
 

 

 

 

 

 

 

Statistica Sinica Preprint No: SS-12-322R2 

Title Testing for change points due to a covariate threshold in 

regression  

Manuscript ID SS-12-322R2 

URL http://www.stat.sinica.edu.tw/statistica/ 

DOI 10.5705/ss.2012.322 

Complete List of Authors Liwen Zhang 

Huixia Judy Wang and  

Zhongyi Zhu 

Corresponding Author Zhongyi Zhu 

E-mail zhuzy@fudan.edu.cn 

Notice: Accepted version subject to English editing. 

 

 



1

TESTING FOR CHANGE POINTS DUE TO A COVARIATE
THRESHOLD IN QUANTILE REGRESSION

Liwen Zhang1, Huixia Judy Wang2, and Zhongyi Zhu3

Fudan University1,3, North Carolina State University2

Abstract: We develop a new procedure for testing change points due to a covariate threshold

in regression quantiles. The proposed test is based on the CUSUM of the subgradient of

the quantile objective function and requires fitting the model only under the null hypothesis.

The critical values can be obtained by simulating the Gaussian process that characterizes the

limiting distribution of the test statistic. The proposed method can be used to detect change

points at a single quantile level or across multiple quantiles, and can accommodate both ho-

moscedastic and heteroscedastic errors. Simulation study suggests that the proposed method

has higher computational efficiency and comparable power with the existing likelihood-ratio-

based method in the finite samples. The performance of the proposed method is further illus-

trated by the analysis of a blood pressure and body mass index data set.

Key words and phrases: Change point, Covariate threshold, Hypothesis testing, Quantile

regression, Threshold regression model.

1. Introduction
In regression models, the regression functions are often assumed to take the same

parametric form across the entire domain of interest. However, in some applications,

regression functions may have different forms in different regions of the conditioning

variables. For instance, blood pressure (BP) and body mass index (BMI) showed dif-

ferent relationships for those below and above a BMI threshold (Kaufman et al., 1997;

Kerry et al., 2005; Tesfaye etal.,2007); in acute HIV infection, CD4 counts increased

rapidly in the first 2-4 weeks but gradually decreased afterwards (Ghosh and Vaida,

2007); consumer price index showed a significantly positive correlation with the con-

tribution of renewables to energy supply in the higher-economic growth regime, but

no significant correlation in the lower-economic growth regime (Chang et al., 2009).

The questions in these applications can be addressed by threshold regression models,

which specify different regression functions in subsamples segmented by a continuous

predictor, referred to as the threshold variable thereafter. In other words, in threshold
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regression models, the covariate effects are piecewise functions of the threshold vari-

able with jumps occurring at the unknown change points. Therefore, threshold regres-

sion models can be viewed as special cases of varying coefficient models (Hastie and

Tibshirani, 1993). Threshold regression models have wide applications in biostatistics,

epidemiology, economics and finance; see Huang (2009) and Pennell et al. (2010) for

additional examples. In the threshold regression literature, most existing work focus on

mean regression models (Hansen, 1996). In this paper, we focus on quantile regression.

Quantile regression, pioneered by Koenker and Bassett (1978), is a valuable alter-

native regression technique to mean regression for modeling the stochastic relationships

between random variables. Using quantile regression, we can explore the stochastic

relationships in a comprehensive way by studying different tails of the conditional dis-

tribution of the response variable. In addition, quantile regression offers an automatic

approach for capturing the heteroscedasticity in the population. We refer to Koenker

(2005) for a more comprehensive review of quantile regression.

A number of researchers have studied the detection and estimation of change points

in quantile regression for time series data where the model structure changes after an

unknown time point. Su and Xiao (2008) proposed a sup-Wald test for detecting the

structural change of conditional distribution based on sequential quantile regression es-

timators. Qu (2008) developed two test procedures for detecting change points, one

based on a subgradient statistic and the other based on a Wald-type statistic. Oka and

Qu (2011) studied the estimation of multiple structural changes in conditional quantile

functions. The situations discussed in these papers differ from threshold regression mod-

els, where the change point is due to an unknown threshold in the continuous threshold

covariate.

There exist very limited work for quantile regression with threshold effects. Caner

(2002) studied the least absolute deviation estimators in threshold linear regression mod-

els. Kato (2009) developed the extended convexity arguments and applied the theory to

establish the asymptotic properties of a proposed Wald-type test for median threshold re-

gression model. The proposed test relies on the identically distributed error assumption

and it requires estimating the unknown error density function even for homoscedastic

errors. Lee et al. (2011) proposed a sup-likelihood-ratio-based method for testing the

existence of threshold effects in regression models, which includes quantile regression

as a special case. Li et al. (2011) discussed estimation for a bent line quantile regres-
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sion, where a threshold covariate has different effects in two segments separated at an

unknown point and the other covariates have constant effects across the entire domain.

