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The Supplementary Material contains part of simulation results and all
technical proofs of theorems and propositions in the article. It also provides

the explicit expressions of Z and J in Theorem 3.

S1 Part of simulation results

In the simulation studies, the error ¢, follows
o N(0,1);
e the Laplace distribution with density

h(z) = %exp (- \/§]x|), z € R;

e the standardized Student’s t5 (st;) with density

8
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h(z) = (1+2%/3)7% z€eR.



Table S.1 reports the bias, empirical standard deviation (ESD), and
asymptotic standard deviation (ASD) of the QMLE 0, for Cases L-I11. Here,
the ASD of 6, is simulated by extra time series of length 10,000, and 2,000
replications are used to reduce the estimated bias. From the table, we can
see that the QMLE performs well irrespective of infinite variance or heavy-
tailedness issues. The biases are small and all the ESDs are close to the
corresponding ASDs.

To see the overall approximation of the QMLE an, Fig. S.1 displays the
histogram of \/n (&En — (bo) when the sample size n = 400. From the figure,
we can see that v/n (ggn — ¢0) is always asymptotically normal irrespective
of infinite variance or heavy-tailedness of ;.

Tables S.2 and S.3 report the complete results of the finite-sample per-

formance of the two tagging methods described in Section 5.
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Figure S.1: The histogram of \/n (ggn — ¢)0) with the sample size n = 400. The left column
panel corresponds to Case I, i.e., y; is weakly stationary; the middle to Case II, and the
right to Case II1, i.e., y; has an infinite variance, respectively. The upper row panel is
when ¢; ~ N(0,1), the middle when &, ~ the Laplace distribution, and the lower when

gt ~ sts, respectively.



Table S.1: Numerical simulation results.

n (¢0,P0,05)
(1,0.9,1) (v/10/9,0.9,1) (1.2,0.9,1)
én Pn CH én Pn CH én Pn CH
gt ~ N(O, 1)
Bias -0.0012 -0.0042 0.0098 0.0026 -0.0077 -0.0059 0.0018 -0.0038 -0.0060
200 ESD 0.0431 0.0467 0.1673 0.0307 0.0376 0.2047 0.0185 0.0284 0.1993
ASD 0.0367 0.0438 0.1559 0.0274 0.0373 0.1652 0.0176 0.0297 0.1913
Bias -0.0002 -0.0026 0.0044 0.0009 -0.0030 0.0014 0.0007 -0.0020 0.0056
400 ESD 0.0265 0.0321 0.1112 0.0193 0.0266 0.1160 0.0126 0.0220 0.1378
ASD 0.0259 0.0310 0.1102 0.0194 0.0263 0.1168 0.0124 0.0210 0.1353
Bias 0.0002 -0.0010 0.0009 0.0009 -0.0021 -0.0006 0.0005 -0.0004 -0.0009
300 ESD 0.0192 0.0217 0.0774 0.0145 0.0193 0.0864 0.0087 0.0145 0.0979
ASD 0.0183 0.0219 0.0779 0.0137 0.0186 0.0826 0.0088 0.0148 0.0957
e+ ~ Laplace
Bias 0.0020 -0.0068 0.0143 0.0036 -0.0093 -0.0067 0.0035 -0.0045 -0.0098
200 ESD 0.0465 0.0492 0.2341 0.0323 0.0400 0.2350 0.0205 0.0313 0.2738
ASD 0.0399 0.0463 0.2199 0.0292 0.0384 0.2299 0.0183 0.0301 0.2626
Bias 0.0015 -0.0056 -0.0070 0.0018 -0.0037 0.0034 0.0006 -0.0015 0.0004
400 ESD 0.0289 0.0326 0.1545 0.0227 0.0286 0.1580 0.0135 0.0201 0.1950
ASD 0.0282 0.0328 0.1555 0.0206 0.0272 0.1626 0.0129 0.0213 0.1857
Bias -0.0001 -0.0007 0.0034 0.0015 -0.0024 0.0000 0.0007 -0.0014 -0.0040
300 ESD 0.0214 0.0235 0.1116 0.0150 0.0201 0.1179 0.0093 0.0151 0.1314
ASD 0.0199 0.0232 0.1099 0.0146 0.0192 0.1150 0.0092 0.0151 0.1313
gt ~ sty
Bias 0.0002 -0.0062 0.0046 0.0031 -0.0085 -0.0101 0.0029 -0.0042 -0.0074
200 ESD 0.0541 0.0527 0.2512 0.0345 0.0416 0.2461 0.0209 0.0315 0.2948
ASD 0.0433 0.0487 0.2712 0.0309 0.0395 0.2824 0.0191 0.0304 0.3224
Bias 0.0021 -0.0050 0.0016 0.0018 -0.0043 0.0063 0.0019 -0.0028 -0.0071
400 ESD 0.0312 0.0354 0.1833 0.0234 0.0291 0.1880 0.0149 0.0215 0.1910
ASD 0.0306 0.0345 0.1918 0.0219 0.0279 0.1997 0.0135 0.0215 0.2280
Bias -0.0001 -0.0014 0.0083 0.0004 -0.0019 0.0019 0.0009 -0.0013 -0.0033
300 ESD 0.0224 0.0239 0.1353 0.0150 0.0195 0.1312 0.0091 0.0151 0.1523
ASD 0.0216 0.0244 0.1356 0.0155 0.0197 0.1412 0.0096 0.0152 0.1612




