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Abstract

The nonparanormal model assumes that variables follow a multivariate normal

distribution after a set of unknown monotone increasing transformations. It is a flexible

generalization of the normal model but retains the nice interpretability of the latter. In

this paper we propose a rank-based tapering estimator for estimating the correlation

matrix in the nonparanormal model in which the variables have a natural order. The

rank-based tapering estimator does not require knowing or estimating the monotone

transformation functions. We establish the rates of convergence of the rank-based

tapering under Frobenious and matrix operator norms, where the dimension is allowed

to grow at a nearly exponential rate as the sample size. Monte Carlo simulation is

used to demonstrate the finite performance of the rank-based tapering estimator. A

real data example is used to illustrate the nonparanormal model and the efficacy of the

proposed rank-based tapering estimator.
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1 Introduction

Estimating large covariance matrices has been a hot research topic in recent years. High-

dimensional data frequently appear in many fields, but the usual sample covariance matrix

is a very poor estimator of the covariance matrix in the high-dimensional setting (John-

stone 2001). Better covariance estimators can be produced by using regularization methods,

including banding (Wu & Pourahmadi 2003, Bickel & Levina 2008a), tapering (Furrer &

Bengtsson 2007, Cai, Zhang & Zhou 2010, Cai & Zhou 2012) and thresholding (Bickel &

Levina 2008b, El Karoui 2008, Rothman, Levina & Zhu 2010). Thresholding achieves a good

variance-bias tradeoff by truncating small entries of the sample covariance matrix to zero.

Thresholding is permutation invariant. On the other hand, banding and tapering utilize

the underlying bandable structure of the population covariance matrix. It has shown that

banding/tapering performs better than thresholding when there is a natural order among

variables and two variables become near independent as they far apart in that order (Bickel

& Levina 2008a, Cai et al. 2010, Cai & Zhou 2012).

The minimax results in Cai et al. (2010) and Cai & Zhou (2012) greatly deepen our

understanding of the tapering estimator of large bandable covariance matrices. The minimax

lower bounds were established for collections of multivariate normal distributions, which

suggests that the covariance matrix estimation problem is not any easier on normal data.

Technically, the rates of convergence of banding or tapering can be established under a

weaker sub-Gaussian distribution assumption (Bickel & Levina 2008a,b, Cai, Zhang & Zhou

2010, Cai & Zhou 2012). Normality is important to the model interpretation, because a zero

entry implies the marginal independence of a pair of variables. This nice interpretation does

not always hold without the normality assumption. In practice, the observed data are often

skewed or have heavy tails, especially in the high-dimensional setting. Neither normal nor

sub-Gaussian distributions can be used to model such data. It is of great importance and

interest to relax the normality assumption while keeping its nice interpretability.

To this end, we consider the nonparanormal model which basically uses the classical

transformation strategy to handle non-normal data.

The nonparanormal model: (X1, . . . , Xp) follows a nonparanormal distribu-
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tion if there exists a vector of unknown univariate monotone increasing transfor-

mations, denoted by f = (f1, · · · , fp), such that the transformed random vector

follows a multivariate normal distribution with mean 0 and covariance Σ:

(f1(X1), · · · , fp(Xp)) ∼ Np(0,Σ), (1)

where without loss of generality we let the diagonals of Σ all equal 1 because

the transformation functions fjs can be arbitrarily scaled.

Note that Σ can be also regarded as the correlation matrix because the diagonals of Σ

all equal 1. This view is very useful when developing a good estimator of Σ in this paper.

By definition of the nonparanormal model, one can immediately see that Σij = 0 if and

only if Xi and Xj are marginally independent. Moreover, each continuous variable can be

transformed to a standard normal variable via a monotone increasing transformation. Thus,

the nonparanormal model actually assumes that after these individual transformations the

marginally normal variables have a joint normal distribution. This is the parametric part of

model (1). The nonparanormal model is in fact a semiparametric Gaussian copula model that

has generated a lot of interests in statistics, econometrics and finance (Klaassen & Wellner

1997, Song 2000, Tsukahara 2005, Chen & Fan 2006, Chen et al. 2006, Song et al. 2009). In

the context of nonparametric graphical modeling, Liu, Lafferty & Wasserman (2009) used

model (1) and coined the new name “nonparanormal model”. We follow their terminology

in this paper.

When the nonparanormal model is applied to variables with a natural order, the exist-

ing results on large covariance matrix estimation suggest us to use banding or tapering to

estimate Σ. However, an obvious difficulty is that the nonparanormal model has p many

unknown nonparametric transformation functions. It appears to be inevitable that one must

estimate these p transformation functions in the process of estimating Σ. In this paper

we propose a rank-based tapering estimator of Σ that does not require estimating these

unknown transformation functions at all. Our estimator is constructed in two steps. We

first construct a nonparametric rank-based sample estimate of Σ. The rank-based tapering

estimator is then obtained by applying tapering to the rank-based sample estimate of Σ.

We establish the rates of convergence of the rank-based tapering estimator under both the
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Frobenius and matrix operator norms. It is shown that the rank-based tapering estimator is

consistent even when the dimension is nearly exponentially large relative to the sample size.

The rest of the paper is organized as follows. Section 2 contains the methodological

details of the rank-based tapering estimator. In Section 3 we present the main theoretical

results. In Section 4 we use Monte Carlo simulation to demonstrate the good finite sample

performance of the rank-based tapering estimator. Rock spectrum data are used to illustrate

the nonparanormal model and the efficacy of the rank-based tapering estimator. Technical

proofs are presented in the appendix.