Therefore, bent line regression can be viewed as a special case of the threshold regres-

sion model considered in Lee et al. (2011). Galvao et al. (2011) studied the estimation

for threshold quantile autoregressive models and established the asymptotic property for

the threshold and regression parameter estimators. Galvao et al. (2013) developed a uni-

form test of linearity against threshold effects in quantile regression model for stationary

time series processes. Cai and Stander (2008) and Cai (2010) discussed forecasting for

quantile threshold autoregressive time series models with known threshold values.

In this article, we propose a new procedure for testing the presence of change points

due to covariate thresholding in quantile regression. We focus on the general threshold

regression models as in Lee et al. (2011), which allow a set of covariates to have hetero-

geneous effects across the domain of the threshold covariate. Our proposed test statistic

is based on a CUSUM process of subgradient obtained by fitting the quantile regres-

sion model under the null hypothesis of no threshold effects. We study the asymptotic

properties of the proposed test statistics under both null and local alternative models,

and develop a convenient procedure for calculating the critical values by simulating the

Gaussian process. The proposed test can accommodate both homoscedastic and het-

eroscedastic errors, and it can be used to test for the presence of change points occurring

at either a specified single quantile level or at multiple quantiles. Our numerical studies

show that the proposed test tends to have similar power with the likelihood-ratio test

of Lee et al. (2011) in finite samples when sizes are controlled at the nominal levels,

but the former is less sensitive to the choice of bandwidth. In addition, since it requires

only fitting the null model, the proposed method is computationally more efficient than

the likelihood-ratio test, which involves grid search over the domain of the threshold

covariate for fitting the alternative model.

The rest of the paper is organized as follows. In Section 2, we present the proposed

testing procedure at one quantile level together with the asymptotic properties of the

proposed test statistic and the calculation of critical values. In Section 3, we discuss

the extension of testing change points at multiple quantiles. We assess the finite sample

performance of the proposed method through a simulation study in Section 4 and the

analysis of a blood pressure and body mass index data set in Section 5. All technical

proofs are given in the Supplementary Material.
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2. Testing for threshold effects at a single quantile level
2.1. Model setup and testing procedure

At a given quantile level τ ∈ (0, 1), we consider the following threshold quantile

regression model,

QY (τ |X,Z, U) = XTβ0(τ) + ZTα0(τ)I(U > u0), (2.1)

where QY (τ |·) is the τ th conditional quantile of the response variable Y , X is a p-

dimensional design vector with the first element as 1 corresponding to the intercept, U

is the univariate threshold variable that might be an element of X, Z is a q-dimensional

design vector, β0(τ) and α0(τ) are the unknown regression coefficients, and u0 is the

unknown threshold parameter lying in the region (0,1). Without loss of generality, we

assume thatU and Z are subsets of X, andU ∈ [0, 1]. Suppose {(Yi,Xi); i = 1, · · · , n}
is a random sample of (Y,X).

We are interested in testing the existence of a threshold effect at the quantile level

τ . That is, we consider the null and alternative hypotheses

H0 : α0(τ) = 0 for any u0 ∈ (0, 1) v.s. H1 : α0(τ) 6= 0 for some u0 ∈ (0, 1).

Under the null hypothesis, the threshold parameterα0(τ) is not identifiable, whileβ0(τ)

can be estimated by

β̂(τ) = arg min
β(τ)∈Rp

n∑
i=1

ρτ{Yi −XT
i β(τ)},

where ρτ (r) = r{τ − I(r < 0)} is the quantile check function. The building block of

our test statistic is

Rn{u, τ, β̂(τ)} = n−1/2
n∑
i=1

ψτ{Yi −XT
i β̂(τ)}ZiI(Ui ≤ u), (2.2)

where ψτ (r) = τ − I(r < 0). To test for the presence of an unknown change point, we

search over all possible candidates u ∈ (0, 1) and define the test statistic as

Tn(τ) = sup
u∈(0,1)

‖Rn{u, τ, β̂(τ)}‖, (2.3)

where ‖ · ‖ stands for the L2 norm.
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Note that Rn{u, τ, β̂(τ)} is the negative subgradient of the quantile objective func-

tion corresponding to the subsample with Ui below the threshold u. Therefore, our

proposed test statistic can be viewed as a CUSUM statistic based on signs of quantile

residuals; see Bai (1996) for a discussion of CUSUM test statistic in least squares re-

gression. Under the null hypothesis, β̂(τ) is a root-n consistent estimator of β0(τ) and

Rn{u, τ, β̂(τ)} converges to a Gaussian process with mean zero. On the other hand, if

there exists a threshold effect, the significant difference of β̂(τ) and β0(τ) will make

the estimated residuals consistently fall below or above zero for a subsample and thus

force the statistic Tn(τ) to take a large value. Our proposed test statistic depends on the

score-type statistic, and thus requires fitting the model only underH0. This is in contrast

with the likelihood ratio approach in Lee et al. (2011), which requires fitting alternative

models under all possible partitions of the domain (0, 1) of the threshold variable.

