, we choose the one which is closer to

θ0. Since X and 2θ0 − X has the same distribution under H0, and x1, . . . ,xn

form an exchangeable collection, it is easy to check that Y1, . . . , Yn and R1, . . . , Rn

defined in this way satisfy properties (a)-(c) mentioned earlier. So, if we construct

a test statistic, which is a function of Y1, . . . , Yn and R1, . . . , Rn, the resulting

test will be distribution-free. Like the univariate case, we can use the linear

rank statistic of the form T0 =
∑n

i=1 I{Yi = 1}a(Ri), where I{·} is the indicator

function, and a : {1, . . . , n} → R is a score function. Using a(i) = 1 and a(i) = i

for i = 1, . . . , n, one obtains the sign statistic
∑n

i=1 I{Yi = 1} and the signed-

rank statistic
∑n

i=1Ri I{Yi = 1}, respectively. Under H0, since x1, . . . ,xn and

x∗
1, . . . ,x

∗
n have the same distribution, we expect almost equal numbers of xi’s and

x∗
i ’s on P0. But, underH1, one would expect a dominance of either the xi’s or the

x∗
i s on P0. So, we should reject H0 for very small or very large values of T0, or in

other words, H0 is to be rejected for large values of T ∗
0 = max{T0,

∑n
i=1 a(i)−T0}.

One can also construct a test based on the number of runs or that based on

the length of the longest run along P0. The number of runs can be expressed as

T1 = 1+
∑n−1

i=1 Ui, where Ui is an indicator variable that takes the value 1 if and

only if the i-th edge of P0 connects two observations with different Y -values. The

length of the longest run is given by T2 = max0≤i<j≤n (j − i) I{Ui = 1, Ui+1 =
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. . . = Uj−1 = 0, Uj = 1}, where U0 = Un = 1 and for i = 1, . . . , n − 1, the Uis

are defined as above. Under H0, when two data clouds x1, . . . ,xn and x∗
1, . . . ,x

∗
n

are well mixed, T1 is expected to be large, while T2 is expected to be small. But

under H1, when they are well separated, we expect small values of T1 and large

values of T2. So, here we use one-sided cut-offs.

In Fig. 1, along the path z1 = x1 → z3 = x3 → z5 = x∗
2, both T1 and

T2 take the value 2, while the values of the sign statistic and the signed rank

statistic are 2 and 3, respectively. Barring the signed rank statistic, the values of

the other three do not depend on the choice of the starting point of P0, and they

remain the same if the path is traversed in the reverse order. The values of T1

and T2 also remain the same along an equivalent path, where all zi’s are replaced

by zn+i (or zi−n if i > n). Along this path, though T0 becomes
∑n

i=1 a(i) − T0,

the value of T ∗
0 remains the same. Therefore, all these tests lead to the same

results if this equivalent path is chosen. If we use pairwise distances among the

observations as costs corresponding to different edges of K2n, the resulting tests

become invariant under location change and homogeneous scale transformation of

the data. If the Euclidean distance is used, they become rotation invariant as well,

but unfortunately they do not have the maximal invariance property for any of

these transformations. Note that in the univariate case, P0 is obtained by joining

the observations xi (or x
∗
i , if xi < θ0) in increasing order of the magnitudes of

their differences from θ0. So, in that case, T0 coincides with the univariate linear

rank statistic. Usually, we do not use run tests for the univariate one-sample

location problem. But, alternative distribution-free tests for that problem can

also be constructed using univariate analogs of T1 and T2.

2.1 Distributions of test statistics and determination of cut-off values

The test statistics constructed in the previous section are the same func-

tions of (Y1, . . . , Yn) and (R1, . . . , Rn) as their univariate analogs. Since the joint

distribution of (Y1, . . . , Yn) and (R1, . . . , Rn) under H0 remains the same as in

the univariate set up, irrespective of the underlying distribution F and the data

dimension d, null distributions of these test statistics exactly match with that

of their univariate counter parts. In that sense, the tests constructed in this

way can be viewed as most natural multivariate generalizations of the univariate

distribution-free tests, and statistical tables available for the univariate tests can
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be used to determine the cut-offs in multivariate cases as well. However, unlike

univariate rank based procedures, our multivariate rank based tests may not have

semi-parametric optimality discussed in Hallin and Werker (2003).