Table S.2: The values (in percentage) of P, PO, and P1 for RBT;-RBT,4 and NBT when

n = 200.
¢0 =1,po = 0.9 ¢o =+/10/9,p0 = 0.9 0o =1.2,p0 =0.9
Method P PO P1 P PO P1 P PO P1
gt ~ N(O, 1)

RBT, 90.93 53.15 94.73 92.15 59.34 95.37 93.44 65.62 96.12
RBT:  84.64 21.33 91.25 85.45 2599 91.67 87.81 38.80 93.01
RBTs 9047 51.22 94.48 91.68 57.51 95.11 93.75 67.68 96.25
RBTy 9149 56.11 95.04 92.81 62.85 95.73 95.02  74.09 96.99
NBT 87.01 33.20 92.56 87.63 36.48 92.87 89.16 44.62 93.75

e+ ~ Laplace
RBT: 90.56 51.39 94.51 91.66 56.92 95.12 92.89 6291 95.85
RBT, 84.50 20.82 91.16 85.24 24.77 91.58 88.02 39.95 93.16
RBT3 90.24 50.10 94.33 91.40 5591 94.98 93.58 66.95 96.19
RBTy 9142 5571 94.98 92.55 61.56 95.62 94.88 73.72 96.95
NBT 86.53 30.93 92.28 87.22 34.55 92.67 89.11 44.52 93.76

g¢ ~ sty
RBT: 90.63 51.80 94.56 91.87 58.01 95.20 93.10 63.99 95.94
RBT> 84.49 20.64 91.16 85.33 25.62 91.59 87.97 39.76 93.10
RBT3 90.36 50.61 94.41 91.61 57.11 95.06 93.77  67.86 96.26
RBT4 91.40 55.71 94.98 92.81 62.86 95.72 94.97 74.05 96.97
NBT 86.69 31.66 92.38 87.47 3597 92.77 89.22 4492 93.79




Table S.3: The values (in percentage) of P, PO, and P1 for RBT;-RBT,4 and NBT when

n = 200.
¢0 =1,po = 0.5 ¢o =+/10/9,p0 = 0.5 0o =1.2,po = 0.5
Method P PO P1 P PO P1 P PO P1
gt ~ N(O, 1)

RBT, 66.70 66.79 66.69 67.77 67.87 67.75 69.93 70.05 69.92
RBT: 68.13 68.24 68.11 69.45 69.56 69.43 72.16 7232 7215
RBTs  68.09 68.20 68.08 69.37 69.48 69.35 71.93  72.09 71.92
RBTys 6832 68.43 68.31 69.55 69.66 69.53 72.42 7258 7241
NBT 66.85 66.95 66.83 67.97 68.07 67.95 70.00 70.16 69.99