2.2. Asymptotic properties
We study the asymptotic properties of the proposed test statistic under both the

null and local alternative models. We first fix some notation. Let f(·|X) and F (·|X)

denote the conditional density and distribution functions of Y given X, respectively. To

simplify the notation, we write f(·|Xi) and F (·|Xi) as fi(·) and Fi(·). Also denote

fU (u) and FU (u) as the density and distribution functions of U , Zu = ZI(U ≤ u),

Sz(u) = E
[
ZuX

T f{F−1(τ |X)|X}
]
, and S = Sx(1) = E[XXT f{F−1(τ |X)|X}].

We make the following assumptions.

A1 The density fi(·) is continuous, uniformly bounded away from zero and infinity

and has a bounded first derivative in the neighborhood of F−1i (τ) for i = 1, · · · , n.

A2 The density function of U , fU (u), is continuous.

A3 (a) The design vector satisfies max1≤i≤n ‖Xi‖ = Op(n
1/10/ log n); (b) The ma-

trix S is positive definite; (c) E‖X‖6 is bounded.

Assumption A1 imposes some conditions on the smoothness and boundedness of

the conditional density functions and their derivatives, which are standard in quantile

regression literature. Assumption A2 specifies the condition on the threshold effect co-

variate. Assumption A3(a) imposes some conditions on the moments of the covariates,

which are needed to establish the asymptotic representation of β̂(τ) and the uniform
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convergence of the subgradient process under the null and alternative hypotheses. As-

sumption A3(b) is needed to obtain the asymptotic representation of β̂(τ). Assumption

A3(c) is due to Bai (1996) and it ensures the stochastic equicontinuity of the subgradient

process Rn{u, τ,β0(τ)}.

Theorem 1 Suppose that Assumptions A1-A3 hold. Under the null hypothesis H0, we

have

Tn(τ)⇒ sup
u∈(0,1)

‖R(u)‖, as n→∞, (2.4)

where “ ⇒ ” denotes the weak convergence, R(u) is the Gaussian process with mean

0 and covariance function W(u, u′) = τ(1 − τ){E(Zu′Z
T
u ) − E(ZuX

T )S−1STz (u′)

−Sz(u)S−1E(XZTu′) + Sz(u)S−1E(XXT )S−1STz (u′)}.

We next establish the asymptotic properties of the proposed test statistic under the

local alternative model

QYi(τ |Xi) = XT
i β0(τ) + n−1/2ZTi α0(τ)I(Ui > u0), i = 1, · · · , n, (2.5)

where u0 ∈ (0, 1) is the change point and α0(τ) 6= 0 is a q-dimensional vector.

Theorem 2 Suppose that Assumptions A1-A3 hold. Under the local alternative model

(2.5), we have

Tn(τ)⇒ sup
u∈(0,1)

‖R(u) + q{u,α0(τ)}‖, as n→∞, (2.6)

where R(u) is the same Gaussian process as defined in Theorem 1, and q{u,α0(τ)} =

−Sz(u)S−1Q{α0(τ)}+P{u,α0(τ)}, where Q(α) = E
[
XZTαI(U > u0)f{F−1(τ |X)

|X}
]

and P(u,α) = E
[
ZZTαI(u0 < U ≤ u)f{F−1(τ |X)|X}

]
.

Note that q{u,α0(τ)} = 0 for all u under H0, and it is a nonzero function of u un-

der the local alternative. Therefore, the proposed test statistic can be used to distinguish

the alternative with a change point due to a threshold effect from the null hypothesis

of no change point. The following Corollary 1 shows that the power of the test Tn(τ)

approaches to one when the order of the threshold effect under the alternative model is

arbitrarily close to n−1/2.
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Corollary 1 Suppose that Assumptions A1-A3 hold. Under the local alternative model

QYi(τ |Xi) = XT
i β0(τ) + n−1/2anZ

T
i α0(τ)I(Ui > u0) with u0 ∈ (0, 1), if an → ∞,

then we have limn→∞ P{‖Tn(τ)‖ ≥ t} = 1 for all t > 0.

2.3. Calculation of critical values
Theorem 1 suggests that the asymptotic null distribution of Tn(τ) is nonstandard,

and it depends on the unknown density function for heteroscedastic errors. Therefore,

critical values for Tn(τ) can not be tabulated for general cases. We overcome this diffi-

culty by simulating the asymptotic representation of Rn{u, τ, β̂(τ)}.
Let {ei; i = 1, · · · , n} be a random sample with τ th quantile zero and {ωi; i =

1, · · · , n} be a random sample independent of ei with zero mean, unit variance and a

finite third moment. Define

R∗n(u) = n−1/2
n∑
i=1

ωiψτ (ei){I(Ui ≤ u)Zi − Sz,n(u)S−1n Xi}, (2.7)

where Sz,n(u) = n−1
∑n

i=1 ZiX
T
i I(Ui ≤ u)Khn{Yi−XT

i β̂(τ)},Sn = n−1
∑n

i=1XiX
T
i

Khn{Yi−XT
i β̂(τ)}, Khn(·) = h−1n K(·/hn),K(·) is a kernel function, and hn is a pos-

itive bandwidth. Throughout our numerical studies, we follow the suggestion in Lee et

al. (2011) and use Silverman’s rule of thumb (Silverman 1986), hn = 1.06σ̂n−1/5,

where σ̂ is the sample standard deviation of {Yi −XT
i β̂(τ); i = 1, · · · , n}. The sensi-

tivity analysis in Section 3 shows that the performance of the proposed test procedure is

stable with hn = cσ̂n−1/5 for c ∈ [0.1, 3].

