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The Supplementary Material contains part of simulation results and all

technical proofs of theorems and propositions in the article. It also provides

the explicit expressions of I and J in Theorem 3.

S1 Part of simulation results

In the simulation studies, the error εt follows

• N (0, 1);

• the Laplace distribution with density

h(x) =
1√
2
exp

(
−
√
2|x|

)
, x ∈ R;

• the standardized Student’s t5 (st5) with density

h(x) =
8

3
√
3π

(1 + x2/3)−3, x ∈ R.
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Table S.1 reports the bias, empirical standard deviation (ESD), and

asymptotic standard deviation (ASD) of the QMLE θ̂n for Cases I-III. Here,

the ASD of θ0 is simulated by extra time series of length 10,000, and 2,000

replications are used to reduce the estimated bias. From the table, we can

see that the QMLE performs well irrespective of infinite variance or heavy-

tailedness issues. The biases are small and all the ESDs are close to the

corresponding ASDs.

To see the overall approximation of the QMLE ϕ̂n, Fig. S.1 displays the

histogram of
√
n
(
ϕ̂n − ϕ0

)
when the sample size n = 400. From the figure,

we can see that
√
n
(
ϕ̂n − ϕ0

)
is always asymptotically normal irrespective

of infinite variance or heavy-tailedness of yt.

Tables S.2 and S.3 report the complete results of the finite-sample per-

formance of the two tagging methods described in Section 5.
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Case I: θ0=(1, 0.9, 1)’ 
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Case II:θ0=( 10 9,0.9,1)’ 
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Case III: θ0=(1.2, 0.9, 1)’ 
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Figure S.1: The histogram of
√
n
(
ϕ̂n−ϕ0

)
with the sample size n = 400. The left column

panel corresponds to Case I, i.e., yt is weakly stationary; the middle to Case II, and the

right to Case III, i.e., yt has an infinite variance, respectively. The upper row panel is

when εt ∼ N (0, 1), the middle when εt ∼ the Laplace distribution, and the lower when

εt ∼ st5, respectively.
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Table S.1: Numerical simulation results.
n (ϕ0, p0, σ

2
0)

(1, 0.9, 1) (
√

10/9, 0.9, 1) (1.2, 0.9, 1)

ϕ̂n p̂n σ̂2
n ϕ̂n p̂n σ̂2

n ϕ̂n p̂n σ̂2
n

εt ∼ N (0, 1)