Under H0, T0 is distributed as
∑n

i=1Wi, where PH0
(Wi = 0) = PH0

(Wi =

a(i)) = 1/2 for each i = 1, . . . , n, and they are independent (see e.g., Gibbons

and Chakraborti, 2003). One can check that under H0, T1− 1 follows a binomial

distribution with parameters n−1 and 1/2. The null distribution of T2 is given in

Fu and Koutras (1994). For construction of a linear rank test with the nominal

level α (0 < α < 1), we consider a test function of the form φ0(t) = I{t >

c0} + γ0I{t = c0}, where c0 and γ0 (0 ≤ γ1 < 1) are chosen in such a way that

EH0
(φ0(T

∗
0 )) = α. For run tests, we reject H0 when T1 is small or T2 is large.

Because of the discrete nature of T1 and T2, here also we need randomization at

cut-off points so that the sizes of these tests match the level of significance α.

However, if m and n are large, one can also use the test based on the asymp-

totic null distribution of the test statistic. Asymptotic normality of T1 under H0

is obtained using normal approximation to the binomial distribution, and that of

T0 can be shown using a central limit theorem for independent random variables

W1,W2, . . . ,Wn (see e.g., Gibbons and Chakraborti, 2003). The large sample

distribution of T2 can be found in Gordon et al. (1986).

2.2 Computation of test statistics

Unless the sample size is very small, finding P0 is computationally difficult.

In fact, it is equivalent to the well-known travelling salesman’s problem, which

is NP-complete (see e.g., Garey and Johnson, 1979). However, one can use good

heuristic search algorithms (see e.g., Lawler et al., 1985). In this article, we use

a method based on Prim’s (1957) algorithm, where the distance between two

observations is used as the cost of the edge connecting them. First we select the

pair zi and zj (|j − i| 6= n) having the minimum distance between them and

define a set S = {i, j}. We join zi and zj by an edge to get a path of unit length

with zi and zj as its two ends. From each of these two ends, we calculate the

distance of zk, where k /∈ S and |k− l| 6= n for any l ∈ S. If the minimum of these

distances is observed between zi and zr, we join zi and zr to get a path of length

2 (zj → zi → zr) with zj and zr as its two terminal nodes. We also update S by

adding r to it. Next, we consider the distances of all zk (k /∈ S and |k − l| 6= n
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for any l ∈ S) from these two terminal nodes and choose a new edge in the same

way to get a path of length 3. The set S is also updated by adding the index

of the new selected node. We proceed in this way until a path of length (n − 1)

is chosen. Clearly, this path contains either xi or x∗
i for all i = 1, . . . , n, and it

is considered as the shortest covering path. Test statistics are computed using

the signs and the ranks (as defined before) of the observations along this path.

Though this path finding algorithm sometimes leads to a sub-optimal solution

in terms of cost, the test statistic computed along this path often remains the

same as that computed along the actual P0, especially in high dimensions. As a

consequence, the resulting tests generally perform well for HDLSS data. We will

discuss it in detail in the next section to make it more transparent.

3. Power properties of constructed tests in HDLSS set up

We study the power properties of our tests in HDLSS asymptotic regime,

where the sample size remains fixed, and the dimension grows to infinity. Suppose

that we have n independent observations x1, . . . ,xn on a d-dimensional random

vector X =
(

X(1), . . . ,X(d)
)

following the distribution F , which has location

θ = (θ(1), . . . , θ(d)) and the scatter matrix Σ. For our tests, we consider a cost

function of the form ρhψ(x,x
′

) = h
(

∑d
i=1 ψ(|x

(i) − x
′(i)|)

)

, where h : R+ →

R+ and ψ : R+ → R+ are continuous, monotonically increasing functions with

h(0) = ψ(0) = 0 such that ρhψ is a distance in R
d. Clearly, this class of distance

functions include all lp distances with p ≥ 1. In order to investigate the power of

the distribution-free tests based on ρhψ, we consider the following assumptions.