Before presenting the simulation procedure, we first study the asymptotic property

of R∗n(u). We assume the following assumptions on the kernel function and the band-

width.

A4 The function K(·) is a symmetric kernel function with compact support, and it

satisfies
∫
K(u)du = 1 and has a bounded first derivative.

A5 The positive bandwidth hn satisfies hn → 0 and hnn1/5
√

log n→∞ as n→∞.

Theorem 3 Suppose that Assumptions A1-A5 hold. Under H0, R∗n(u) converges to the

Gaussian process R(u) defined in Theorem 1 as n→∞.

Theorem 3 suggests that we can calculate the critical values by the quantiles of

maxu ‖R∗n(u)‖. The detailed computing procedure is as follows:
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Step 1. Generate {ei; i = 1, · · · , n} as a random sample with the τ th quantile zero

and {ωi, i = 1, · · · , n} as a random sample (independent of ei) with mean 0, variance

1 and a finite third moment. In our implementation, we generate ei independently from

N(0, 1)−Φ−1(τ) with Φ being the cumulative distribution function of N(0, 1), and ωi
from the two-point mass distribution with equal probability at 1 and -1.

Step 2. Simulate the process

R∗n(u) = n−1/2
n∑
i=1

ωiψτ (ei)
{
I(Ui ≤ u)Zi − Sz,n(u)S−1n Xi

}
,

and obtain the test statistic T ∗n(τ) = supu∈(0,1) ‖R∗n(u)‖.
Step 3. Repeat Steps 1–2 J times to get T ∗n1(τ), · · · , T ∗nJ(τ). Calculate the critical

value for a level α test by the (1− α)th sample quantile of {T ∗nj(τ); j = 1, · · · , J}.

Remark 1 For model (2.5), let ε = Y −XTβ0(τ)−n−1/2ZTα0(τ) I(U > u0) denote

the error term whose τ th quantile is zero conditional on X. Let fε(·|X) be the condi-

tional density function of ε given X, then we have f{F−1(τ |X)|X} = fε(0|X). Hence

for model (2.5) with i.i.d. (independent and identically distributed) errors, the density

functions in S(u) and S−1 are cancelled out and thus do not need to be estimated.

Therefore, the process R∗n(u) can be simplified as

R∗n(u) = n−1/2
n∑
i=1

ωiψτ (ei){I(Ui ≤ u)Zi − Sz,1n(u)S−11nXi}, (2.8)

where Sz,1n(u) = n−1
∑n

i=1 ZiX
T
i I(Ui ≤ u) and S1n = n−1

∑n
i=1XiX

T
i .

2.4. Comparison to the sup-likelihood-ratio-type test of Lee et al. (2011)
Lee et al. (2011) developed a general sup-likelihood-ratio-type (LRT) test for test-

ing threshold effects in regression models including quantile regression. We carry out a

systematic comparison of our proposed sup-score-type (SS) test with the LRT test.

The LRT test statistic in Lee et al. (2011) is defined as

LRTn = sup
u∈(0,1)

n{Qn(u)− Q̃n}, (2.9)

where Q̃n = min
β(τ)

n−1
∑n

i=1 ρτ{Yi − XT
i β(τ)} and Qn(u) = min

β(τ),α(τ)
n−1

∑n
i=1

ρτ{Yi−XT
i β(τ)−ZTi α(τ)I(Ui > u)} are the minimum values of the quantile objective
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functions under the null and the alternative hypothesis with the change point u0 = u,

respectively.

Note that the proposed SS method is based on the score-type test statistic obtained

by only fitting the null model, while the LRT method is based on the pseduo-likelihood-

ratio-type test statistic and requires fitting both the null and alternative models.

The following Proposition 1 gives the asymptotic distributions of LRTn under the

null and local alternative models, where (i) comes directly from (3.6) of Lee et al.

(2011), and the proof of (ii) is provided in the Supplementary Material.

Proposition 1 (i) Under Assumptions A1–A3 and H0, LRTn ⇒ 1
2{supu∈(0,1) G(u)T

V (u)−1G(u) − GT1 V
−1
1 G1} as n → ∞, where G(u) is a mean-zero Gaussian process

with covariance kernel W̃(u, u′) = τ(1 − τ)E(X̃uX̃
T
u′) with X̃u = (XT ,ZT I(U >

u))T being the vector of covariates under the alternative hypothesis, V (u) = E[X̃uX̃
T
u

f{XTβ0(τ)|X}], G1 and V1 denote the first p elements of G and the first p× p block of

V (u). (ii) Under Assumptions A1–A5 and the local alternative model (2.5), LRTn ⇒
1
2(supu∈(0,1)[G(u)+ q̃L{u,α0(τ)}]TV (u)−1 [G(u)+ q̃L{u,α0(τ)}]−(G1+ q̃1)

TV−11

(G1 + q̃1)) as n → ∞, where q̃L{u,α0(τ)} = (E[XZTα0(τ)I(U > u0)f{XTβ0(τ)

|X}]T , E[ZZTα0(τ)I{U > max(u, u0)}f{XTβ0(τ)|X}]T )T and q̃1 = E[XZT

α0(τ)I(U > u0)f{XTβ0(τ)|X}].