2 Methodology

Throughout the rest of the paper, we assume that we have n identically independently

distributed (i.i.d.) observations x1, . . . ,xn from the nonparanormal model (1). Moreover,

these variables follow a natural order such that banding/tapering estimation is meaningful.

We put the observed data in a n × p matrix X. We can define Zij = fj(X ij), 1 ≤

i ≤ n; 1 ≤ j ≤ p. We call Z the “oracle” data, because we would use them to estimate

Σ if we knew the transformation functions. We begin with a key observation that σij =

corr(fi(Xi), fj(Xj)) for any (i, j) pair. We propose to use the rank correlation measure

(Kendall 1948, Lehmann 1998) to estimate entries ofΣ. Let (x1i, x2i, . . . , xni) be the observed

values of variable Xi and denote their ranks by ri = (r1i, r2i, . . . , rni). We can estimate σij

by r̂sij where

r̂sij = 2 sin(
π

6
r̂ij) (2)

and

r̂ij =

∑n
l=1(rli −

n+1
2
)(rlj − n+1

2
)√∑n

l=1(rli −
n+1
2
)2 ·

∑n
l=1(rlj −

n+1
2
)2
. (3)

Note that r̂ij is the Spearman’s rank correlation and r̂sij is called the adjusted Spearman’s

rank correlation (Kendall 1948).

It is critically important to observe that ri = (r1i, r2i, . . . , rni) are the ranks of the “oracle”

data. Therefore, the observed data and the “oracle” data are treated as the same in the

framework of rank-based estimation. The nonparanormal model implies that fi(Xi), fj(Xj)
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follow a bivariate normal distribution with correlation parameter σij. Then a classical result

due to Kendall (1948) shows that

lim
n→+∞

E(r̂ij) =
6

π
arcsin(

1

2
σij), (4)

which indicates that the adjusted Spearman’s rank correlation r̂sij is an asymptotically un-

biased estimator of σij. Based on the above discussion we define the rank-based sample

estimate of Σ as follows

R̂
s
= (r̂sij)1≤i,j≤p. (5)

When the dimension is large, R̂
s
performs poorly and we need to further consider a

regularized version of the rank-based sample estimate. Banding or tapering is a very useful

regularization method when the variables have a natural order and off-diagonal entries of the

target covariance matrix decays to zero as they move away from the diagonal. To provide

a unified treatment of banding and tapering, we consider the generalized tapering estimator

defined as

R̂
s

gt = (r̂sijwij)1≤i,j≤p,

where the generic tapering weights (wij)1≤i,j≤p satisfy the following properties:

(i) wij = 1 for |i− j| ≤ kh = ⌊k/2⌋,

(ii) wij = 0 for |i− j| > k.

(iii) 0 ≤ wij ≤ 1 for kh < |i− j| ≤ k.

Both banding and tapering weights satisfy conditions (i)–(iii). Banding weights (Bickel

& Levina 2008a) wij = 1 for kh < |i − j| ≤ k, while tapering weights (Cai, Zhang & Zhou

2010, Cai & Zhou 2012) equal wczz
ij = (k − |i − j|)/kh for kh < |i − j| ≤ k. The rank-

based banding estimator is R̂
s

b = (r̂sijI{|i−j|≤k})1≤i,j≤p and the rank-based tapering estimator

is R̂
s

t = (r̂sijw
czz
ij )1≤i,j≤p. We consider the generalized tapering estimator because in some

theoretical analysis the exact form of wij for kh < |i− j| ≤ k does not matter.

Before ending this section we would like to mention another “plug-in” tapering estimator

of Σ. One could first estimate these transformation functions and then obtain the estimated
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“oracle” data as:

Ẑij = f̂j(X ij), 1 ≤ i ≤ n; 1 ≤ j ≤ p

where f̂j is a good estimator of fj. The final estimator is obtained by applying tapering

to the sample covariance matrix of the estimated “oracle” data. Obviously, the “plug-in”

tapering estimator requires more computations than the rank-based tapering estimator. This

“plug-in” estimation idea was used by Liu et al. (2009) for estimating the inverse correlation

matrix in the nonparanormal model. We discuss the theoretical advantages of the rank-based

tapering estimator in Section 3.

The nonparanormal model is also interesting in the framework of graphical modeling. If

Σ−1 is sparse in the sense that many entries of Σ−1 are exactly zero, then the few nonzero

entries correspond to the edges in a nonparametric graphical model. Rank-based estimation

techniques have been independently proposed in Xue & Zou (2012) and Liu & Wasserman

(2012) for estimating sparse inverse correlation matrices of the nonparanormal model.

3 Theoretical Properties

In this section we establish theoretical properties of the rank-based generalized tapering

estimators. We begin with some necessary notation and definitions. For a matrix A =

(aij)1≤i,j≤p, its Frobenius norm is defined as ∥A∥F =
√∑

i,j a
2
ij, and its matrix ℓq-norm is

defined as the operator norm induced by the vector ℓq-norm,

∥A∥ℓv = sup
u

∥Au∥ℓv
∥u∥ℓv

.