Let X1 and X2 be two independent copies of X, which follows the distribution F .

For V = X2 and V = 2θ0 −X2,

(A.1) second moments of ψ(|X
(i)
1 − V (i)|)’s are uniformly bounded.

(A.2)
∑

i6=j Corr{ψ(X
(i)
1 , V (i)), ψ(X

(j)
1 , V (j))} is of the order o(d2).

Note that if ψ is bounded, (A.1) holds automatically. If ρhψ is the lp distance,

(A.1) holds when the 2p-th moment of the X(i)’s are uniformly bounded. The

assumption (A.2) implies a form of weak dependence among the measurement

variables. Hall et al. (2005) looked at the d-dimensional observations as infinite

time series
(

X(1),X(2), . . .
)

truncated at length d and studied the high dimen-

sional behavior of some popular classifiers assuming a form of ρ-mixing for the

time series. Assumption (A.2) holds under that ρ-mixing conditions. Jung and
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Marron (2009) assumed some weak dependence among measurement variables to

study the high dimensional consistency of estimated principal component direc-

tions. Assumption (A.2) holds under those conditions as well.

Now, define τd(θ,θ0) = d−1
∑d

i=1E
[

ψ(|X
(i)
1 +X

(i)
2 −2θ

(i)
0 |)−ψ(|X

(i)
1 −X

(i)
2 |)

]

and τ = lim infd→∞ τd(θ,θ0). In the case of Euclidean distance (i.e., when ψ(t) =

t2), one can show that τd(θ,θ0) = d−1
∑d

i=1(θ
(i) − θ

(i)
0 )2 ≥ 0, where the equality

holds if and only if θ(i) = θ
(i)
0 for i = 1, 2, . . . , d. Also, for any ψ, where ψ

′

(t)/t is

a non-constant monotone function in (0,∞), from Baringhaus and Franz (2010)

(p. 1335-1336), it follows that E
[

ψ(|X
(i)
1 +X

(i)
2 − 2θ

(i)
0 |)−ψ(|X

(i)
1 −X

(i)
2 |)

]

≥ 0,

where the equality holds if and only if θ(i) = θ
(i)
0 (i = 1, 2, . . . , d). So, the result

τd(θ,θ0) ≥ 0 also holds for such functions (e.g., ψ(t) = t or ψ(t) = t/(1 + t)),

and there also τd(θ,θ0) = 0 implies θ = θ0 . Therefore, under H0, while we have

τ = 0, τ is expected to be positive under H1. In such cases, the powers of the

constructed distribution-free tests converge to unity as d increases.

Theorem 1 Assume that the underlying distribution F satisfies (A.1) and (A.2).

If τ = lim infd→∞ τd(θ,θ0) > 0 and 2n−1 is larger than 1/α, the powers of the

level α tests based on T0, T1, and T2 converge to unity as d grows to infinity.

Proof: Consider two independent random vectors X1 and X2 from F and de-

fine X∗
i = 2θ0 − Xi for i = 1, 2. Under (A.1) and (A.2), the weak law of

large numbers holds for the sequence {ψ(|X
(i)
1 − V (i)|); i ≥ 1} (the proof is

straight forward, and hence it is omitted), where V = X2 or X∗
2. There-

fore,
∣

∣

∣
d−1

∑d
i=1 ψ(|X

(i)
1 −X

∗(i)
2 |)− d−1

∑d
i=1 ψ(|X

(i)
1 −X

(i)
2 |)− τd(θ,θ0)

∣

∣

∣

P
→ 0 as

d → ∞. So, if we have n independent random vectors X1, . . . ,Xn from F and

τ > 0, for all j 6= k, P
[

∑d
i=1 ψ(|X

(i)
j −X

∗(i)
k

|) >
∑d

i=1 ψ(|X
(i)
j −X

(i)
k
|)
]