The critical value can be obtained by simulating the asymptotic distribution of

LRTn under the null hypothesis; see Section 3.2 of Lee et al. (2011) for details. The

limiting distribution of the LRT test statistic has a nonstandard form different from that

of the SS test statistic, and this makes it difficult to compare two statistics explicitly.

However, we can compare the asymptotic local powers of two methods analytically by

simulating the limiting distributions of Tn(τ) and LRTn. Our analysis in Section 4.2

shows that two methods have similar asymptotic local power for various designs con-

sidered.

3. Testing for threshold effects at multiple quantiles
In many cases, different magnitudes of changes may occur at different quantiles.

Therefore, it will be more informative to incorporate multiple quantiles instead of only

one quantile level to identify the threshold effects. We use T = [ω1, ω2] to represent

a closed set of quantiles of interest. We focus on the following null and alternative
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hypotheses:

H∗0 : α0(τ) = 0 for any u0 ∈ (0, 1) and for all τ ∈ T ,

against

H∗1 : α0(τ) 6= 0 for some u0 ∈ (0, 1) and some τ ∈ T ,

which imply that there is no threshold effect for any quantile in the set T under the null

while there exist threshold effects at some quantiles under the alternative. Similar as the

method proposed in Section 2.1, we consider the following test statistic

Tn = sup
τ∈T

sup
u∈(0,1)

‖Rn{u, τ, β̂(τ)}‖,

where β̂(τ) is the coefficient estimate at the τ th quantile obtained under the null hy-

pothesis. A large Tn indicates that there likely exist threshold effects for some τ ∈ T .

To establish the limiting distribution of Tn, we strength the condition A1 as follow.

A6 Assumption A1 holds uniformly in τ ∈ T .

Theorem 4 Suppose that Assumptions A2-A6 hold. Under the null hypothesis H∗0 , we

have

Tn ⇒ sup
τ∈T

sup
u∈(0,1)

‖R(u, τ)‖, as n→∞,

where R(u, τ) is a q-vector of independent Gaussian processes with zero mean and

covariance function

E{R(u, τ)R(u′, τ ′)} = {min(τ, τ ′)− ττ ′}{E(ZuZu′)− E(ZuX
T )S−1STz (u′)

−Sz(u)S−1E(XZTu′) + Sz(u)S−1E(XXT )S−1STz (u′)
}
. (3.1)

Suppose the local alternative model (2.5) holds for all quantiles τ ∈ T , then

Tn ⇒ sup
τ∈T

sup
u∈(0,1)

‖R(u, τ) + q{u,α0(τ)}‖, as n→∞,

where q{u,α0(τ)} is the same as that defined in Theorem 2.

To obtain critical values of the test statistic across quantiles, the simulation method

described in Section 2.3 can be slightly modified as follows. Let τ1, · · · , τm be a grid
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of quantile levels from T . For the simulation method, we can generate the subgradient

process as

R∗nk{u, τk,β(τk)} = n−1/2
n∑
i=1

ωiψτk{ei−Qe(τk)}
{
I(Ui ≤ u)Zi − Sz,n(u)S−1n Xi

}
,

for k = 1, · · · ,m and calculate T ∗n = maxk=1,··· ,m supu∈(0,1) ‖R∗nk{u, τk,β(τk)}‖,
where ei are i.i.d. random variables with the τ th quantile Qe(τ), and ωi are i.i.d. ran-

dom variables independent of ei with zero mean, unit variance and finite third moment.

4. Simulation Study
4.1. Setup

The simulated data sets are generated from the following model:

Yi = 1 +Xi + Ui − α0XiI(Ui > 0.5) + σ(Xi, Ui)εi, (4.1)

where Xi ∼ Uniform(−2, 2), Ui ∼ Uniform(0, 1), εi are independent and identi-

cally distributed random errors, σ(Xi, Ui) measures the heteroscedasticity, and α0 con-

trols the degree of departure from the null hypothesis with α0 = 0 representing no

threshold effects in the model. We consider four different cases. In Case 1, σ(Xi, Ui) =

1 corresponds to a homoscedastic model. Cases 2-4 have heteroscedastic errors with

σ(Xi, Ui) = 1 + 0.3Xi in Cases 2 and 4, and σ(Xi, Ui) = 1 + 0.3Xi+ 0.3Ui in Case 3.

The random errors εi are generated from N(0, 1) in Cases 1-3 and from t4 distribution

in Case 4. The sample size is chosen to be n = 200 and 500. For all scenarios, the

simulation is repeated 500 times.