The commonly used cases are v = 1, 2,∞. The ℓ1 norm is equal to maxi
∑p

j |aij| while the

ℓ∞ norm equals maxj
∑p

i |aij|. For a symmetric matrix A, ∥A∥ℓ2 is the largest absolute

value of its eigenvalues and ∥A∥ℓ2 ≤ ∥A∥ℓ1 = ∥A∥ℓ∞ . For presentation convenience, we use

c and C to denote generic constants in lower and upper bounds, respectively.

For the theoretical analysis we assume that Σ is in a parameter space of bandable co-

variance matrices. Specifically, we consider the following two parameter spaces

Hα = {data follow model (1) and Σ satisfies |σij| ≤ τ1|i− j|−(α+1) for i ̸= j}.
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Fα = {data follow model (1) and Σ satisfies max
j

∑
i: |i−j|>k

|σij| ≤ τ0k
−α, for all k},

In both spaces α specifies the rate of decay as σij moves away from the diagonal. We assume

p ≥ n and log p ≤ nκ for some constant κ ∈ (0, 1). Note that log p/n → 0 is necessary for

establishing consistency of any estimator of Σ (Cai et al. 2010, Cai & Zhou 2012).

These two parameter spaces are similar to those considered in previous work (Bickel &

Levina 2008a, Cai et al. 2010, Cai & Zhou 2012), but there is also a fundamental difference.

In this work we assume the data follow a nonparanormal distribution, while the previous

papers assume sub-Gaussian data.

In the following theorem we establish the rate of convergence of the rank-based (gener-

alized) tapering estimator R̂
s

gt under the Frobenius norm.

Theorem 1. For the rank-based (generalized) tapering estimator R̂
s

gt we have

sup
Hα

E
1

p

∥∥R̂s

gt −Σ
∥∥2

F
≤ C

k

n
+ Ck−2α−1.

Picking k = n
1

2α+2 , then the Frobenius risk bound becomes

sup
Hα

E
1

p

∥∥R̂s

gt −Σ
∥∥2

F
≤ Cn− 2α+1

2(α+1) . (6)

Theorem 1 also suggests that the rank-based tapering estimator attains the minimax rate

of convergence under the Frobenius norm. To see this, we cite a minimax lower bound from

Cai et al. (2010) who constructed a special collection of multivariate distributions, denoted

by G2, and showed that infΣ̂ supG2
E1

p

∥∥Σ̂ −Σ
∥∥2

F
≥ cn− 2α+1

2α+2 . To save space we do not write

down G2 here, please see section 4.2 of Cai et al. (2010) for the detail. By definition G2 is a

subspace of Hα and hence

inf
Σ̂

sup
Hα

E
1

p

∥∥Σ̂−Σ
∥∥2

F
≥ inf

Σ̂
sup
G2

E
1

p

∥∥Σ̂−Σ
∥∥2

F
≥ cn− 2α+1

2α+2 . (7)

Comparing (7) and (6) we see that the rank-based tapering estimator attains the minimax

rate of convergence under the Frobenius norm.

In the next theorem we establish the rates of convergence of the rank-based (generalized)

tapering estimator R̂
s

gt under the matrix operator norms.
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Theorem 2. For the rank-based (generalized) tapering estimator R̂
s

gt we have

sup
Fα

E
∥∥R̂s

gt −Σ
∥∥2

ℓa
≤ C

k2 log p

n
+ Ck−2α,

where a = 1, 2. Moreover, if let k = ( n
log p

)
1

2α+2 , then the ℓa risk bound (a = 1, 2) becomes

sup
Fα

E
∥∥R̂s

gt −Σ
∥∥2

ℓa
≤ C

(
log p

n

) α
α+1

. (8)

Cai et al. (2010) and Cai & Zhou (2012) have established the following lower bound

results

inf
Σ̂

sup
G∗∗

E
∥∥Σ̂−Σ

∥∥2

ℓ2
≥ cn−2α/(2α+1) + c

log(p)

n

inf
Σ̂

sup
G∗

E
∥∥Σ̂−Σ

∥∥2

ℓ1
≥ c

(
log p

n

) 2α
2α+1

+ cn− α
α+1

where G∗∗ and G∗ are two carefully designed collections of multivariate normal distributions.

To save space we do not write down G∗∗ and G∗ here, please see section 3.2 of Cai et al.

(2010) and section 2.2 of Cai & Zhou (2012) for more details.

By definition, both G∗∗ and G∗ are subspaces of Fα. As a result, we have

inf
Σ̂

sup
Fα

E
∥∥Σ̂−Σ

∥∥2

ℓ2
≥ cn−2α/(2α+1) + c

log(p)

n
,

inf
Σ̂

sup
Fα

E
∥∥Σ̂−Σ

∥∥2

ℓ1
≥ c

(
log p

n

) 2α
2α+1

+ cn− α
α+1 .

So Theorem 2 does not tell us whether the rank-based (generalized) tapering estimator

is minimax rate optmial under the ℓ1, ℓ2 norms. Because we are dealing with the rank

correlations, some key inequalities used in establishing the upper bound for the ℓ1, ℓ2 risk

are no longer applicable. For example, the concentration bound for sub-Gaussian random

variables (see page 2142 of Cai et al. (2010) and Saulis & Statulevičius (1991)). The proof

of Theorem 2 uses a generalization of McDiarmid’s inequality by Kutin (2002) and Kutin &

Niyogi (2002).