200

Bias -0.0012 -0.0042 0.0098 0.0026 -0.0077 -0.0059 0.0018 -0.0038 -0.0060

ESD 0.0431 0.0467 0.1673 0.0307 0.0376 0.2047 0.0185 0.0284 0.1993

ASD 0.0367 0.0438 0.1559 0.0274 0.0373 0.1652 0.0176 0.0297 0.1913

400

Bias -0.0002 -0.0026 0.0044 0.0009 -0.0030 0.0014 0.0007 -0.0020 0.0056

ESD 0.0265 0.0321 0.1112 0.0193 0.0266 0.1160 0.0126 0.0220 0.1378

ASD 0.0259 0.0310 0.1102 0.0194 0.0263 0.1168 0.0124 0.0210 0.1353

800

Bias 0.0002 -0.0010 0.0009 0.0009 -0.0021 -0.0006 0.0005 -0.0004 -0.0009

ESD 0.0192 0.0217 0.0774 0.0145 0.0193 0.0864 0.0087 0.0145 0.0979

ASD 0.0183 0.0219 0.0779 0.0137 0.0186 0.0826 0.0088 0.0148 0.0957

εt ∼ Laplace

200

Bias 0.0020 -0.0068 0.0143 0.0036 -0.0093 -0.0067 0.0035 -0.0045 -0.0098

ESD 0.0465 0.0492 0.2341 0.0323 0.0400 0.2350 0.0205 0.0313 0.2738

ASD 0.0399 0.0463 0.2199 0.0292 0.0384 0.2299 0.0183 0.0301 0.2626

400

Bias 0.0015 -0.0056 -0.0070 0.0018 -0.0037 0.0034 0.0006 -0.0015 0.0004

ESD 0.0289 0.0326 0.1545 0.0227 0.0286 0.1580 0.0135 0.0201 0.1950

ASD 0.0282 0.0328 0.1555 0.0206 0.0272 0.1626 0.0129 0.0213 0.1857

800

Bias -0.0001 -0.0007 0.0034 0.0015 -0.0024 0.0000 0.0007 -0.0014 -0.0040

ESD 0.0214 0.0235 0.1116 0.0150 0.0201 0.1179 0.0093 0.0151 0.1314

ASD 0.0199 0.0232 0.1099 0.0146 0.0192 0.1150 0.0092 0.0151 0.1313

εt ∼ st5

200

Bias 0.0002 -0.0062 0.0046 0.0031 -0.0085 -0.0101 0.0029 -0.0042 -0.0074

ESD 0.0541 0.0527 0.2512 0.0345 0.0416 0.2461 0.0209 0.0315 0.2948

ASD 0.0433 0.0487 0.2712 0.0309 0.0395 0.2824 0.0191 0.0304 0.3224

400

Bias 0.0021 -0.0050 0.0016 0.0018 -0.0043 0.0063 0.0019 -0.0028 -0.0071

ESD 0.0312 0.0354 0.1833 0.0234 0.0291 0.1880 0.0149 0.0215 0.1910

ASD 0.0306 0.0345 0.1918 0.0219 0.0279 0.1997 0.0135 0.0215 0.2280

800

Bias -0.0001 -0.0014 0.0083 0.0004 -0.0019 0.0019 0.0009 -0.0013 -0.0033

ESD 0.0224 0.0239 0.1353 0.0150 0.0195 0.1312 0.0091 0.0151 0.1523

ASD 0.0216 0.0244 0.1356 0.0155 0.0197 0.1412 0.0096 0.0152 0.1612
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Table S.2: The values (in percentage) of P, P0, and P1 for RBT1-RBT4 and NBT when

n = 200.

ϕ0 = 1, p0 = 0.9 ϕ0 =
√

10/9, p0 = 0.9 ϕ0 = 1.2, p0 = 0.9

Method P P0 P1 P P0 P1 P P0 P1

εt ∼ N (0, 1)

RBT1 90.93 53.15 94.73 92.15 59.34 95.37 93.44 65.62 96.12

RBT2 84.64 21.33 91.25 85.45 25.99 91.67 87.81 38.80 93.01

RBT3 90.47 51.22 94.48 91.68 57.51 95.11 93.75 67.68 96.25

RBT4 91.49 56.11 95.04 92.81 62.85 95.73 95.02 74.09 96.99

NBT 87.01 33.20 92.56 87.63 36.48 92.87 89.16 44.62 93.75

εt ∼ Laplace

RBT1 90.56 51.39 94.51 91.66 56.92 95.12 92.89 62.91 95.85

RBT2 84.50 20.82 91.16 85.24 24.77 91.58 88.02 39.95 93.16

RBT3 90.24 50.10 94.33 91.40 55.91 94.98 93.58 66.95 96.19

RBT4 91.42 55.71 94.98 92.55 61.56 95.62 94.88 73.72 96.95

NBT 86.53 30.93 92.28 87.22 34.55 92.67 89.11 44.52 93.76

εt ∼ st5

RBT1 90.63 51.80 94.56 91.87 58.01 95.20 93.10 63.99 95.94

RBT2 84.49 20.64 91.16 85.33 25.62 91.59 87.97 39.76 93.10

RBT3 90.36 50.61 94.41 91.61 57.11 95.06 93.77 67.86 96.26

RBT4 91.40 55.71 94.98 92.81 62.86 95.72 94.97 74.05 96.97

NBT 86.69 31.66 92.38 87.47 35.97 92.77 89.22 44.92 93.79
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Table S.3: The values (in percentage) of P, P0, and P1 for RBT1-RBT4 and NBT when

n = 200.

ϕ0 = 1, p0 = 0.5 ϕ0 =
√

10/9, p0 = 0.5 ϕ0 = 1.2, p0 = 0.5

Method P P0 P1 P P0 P1 P P0 P1

εt ∼ N (0, 1)