We consider two variations of the proposed testing procedure, SIID and SNID,

for which the critical values are obtained through simulation by assuming i.i.d. and

non-i.i.d. errors, respectively. For comparison, we include two variations of the sup-

likelihood-ratio-type method, LIID and LNID for i.i.d. and non-i.i.d. errors, respec-

tively. Different from SIID, the density function in LIID can not be cancelled out and

thus the bandwidth parameter is still involved in the kernel estimation; see (3.8) and

(3.9) in Lee et al. (2011) for more details. For all the methods considered, the lower

and upper 10% quantiles of U are trimmed when maximizing over U , and we use the

Gaussian kernel function for the SNID, LIID and LNID methods.

4.2. Type I error and sensitivity analysis
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Table 4.1 summarizes the Type I errors of four testing procedures in Cases 1-4 with

n = 200 and 500 at three quantile levels τ = 0.1, 0.5 and 0.9. The nominal significance

level is set as 5%. For SIID and SNID, we also report the Type I errors for detecting the

threshold effects at three quantiles jointly (referred to as “Multiple” in the table). The

score-based methods SIID and SNID give slightly inflated Type I errors for the smaller

sample size n = 200. However, for n = 500, the SNID method maintains the Type

I errors close to the nominal level for all scenarios considered. Even though the SIID

method assumes i.i.d. errors, the method is quite robust against the violation of this

assumption. For n = 500, the Type I errors of SIID are close to the nominal level in

Case 1 with homoscedastic errors, and they are also reasonable (slightly inflated for a

few scenarios) in Cases 2-4 with heterocedastic errors. Across all scenarios considered,

the sup-likelihood-ratio-based methods LIID and LNID give deflated Type I errors for

both n = 200 and n = 500, and this over-conservativeness was also observed in the

Supplementary Material of Lee et al. (2011, page 19).

To assess the sensitivity of SNID, LIID and LNID to the bandwidth, we let hn =

cn−1/5σ̂ and plot the Type I errors of three methods against c ∈ [0.1, 3] in Cases 1-4 at

the single quantile level τ = 0.5. The two LRT methods LIID and LNID are sensitive to

the choice of the bandwidth. For all scenarios considered, the Type I errors of LIID fall

below the nominal level across the entire region of c considered. The Type I errors of

LNID are generally close to the nominal level for smaller c but they become deflated as

c increases. Note that the acceptable region of c for the LRT methods appears to depend

on n, the distribution and the quantile level of study. Therefore, in practice it would

be difficult to find a constant c that works universally well for the LRT methods. The

score-based test SNID is more robust against the choice of hn, and it gives reasonable

Type I errors across a wide range of c, especially for larger sample size n = 500.

4.3. Power analysis
For power analysis, we consider the local alternative model (4.1) with α0 = n−1/2δ,

where δ = 1, 2, · · · , 9. We showed in Section 4.2 that the LRT methods tend to have

deflated Type I errors. For fairness of the power comparison, for both SS and LRT

methods, we calculate the critical values as the 95th percentiles of the corresponding

test statistics across 500 simulated data generated from the null hypothesis. This ensures

that both SS and LRT tests have exactly 5% Type I error, but note that such adjustment

is not feasible in real applications. For comparison, we also include the asymptotic
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Figure 4.1: Type I errors of SNID, LIID and LNID at τ = 0.5 against c, the constant involved in
the bandwidth hn = cn−1/5σ̂. The dashed horizontal line corresponds to the nominal level of
5%, and the shade area corresponds to the 95% confidence interval of Type I error of valid tests
of size 5%. The solid, dashed and dotted lines represent Type I errors from the SNID, LNID and

LIID methods, respectively.
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local powers of the SS and LRT methods, which are obtained by simulating the limiting

distributions of Tn(τ) and LRTn using the results in Theorem 2 and Proposition 1,

respectively.

Figure 4.2 plots the asymptotic and finite-sample Monte Carlo local powers of SS

Table 4.1: Type I errors of different testing procedures in Cases 1-4.

Sample size τ Methods Case 1 Case 2 Case 3 Case 4
n=200 τ = 0.1 SIID 0.052 0.058 0.054 0.062

SNID 0.040 0.038 0.020 0.046
LIID 0.030 0.022 0.024 0.024
LNID 0.014 0.016 0.012 0.010

τ = 0.5 SIID 0.082 0.086 0.082 0.074
SNID 0.068 0.072 0.070 0.058
LIID 0.016 0.022 0.018 0.022
LNID 0.008 0.014 0.006 0.006

τ = 0.9 SIID 0.058 0.078 0.070 0.098
SNID 0.048 0.054 0.052 0.056
LIID 0.018 0.024 0.030 0.038
LNID 0.004 0.014 0.012 0.016

Multiple SIID 0.084 0.084 0.084 0.076
SNID 0.068 0.072 0.080 0.056

n=500 τ = 0.1 SIID 0.038 0.060 0.060 0.070
SNID 0.036 0.046 0.038 0.038
LIID 0.018 0.022 0.020 0.028
LNID 0.012 0.012 0.008 0.022

τ = 0.5 SIID 0.042 0.064 0.056 0.062
SNID 0.048 0.056 0.046 0.056
LIID 0.030 0.026 0.030 0.034
LNID 0.028 0.014 0.016 0.012

τ = 0.9 SIID 0.052 0.050 0.064 0.074
SNID 0.046 0.038 0.054 0.044
LIID 0.032 0.022 0.032 0.032
LNID 0.018 0.016 0.012 0.024

Multiple SIID 0.048 0.060 0.054 0.074
SNID 0.042 0.038 0.036 0.052
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and LRT tests across δ at τ = 0.5, referred to as ASLP and MCLP, respectively. The

finite-sample local powers are obtained through Monte Carlo simulation by running the

test procedures for data generated from model (4.1) with α0 = n−1/2δ and n = 2000.