With or without the minimax optimality, Theorems 1 and 2 show that the rank-based

tapering estimator is uniformly consistent over a large parameter space, as long as the

logarithm of the dimension grows slower than the sample size. Let us compare the rank-

based tapering estimator and the “plug-in” tapering estimator. Liu et al. (2009) used a
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nonparametric density estimation scheme to estimate the transformation functions in the

nonparanormal model and used the same “plug-in” idea to estimate Σ by applying the

graphical lasso (Friedman, Hastie & Tibshirani 2008) to the estimated “oracle” data. Their

theory is based on a concentration inequality which is proven under the assumption that p

is a polynomial order of n. So their theory may suggest the the “plug-in” tapering estimator

is consistent under polynomial dimensions but it is unclear whether the “plug-in” tapering

estimator can still be consistent under nearly exponentially large dimensions.

4 Numerical Properties

In this section we both simulated data and real data to examine the finite-sample performance

of the proposed rank-based tapering estimator.

4.1 Monte Carlo Simulation

The main purpose of the simulation study is to show that the proposed rank-based tapering

estimator works as well as the oracle tapering estimator. For the sake of completeness we

also include the “plug-in” estimator for comparison.

We generated n independent p-dimension data points from the nonparanormal model (1)

with n = 200 and p = 200, 500 & 1000. Four different Σ were considered:

1. σij = I{i=j} + ρ|i− j|−(α+1)I{i̸=j} with ρ = 0.6, and α = 0.1, 0.3, 0.5.

2. σij = ρ|i−j| for ρ = 0.3 and 0.7.

3. σij = I{i=j} + ρI{|i−j|=1} for ρ = 0.3 and 0.5.

4. σij = (1− |i−j|
m

)+ for m = 0.1p, 0.2p and 0.3p.

Model 1 has been used in Cai et al. (2010). Models 2 and 3 have been used in Bickel

& Levina (2008a,b) and Rothman et al. (2009). Model 4 has been studied in Cai & Liu

(2011). We first generated n independent data from Np(0,Σ) and then transformed the

normal data using transformation functions. In the simulation study we considered two
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sets of transformation functions for each Σ. We applied the identity transformation to

obtain the normal data. We also generated nonparanormal data by applying the following

transformations

g = [f−1
1 , f−1

2 , f−1
3 , f−1

4 , f−1
5 , f−1

1 , f−1
2 , f−1

3 , f−1
4 , f−1

5 , . . .],

where f1(x) = x, f2(x) = log(x), f3(x) = x
1
3 and f4(x) = log( x

1−x
).

The estimators considered in the study are the direct banding/tapering estimator, the

proposed rank-based banding/tapering estimator and the “plug-in” estimator. See Table 1.

To construct the “plug-in” estimator, we first estimated the “oracle” data ẑi = f̂(xi) by

applying the estimated transformation vector f̂ = (f̂1, · · · , f̂p) = (Φ−1 ◦ F̂1, · · · ,Φ−1 ◦ F̂p)

with F̂j being a Winsorized estimator of the CDF of Xj (Liu et al. 2009), and then performed

the banding/tapering procedure over the estimated “oracle” data. By our simulation design,

no matter which transformation function is used to generate the nonparanormal data, the

“oracle” data are always the normal data on which the transformation is applied. Therefore,

although the direct banding/tapering estimator is obviously wrong for the nonparanormal

data, their results on the normal data are actually the results of the ideal banding/tapering

estimator for both normal and nonparanormal data cases, which can be used as the bench-

mark for comparison. We only report the results of direct banding/tapering for the normal

data. Each estimator is tuned by 5-fold cross-validation. The estimation accuracy is mea-

sured by the average ℓ1-norm over 100 independent replications.

The simulation results are summarized in Tables 2–5. We can draw several conclusions.

First, the rank-based banding/tapering estimators work very similarly to the ideal band-

ing/tapering estimator, whose results correspond to those by the direct banding/tapering

estimator on normal data. The rank-based estimator is only slightly worse than the ideal

estimator, which is expected because some information is lost in the process of convert-

ing the original data into their ranks. The rank-based estimators outperform the “plug-in”

estimators. We also compared these estimators using Frobenius norm and ℓ2 norm. The

conclusions stay the same. For the sake of space we do not present the simulation results

under Frobenius norm and ℓ2 norm here.
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Table 1: List of all estimators in our simulation study.

Notation Meaning

Σ̂
d
b the direct banding estimator

Σ̂
d
t the direct tapering estimator

R̂
s
b the rank-based banding estimator

R̂
s
t the rank-based tapering estimator

Σ̂
p
b the “plug-in” banding estimator

Σ̂
p
t the “plug-in” tapering estimator

4.2 Applications to the Rock Spectrum Data

We use the rock sonar spectrum data (Gorman & Sejnowski 1988) to illustrate the nonpara-

normal model and the efficacy of the proposed rank-based banding/tapering estimator. This

dataset consists of 97 sonar spectra bounced off from roughly cylindrical rocks under similar

conditions, and each spectrum has 60 frequency band energy measurements in the range 0.0

to 1.0. First, we conducted normality tests on these 60 spectra signals to check whether there

is a serious violation of normality. The testing results are reported in Table 6. More than

80% signals are unable to pass any of four normality tests, and under Bonferroni correction

there are still over 50% genes that fail to pass the four normality tests. The normality test

strongly suggests that the normal assumption does not hold for the rock spectrum data.

Hence we considered the more robust nonparanormal model for this dataset.