→ 1

as d → ∞. Since h is monotonically increasing and n is finite, as d → ∞,

all XX type and X∗X∗ type distances become smaller than all XX∗ type dis-

tances with probability tending to one. So, the shortest covering path P0 will

contain n − 1 edges connecting either all Xis or all X∗
i s. As a result, T0 will

take either its minimum value 0 or its maximum value
∑n

i=1 a(i). Now, under

H0, it takes each of these extreme values with probability 1/2n < α/2. There-

fore, the tests based on T0 will reject H0 with probability tending to 1. Since

the path P0 tends to cover either all Xis or all X∗
i s, T1 converges in probabil-

ity to its minimum value 1 and T2 converges to its maximum value n. Since
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DISTRIBUTION-FREE ONE-SAMPLE TESTS 9

PH0
(T1 ≤ 1) = PH0

(T2 ≥ n) = 1/2n−1 < α, the powers of these two tests also

converge to unity as d grows to infinity. �

In classical asymptotic regime, consistency of a test is a rather trivial prop-

erty. The power of any reasonable test converges to unity as n increases. But

when n is fixed, and d tends to infinity, consistency of a test is no longer a trivial

property, and many well known and popular tests fail to have consistency in this

set up (see e.g., Biswas and Ghosh, 2014). Theorem 1 shows that our tests are

consistent in this HDLSS asymptotic regime, and for a test of 5% level, it is

enough to have six observations for its high dimensional consistency.

Though our path finding method based on Prim’s algorithm may fail to select

the actual shortest covering path P0 in some of the cases, but the above theorem

holds even for the implemented versions of the tests based on that algorithm.

We have seen that as d → ∞, under H1, all ρ
h
ψ(xi,xj) distances (i 6= j) become

smaller than all ρhψ(xi,x
∗
j) distances with probability tending to one (see the proof

of Theorem 1). So, this algorithm first selects an edge connecting either two xis

or two x∗
i s. Now, if it selects an edge connecting two xis (or x∗

i s, respectively),

because of this ordering of distances, only xis (or x
∗
i s, respectively) get selected in

the subsequent stages. So, for large d, the covering path selected by the algorithm

contains either all xis or all x∗
i s with probability tending to 1. Note that along

this path, the arrangement of the xis (or the x∗
i s) can differ from that in actual

P0, but that re-arrangement only changes the cost of the covering path, not the

values of the resulting test statistics.

4. Results from the analysis of simulated and real data sets

We analyzed some simulated and real data sets to compare the performance

of our distribution-free tests with some existing one-sample tests. For this com-

parison, we considered the Hotelling’s T 2 test with the chi-square critical value,

Puri and Sen’s (1971) tests based on coordinate-wise signs and ranks, spatial

signs and rank tests (see e.g., Mottonen et al., 1997) and Hallin and Paindavine’s

(2002) sign and rank tests based on interdirections and pseudo Mahalanobis dis-

tances. We will refer to these sign and rank tests as PS-sign, PS-rank, Sp-sign,

Sp-rank, HP-sign and HP-rank tests, respectively. Codes for these tests are avail-

able in different R packages. However, these tests are not applicable when the
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dimension exceeds the sample size. So, in addition to them, we also considered

one-sample tests proposed by Srivastava (2009), Chen and Qin (2010) and Park

and Ayyala (2013), which can be used even in HDLSS situations. We will refer

to them as the SR test, the CQ test and the PA test, respectively. Throughout

this article, all tests are considered to have 5% nominal level.

For our tests, we used three types of distance function, the Euclidean dis-

tance, the l1 distance and a bounded distance function with ψ(t) = t/(1+ t) and

h(t) = t. Among them, the tests based on the Euclidean distance had the best

overall performance. Also, the tests based on T1 and T2 performed better than

the linear rank tests based on sign and signed rank statistics. Note that under

H1, XX type and X∗X∗ type distances are expected to be smaller than XX∗

type distances. So, our path finding algorithm is supposed to start with either an

XX type edge or an X∗X∗ type edge. Also, if it starts with an XX type edge, in

the subsequent steps, it is supposed to choose XX type edges with high probabil-

ity. But, if an XX∗ type edge is chosen in the middle, there is a high probability

of choosing X∗X∗ type edges in the subsequent steps. As a result, even under

H1, sometimes the values of T ∗
0 do not become large enough to reject H0. We

observed it in our experiments with sign and signed rank statistics. However,

the tests based on T1 and T2 did not get much affected by this phenomenon.