The results show that as δ increases, the local powers of both SS and LRT methods

increase gradually to one. The MCLP and ASLP agree generally well with each other,

and this validates the theoretical results. In addition, the asymptotic local powers of the

SS and LRT methods appear close to each other for all four cases considered.

4.4. Comparison of computational efficiency
To compare the computational efficiency of the SS and LRT methods, we report in

Table 4.2 the average computing time (in seconds) of each test procedure for analyzing

one simulated data set at median. The SIID tends to be faster than SNID as it does not

require estimating the unknown density function. Since SS test requires fitting the model

only under null hypothesis, both SIID and SNID take less time than the LRT methods,

and this computational efficiency is more obvious for larger samples.

In summary, the proposed SS method has similar power with the LRT method of

Lee et al. (2011), when the Type I errors are controlled at the same level. However,

in finite samples, the LRT method is sensitive to the choice of bandwidth, making it

more difficult to maintain the Type I error close to the nominal level. In addition, the SS

method is computationally more efficient than the LRT method, which requires fitting

the model under both null and alternative hypotheses.

5. Blood Pressure and Body Mass Index Study
The relationship between blood pressure and body mass index has long been an im-

portant topic in public health studies. Many studies have reported positive associations

between BP and BMI in different populations (He et al., 1994; Droyvold et al., 2005;

Tesfaye et al., 2007). However, some researchers showed that a linear relationship may

not hold across the entire BMI range (Bunker et al., 1995; Kaufman et al., 1997; Kerry

et al., 2005).

We use the data from National Health and Nutrition Examination Survey (NHANES)

to illustrate the performance of our proposed method. The NHANES program started in

the early 1960s and is designed to assess the health and nutritional status of adults and

children in the United States. We aim to study the relationship between systolic blood

pressure (SBP) and BMI at different quantiles after accounting for gender and age ef-
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Figure 4.2: The asymptotic local power (ASLP) and Monte Carlo local power (MCLP) obtained
by simulation (500 repetitions) with n = 2000 from the SS and LRT methods against δ for
the local alternative model with α0 = n−1/2δ at τ = 0.5. The lines with circles, squares,
crosses and triangles represent ASLP (LRT ), MCLP (LRT ), ASLP (SS), and MCLP (SS)

methods, respectively.
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fects, and examine if the relationship is stable across the range of BMI. In this study, the

analysis at high quantiles is of great interest since high blood pressure is known to be

an important potential cause of heart and vascular diseases. We consider the survey data

of non-hispanic black people collected in year 2009-2010, including 683 males and 695

females. For easier demonstration, we analyze data for females and males separately.

First we carry out hypothesis tests to assess if BMI has any threshold effects on

the quantiles of BP. In the presence of threshold effects, we have the following quantile

regression model

QYi(τ |Xi, Zi) =

 a1(τ) + b1(τ)Xi + c1(τ)Zi, Xi ≤ u0(τ),

a2(τ) + b2(τ)Xi + c2(τ)Zi, Xi > u0(τ),
(5.1)

where Yi, Xi and Zi represent the systolic blood pressure, BMI and age of the ith sub-

ject, respectively, and u0(τ) is the unknown change point associated with the τ th quan-

tile. We consider three quantile levels τ = 0.1, 0.5 and 0.9.

Table 5.3 summarizes the testing results from the proposed methods SIID and SNID,

and the sup-likelihood-ratio-based methods LIID and LNID for males and females sep-

arately. For females, except the LIID method at τ = 0.5, all four methods suggest

that BMI has no significant threshold effect at three quantiles. For males, SIID, SNID

and LIID suggest that BMI has significant threshold effects at three quantiles, but the

LNID method only detects the threshold effect at τ = 0.1 at the significance level of

Table 4.2: The average computing time (in seconds) of different testing procedures for analyzing
one simulated data set at median.

SIID SNID LIID LNID
n = 200

Case 1 0.60 16.45 33.28 36.38
Case 2 0.58 17.13 30.26 34.58
Case 3 0.54 17.45 30.21 34.16
Case 4 0.56 17.54 40.64 31.60

n = 500

Case 1 1.51 21.65 115.31 159.57
Case 2 1.47 20.75 97.18 105.36
Case 3 1.34 21.27 94.66 110.42
Case 4 1.40 21.83 122.95 112.83
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0.05. This agrees with the observation in the simulation study that the LRT methods

tend to be more conservative than the proposed sup-score-based methods. In contrast,

the likelihood-ratio test in Hansen (1999) for mean regression gives p-values 0.001 and

0.014 for the male and female groups, respectively. In the following, we focus our

analysis on the male group.