e+ ~ Laplace
RBT: 67.84 68.01 67.98 68.75 68.85 68.73 70.60 70.72 70.63
RBT, 70.07 70.26 70.21 71.28 T71.41 71.26 73.55 73.70 73.58
RBT3 69.95 70.15 70.09 71.25 T71.38 71.24 73.53 73.67 73.55
RBT4 70.18 70.38 70.32 71.39 7152 71.37 73.81 73.97 73.83
NBT 68.13 68.32 68.28 69.00 69.12 68.99 70.75 70.88 70.77

g¢ ~ sty
RBT: 67.05 67.16 67.12 67.92 67.97 67.78 69.83 69.91 69.77
RBT> 68.93 69.07 69.00 70.16 70.23 70.03 7274  72.85 T72.68
RBT; 68.88 69.02 68.95 70.08 70.14 69.94 72.55 72.66 72.49
RBT4 68.99 69.13 69.06 70.20 70.28 70.07 7292 73.04 72.85
NBT 67.33 67.47 67.40 68.30 68.37 68.16 70.31 70.42 70.24




S2 Technical Proofs

S2.1 Proof of Theorem 1

When ¢y = 0, then {y;} reduces to an i.i.d. sequence {&;}, and in this case
all results hold clearly. Without loss of generality, we assume that ¢y # 0 in
what follows. It suffices to verify the conditions in Theorem 19.1.3 in Meyn
and Tweedie (2009). It is clear that {y;} defined by (1.1), with initial value
Yo, is an homogeneous Markov chain on R endowed with its Borel o-field
B(R). Denote by A the Lebesgue measure on (R, B(R)). The transition

probabilities of {y,;} are given, for y € R, B € B(R), by
P(y, B) = P(y: € Blyi—1 = y) = poP(e1 + ¢oly| € B) + (1 — po)P(e1 € B).

First, since P(-, B) is continuous, for any B € B(R), the chain {y,;} has
the Feller property.

Second, note that the density of &; is positive over R, we have P(y, B) >
0 whenever A\(B) > 0. Thus the chain {y;} is A-irreducible. Further, it can
also be shown that the k-step transition probabilities P*(y, B) = P(y; €
Blyiw =y) = [g P*~1(z, B)P(y,dx) > 0 by an inductive approach for any
integer k > 1, whenever A(B) > 0, which establishes the aperiodicity of the

chain {y;}.

Third, let V(z) =log(1+ |z|), z € R. Then, by a simple calculation, it



S2.2  Proof of Theorem 2

follows that

E{V (y)lye—1 = y} = (1 = po)E{log(1 + [e1])} + poE{log(1 + |do|y| + 1))}

Thus, we have that

E{V(yt)|yt_1 = Z/}

jlvo0 V(y)

B (1 — po)E{log(1 + |e1])} _ E{log(1 + |¢oly| +e1])}
AT gLl PR log(l )

( log | +E{10g(1/\yr+mm/ryu)})

=0+ py lim

ly|—o0

log(1 + |y[) log(1 + |y|)

= Po-
Since pg € [0, 1), for fixed § € (0,1 —py), i.e., po < 1 — 3§ < 1, there exists a
constant M > 0 such that

E{V(y)lye—1 =y} < (1 = 6)V(y), when [y[> M.

To sum up the above arguments, by Theorem 19.1.3 in Meyn and
Tweedie (2009), there exists a geometrically ergodic solution to model (1.1).
The solution is unique since E(log |s;¢0|) = —oo. Thus, the results hold and

then the proof is complete. O

S2.2 Proof of Theorem 2

Consider 3,(0) := {L,(0) — L,(00)}/n, 0 € ©. By the strong law of large
numbers for stationary and ergodic sequences and the inequality logz +

8



S2.3 Proof of Theorem 3

271 —1>0 for z > 0, a conditional argument yields that

1< p(1 —p)p*y;_, + o2

Bal®) =~ {1og T

n i po(1 — po)gyi_1 + 0

(ye — polys—1])? _ (ye — pogolyi—1)® }
p(1 = p)o?y;y + 0% po(l —po)Poyi, + T

. 1— 2,2 2
as @ {10 p( p)o Qyt_21 +o _
PO(l - p0)¢oyt—1 + 0;