RBT1 66.70 66.79 66.69 67.77 67.87 67.75 69.93 70.05 69.92

RBT2 68.13 68.24 68.11 69.45 69.56 69.43 72.16 72.32 72.15

RBT3 68.09 68.20 68.08 69.37 69.48 69.35 71.93 72.09 71.92

RBT4 68.32 68.43 68.31 69.55 69.66 69.53 72.42 72.58 72.41

NBT 66.85 66.95 66.83 67.97 68.07 67.95 70.00 70.16 69.99

εt ∼ Laplace

RBT1 67.84 68.01 67.98 68.75 68.85 68.73 70.60 70.72 70.63

RBT2 70.07 70.26 70.21 71.28 71.41 71.26 73.55 73.70 73.58

RBT3 69.95 70.15 70.09 71.25 71.38 71.24 73.53 73.67 73.55

RBT4 70.18 70.38 70.32 71.39 71.52 71.37 73.81 73.97 73.83

NBT 68.13 68.32 68.28 69.00 69.12 68.99 70.75 70.88 70.77

εt ∼ st5

RBT1 67.05 67.16 67.12 67.92 67.97 67.78 69.83 69.91 69.77

RBT2 68.93 69.07 69.00 70.16 70.23 70.03 72.74 72.85 72.68

RBT3 68.88 69.02 68.95 70.08 70.14 69.94 72.55 72.66 72.49

RBT4 68.99 69.13 69.06 70.20 70.28 70.07 72.92 73.04 72.85

NBT 67.33 67.47 67.40 68.30 68.37 68.16 70.31 70.42 70.24
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S2 Technical Proofs

S2.1 Proof of Theorem 1

When ϕ0 = 0, then {yt} reduces to an i.i.d. sequence {εt}, and in this case

all results hold clearly. Without loss of generality, we assume that ϕ0 ̸= 0 in

what follows. It suffices to verify the conditions in Theorem 19.1.3 in Meyn

and Tweedie (2009). It is clear that {yt} defined by (1.1), with initial value

y0, is an homogeneous Markov chain on R endowed with its Borel σ-field

B(R). Denote by λ the Lebesgue measure on (R,B(R)). The transition

probabilities of {yt} are given, for y ∈ R, B ∈ B(R), by

P(y,B) = P(yt ∈ B|yt−1 = y) = p0P(ε1 + ϕ0|y| ∈ B) + (1− p0)P(ε1 ∈ B).

First, since P(·, B) is continuous, for any B ∈ B(R), the chain {yt} has

the Feller property.

Second, note that the density of ε1 is positive over R, we have P(y,B) >

0 whenever λ(B) > 0. Thus the chain {yt} is λ-irreducible. Further, it can

also be shown that the k-step transition probabilities Pk(y,B) = P(yt ∈

B|yt−k = y) =
∫
R P

k−1(x,B)P(y, dx) > 0 by an inductive approach for any

integer k ≥ 1, whenever λ(B) > 0, which establishes the aperiodicity of the

chain {yt}.

Third, let V (x) = log(1+ |x|), x ∈ R. Then, by a simple calculation, it
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S2.2 Proof of Theorem 2

follows that

E{V (yt)|yt−1 = y} = (1− p0)E{log(1 + |ε1|)}+ p0E{log(1 + |ϕ0|y|+ ε1|)}.

Thus, we have that

lim
|y|→∞

E{V (yt)|yt−1 = y}
V (y)

= lim
|y|→∞

(1− p0)E{log(1 + |ε1|)}
log(1 + |y|)

+ p0 lim
|y|→∞

E{log(1 + |ϕ0|y|+ ε1|)}
log(1 + |y|)

= 0 + p0 lim
|y|→∞

(
log |y|

log(1 + |y|)
+

E
{
log
(
1/|y|+

∣∣ϕ0 + ε1/|y|
∣∣)}

log(1 + |y|)

)

= p0.

Since p0 ∈ [0, 1), for fixed δ ∈ (0, 1− p0), i.e., p0 < 1− δ < 1, there exists a

constant M > 0 such that

E{V (yt)|yt−1 = y} ≤ (1− δ)V (y), when |y| > M.

To sum up the above arguments, by Theorem 19.1.3 in Meyn and

Tweedie (2009), there exists a geometrically ergodic solution to model (1.1).