Table 5.3: P -values from testing the existence of threshold effects based on different test proce-
dures in the blood pressure and body mass index study. The last row provides the p-values from

the joint testing at three quantile levels.

Quantile SIID SNID LIID LNID
Male

τ = 0.1 0.002 0.032 0.000 0.010
τ = 0.5 0.008 0.044 0.020 0.064
τ = 0.9 0.016 0.016 0.012 0.208
Multiple 0.002 0.044

Female
τ = 0.1 0.434 0.206 0.546 0.686
τ = 0.5 0.430 0.166 0.028 0.230
τ = 0.9 0.186 0.098 0.094 0.912
Multiple 0.402 0.140

Table 5.4: Estimation results in the study of BP and BMI association for the male group. The
values in parentheses correspond to the bootstrap standard errors.

First Segment Second Segment Change Point
a1 b1 c1 a2 b2 c2

τ = 0.1 Est 64.291 1.310 0.341 113.105 -0.346 0.122 24.6
SE (8.570) (0.474) (0.063) (4.935) (0.164) (0.056)

τ = 0.5 Est 62.433 1.855 0.590 102.842 0.157 0.393 21.7
SE (8.150) (0.485) (0.138) (4.687) (0.158) (0.044)

τ = 0.9 Est 104.977 -0.086 1.129 115.623 0.168 0.589 22.4
SE (19.710) (0.966) (0.167) (8.210) (0.237) (0.060)

Mean Est 74.958 1.126 0.667 107.728 0.060 0.377 22.4
SE (11.774) (0.622) (0.062) (3.499) (0.105) (0.036)

Note: Est and SE stand for Parameter estimate and Standard error, respectively.
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For quantile regression model (5.1) with a threshold effect, let θ(τ) be the collection

of regression coefficients {ak(τ), bk(τ), ck(τ); k = 1, 2} and the change point u0(τ).

Following Li et al. (2011), we can estimate θ(τ) by

θ̂(τ) = arg min
n∑
i=1

ρτ{Yi −QYi(τ |Xi, Zi)}. (5.2)

We summarize the estimated parameters and corresponding standard errors (ob-

tained by the paired bootstrap method with 200 bootstrap repetitions. in Table 5.4, and

plot the estimated quantiles and mean functions of BP against BMI conditional on the

average age in Figure 5.3. The estimated mean and median regression functions appear

consistent with each other. The BMI cut point is around 22 kg/m2 for both median and

the upper quantile τ = 0.9, while it is larger (24.6 kg/m2) at the lower quantile τ = 0.1,

that is, for those with low blood pressures. Not surprisingly, age exhibits significantly

positive effects on BP at all three quantiles. However, the effects of age become smaller

for those males with BMI above the cut points. In addition, age tends to have larger

effects on the upper quantile of the BP distribution. At lower and central quantiles, the

effects of BMI are significantly positive before the change point, then become insignif-

icant after the change point. At the upper quantile τ = 0.9, the effects of BMI are not

significant throughout the BMI range.

The consistency of BMI effects on BP has been examined in many medical studies

for different populations. Past work suggested that the relationship between BMI and

BP is likely nonlinear but this may vary between subgroups. By studying urban Nige-

rian civil servants in 1992, Bunker et al. (1995) suggested that BMI and BP were not

correlated below the BMI threshold of 21.5 kg/m2 but correlated above the threshold.

In a study of low-BMI populations in Africa and the Caribbean, Kaufman et al. (1997)

observed a threshold at 21kg/m2 in the relationship between BMI and BP for women

but not for men. Kerry et al. (2005) found that for lean older and semi-urban women in

West Africa, the effect of BMI on BP below the change point was greater than the effect

above it.

Our analysis for US non-hispanic black subjects also suggests different BMI and BP

relationships for different subgroups. The previous work all focus on mean regression

analysis. Our proposed methods offer an alternative way to test for the existence of the

BMI threshold effect at different tails of the BP distribution, and thus can help assess the

BP and BMI association from more angles. For instance, our analysis suggests that at the
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Figure 5.3: Estimated conditional quantile functions of blood pressure against body mass index
for the male group at the mean age.

upper tails of the BP distribution, BP has weaker associations with BMI while stronger

associations with age. Further investigation is needed to understand the reasons for this

phenomenon and the health implications in obesity epidemic.

Acknowledgement
The authors would like to thank the Editor, the Associate Editor, and three anony-

mous reviewers for their thoughtful and constructive comments that have significantly

improved the paper. Zhang’s research was supported by NNSFC Grant 11171074. Dr.

Wang’s research was supported by NSF (National Science Foundation) CAREER Award

DMS-1149355. Dr. Zhu’s research is partially supported by NSFC 11271080.

Statistica Sinica: Newly accepted Paper 
(accepted version subject to English editing)



21

Supplementary Material
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