(yt - p¢!yt,1\)2 (yt - p0¢0’yt71‘)2
+ 2,2 2 2.2 2
p(1 —p)¢?y; y +0*  po(l —po)dgyi_1 + o5
N 22 2
—E {log p( p)¢ 22%‘21 +o ~
po(1 — po)dgy;i_1 + 05
. po(1 — po) B3y, + o5 (p$ — o)y } > 0
p(1 —p)o*yi | + o2 p(1=p)?y;  +o2 ) = 7

where the equality holds if and only if
p(1=p)¢*yi 1 + 0% =po(1 = po)dgy; 1 + o5 and  (pp —pogo)’ =0 as.,
equivalently, {p(1 — p)¢* — po(1 — po)P2} y2 ; = 02 — 02 a.s. Then

p(1 = p)¢* = po(l —po)dg =0, o5 —0”=0.

Combining with (pp — pog)? = 0, we have ¢ = ¢y, p = py and o? = o7,

i.e., 8 = 0y. The remainder of the proof can be completed by a standard

compactness argument and it is thus omitted. 0

S2.3 Proof of Theorem 3

Let ¢(0) = p(1 — p)p*y? | + o and ¢q; := ¢(6y). Then the first- and
second-order partial derivatives of ¢;(6) with respect to 6 are respectively

9



S2.3 Proof of Theorem 3

as follows
2p(1 — p)oyi ,
o0 | A=2p¢*yi, |-
1
(52.1)
2p(1 —p)y7y 2(1—2p)py;, O
a2qt(9)
2000 —20%, 0
0

Using the notation ¢(6), we have

(ye — polyi-1])*
Qt(e) '

(0) = log{q:(0)} +

A simple calculation yields the first-order partial derivatives of ¢,(#) with

respect to 0

06(0) _ 1 0g(®) 2yl — polyal) 5 (= polye1])® 0(6)
o0 q:(0) 00 q:(0) [q:(0)]? a0

(52.2)

Y

10



S2.3 Proof of Theorem 3

where ¥ = (p, ¢,0)’, and the second-order partial derivatives

920,(0) { 1 _(yt—p¢|yt1|)2}82qt(9>

9006" | a(9) [4:(0)]? 0600’
2(ys — pPlyi-1])? o1 9q.(0) 0q.(0)
+{ @) [MMJ o0 o
2lye—1|(ye — polyi-1l) [ 0q:(0) .,  ,0q: ()
TG { T }
010

2071 00 20ye-1l(ye — polys—al)
—i—mﬁﬁ ") 100
000

By the Taylor expansion, by the definition of é\n, we have

~

L OL,0) _ 1 OL(Bn) | 15*Lu(0")
Jn 00 Jn 00 | n 0000

\/E(/Q\n - 00)7

where 6* € © and satisfies ||6* — 6y|| < ||6, — 6o]|. Note that the continuity
of 9%4,(0)/9006¢" in 6 and the strong law of large numbers for stationary and

ergodic sequences, it is not hard to get

182Ln(9*) B l@QLn(HO)
n 0000  n 0000

+0,(1) = T + 0,(1).

Further, let F; = o(y; : j < t) be the o-algebra generated by the
random variables {y; : j < t}. By the expressions in (52.1) and (S2.2), and

the following facts

E{y: — podolye—1||Fi-1} = E{(st — po)do|ye—1| + | Fr_1} =0, (523)
2.3

E{(y: — p0¢0|yt*1|)2|ft71} = po(1 — po)ﬁbgyt{l + 0(2) =,

11



S2.4 Proof of Theorem 4

we have that

a0,(6y) B
E{ 00 ‘f“} =9

i.e., {00:(0y)/00} is a martingale difference sequence with respect to {F;}.