The solution is unique since E(log |stϕ0|) = −∞. Thus, the results hold and

then the proof is complete. □

S2.2 Proof of Theorem 2

Consider βn(θ) := {Ln(θ) − Ln(θ0)}/n, θ ∈ Θ. By the strong law of large

numbers for stationary and ergodic sequences and the inequality log x +
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S2.3 Proof of Theorem 3

x−1 − 1 ≥ 0 for x > 0, a conditional argument yields that

βn(θ) =
1

n

n∑
t=1

{
log

p(1− p)ϕ2y2t−1 + σ2

p0(1− p0)ϕ2
0y

2
t−1 + σ2

0

+
(yt − pϕ|yt−1|)2

p(1− p)ϕ2y2t−1 + σ2
− (yt − p0ϕ0|yt−1|)2

p0(1− p0)ϕ2
0y

2
t−1 + σ2

0

}
a.s.−→ E

{
log

p(1− p)ϕ2y2t−1 + σ2

p0(1− p0)ϕ2
0y

2
t−1 + σ2

0

+
(yt − pϕ|yt−1|)2

p(1− p)ϕ2y2t−1 + σ2
− (yt − p0ϕ0|yt−1|)2

p0(1− p0)ϕ2
0y

2
t−1 + σ2

0

}
= E

{
log

p(1− p)ϕ2y2t−1 + σ2

p0(1− p0)ϕ2
0y

2
t−1 + σ2

0

+
p0(1− p0)ϕ

2
0y

2
t−1 + σ2

0

p(1− p)ϕ2y2t−1 + σ2
− 1 +

(pϕ− p0ϕ0)
2y2t−1

p(1− p)ϕ2y2t−1 + σ2

}
≥ 0,

where the equality holds if and only if

p(1− p)ϕ2y2t−1 + σ2 = p0(1− p0)ϕ
2
0y

2
t−1 + σ2

0 and (pϕ− p0ϕ0)
2 = 0 a.s.,

equivalently, {p(1− p)ϕ2 − p0(1− p0)ϕ
2
0} y2t−1 = σ2

0 − σ2 a.s. Then

p(1− p)ϕ2 − p0(1− p0)ϕ
2
0 = 0, σ2

0 − σ2 = 0.

Combining with (pϕ − p0ϕ0)
2 = 0, we have ϕ = ϕ0, p = p0 and σ2 = σ2

0,

i.e., θ = θ0. The remainder of the proof can be completed by a standard

compactness argument and it is thus omitted. □

S2.3 Proof of Theorem 3

Let qt(θ) = p(1 − p)ϕ2y2t−1 + σ2 and qt := qt(θ0). Then the first- and

second-order partial derivatives of qt(θ) with respect to θ are respectively

9



S2.3 Proof of Theorem 3

as follows

∂qt(θ)

∂θ
=


2p(1− p)ϕy2t−1

(1− 2p)ϕ2y2t−1

1

 ,

∂2qt(θ)

∂θ∂θ′
=


2p(1− p)y2t−1 2(1− 2p)ϕy2t−1 0

−2ϕ2y2t−1 0

0

 .

(S2.1)

Using the notation qt(θ), we have

ℓt(θ) = log {qt(θ)}+
(yt − pϕ|yt−1|)2

qt(θ)
.

A simple calculation yields the first-order partial derivatives of ℓt(θ) with

respect to θ

∂ℓt(θ)

∂θ
=

1

qt(θ)

∂qt(θ)

∂θ
− 2|yt−1|(yt − pϕ|yt−1|)

qt(θ)
ϑ− (yt − pϕ|yt−1|)2

[qt(θ)]
2

∂qt(θ)

∂θ
,

(S2.2)
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S2.3 Proof of Theorem 3

where ϑ = (p, ϕ, 0)′, and the second-order partial derivatives

∂2ℓt(θ)

∂θ∂θ′
=

{
1

qt(θ)
− (yt − pϕ|yt−1|)2

[qt(θ)]2

}
∂2qt(θ)

∂θ∂θ′

+

{
2(yt − pϕ|yt−1|)2

[qt(θ)]3
− 1

[qt(θ)]2

}
∂qt(θ)

∂θ

∂qt(θ)

∂θ′

+
2|yt−1|(yt − pϕ|yt−1|)

[qt(θ)]2

{
∂qt(θ)

∂θ
ϑ′ + ϑ

∂qt(θ)

∂θ′

}

+
2y2t−1

qt(θ)
ϑϑ′ − 2|yt−1|(yt − pϕ|yt−1|)

qt(θ)


0 1 0

1 0 0

0 0 0

 .

By the Taylor expansion, by the definition of θ̂n, we have

0 =
1√
n

∂Ln(θ̂n)

∂θ
=

1√
n

∂Ln(θ0)

∂θ
+

1

n

∂2Ln(θ
∗)

∂θ∂θ′
√
n
(
θ̂n − θ0

)
,

where θ∗ ∈ Θ and satisfies ∥θ∗ − θ0∥ ≤ ∥θ̂n − θ0∥. Note that the continuity

of ∂2ℓt(θ)/∂θ∂θ
′ in θ and the strong law of large numbers for stationary and

ergodic sequences, it is not hard to get

1

n

∂2Ln(θ
∗)

∂θ∂θ′
=

1

n

∂2Ln(θ0)

∂θ∂θ′
+ op(1) = J + op(1).