For each spectrum, these 60 spectra signals were obtained from an increasing order of 60

aspect angles spanning 180 degrees. Thus, there is a natural order among signals for each

spectra. This physical nature of the data motivates us to estimate its bandable correlation

matrix structure. Moreover, the heatmap of the Spearman’s correlation matrix is shown in

Figure 1, The heatmap shows a general decaying pattern, which suggests that it is quite

reasonable to assume the correlation matrix of the nonparanormal model is bandable. After

the visual inspection, we computed the rank-based banding/tapering estimators. The rank-

based banding estimator selected k̂ = 27 sub-diagonals by cross-validation, while the rank-

based tapering estimator selected k̂ = 38 sub-diagonals. The heatmaps of the absolute values
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Table 2: Simulation results of model 1. Estimation accuracy is measured by the ℓ1-norm

averaged over 100 replications. The standard errors are shown in the bracket. In this

simulation study, the direct banding/tapering estimator on the normal data corresponds to

an ideal banding/tapering estimator on both normal and nonparanormal data.

α 0.1 0.3 0.5

p 200 500 1000 200 500 1000 200 500 1000

normal data

Σ̂
d
b

3.50 4.27 4.78 2.35 2.67 2.86 1.68 1.83 1.92

(0.01) (0.02) (0.02) (0.01) (0.01) (0.02) (0.01) (0.01) (0.01)

R̂
s
b

3.55 4.33 4.82 2.39 2.71 2.90 1.71 1.86 1.95

(0.01) (0.02) (0.02) (0.01) (0.01) (0.02) (0.01) (0.01) (0.01)

Σ̂
p
b

3.57 4.34 4.88 2.43 2.75 2.95 1.76 1.92 2.01

(0.01) (0.02) (0.02) (0.01) (0.02) (0.02) (0.01) (0.01) (0.02)

Σ̂
d
t

3.40 4.19 4.71 2.28 2.60 2.80 1.64 1.81 1.92

(0.01) (0.02) (0.02) (0.01) (0.02) (0.02) (0.01) (0.01) (0.02)

R̂
s
t

3.46 4.25 4.76 2.32 2.65 2.85 1.68 1.84 1.94

(0.01) (0.02) (0.02) (0.01) (0.02) (0.02) (0.01) (0.01) (0.02)

Σ̂
p
t

3.52 4.30 4.84 2.39 2.72 2.93 1.75 1.91 2.02

(0.02) (0.02) (0.02) (0.01) (0.02) (0.02) (0.01) (0.01) (0.02)

nonparanormal data

R̂
s
b

3.55 4.33 4.82 2.39 2.71 2.90 1.71 1.86 1.95

(0.01) (0.02) (0.02) (0.01) (0.01) (0.02) (0.01) (0.01) (0.01)

Σ̂
p
b

3.57 4.34 4.88 2.43 2.75 2.95 1.76 1.92 2.01

(0.01) (0.02) (0.02) (0.01) (0.02) (0.02) (0.01) (0.01) (0.02)

R̂
s
t

3.46 4.25 4.76 2.32 2.65 2.85 1.68 1.84 1.94

(0.01) (0.02) (0.02) (0.01) (0.02) (0.02) (0.01) (0.01) (0.02)

Σ̂
p
t

3.52 4.30 4.84 2.39 2.72 2.93 1.75 1.91 2.02

(0.02) (0.02) (0.02) (0.01) (0.02) (0.02) (0.01) (0.01) (0.02)
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Table 3: Simulation results of model 2. Estimation accuracy is measured by the ℓ1-norm

averaged over 100 replications. The standard errors are shown in the bracket. In this

simulation study, the direct banding/tapering estimator on the normal data corresponds to

an ideal banding/tapering estimator on both normal and nonparanormal data.

ρ 0.3 0.7

p 200 500 1000 200 500 1000

normal data

Σ̂
d
b

0.57 0.61 0.64 1.74 1.85 1.94

(0.01) (0.01) (0.01) (0.01) (0.02) (0.02)

R̂
s
b

0.59 0.63 0.67 1.80 1.91 2.00

(0.01) (0.01) (0.01) (0.02) (0.02) (0.03)

Σ̂
p
b

0.62 0.66 0.69 1.89 2.02 2.11

(0.01) (0.01) (0.01) (0.02) (0.02) (0.03)

Σ̂
d
t

0.59 0.62 0.66 1.67 1.80 1.90

(0.01) (0.01) (0.01) (0.02) (0.02) (0.03)

R̂
s
t

0.60 0.62 0.63 1.74 1.87 1.96

(0.01) (0.01) (0.01) (0.02) (0.02) (0.03)

Σ̂
p
t

0.63 0.67 0.70 1.87 2.01 2.10

(0.01) (0.01) (0.01) (0.02) (0.02) (0.03)

nonparanormal data

R̂
s
b

0.59 0.63 0.67 1.80 1.91 2.00

(0.01) (0.01) (0.01) (0.02) (0.02) (0.03)

Σ̂
p
b

0.62 0.66 0.69 1.89 2.02 2.11

(0.01) (0.01) (0.01) (0.02) (0.02) (0.03)

R̂
s
t

0.60 0.62 0.63 1.74 1.87 1.96

(0.01) (0.01) (0.01) (0.02) (0.02) (0.03)

Σ̂
p
t

0.63 0.67 0.70 1.87 2.01 2.10

(0.01) (0.01) (0.01) (0.02) (0.02) (0.03)
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Table 4: Simulation results of model 3. Estimation accuracy is measured by the ℓ1-norm

averaged over 100 replications. The standard errors are shown in the bracket. In this

simulation study, the direct banding/tapering estimator on the normal data corresponds to

an ideal banding/tapering estimator on both normal and nonparanormal data.