Thus, by the martingale central limit theorem in Brown (1971), it follows

that
1 0L, (6y) 1 — 0(0y) 4
_— - 7
where
B 00y (00) 0L (6)
I—E{ 50 20 . (52.4)
Finally, we have
1 1 9Ly(6o)

Vi (0, = 00) = [T + 0,(1)]” L N(0,T'ZT Y. (S2.5)

Vvn o 00
For the explicit expressions of Z and J, please see Section S3 in this Sup-

plementary Material. The proof is complete. 0

S2.4 Proof of Theorem 4

According to the definition of 7;, by Theorem 2 and the strong law of large

numbers for a stationary and ergodic sequence, we first have the following

12



S2.4 Proof of Theorem 4

facts, as n — oo,

dl
3I>—‘

1 n
Z — po)|Ye—1 L (|y1—1] < a) EZ&J(‘%&’ <a)
t=1 =1
+ (pogo — ﬁn;z;n)E > vl Iy | < a)
=1

= oE(s: — po)E{|ys—1 11 (|ye—1| < a)} +E(e)P(Jys—1| < a)

+0-E{lyea[I(Jyia] < a)} =0

> - Zm—'rz

1 n
= ¢§ﬁ D (s = 20w Iy | < a) + - Zeff(lyt—ll < a)
=1

t=1

(p0¢0 _pn¢n Zyt 1 yt 1’ < a)

n

260 350~ po)edlyeal (1] < a) (526)

t=1
n

~ 1
+ 2¢0(podo — ﬁn@ﬂg Z(St — Po)y§_1[(|yt—1’ <a)

t=1

IR
2(poo — pn%)ﬁ > eyl Iy < a)
t=1

= po(1 = po) RE{Y 1 L (lye—1| < @)} + o5P(Jyia| < a),
where 02 is defined in (4.3). Further, using the preceding expression of 7,

n

we have that 7 = O,(1/y/n) by the martingale central limit theorem in

13



S2.4 Proof of Theorem 4

Brown (1971) and Theorems 2-3. Similarly, we can get

I S
= Z M — 1)k — 1) — " Mt—k
t k+1 t=k+1

Zm n—ka— (1/n)

t k+1 t=k+1

for each fixed £ > 0. Using above facts, we have that

Vi = (1 + 0p(1 { 2\/— Z M~ k} + 0p(1). (52.7)

t=k+1
Next, it suffices to consider the joint limiting distribution of

n

(o2v/n)™" > Wilr, k=1,.., M.

t=k+1

To this end, let 7,(0) = (v — pPlye—1])L(lyi—1| < a), then 1, = nt(é\n) and

ne = m(6p) in (4.2). Denote

1 n
pnk(0) = — () (0), 0€0O, k>1.

2
M t=k+1

Note that 0n(0)/00 = —0|ys—1|1(Jyi—1| < a), where ¥ = (p, ¢,0)’, and

Opni(bo) 1 i {8m(90) (977t_—k@o)}

o0’ - na2 o0’ M—k T Mt o0
=k+1
1
S— nU% Z {—klye—1 I (Jye-a| < @) + mel|ve—r—1|I(|ye—r—1] < a)}
t=k+1

Uk
= _21% + 0p(1)

n

with uy = —E{m—r|yi-1|L(|yi—1] < a), by the law of large numbers and

E(n;) = 0. Then, by the Taylor expansion, the law of large numbers, and

14



S2.5 Proof of Proposition 1

Theorems 2-3, it follows that

Vi (@)~ (@) = 2220 5@, )+ 0,1

u ~
= —5V0vn(0 — 00) + 0,(1).

n

Let pn(0) = (pn1(0), ..., puar(0)). Tt follows that

Vipa(B2) = Von(00) + 5, ) Iy B~ 00) + 0, (1)

By (52.5), we have

~ _ 00, (0o)
Vi, —0y) = -J fz 55 T on(D):

The martingale central limit theorem in Brown (1971) gives that
(V1P (60), V(B — 60)) —25 N(0, G).

Thus, \/ﬁpn(é\n) 4N (0,UGU’) by a matrix linear transformation.

Finally, note that, by (52.6)-(52.7),

\/ﬁ(l/’\n - pn(é\n)) - Op(1>\/ﬁpn(§n) + 0p(1) = 0p(1)O0p(1) + 0,(1) = 0,(1).