Further, let Ft = σ(yj : j ≤ t) be the σ-algebra generated by the

random variables {yj : j ≤ t}. By the expressions in (S2.1) and (S2.2), and

the following facts

E{yt − p0ϕ0|yt−1||Ft−1} = E{(st − p0)ϕ0|yt−1|+ εt|Ft−1} = 0,

E{(yt − p0ϕ0|yt−1|)2|Ft−1} = p0(1− p0)ϕ
2
0y

2
t−1 + σ2

0 = qt,

(S2.3)

11



S2.4 Proof of Theorem 4

we have that

E
{
∂ℓt(θ0)

∂θ

∣∣∣Ft−1

}
= 0,

i.e., {∂ℓt(θ0)/∂θ} is a martingale difference sequence with respect to {Ft}.

Thus, by the martingale central limit theorem in Brown (1971), it follows

that

1√
n

∂Ln(θ0)

∂θ
=

1√
n

n∑
t=1

∂ℓt(θ0)

∂θ

d−→ N (0, I),

where

I = E
{
∂ℓt(θ0)

∂θ

∂ℓt(θ0)

∂θ′

}
. (S2.4)

Finally, we have

√
n
(
θ̂n − θ0

)
= −[J + op(1)]

−1 1√
n

∂Ln(θ0)

∂θ

d−→ N (0,J −1IJ −1). (S2.5)

For the explicit expressions of I and J , please see Section S3 in this Sup-

plementary Material. The proof is complete. □

S2.4 Proof of Theorem 4

According to the definition of η̂t, by Theorem 2 and the strong law of large

numbers for a stationary and ergodic sequence, we first have the following
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S2.4 Proof of Theorem 4

facts, as n → ∞,

η̄ = ϕ0
1

n

n∑
t=1

(st − p0)|yt−1|I(|yt−1| ≤ a) +
1

n

n∑
t=1

εtI(|yt−1| ≤ a)

+ (p0ϕ0 − p̂nϕ̂n)
1

n

n∑
t=1

|yt−1|I(|yt−1| ≤ a)

a.s.→ ϕ0E(st − p0)E{|yt−1|I(|yt−1| ≤ a)}+ E(εt)P(|yt−1| ≤ a)

+ 0 · E{|yt−1|I(|yt−1| ≤ a)} = 0

and

1

n

n∑
t=1

(η̂t − η̄)2 =
1

n

n∑
t=1

η̂2t − η̄2

= ϕ2
0

1

n

n∑
t=1

(st − p0)
2y2t−1I(|yt−1| ≤ a) +

1

n

n∑
t=1

ε2t I(|yt−1| ≤ a)

+ (p0ϕ0 − p̂nϕ̂n)
2 1

n

n∑
t=1

y2t−1I(|yt−1| ≤ a)

+ 2ϕ0
1

n

n∑
t=1

(st − p0)εt|yt−1|I(|yt−1| ≤ a)

+ 2ϕ0(p0ϕ0 − p̂nϕ̂n)
1

n

n∑
t=1

(st − p0)y
2
t−1I(|yt−1| ≤ a)

+ 2(p0ϕ0 − p̂nϕ̂n)
1

n

n∑
t=1

εt|yt−1|I(|yt−1| ≤ a)

a.s.→ p0(1− p0)ϕ
2
0E{y2t−1I(|yt−1| ≤ a)}+ σ2

0P(|yt−1| ≤ a),

(S2.6)

where σ2
η is defined in (4.3). Further, using the preceding expression of η̄,

we have that η̄ = Op(1/
√
n) by the martingale central limit theorem in

13



S2.4 Proof of Theorem 4

Brown (1971) and Theorems 2-3. Similarly, we can get

1

n

n∑
t=k+1

(η̂t − η̄)(η̂t−k − η̄)− 1

n

n∑
t=k+1

η̂tη̂t−k

=
n− k

n
η̄2 − η̄

1

n

n∑
t=k+1

η̂t − η̄
1

n

n∑
t=k+1

η̂t−k = Op(1/n)

for each fixed k ≥ 0. Using above facts, we have that

√
nρ̂nk = (1 + op(1))

{
1

σ2
η

√
n

n∑
t=k+1

η̂tη̂t−k

}
+ op(1). (S2.7)

Next, it suffices to consider the joint limiting distribution of

(σ2
η

√
n)−1

n∑
t=k+1

η̂tη̂t−k, k = 1, ...,M.