Therefore, in this article, we have reported the results only for T1 and T2 when

the Euclidean distance was used.

4.1 Analysis of simulated data sets, where d is smaller than n

We begin with some examples involving multivariate normal, t (with 2 de-

grees of freedom) and Cauchy distributions. These distributions were chosen for

varying degrees of heaviness of their tails. In each case, we generated 50 obser-

vations from a distribution with location parameter ∆ = (δ, . . . , δ)
′

and scatter

matrix I to test H0 : δ = 0 against H1 : δ 6= 0. We considered two choices of

d (30 and 40) and four choices of δ (0, 0.1, 0.2 and 0.3) to study the level and

the power properties of different tests. Each experiment was repeated 500 times,

and the powers (sizes in the case of δ = 0) of different tests were estimated by

the proportion of times they rejected H0.

For nonparametric sign and rank tests, we used both, the test based on the

large sample distribution of the test statistic and the conditional test based on
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Table 4.1: Observed powers of one-sample tests (with 5% nominal level).
d δ Hot. T

2 Sp-sign Sp-rank PS-sign PS-rank CQ PA SR Run (T1) L.Run (T2)

Normal 30 0.0 0.048 0.048 0.048 0.044 0.052 0.044 0.044 0.044 0.062 0.056

0.1 0.244 0.264 0.248 0.126 0.212 0.520 0.488 0.474 0.172 0.136

0.2 0.854 0.886 0.868 0.636 0.844 0.998 0.998 0.998 0.784 0.482

0.3 0.998 1.000 0.998 0.978 0.996 1.000 1.000 1.000 1.000 0.928

40 0.0 0.050 0.048 0.052 0.052 0.052 0.048 0.050 0.038 0.048 0.048

0.1 0.174 0.176 0.170 0.108 0.178 0.586 0.556 0.526 0.176 0.146

0.2 0.646 0.682 0.664 0.396 0.652 1.000 1.000 1.000 0.852 0.574

0.3 0.964 0.980 0.972 0.880 0.954 1.000 1.000 1.000 1.000 0.972

t(2) 30 0.0 0.032 0.044 0.044 0.048 0.058 0.046 0.036 0.004 0.064 0.052

0.1 0.162 0.186 0.206 0.102 0.158 0.138 0.090 0.020 0.134 0.112

0.2 0.666 0.654 0.732 0.378 0.696 0.476 0.348 0.236 0.562 0.416

0.3 0.956 0.946 0.972 0.820 0.954 0.774 0.640 0.598 0.942 0.872

40 0.0 0.050 0.038 0.054 0.040 0.052 0.054 0.050 0.004 0.042 0.048

0.1 0.116 0.126 0.140 0.096 0.278 0.160 0.116 0.026 0.132 0.106

0.2 0.540 0.424 0.534 0.252 0.530 0.546 0.410 0.238 0.628 0.536

0.3 0.888 0.734 0.888 0.546 0.840 0.822 0.702 0.650 0.974 0.954

Cauchy 30 0.0 0.016 0.030 0.034 0.036 0.036 0.040 0.028 0.000 0.058 0.044

0.1 0.106 0.150 0.164 0.100 0.138 0.048 0.036 0.000 0.142 0.116

0.2 0.472 0.458 0.570 0.308 0.540 0.086 0.060 0.006 0.434 0.474

0.3 0.840 0.796 0.890 0.588 0.864 0.142 0.096 0.024 0.846 0.876

40 0.0 0.034 0.048 0.046 0.056 0.054 0.046 0.024 0.000 0.034 0.048

0.1 0.098 0.116 0.148 0.078 0.142 0.056 0.024 0.000 0.142 0.116

0.2 0.456 0.292 0.466 0.174 0.456 0.104 0.060 0.000 0.576 0.560

0.3 0.836 0.494 0.782 0.350 0.778 0.192 0.110 0.026 0.904 0.930

Mixture 30 0.0 0.036 0.046 0.032 0.138 0.034 0.086 0.068 0.086 0.068 0.064

0.1 0.036 0.050 0.034 0.140 0.042 0.098 0.086 0.098 0.218 0.116

0.2 0.038 0.054 0.038 0.102 0.042 0.126 0.120 0.126 0.926 0.524

0.3 0.038 0.062 0.034 0.094 0.050 0.212 0.184 0.212 1.000 0.958

40 0.0 0.062 0.062 0.042 0.196 0.044 0.086 0.074 0.086 0.052 0.034

0.1 0.062 0.060 0.046 0.174 0.044 0.094 0.086 0.094 0.262 0.102