ρ 0.3 0.5

p 200 500 1000 200 500 1000

normal data

Σ̂
d
b

0.29 0.31 0.34 0.24 0.27 0.28

(0.00) (0.01) (0.01) (0.00) (0.00) (0.01)

R̂
s
b

0.31 0.33 0.35 0.26 0.29 0.30

(0.00) (0.00) (0.01) (0.00) (0.00) (0.01)

Σ̂
p
b

0.35 0.37 0.39 0.32 0.34 0.35

(0.00) (0.01) (0.01) (0.00) (0.00) (0.01)

Σ̂
d
t

0.29 0.31 0.34 0.24 0.27 0.28

(0.00) (0.01) (0.01) (0.00) (0.00) (0.01)

R̂
s
t

0.31 0.33 0.35 0.26 0.29 0.30

(0.00) (0.00) (0.01) (0.00) (0.00) (0.01)

Σ̂
p
t

0.35 0.37 0.39 0.32 0.34 0.35

(0.00) (0.01) (0.01) (0.00) (0.00) (0.01)

nonparanormal data

R̂
s
b

0.31 0.33 0.35 0.26 0.29 0.30

(0.00) (0.00) (0.01) (0.00) (0.00) (0.01)

Σ̂
p
b

0.35 0.37 0.39 0.32 0.34 0.35

(0.00) (0.01) (0.01) (0.00) (0.00) (0.01)

R̂
s
t

0.31 0.33 0.35 0.26 0.29 0.30

(0.00) (0.00) (0.01) (0.00) (0.00) (0.01)

Σ̂
p
t

0.35 0.37 0.39 0.32 0.34 0.35

(0.00) (0.01) (0.01) (0.00) (0.00) (0.01)
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Table 5: Simulation results of model 4. Estimation accuracy is measured by the ℓ1-norm

averaged over 100 replications. The standard errors are shown in the bracket. In this

simulation study, the direct banding/tapering estimator on the normal data corresponds to

an ideal banding/tapering estimator on both normal and nonparanormal data.

m 0.1p 0.2p 0.3p

p 200 500 1000 200 500 1000 200 500 1000

normal data

Σ̂
d
b

1.55 3.99 8.06 2.87 7.52 15.58 5.20 13.70 28.33

(0.02) (0.08) (0.19) (0.05) (0.15) (0.56) (0.11) (0.41) (1.14)

R̂
s
b

1.67 4.22 8.82 3.08 8.13 16.64 5.55 14.57 30.59

(0.03) (0.09) (0.21) (0.05) (0.17) (0.55) (0.10) (0.41) (1.26)

Σ̂
p
b

1.88 4.77 9.86 3.48 9.26 18.47 6.47 16.44 33.92

(0.03) (0.08) (0.22) (0.06) (0.29) (0.57) (0.11) (0.44) (1.23)

Σ̂
d
t

1.63 4.19 8.56 3.07 8.02 16.50 5.25 13.70 27.97

(0.03) (0.09) (0.22) (0.06) (0.21) (0.61) (0.09) (0.35) (1.11)

R̂
s
t

1.73 4.40 9.25 3.20 8.48 17.41 5.64 14.62 30.65

(0.03) (0.10) (0.22) (0.05) (0.20) (0.64) (0.10) (0.37) (1.29)

Σ̂
p
t

2.06 5.21 10.79 3.80 10.12 20.20 6.85 17.47 36.09

(0.03) (0.09) (0.24) (0.06) (0.27) (0.63) (0.13) (0.41) (1.36)

nonparanormal data

R̂
s
b

1.67 4.22 8.82 3.08 8.13 16.64 5.55 14.57 30.59

(0.03) (0.09) (0.21) (0.05) (0.17) (0.55) (0.10) (0.41) (1.26)

Σ̂
p
b

1.88 4.77 9.86 3.48 9.26 18.47 6.47 16.44 33.92

(0.03) (0.08) (0.22) (0.06) (0.29) (0.57) (0.11) (0.44) (1.23)

R̂
s
t

1.73 4.40 9.25 3.20 8.48 17.41 5.64 14.62 30.65

(0.03) (0.10) (0.22) (0.05) (0.20) (0.64) (0.10) (0.37) (1.29)

Σ̂
p
t

2.06 5.21 10.79 3.80 10.12 20.20 6.85 17.47 36.09

(0.03) (0.09) (0.24) (0.06) (0.27) (0.63) (0.13) (0.41) (1.36)
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Table 6: Normality test results for the rock spectrum data. The counts of spectra that fail

to pass each normality test are shown in the table.

critical value Anderson–Darling Cramér–von Mises Lilliefors Shapiro-Francia

0.05 55 52 48 56

0.05/60 45 41 31 43

Figure 1: Heapmaps of the absolute values of the Pearson’s and Spearman’s correlation

matrices for the rock spectrum data. White means zero correlation and black means perfect

correlation (magnitude equals 1).

of the rank-based banding/tapering estimators are shown in Figure 2.