Thus, /np, N N(0,UGU’). The proof is complete. O

S2.5 Proof of Proposition 1

For any time point ¢, a k-th cumulative bubble collapses if s, =0, s;_; =1

for 1 <1 <kand s; 1 =0. Let {22} be a new auxiliary process that

15



S2.5 Proof of Proposition 1

satisfies the recursion

g, ifs<t—k-—1,

Gol28 4| +es, fs>t—k—1,
then y,—; = 27, if a k-th cumulative bubble is formed at time ¢ — 1 to be
collapsed at time ¢. Note that the process {z¢} is constructed using the
innovation sequence {e;}, which is independent of the sequence {s;}, we

can show that the joint probability
Piri<ecp,se=0,81=--=8_=15_,1=0)
=Ples —dolzy 1| <cryse =08 1= =8 =1,8,1=0)
= pi(1 = po)*Pler — dol 24| < ).

On the other hand, the marginal probability that a k-th cumulative bubble
collapses at time ¢ equals to P(s; = 0,8, 1 =+ =8 =1,8_41=0) =

pE(1 — po)?, and thus it suffices to show that
Ples — dolza] < ) = Blax > —c).

For this, note that the two vectors (g;_, ...,&;) and (go,...,&x) share the
same distribution, and thus by definition the two vectors (27 ,..., 27 ;1)
and (2, ...,20) have the same joint distribution. By independence of &;

and 27 ; we can then conclude that
Pler — dolzi 1| < &) = Plex — dol 2| < &) = Pgolzpa| —ex 2 —¢r).

16



S2.6 Proof of Proposition 2

If the innovation sequence {g;} has a symmetric distribution, then z, =
®o|zk—1] + € has the same distribution as ¢g|zx—1| — €k, and the result

follows. O

S2.6 Proof of Proposition 2

For any time point ¢, it constitutes a k-th cumulative bubble if s, ; = 1
for 0 <1 <k—1and s, =0. Let {22} be a new auxiliary process that
satisfies the recursion

€ss if s <t-—k,

Golz_ 1| +es, if s>t —k,

then by the independence of {¢;} and {s;} we can show that the joint

probability
P(ry <cr, s =0,8_1=-=58_=1,541=0)
= ]P)(&t - ¢0|Zf_1| <G8t =8-k-1=0,81=""=8 = 1)

— ph(1 = po)®Pe; — ol 1| < ).

On the other hand, the marginal probability that time ¢ is a k-th cumulative
bubble equals to P(s; = -+ = 84 11 = 1,81 = 0) = p§(1—po), and thus it
suffices to show that {2 }+—g<s<: and {zy }1<y <k share the same distribution.
For this, note that the two vectors (g;_¢,...,&;) and (g, ..., &) share the
same distribution, and they drive 22, t —k < s < t, and zy, 1 < ' < k,

17



based on the same recursion, the result then follows. ([l

S3 Explicit expressions of Z and J in Theorem 3

As for the explicit expressions of Z and J, by (5S2.1) and (52.3) and the

following facts

E{(y: — podolvi—1])*|Fi—1} = po(1 — po)(1 — 2p0)dp|y—1]* + ks,
E{(y: _p0¢0’yt71‘)4’f;t*1} = po(1 — po)(1 — 3po + 3P(2)) 613/?—1

+ 605po(1 — po)doys_1 + Ka,

a tedious algebraic calculation can yield

g {3%(90)}

0000

1 2y2
=E A +E{ t }D
{[PO(l — po)dgyi + 05 t} po(1 — po)dgyi + 0§

[ 00(0) 90,(0)
I_E{ 00 oY
:E{mﬂ—an—%@%@ﬁ“w@dbﬁm%ﬁ+%m—a®A%
[po(1 — po) Py + og)*
2p0(1 — po) (1 — 2po) Piyi + 2|ye| s }
+E B
{ [po(1 — po)dgyi + o3 '

4y2
+E{ ¢ }D
po(1 — po)dgyi + of

18
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with r3 = E(e3), ks = E(e}), and

Bt_

Ap3(1 — po)? Pyt 2po(1 — po)(1 — 2p0)diys  2po(1 — po) oy

(1 = 2po)*¢oy; (1—2po)d3y; |-
1
4p3(1 — po)doy?  po(3 — 4po)P3y? o P2 podo O
2(1—2po)d3y? ¢ |» D= o 0
0 0

Here, the elements in the lower triangles can be completed by symmetry.
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