To this end, let ηt(θ) = (yt − pϕ|yt−1|)I(|yt−1| ≤ a), then η̂t = ηt(θ̂n) and

ηt = ηt(θ0) in (4.2). Denote

ρnk(θ) =
1

nσ2
η

n∑
t=k+1

ηt(θ) ηt−k(θ), θ ∈ Θ, k ≥ 1.

Note that ∂ηt(θ)/∂θ = −ϑ|yt−1|I(|yt−1| ≤ a), where ϑ = (p, ϕ, 0)′, and

∂ρnk(θ0)

∂θ′
=

1

nσ2
η

n∑
t=k+1

{
∂ηt(θ0)

∂θ′
ηt−k + ηt

∂ηt−k(θ0)

∂θ′

}

= −ϑ′
0

1

nσ2
η

n∑
t=k+1

{ηt−k|yt−1|I(|yt−1| ≤ a) + ηt|yt−k−1|I(|yt−k−1| ≤ a)}

=
uk

σ2
η

ϑ′
0 + op(1)

with uk = −E{ηt−k|yt−1|I(|yt−1| ≤ a), by the law of large numbers and

E(ηt) = 0. Then, by the Taylor expansion, the law of large numbers, and

14



S2.5 Proof of Proposition 1

Theorems 2-3, it follows that

√
n
(
ρnk(θ̂n)− ρnk(θ0)

)
=

∂ρnk(θ0)

∂θ′
√
n(θ̂n − θ0) + op(1)

=
uk

σ2
η

ϑ′
0

√
n(θ̂n − θ0) + op(1).

Let ρn(θ) = (ρn1(θ), ..., ρnM(θ))′. It follows that

√
nρn(θ̂n) =

√
nρn(θ0) +

1

σ2
η

(u1, . . . , uM)′ϑ′
0

√
n(θ̂n − θ0) + op(1).

By (S2.5), we have

√
n(θ̂n − θ0) = −J −1 1√

n

n∑
t=1

∂ℓt(θ0)

∂θ
+ op(1).

The martingale central limit theorem in Brown (1971) gives that

(
√
nρn(θ0),

√
n(θ̂n − θ0))

′ d−→ N (0,G).

Thus,
√
nρn(θ̂n)

d−→ N (0,UGU′) by a matrix linear transformation.

Finally, note that, by (S2.6)-(S2.7),

√
n
(
ρ̂n − ρn(θ̂n)

)
= op(1)

√
nρn(θ̂n) + op(1) = op(1)Op(1) + op(1) = op(1).

Thus,
√
nρ̂n

d−→ N (0,UGU′). The proof is complete. □

S2.5 Proof of Proposition 1

For any time point t, a k-th cumulative bubble collapses if st = 0, st−l = 1

for 1 ≤ l ≤ k and st−k−1 = 0. Let {z⋄s} be a new auxiliary process that

15



S2.5 Proof of Proposition 1

satisfies the recursion

z⋄s =


εs, if s ≤ t− k − 1,

ϕ0|z⋄s−1|+ εs, if s > t− k − 1,

then yt−1 = z⋄t−1 if a k-th cumulative bubble is formed at time t − 1 to be

collapsed at time t. Note that the process {z⋄s} is constructed using the

innovation sequence {εt}, which is independent of the sequence {st}, we

can show that the joint probability

P(rt ≤ cr, st = 0, st−1 = · · · = st−k = 1, st−k−1 = 0)

= P(εt − ϕ0|z⋄t−1| ≤ cr, st = 0, st−1 = · · · = st−k = 1, st−k−1 = 0)

= pk0(1− p0)
2P(εt − ϕ0|z⋄t−1| ≤ cr).

On the other hand, the marginal probability that a k-th cumulative bubble

collapses at time t equals to P(st = 0, st−1 = · · · = st−k = 1, st−k−1 = 0) =

pk0(1− p0)
2, and thus it suffices to show that

P(εt − ϕ0|z⋄t−1| ≤ cr) = P(zk ≥ −cr).