0.2 0.060 0.060 0.048 0.162 0.056 0.140 0.128 0.140 0.980 0.528

0.3 0.062 0.066 0.040 0.112 0.050 0.208 0.180 0.208 1.000 0.984

the permutation principle. In each case, the best one (which happened to be the

permutation test in almost all cases) has been reported in Table 1. However, we

had some problems in running the available R codes for HP-sign and HP-rank

tests in the case of 40-dimensional t and Cauchy distributions. In other cases,

their performance was either similar or inferior to Sp-sign and Sp-rank tests.

That is why, we have not reported the results for these two tests in Table 1.

Table 1 shows that in the examples involving normal distributions, all tests

had sizes close to 0.05, but in the case of t (with 2 df) and Cauchy distributions,

the SR test had size much below the nominal level. The Hotelling’s T 2 test and

the PA test also had sizes below 0.05 in the case of Cauchy distributions. All

other tests rejected the true H0 : δ = 0 in nearly 5% of the cases.

In the examples involving normal distributions, CQ, PA and SR tests had

much higher powers than their competitors, though all other tests performed
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well. Among them, the test based on T1 had the best performance for d = 40. In

the examples involving 30-dimensional t distributions, the Sp-rank test had the

best performance closely followed by PS-rank, Hotelling’s T 2 and Sp-sign tests.

The PS-sign test and two run tests also had competitive performance. However,

in the case of d = 40, these run tests outperformed all other tests considered

here. We observed similar results in examples with Cauchy distributions as well.

For d = 30, Hotelling’s T 2, Sp-rank, PS-rank and two run tests had comparable

performance, but for d = 40, the run tests performed much better. CQ, PA and

SR tests had very poor performance in these examples.

We considered another example, where F was an equal mixture of four nor-

mal distributions all having the same scatter matrix 1
2I. The locations of these

normal distributions were (−3+ δ)1d, (−1+ δ)1d, (1 + δ)1d and (3+ δ)1d. Here

λ1d denotes the d-dimensional column vector having all elements equal to λ. We

carried out our experiment for two choices of d and four choices of δ as before.

In this example, CQ and SR tests had sizes higher than 0.05. Because of near

singularity of the estimated dispersion matrix of coordinate-wise signs, the PS-

sign test failed to maintain the level property. All other tests had sizes close to

the nominal level (see Table 1). However, the powers of the two run tests were

substantially higher than those of all other tests considered here. In the case of

δ = 0.3, while the test based on T1 rejected H0 in all occasions, and that based

on T2 had power more than 0.95, all other tests had power less than 0.25.

4.2 Analysis of simulated data sets, where d is much larger than n

We again considered some examples with normal, t and Cauchy distribu-

tions. In each of these cases, we generated 20 observations from a d-dimensional

distribution having the location parameter (0.15, . . . , 0.15)
′

and the scatter ma-

trix I. The powers of different tests were computed based on 500 trials as before.