It is interesting to note that under the nonparanormal model, if the correlation matrix

is exactly banded, then the direct correlation matrix of the raw data will be exactly banded

too. Now that we have came to a conclusion that a nonparanormal model with an exactly

banded correlation matrix is a good fit to the rock spectrum data, then we would expect the

similar bandable structure should also hold for the direct correlation matrix of the raw data.

We performed the direct banding/tapering procedures on the raw data and we did obtain

the same bandable structure: the direct banding chose k̂ = 27 sub-diagonals and the direct

tapering selected k̂ = 38 sub-diagonals. We show the heatmaps of the absolute values of

the direct banding/tapering estimators in Figure 3, providing another support to the fitted

nonparanormal model.
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(A): rank-based banding

estimation.

(B): rank-based tapering

estimation.

Figure 2: Heapmaps of the absolute values of the rank-based banding/tapering estimator

for the rock spectrum data.

(A): direct banding estimation on

the raw data.

(B): direct tapering estimation on

the raw data.

Figure 3: Heapmaps of the absolute values of the direct banding/tapering estimator for the

rock spectrum data.
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5 Discussion

In this paper we have introduced a rank-based generalized tapering estimator for estimating

a high-dimensional correlation matrix in the nonparanormal model. The theoretical and

numerical examples have provided strong support for this estimation method. Tapering

estimation requires a natural order among the variables. If there is no such order information,

it is better to use a permutation invariance estimator such as thresholding. In Xue &

Zou (2011) we have proved the adaptive minimax optimality of a rank-based thresholding

estimator for estimating sparse correlation matrices of nonparanormal models.

Appendix: technical proofs

We first present a useful technical lemma concentration bounds concerning the accuracy of

the rank-based sample estimator. Its proof is given in Xue & Zou (2012).

Lemma 1. Fix any 0 < ε < 1 and let n ≥ 12π
ε
. We have

Pr(|r̂sij − σij| > ε) ≤ 2 exp(−c0nε
2),

Pr(∥R̂s −Σ∥max > ε) ≤ p2 exp(−c0nε
2),

where ∥R̂s −Σ∥max = max(i,j) |r̂sij − σij| is the max norm, and c0 is some absolute constant.

Proof of Theorem 1. Introduce Γb = (σijI{|i−j|≤k})1≤i,j≤p and Γgt = (σijwij)1≤i,j≤p and

we have

E
∥∥R̂s

gt −Σ
∥∥2

F
≤ E

∥∥R̂s

gt − Γgt

∥∥2

F
+
∥∥Γgt − Γb

∥∥2

F
+
∥∥Γb −Σ

∥∥2

F
.

By the assumption |σij| ≤ τ1|i − j|−(α+1) for i ̸= j and 0 ≤ wij ≤ 1, it immediately yields

that
∥∥Γgt − Γb

∥∥2

F
≤ Cpk−2α−2. Next, we can also derive the upper bound for

∥∥Γb −Σ
∥∥2

F
as

follows, ∥∥Γb −Σ
∥∥2

F
≤ 2τ1 ·

p−1∑
m=k+1

m−2(α+1) ≤ 2τ1 · pk−2α−1. (9)

where we use the fact that

p−1∑
m=k+1

m−2(α+1) ≤
∫ +∞

k

t−2(α+1)dt ≤ 1

2α
k−2α−1.
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On the other hand, (r̂sij − σij)
2 ≤ 2π2

9
(uij −E(uij))

2 +O( 1
n2 ) holds by the Hoeffding decom-

position of r̂ij. Note that Var(uij) = O( 1
n
), and then it can be easily seen that

E
1

p

∥∥R̂s

gt − Γgt

∥∥2

F
≤ E

1

p

∥∥R̂s

b − Γb

∥∥2

F
≤ 2π2

9
k · (max

i,j
Var(uij) +

c

n2
) ≤ C

k

n
. (10)

Combining (9) and (10) concludes the proof by noting that

E
1

p

∥∥R̂s

gt −Σ
∥∥2

F
≤ C

k

n
+ Ck−2α−1.

Proof of Theorem 2. We only need to prove the ℓ1 risk bound. The ℓ2 risk bound

follows from the fact that the ℓ2 norm is upper bounded by the ℓ1 norm. Introduce the

ideal generalized tapering estimator Γgt = (σijwij)1≤i,j≤p. The sub-additive property of the

matrix ℓ1-norm implies that

E
∥∥R̂s

gt −Σ
∥∥2

ℓ1
≤ 2E

∥∥R̂s

gt − Γgt

∥∥2

ℓ1
+ 2

∥∥Γgt −Σ
∥∥2

ℓ1
. (11)

Note that 0 ≤ wij ≤ 1 for any (i, j) and wij = 1 when |i− j| ≤ kh, and then we have∥∥Γgt −Σ
∥∥2

ℓ1
≤

(
max
i=1,...,p

∑
i: |i−j|>kh

|σij|
)2 ≤ τ 20 k

−2α
h .

Now, we only need to bound E
∥∥R̂s

gt − Γgt

∥∥2

ℓ1
in the sequel. Since 0 ≤ wij ≤ 1 for any (i, j)

and wij = 0 for |i− j| > k, we can easily derive its upper bound as follows,∥∥R̂s

gt − Γgt

∥∥2

ℓ1
≤ max

1≤i≤p
(

∑
i−k≤j≤i+k

|r̂sij − σij|)2

≤ (2k + 1) · max
1≤i≤p

∑
i−k≤j≤i+k

(r̂sij − σij)
2.