For this, note that the two vectors (εt−k, . . . , εt) and (ε0, . . . , εk) share the

same distribution, and thus by definition the two vectors (z⋄t−1, . . . , z
⋄
t−k−1)

and (zk, . . . , z0) have the same joint distribution. By independence of εt

and z⋄t−1 we can then conclude that

P(εt − ϕ0|z⋄t−1| ≤ cr) = P(εk − ϕ0|zk−1| ≤ cr) = P(ϕ0|zk−1| − εk ≥ −cr).

16



S2.6 Proof of Proposition 2

If the innovation sequence {εt} has a symmetric distribution, then zk =

ϕ0|zk−1| + εk has the same distribution as ϕ0|zk−1| − εk, and the result

follows. □

S2.6 Proof of Proposition 2

For any time point t, it constitutes a k-th cumulative bubble if st−l = 1

for 0 ≤ l ≤ k − 1 and st−k = 0. Let {z◦s} be a new auxiliary process that

satisfies the recursion

z◦s =


εs, if s ≤ t− k,

ϕ0|z◦s−1|+ εs, if s > t− k,

then by the independence of {εt} and {st} we can show that the joint

probability

P(rt ≤ cr, st = 0, st−1 = · · · = st−k = 1, st−k−1 = 0)

= P(εt − ϕ0|z⋄t−1| ≤ cr, st = st−k−1 = 0, st−1 = · · · = st−k = 1)

= pk0(1− p0)
2P(εt − ϕ0|z⋄t−1| ≤ cr).

On the other hand, the marginal probability that time t is a k-th cumulative

bubble equals to P(st = · · · = st−k+1 = 1, st−k = 0) = pk0(1−p0), and thus it

suffices to show that {z◦s}t−k<s≤t and {zs′}1≤s′≤k share the same distribution.

For this, note that the two vectors (εt−k, . . . , εt) and (ε0, . . . , εk) share the

same distribution, and they drive z◦s , t − k < s ≤ t, and zs′ , 1 ≤ s′ ≤ k,

17



based on the same recursion, the result then follows. □

S3 Explicit expressions of I and J in Theorem 3

As for the explicit expressions of I and J , by (S2.1) and (S2.3) and the

following facts

E{(yt − p0ϕ0|yt−1|)3|Ft−1} = p0(1− p0)(1− 2p0)ϕ
3
0|yt−1|3 + κ3,

E{(yt − p0ϕ0|yt−1|)4|Ft−1} = p0(1− p0)(1− 3p0 + 3p20)ϕ
4
0y

4
t−1

+ 6σ2
0p0(1− p0)ϕ

2
0y

2
t−1 + κ4,

a tedious algebraic calculation can yield

J = E
{
∂2ℓt(θ0)

∂θ∂θ′

}
= E

{
1

[p0(1− p0)ϕ2
0y

2
t + σ2

0]
2
At

}
+ E

{
2y2t

p0(1− p0)ϕ2
0y

2
t + σ2

0

}
D,

I = E
{
∂ℓt(θ)

∂θ

∂ℓt(θ)

∂θ′

}
= E

{
p0(1− p0)(1− 2p0)

2ϕ4
0y

4
t + 4σ2

0p0(1− p0)ϕ
2
0y

2
t + (κ4 − σ4

0)

[p0(1− p0)ϕ2
0y

2
t + σ2

0]
4

At

}
+ E

{
2p0(1− p0)(1− 2p0)ϕ

3
0y

4
t + 2|yt|κ3

[p0(1− p0)ϕ2
0y

2
t + σ2

0]
3

Bt

}
+ E

{
4y2t

p0(1− p0)ϕ2
0y

2
t + σ2

0

}
D
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with κ3 = E(ε3t ), κ4 = E(ε4t ), and

At =


4p20(1− p0)

2ϕ2
0y

4
t 2p0(1− p0)(1− 2p0)ϕ

3
0y

4
t 2p0(1− p0)ϕ0y

2
t

(1− 2p0)
2ϕ4

0y
4
t (1− 2p0)ϕ

2
0y

2
t

1

 ,

Bt =


4p20(1− p0)ϕ0y

2
t p0(3− 4p0)ϕ

2
0y

2
t p0

2(1− 2p0)ϕ
3
0y

2
t ϕ0

0

 , D =


p20 p0ϕ0 0

ϕ2
0 0

0

 .

Here, the elements in the lower triangles can be completed by symmetry.
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