We repeated the experiment for values of d ranging from 3 to 3000, and the

results are reported in Fig. 2(a)-2(c). In these examples, the location of each

variable differs from the origin. So, one would expect the power of these tests to

tend to 1 as d increases. We observed this phenomenon in most of the cases. In

the case of normal distributions, the CQ test had the best overall performance

followed by the PA test. Though the SR test had the highest power for small

values of d, in high dimensions, it was outperformed by the CQ test, the PA
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test and the test based on T1. In the case of t-distributions, the CQ test and

two run tests performed better than PA and SR tests, while the test based on

T2 had an edge in high dimensions. The SR test had very poor performance; its

power dropped down to zero as d increased. In the example involving Cauchy

distributions, our run tests substantially outperformed all other tests considered

here. This is consistent with what we observed in Table 1. Again, the power of

the SR test was close to zero in high dimensions.
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Figure 2: Powers of different tests for varying choices of d.

These examples show the robustness of our tests against heavy tailed dis-

tributions. In cases of multivariate t and Cauchy distributions, especially in the

latter case, they had excellent performance when the other tests failed. However,

in the example with the normal distribution, CQ and PA tests outperformed

them. But, even in that case, the situation gets completely changed in the pres-

ence of contaminations. We carried out one such experiment, where we generated

the observations from the normal distributions as before, but perturbed one out

of the 20 observations by subtracting 2 from its each coordinate. This contam-

ination heavily affected the performance of CQ, PA and SR tests. All of them

had zero power for almost all values of d (see Fig. 2(d)). But, the tests based on
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T1 and T2 did not get much affected. The powers of these two tests converged to

1 as before as the dimension increased.

4.3 Analysis of PEMS-SF data set

PEMS-SF data set describes the occupancy rate, between 0 and 1, of different

car lanes of San Francisco bay area freeways during Jan. 01, 2008 to Mar. 30,

2009. For each day, there is a time series of dimension 963 (the number of

sensors) and length 6×24 = 144 (measurement are sampled in every 10 minutes).

This data set is available at the UCI machine learning repository, and there are

separate training and test sets. For our analysis, we used the 126 observations in

the test set after removing Saturdays and Sundays. Figure 3(a) shows average

occupancy rates for different time points of a day computed over 126 days and

963 locations. In this figure, we observe two modes at 8:30 A.M. and 5:30 P.M.

Corresponding to these two time points, we have two distributions of dimension

963. Here, we subtract one vector (corresponding to 5:30 P.M.) from the other

(corresponding to 8:30 A.M.) and test whether the location of the difference

differs from the origin. The distributions of the difference for different working

days of the week are given in Fig. 3(b)-3(f). Clearly, for some of the sensors,

the location differs the origin. So, one would expect the null hypothesis of no

difference to be rejected.
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Figure 3: Occupancy rates of car lanes of San Francisco bay area freeways.

Statistica Sinica: Newly accepted Paper 
(accepted version subject to English editing)



DISTRIBUTION-FREE ONE-SAMPLE TESTS 15

When we used 126 observations for testing, all five tests (CQ, PA, SR and two

run tests) rejected H0. Based on that single experiment, it was not possible to

compare among different tests. So, we carried out our experiment using random

subsets of size 5 and 10. Each experiment was repeated 500 times to estimate

the powers of different tests. CQ and SR tests had the highest power 1 both for

n = 5 and n = 10. The tests based on T1 and T2 also had power 1 for n = 10,

but for n = 5, they had powers 0.812 and 0.806, respectively. The PA test had

power 0.976 for n = 10, but in the case of n = 5, it could not reject H0 even in a

single occasion. To study the level properties of different tests, along with these

126 observations, we add their negatives to have a data cloud consisting of 252

observations, which is symmetric about the origin. We chose random samples of

size 5 and 10 from this cloud to perform these tests, and each experiment was

repeated 500 times. Both for n = 5 and n = 10, the tests based on T1 (0.054 and

0.040, respectively) and T2 (0.056 and 0.044, respectively) had sizes close to 0.05,

but for the PA test, they were much below the nominal level (0.000 and 0.008,

respectively). In the case of n = 10, CQ and SR tests also had sizes close to 0.05

(0.058 and 0.062, respectively). But, in the case of n = 5, they failed to maintain

the level property and rejected H0 in 13.6% and 15.8% cases, respectively. This

bias towards H1 could be the reason for their high powers for n = 5.
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