Recall that r̂sij = 2 sin(π
6
r̂ij) and σij = 2 sin(π

6
E(uij)). To further simplify the upper bound,

we consider the Hoeffding decomposition of r̂ij (Hoeffding 1948),

(r̂sij − σij)
2 ≤ π2

9
(r̂ij − E(uij))

2

≤ 2π2

9

[
(uij − E(uij))

2 + (
3

n+ 1
uij −

3

n3 − n
dij)

2
]

=
2π2

9
(uij − E(uij))

2 +O(
1

n2
)

where dij =
∑

i1 ̸=i2
sign(xi1i − xi2i) · sign(xi1j − xi2j).
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Now we shall derive the concentration bound for

U
(k)
i =

∑
i−k≤j≤i+k

(uij − E(uij))
2.

To obtain the desired concentration bound, we consider the generalization of McDiarmid’s

inequality by Kutin (2002) and Kutin & Niyogi (2002) when differences are bounded with

high probability. Note that U
(k)
i can be considered as a function of independent samples

x1, . . . ,xn, i.e. U
(k)
i = U

(k)
i (x1, . . . ,xn). We replace the t-th sample xt by another indepen-

dent sample x̃t. To simplify notation, we define Ũ
(k)
i = U

(k)
i (x1, . . . ,xt−1, x̃t,xt+1, . . . ,xn)

and ũij = uij(x1, . . . ,xt−1, x̃t,xt+1, . . . ,xn). We have that

|U (k)
i − Ũ

(k)
i | ≤

∑
i−k≤j≤i+k

|(uij − E(uij))
2 − (ũij − E(ũij))

2| ≤ 12
∑

i−k≤j≤i+k

|uij − ũij| ≤ c1
k

n
,

where c1 is some absolute constant. We use simple facts that |uij| ≤ 3 and |ũij| ≤ 3 in the

first inequality and |uij − ũij| ≤ 15
n
(Xue & Zou 2012) in the last inequality. Moreover, under

the probability event that

{max
i,j

|uij − E(uij)| ≤ ϵ} ∩ {max
i,j

|ũij − E(ũij)| ≤ ϵ} with ϵ2 = c0M
log p

n

for M > 0, U
(k)
i − Ũ

(k)
i can be upper bounded as follows

|U (k)
i − Ũ

(k)
i | ≤

∑
i−k≤j≤i+k

(|uij − E(uij)|+ |ũij − E(uij)|) · |uij − ũij| ≤ c2M
k log1/2 p

n3/2
,

where c2 is some absolute constant. Thus, the following bound immediately holds

Pr(|U (k)
i − Ũ

(k)
i | > c2M

k log p

n3/2
) ≤ 2Pr(max

ij
|uij − E(uij)| > ϵ) ≤ 4p−M

Using the terminology from Kutin (2002) and Kutin & Niyogi (2002), we have proved that

U
(k)
i is strongly difference-bounded by

(b∗, c∗, δ∗) ≡ (c1
k

n
, c2M

k log1/2 p

n3/2
, 4p−M).

Next we directly apply Theorem 2.13 in Kutin & Niyogi (2002), which is a simplified version

of Theorem 1.9 in Kutin (2002), to obtain the probability bound

Pr(U
(k)
i − E(U

(k)
i ) >

x2

n
) ≤ exp(

−x4/n2

8nc2∗
) +

nb∗δ∗
c∗

= exp(
−x4

8c22M
2k2 log p

) +
4c1
c2M

· n3/2p−M log−1/2 p
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Since (5.13) in Hoeffding (1948) showed that Var(uij) = O( 1
n
) for any (i, j), we then have

E[U
(k)
i ] = O( k

n
). Now applying the union bound yields that for some constant C0 > 0

Pr
(
max
1≤i≤p

U
(k)
i > C0(

k

n
+

x2

n
)
)
≤ p · max

1≤i≤p
Pr(U

(k)
i − E(U

(k)
i ) >

x2

n
)

Now, we are ready to bound the expected ℓ1-norm of R̂
s

gt−Γgt by truncation of max
1≤i≤p

U
(k)
i ,

E
∥∥R̂s

gt − Γgt

∥∥2

ℓ1
≤ C

k2

n2
+

2π2

9
(2k + 1)E(max

1≤i≤p
U

(k)
i )

≤ C
k2

n2
+ Ck · E[max

1≤i≤p
U

(k)
i (I{ max

1≤i≤p
U

(k)
i ≤C0(

k
n
+x2

n
)} + I{ max

1≤i≤p
U

(k)
i >C0(

k
n
+x2

n
)})]

≤ C
k2

n2
+ C(

k2

n
+

kx2

n
) + Ck2 · Pr

(
max
1≤i≤p

U
(k)
i > C(

k

n
+

x2

n
)
)

≤ C1(
k2

n
+

kx2

n
) + C2k

2p exp(− x4

8c22M
2k2 log p

) + C3k
2n3/2p−M+1(log p)−1/2

where we use the fact that |U (k)
i | = O(k) in the last but one inequality. Thus we choose

M > 4, and further set x4 = 8c22M
3 · k2 log2 p to conclude that

E
∥∥R̂s

gt −Σ
∥∥2

ℓ1
≤ C

k2 log p

n
+ Ck−2α.
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